JP3767376B2 - In-reactor inspection equipment - Google Patents

In-reactor inspection equipment Download PDF

Info

Publication number
JP3767376B2
JP3767376B2 JP2000372913A JP2000372913A JP3767376B2 JP 3767376 B2 JP3767376 B2 JP 3767376B2 JP 2000372913 A JP2000372913 A JP 2000372913A JP 2000372913 A JP2000372913 A JP 2000372913A JP 3767376 B2 JP3767376 B2 JP 3767376B2
Authority
JP
Japan
Prior art keywords
underwater vehicle
arm
container
reactor
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000372913A
Other languages
Japanese (ja)
Other versions
JP2002168991A (en
Inventor
正博 藤間
誠 妹尾
勇人 森
尚幸 河野
正浩 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000372913A priority Critical patent/JP3767376B2/en
Publication of JP2002168991A publication Critical patent/JP2002168991A/en
Application granted granted Critical
Publication of JP3767376B2 publication Critical patent/JP3767376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原子炉圧力容器内を水中ビークルを用いて検査する原子炉内検査装置に関する。
【0002】
【従来の技術】
原子力発電所などに採用されている原子炉は、原子炉圧力容器内に炉心が存在し、原子炉圧力容器内は高放射線環境状態にある。その原子炉圧力容器内をカメラで撮像して観察するなどの原子炉内検査は、シュラウドサポートレグやそのレグに支持されたシュラウドサポート及びシュラウドや、それらに装備された上部格子板や下部格子板が原子炉圧力容器内に残した状態で行うことが考えられている。
【0003】
その考えに沿った検査作業内容が特開平7−218681号公報にて開示されている。その開示内容によると、原子力発電所の原子炉内検査ではカメラや照明装置を搭載した水中ビークルが用いられている。その水中ビークルの取扱い方式は、ランチャー方式とうい一般的な方法が用いられている。
【0004】
従来例では、その水中ビークルをケーシング(容器)内に収納して水中ビークルが上部格子板や下部格子板等の障害物に直接に衝突することを防止しながら原子炉圧力容器内底部に水中ビークルを到達させている。
【0005】
そのケーシングは原子炉圧力容器内底部において下部格子板とCRD(制御棒駆動機構)ハウジングに支持させて置く。そして、ケーシングの側面に設けた開口から水中ビークルが自身の推進力でシュラウドの内側から外側に向かってシュラウドの下側をくぐりぬけて推進し、検査目的の高さヘ向かって浮上方向に推進する。そして、目的検査部位に移動した水中ビークルは照明装置で照らし出した検査部位をカメラで撮像して遠隔地点の検査員に撮像した映像を供給することが可能となる。
【0006】
検査作業後には、前述とは逆の手順でケーシングに水中ビークルを収納してケーシングごと引き上げる。
【0007】
【発明が解決しようとする課題】
原子炉内検査装置に用いられる水中ビークルは自力で原子炉圧力容器内のシュラウド下方をくぐりぬけてシュラウドと原子炉圧力容器の内壁の間の空間下方にに到達し検査部位の高さに向かう。その際に、水中ビークルは遠隔制御によって操縦されて移動するが、シュラウドの下方をくぐりぬける際には、そのくぐりぬける隙間が狭いので、水中ビークルの接触事故を起こし易い上、慎重に操縦しようとすれば、水中ビークルが原子炉圧力容器内で放射線を受ける時間が長くなって好ましくない。
【0008】
原子力発電所の原子炉内検査では水中ビークルが大量の放射線を浴びるため、水中ビークル内の制御電子回路系や炉内観察のためのカメラ系等が放射線損傷により破壊され故障する恐れがある。実際に、放射線集積線量がある閾値を越えると電子回路やカメラ等は放射線損傷により故障することを実験的に確認している。
【0009】
このように放射線損傷により故障した水中ビークルは自走できなくなるため、原子炉圧力容器外への撤収が困難となる恐れがある。水中ビークルが撤収できなくなった場合、水中ビークルを回収するのに原子炉圧力容器内の構造物の追加撤去等が必要となり時間と多額の追加費用がかかるという課題があった。
【0010】
また、水中ビークルが浴びる放射線集積線量は水中ビークルの設置および撤収作業や検査作業に要する時間と水中ビークルの滞在場所により大きく変化する。原子炉内の各場所における線量率は解析等により算出され、各場所における滞在時間を考慮して集積線量が評価される。
【0011】
しかし、各場所における推定線量率は評価誤差が大きいと考えられるため、水中ビークルを使用する放射線集積線量の閾値は実験等で求めた実際の閾値より約1桁程度小さくする必要がある。このため、まだ使用可能な水中ビークルでも放射線集積線量が規定の閾値に達したと推定された時点で作業を中止し水中ビークルを新品と交換する必要がある。したがって、水中ビークルの交換周期が短く、交換に要する時間がかかるとともに、交換用の水中ビークルの台数が増加するため費用が増加するという課題があった。
【0012】
本発明の目的は、水中ビークルが浴びる放射線集積線量を最小にするため、水中ビークルの設置および撤収作業や検査作業に要する時間を短くすることにある。
【0013】
また、本発明の他の目的は、水中ビークルの放射線集積線量を実測して、放射線集積線量の評価精度を向上させて、使用可能な規定の閾値を実際の閾値に近い値に設定することができ、交換に要する時間と、装置コストを低減することにある。
【0014】
【課題を解決するための手段】
前記目的を達成する発明の第1の特徴は、水中ビークルの設置および撤収作業に要する時間を短くするため、水中ビークルを収納する容器の形状が上部格子板と下部格子板間の距離より長くすることで上部格子板と下部格子板への挿入に要する位置合わせの時間が短くすることができる。また、水中ビークルを保持し、容器および障害となる構造物を回避するための回転着脱アーム構造を持たせることで、水中ビークルが容器外部に出るのに要する時間を短くすることができる。
【0015】
前記目的を達成する発明の第2の特徴は、検査作業に要する時間を短くするため、水中ビークルの位置評定をカメラとモニターを用いた画像による位置評定機構と超音波送受信器による距離測定機構を用いて行い、目的検査部位に最短時間で到達させるとともに、検査部位の検査の重複を防止することで検査作業に要する時間を短くすることができる。
【0016】
前記目的を達成する発明の第3の特徴は、水中ビークルに放射線集積線量計を装着し、実際の放射線集積線量を実測して、使用可能な閾値と比較しながら水中ビークルを使用することで水中ビークルの交換に要する時間と、装置コストを低減することができる。
【0017】
本発明によって、水中ビークルの設置と撤収作業および検査作業に要する時間が短くできる。また水中ビークルの交換が適切に行えるため、水中ビークルの交換頻度を低くできる。この結果、最終的に作業に要する時間と装置コストを低減できる効果がある。
【0018】
【発明の実施の形態】
以下に本発明の実施例を図面に基づき説明する。原子力発電所で採用されている沸騰水型原子炉の原子炉圧力容器13内の構造物を検査する際には、原子炉圧力容器13内の蒸気乾燥器や気水分離器やシュラウドヘッドや炉心燃料等炉心構成要素やジェットポンプ等の炉内構造物が原子炉圧力容器13外へ取出されて必要に応じて検査され、検査後の再組み付けまで保管される。
【0019】
原子炉圧力容器13外へ取出して検査することが困難なシュラウドサポート
35やシュラウド36やフローバッフル17、及びシュラウドサポート35やシュラウド36に支えられた上部格子板12や下部格子板11は、原子炉圧力容器13内の底部に据え付けられた状態のまま残されている。
【0020】
そのシュラウドサポート35の検査に際しては原子炉圧力容器13内とウエルプール内に水を張って原子炉圧力容器13内からオペレーションフロアー9側空間への放射線の到来を水で遮蔽した状態で実施される。そのために、原子炉圧力容器13内の水中をカメラら照明装置を搭載して推進する水中ビークル1が用いられる。
【0021】
原子炉圧力容器13内壁面とシュラウドサポート35外周面との狭隘な部位に水中ビークルを到達させてシュラウドサポート35(目的検査部位)を下側から観察して検査する場合には、上方から水中ビークル1を降下させて原子炉圧力容器13内壁面とフローバッフル17の外周面との狭隘な部位に到達させることは困難であり、実行出来るとしても時間がかかりすぎて高放射線環境下である原子炉圧力容器13内に水中ビークル1が滞在する時間が長くなる。
【0022】
そのため、図2のように、水中ビークル1は容器5内の下部領域に実線表示の状態で収納され、その状態の容器5が上部格子板12と下部格子板11との各格子を上方から下方へ通って、フローバッフル17やシュラウドサポート35やシュラウド36の内側に通されることで原子炉圧力容器13の底部に吊り降ろされる。吊り降ろされた容器5は下端が原子炉圧力容器13底部から上方へ突き出た制御棒駆動機構ハウジング18に支持されて下方向と水平方向への動きが拘束される。また、容器5の上部は下部格子板11の格子内に嵌まって水平方向の動きが拘束されている。これによって、容器5は、容器5の下部に設けられた水中ビークル1の出入口が図2の右方向、即ち原子炉圧力容器13の内壁面に対向して開口する姿勢に保持される。
【0023】
目的検査部位の近傍で水中ビークル1は図2の実線で示す状態から二点鎖線で示す状態に回転駆動された回転着脱アーム33によりフローバッフル17の下方を潜り抜けさせて原子炉圧力容器13内壁面とフローバッフル17外周面との狭隘な部位の下方に水中ビークルを到達させる。
【0024】
その狭隘な部位下方に回転着脱アーム33の回転作用で送り出された水中ビークル1は回転着脱アーム33から離脱して浮上方向に推進されてシュラウドサポート35に接近するように制御される。その接近状態で目的検査部位を水中ビークル1に搭載した照明23で照らし出し、カメラで撮影して目視確認を実施する。この目視確認により、シュラウドサポート35の亀裂等の異常を発見し、検査点検を行う。
【0025】
水中ビークル1には信号ケーブル2が接続されており、水中ビークル制御装置(目的検査部監視モニタをも含む)4からの制御信号を信号ケーブル2を通して水中ビークル1に伝送する。水中ビークル1で得られたカメラによる目的検査部位の映像信号は信号ケーブル2を通して水中ビークル制御装置4内の目的検査部監視モニタで画像にされて観測出来るようにする。
【0026】
水中ビークル1が収納される容器5はワイヤロープ6に接続してあり。上下移動機構7を用いて容器5を上下させる。また容器5を前後左右に移動させる時にはオペレーションフロアー9に設置してある燃料取扱機8に上下移動機構7を搭載した状態で燃料取扱機8を平面二次元方向へ移動させることで実施する。
【0027】
容器5を上部格子板12と下部格子板11との格子を通過させるには、燃料取扱機8を平面二次元方向へ移動させることで通過させようとする格子の上方に容器5を合わせる。次にその容器5を上下移動機構7で吊り降ろし方向に移動させて格子に通し、制御棒駆動機構ハウジング18上に着地させる。その際には、信号ケーブル2を、燃料取扱機8に装備されて上下移動機構7と同様に平面二次元方向へ移動させる事の出来る信号ケーブル巻き取り装置3から繰り出して、容器5の移動に追従させる。このようにして、原子炉圧力容器13の底部への容器5の吊り降ろしが達成される。
【0028】
その容器5は、上部格子板12と下部格子板11の間の距離より長いものを用いているので、容器5を吊り降ろす際に上部格子板12の格子を通過させれば、上部格子板12がガイドとなり下部格子板11の格子に容器5を通しやすくなる。
【0029】
また、この実施例では、原子炉圧力容器13内壁面とフローバッフル17外周面との狭隘な部位の下方に水中ビークル1を位置させることを、回転着脱アーム33の回転作用で水中ビークル1をその位置に送り出すことで迅速に出来る。そのため、水中ビークル1の推進制御によって狭隘なフローバッフル17の下方を潜り抜けさせるという難しい水中ビークル1の運転を省略出来る。
【0030】
回転着脱アーム33の回転作用で容器5の外側へ水中ビークル1を送り出す機構は、図2及び図3に示されている。それによれば、容器5が移動中には、水中ビークル1は回転着脱アーム33に取り付けられた永久磁石14に吸着されて位置Aに保持される。原子炉圧力容器13内の底部に到着した後、水中ビークル1は回転着脱アーム33の回転作用により障害物のない位置Bに移動され、水中ビークル1を保持していた永久磁石14の磁場を打ち消す電磁石15を励磁して水中ビークル1を水中へ開放する。
【0031】
その電磁石15も回転着脱アーム33に取り付けられている。信号ケーブル2とは別に他のケーブル(図示せず)をケーブル巻き取り装置に巻きかけ、そのケーブル巻き取り装置を燃料取扱機8に搭載して水平二次元方向へケーブル巻き取り装置を移動自在とする。そのケーブル巻き取り装置で繰り出したり巻き込んだりして水中ビークル1の移動にケーブルを追従させる。他のケーブルを通じて電磁石15に電力を与えて電磁石15を励磁したり、電力を遮断して非励磁にしたりしている。その電磁石15の励磁と非励磁はオペレーションフロア9におかれた専用の制御装置に備わるスイッチの切替で切替えてもよいし、水中ビークル制御装置4に電磁石15の励磁と非励磁を切替えるためのスイッチを設けてそのスイッチによって切替えてもよい。
【0032】
図2のように、回転着脱アーム33は概ねLの字状に曲がった形状をしており、容器5の内壁面に固定されたブランケット46へ一端が回転軸41で垂直面で回転自在に取り付けられる。その回転着脱アーム33には、回転軸42でリンク43の一端が垂直面で回転自在に連結され、リンク43の他端にはリンク44の一端が回転軸45で垂直面で回転自在に連結される。そのリンク44の他端は回転軸48で垂直面で回転自在にブランケット46へ取り付けられる。
【0033】
容器5の内壁面に固定された他のブランケット47にはエアーシリンダ16のシリンダが回転軸49で垂直面で回転自在に連結され、そのエアーシリンダ16のピストンロッドは回転軸45に垂直面で回転自在に連結される。
【0034】
このようなリンク機構とエアーシリンダ16の組み合わせで、回転着脱アーム33はエアーシリンダ16のピストンロッドをそのシリンダにたいして出入りする方向に空気圧で駆動することで、図2の実線表示状態の位置Aと二点鎖線表示状態の位置Bとの状態間で往復回転駆動される。これにより、水中ビークル1を運転制御する必要無く、フローバッフル17を潜り抜けて位置Aと位置Bの間を往来出来る。その際、水中ビークル1を運転制御する必要が無いので、運転ミスなどによる衝突事故を起こすことなく安全にしかも迅速に容器5内の位置Aから位置Bにて示す原子炉圧力容器13内壁面とフローバッフル17外周面との狭隘な部位の下方に水中ビークル1を移動させることが出来る。
【0035】
エアーシリンダ16を駆動するための空気圧の制御はエアーシリンダ16に接続された空気圧の供給ホースと排気ホースとを通じて行われ、それら各ホースはホース巻き取り装置に巻き取り繰り出し自在に装備される。そのホース巻き取り装置は燃料取扱機8に搭載されて水平二次元方向に移動出来る。その移動とホース巻き取り装置による供給ホースと排気ホースの巻き取り繰り出し作用によって容器5の移動に供給ホースと排気ホースを追従させる。エアーシリンダー16への空気圧の供給と逆の排気とは、それらの給気と排気を制御する弁を操作して供給ホースと排気ホースを通じて行われる。それらの弁はコンプレッサ等の空気圧発生装置とともにオペレーションフロア9に置かれても良く、燃料取扱機8に搭載されていても良い。
【0036】
図3のように、回転着脱アーム33は水中ビークル1の位置を評定するためのカメラ19が2台、回転着脱アーム33と水中ビークル1の距離を測定するための超音波測距装置の超音波送信器20、および照明21が2台設置してある。
【0037】
図4のように、水中ビークル1には目的検査部位監視用カメラ22と照明23が装備されており、目的検査部位監視用カメラ22は監視方向を変化出来る可動式である。水中ビークル1は上下用スラスタ24と前後進旋回用スラスタ25を回転させて目的検査部位の近傍まで上下及び前進後進並びに左右旋回自在で、その動きは水中ビークル制御装置4の制御盤上での操作で制御出来る。
【0038】
水中ビークル1の特徴は、水中ビークル1本体に水中ビークル1の位置を評定しやすくするため、周囲が暗くても水中ビークル1の位置が目視で確認出来るように位置評定用電灯26と超音波測距装置の超音波受信器27を設置した。その上、放射線集積線量を正確に評価するために水中ビークル1に放射線集積線量計28を装着した。但し、放射線集積線量計は水中ビークルを収納する容器に装着してあっても良い。
【0039】
水中ビークル1の位置評定を行うと目的検査部位へ到着するのに要する時間を最短にできるとともに、検査部位の検査の重複を防止することができるため検査作業に要する時間を最短にすることができる。即ち、放射線集積線量を最小にすることが可能となる。
【0040】
水中ビークル1の位置評定は回転着脱アーム33に設置されたカメラ19を2台用いて三角測定法を用いることで達成できる。この三角測定法に加えて、回転着脱アーム33に設置された超音波送信器20と水中ビークル1本体に設置した超音波受信器27を用いて回転着脱アーム33と水中ビークル1の間の距離を超音波の伝搬時間より高精度に求めてこの距離を位置評定演算に用いることで三角測定法のみの時に比べて位置評定精度を向上させることができる。さらに、カメラ19が1台故障した場合、または障害物によりカメラ19の映像が1台しか得られない場合でも、カメラ19の1台と超音波による距離測定を組み合わせることで水中ビークル1の位置評定をおこなうことができる。カメラ19の映像信号や超音波受信に係る信号は信号ケーブル2を通じて水中ビークル制御装置4に送られて信号処理された上でモニタに表示される。
【0041】
以上のこと、およびカメラに比べて超音波送受信器の耐放射線性能が高いことから、カメラ19が2台と超音波送受信器を組み合わせた本実施例はカメラを2台のみ使用する場合に比べて、位置評定精度が高く、耐放射線性能にも優れている。
【0042】
水中ビークル1が自力で推進し移動する際に必要となる、信号ケーブル2の容器5から水中ビークル1への送り出し機構は、エアーシリンダ16よりも上方の容器5内空間に装備されている。即ち、図5のようにワイヤケーブル6で保持された容器5内に引き込まれた信号ケーブル2は容器5内を上下に移動自在な移動プレート30を貫通して水中ビークル1に接続されている。
【0043】
その移動プレート30は容器5に固定されたモータ31で回転駆動されるネジ軸32に螺合している。そのため、モータ31でネジ軸32を回転駆動すると、その回転の方向に応じて移動プレート30が上下に移動出来る。その移動を確実に行うために、移動プレート30と容器内壁面との間には移動プレート30のネジ軸32との共回りを防止する回り止めが装備されている。
【0044】
ネジ軸32の周囲に存在する信号ケーブル2はコイルバネ状にされ、そのコイル状のコイルバネ部29は移動プレート30の上下動に応じて伸縮して、信号ケーブル2が損傷することを防止している。そのモータ31が電動の場合には電力ケーブルで電力をモータ31に供給する。またその電力ケーブル及びモータ31の制御信号を伝えるケーブルもケーブル巻き取り装置で巻き取り繰り出し自在とし、その巻き取り装置を燃料取扱機8で水平二次元方向へ移動自在に支持する。そのことによって、容器5の移動に電力ケーブル及びモータ31の制御信号を伝えるケーブルを追従させる。モータ31の制御信号を伝えるケーブルに接続されるモータ31の制御装置や電力ケーブルに接続される電源は燃料取扱機8に搭載しても、オペレーションフロア9に設置しても良い。
【0045】
水中ビークル1が移動して信号ケーブル2を引く場合にはモータ31を駆動させ、ネジ軸32を回転させて移動プレート30を下方向に移動させる。これにより移動プレート30とともに信号ケーブル2が下方向に移動するため水中ビークル1が上方に移動できる。
【0046】
検査後に水中ビークル1を回収する場合には、水中ビークル1を下方に推進移動するとともに、モータ31でネジ軸32を逆方向に回転駆動して移動プレート30を上昇させて信号ケーブル2を容器内に引き込む。水中ビークル1が検査位置から下降して回転着脱アーム33に極めて接近したことをカメラ19や超音波測距装置で検知したら、電磁石15を非励磁状態に切替えて永久磁石14に水中ビークル1を磁力により吸着する。
【0047】
次に、エアーシリンダ16のピストンロッドを縮めて回転着脱アーム33を図2の二点鎖線表示の状態から実線表示の状態に回転軸41を中心にして回転させ、容器5内に水中ビークル1をフローバッフル17の下を潜らせて移動させる。
【0048】
このようにして水中ビークル1が容器5内に収まったなら、ワイヤケーブル巻き取り装置7にワイヤケーブル6を巻とることで容器5を下部格子板11と上部格子板12の各格子を通過させて引き上げる。その際には、他のケーブルやホースも巻き上げて容器5の移動に追従させる。
【0049】
放射線集積線量計28からの計測信号を信号ケーブル2を通じて水中ビークル制御装置4に受信して水中ビークル1が受けた放射線の集積線量を確認し、まだ水中ビークル1の交換が必要とされる放射線の集積線量に到達していない場合には、次の検査部位に近い位置へ向けて容器5の位置を、燃料取扱機8の移動で、変位させ、検査を繰り返す。水中ビークル1の交換が必要とされる放射線の集積線量に到達していた場合には、水中ビークル1の全交換又はカメラ22等を交換対象とする部分交換を実施して検査を続行する。これらの交換時期には、カメラ19についても交換の要否を検討する。
【0050】
【発明の効果】
本発明によれば、水中ビークルの設置と撤収作業および検査作業に要する時間が短くできる。
【0051】
また水中ビークルまたは、水中ビークルを収納する容器に放射線集積線量計を装着してある本発明の原子炉内検査装置にあっては、実際の放射線集積線量に基づき水中ビークルの交換を適切に行えるため、水中ビークルの交換頻度を低くできる。この結果、最終的に作業に要する時間と装置コストを低減できる効果がある。
【図面の簡単な説明】
【図1】本発明の実施例による原子炉内検査装置の原子炉圧力容器内への適用を示した原子炉圧力容器内の縦断面図。
【図2】本発明の実施例における水中ビークルの送り出し機構(回転着脱アーム近傍の構造)の立面図である。
【図3】図2のA−A矢視断面図である。
【図4】本発明の実施例による水中ビークルを示す図であって、(a)図は水中ビークルの側面図であり、(b)図は水中ビークルの底面図である。
【図5】本発明の実施例における水中ビークルへの信号ケーブルの送り出し機構の概要図である。
【符号の説明】
1…水中ビークル、2…信号ケーブル、3…信号ケーブル巻き取り装置、4…水中ビークル制御装置、5…容器、6…ワイヤケーブル、7…ワイヤケーブル巻き取り装置、8…燃料取扱機、9…オペレーションフロアー、10…CRDハウジング、11…下部格子板、12…上部格子板、13…原子炉圧力容器、14…永久磁石、15…電磁石、16…エアーシリンダ、17…フローバッフル、18…制御棒駆動機構ハウジング、19…カメラ、20…超音波送信器、21…照明、22…目的検査部位監視用カメラ、23…照明、24…上下用スラスタ、25…前後進旋回用スラスタ、26…位置評定用電灯、27…超音波受信器、28…放射線集積線量計、29…コイルバネ部、30…移動プレート、31…モータ、32…ネジ軸、35…シュラウドサポート、36…シュラウド。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-reactor inspection apparatus that inspects a reactor pressure vessel using an underwater vehicle.
[0002]
[Prior art]
Reactors employed in nuclear power plants and the like have a core in the reactor pressure vessel, and the reactor pressure vessel is in a high radiation environment. In-reactor inspections, such as observing the reactor pressure vessel with a camera, are performed using the shroud support leg, the shroud support and shroud supported by the leg, and the upper and lower grid plates mounted on them. Is considered to be performed in a state where it remains in the reactor pressure vessel.
[0003]
The contents of the inspection work in accordance with the idea is disclosed in Japanese Patent Laid-Open No. 7-218682. According to the disclosure, underwater vehicles equipped with cameras and lighting devices are used for in-reactor inspections at nuclear power plants. As a method for handling the underwater vehicle, a general method such as a launcher method is used.
[0004]
In the conventional example, the underwater vehicle is housed in a casing (container) to prevent the underwater vehicle from directly colliding with obstacles such as the upper lattice plate and the lower lattice plate, and the underwater vehicle is placed at the bottom of the reactor pressure vessel. Has been reached.
[0005]
The casing is placed on the bottom of the reactor pressure vessel and supported by a lower grid plate and a CRD (control rod drive mechanism) housing. Then, the underwater vehicle is propelled by passing through the lower side of the shroud from the inner side of the shroud to the outer side by the propulsion force from the opening provided on the side surface of the casing, and propelled in the flying direction toward the height for inspection. Then, the underwater vehicle that has moved to the target inspection site can supply the image taken to the inspector at a remote location by imaging the inspection site illuminated by the illumination device with the camera.
[0006]
After the inspection work, the underwater vehicle is accommodated in the casing in the reverse procedure to that described above, and the whole casing is pulled up.
[0007]
[Problems to be solved by the invention]
The underwater vehicle used in the in-reactor inspection apparatus passes under the shroud in the reactor pressure vessel by itself, reaches the space below between the shroud and the inner wall of the reactor pressure vessel, and reaches the height of the inspection site. At that time, the underwater vehicle is steered and moved by remote control. If this is the case, the time for the underwater vehicle to receive radiation in the reactor pressure vessel is undesirably increased.
[0008]
In an in-reactor inspection of a nuclear power plant, an underwater vehicle is exposed to a large amount of radiation, so there is a risk that a control electronic circuit system in the underwater vehicle, a camera system for in-reactor observation, etc. will be destroyed and damaged due to radiation damage. Actually, it has been experimentally confirmed that when the radiation accumulated dose exceeds a certain threshold, an electronic circuit, a camera, or the like fails due to radiation damage.
[0009]
As described above, the underwater vehicle that has failed due to radiation damage cannot be self-propelled, and thus it may be difficult to withdraw from the reactor pressure vessel. When the underwater vehicle can no longer be withdrawn, there is a problem that additional removal of the structure in the reactor pressure vessel is required to collect the underwater vehicle, which requires time and a large additional cost.
[0010]
In addition, the accumulated radiation dose that the underwater vehicle is exposed to varies greatly depending on the time required for installation, removal and inspection of the underwater vehicle and the place where the underwater vehicle stays. The dose rate at each location in the reactor is calculated by analysis, etc., and the accumulated dose is evaluated in consideration of the residence time at each location.
[0011]
However, since the estimated dose rate at each location is considered to have a large evaluation error, the threshold of the accumulated radiation dose using the underwater vehicle needs to be about an order of magnitude smaller than the actual threshold obtained through experiments. For this reason, it is necessary to stop the operation and replace the underwater vehicle with a new one when it is estimated that the accumulated radiation dose has reached the prescribed threshold even in the still usable underwater vehicle. Therefore, there is a problem that the exchange cycle of the underwater vehicle is short, and it takes time for the exchange, and the number of the underwater vehicles for replacement increases, so that the cost increases.
[0012]
An object of the present invention is to shorten the time required for installation, removal work, and inspection work of the underwater vehicle in order to minimize the radiation dose that the underwater vehicle is exposed to.
[0013]
Another object of the present invention is to actually measure the accumulated radiation dose of an underwater vehicle, improve the evaluation accuracy of the accumulated radiation dose, and set a usable threshold value close to the actual threshold value. It is possible to reduce the time required for replacement and the cost of the apparatus.
[0014]
[Means for Solving the Problems]
A first feature of the invention that achieves the above object is that the shape of the container for storing the underwater vehicle is made longer than the distance between the upper lattice plate and the lower lattice plate in order to shorten the time required for installation and removal of the underwater vehicle. As a result, the alignment time required for insertion into the upper and lower grid plates can be shortened. In addition, the time required for the underwater vehicle to go out of the container can be shortened by holding the underwater vehicle and providing the rotating and detachable arm structure for avoiding the container and the obstructing structure.
[0015]
The second feature of the invention that achieves the above object is that the position of the underwater vehicle is evaluated by an image using a camera and a monitor and a distance measuring mechanism by an ultrasonic transceiver in order to shorten the time required for the inspection work. It is possible to reduce the time required for the inspection work by preventing the duplication of the inspection of the inspection part while making it reach the target inspection part in the shortest time.
[0016]
A third feature of the invention that achieves the above object is that an underwater vehicle is attached to an underwater vehicle, an actual accumulated radiation dose is measured, and the underwater vehicle is used while being compared with a usable threshold. The time required for vehicle replacement and the cost of the apparatus can be reduced.
[0017]
According to the present invention, the time required for installation, removal work and inspection work of the underwater vehicle can be shortened. In addition, since the underwater vehicle can be replaced appropriately, the replacement frequency of the underwater vehicle can be lowered. As a result, there is an effect that the time required for the work and the apparatus cost can be reduced.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. When inspecting the structure in the reactor pressure vessel 13 of the boiling water reactor employed in the nuclear power plant, a steam dryer, a steam separator, a shroud head, or a core in the reactor pressure vessel 13 is used. Reactor core components such as fuel and internal structures such as jet pumps are taken out of the reactor pressure vessel 13 and inspected as necessary, and stored until reassembly after inspection.
[0019]
The shroud support 35, shroud 36, flow baffle 17, and the upper grid plate 12 and the lower grid plate 11 supported by the shroud support 35 and the shroud 36, which are difficult to take out from the reactor pressure vessel 13 and inspect, It remains in the state of being installed at the bottom in the pressure vessel 13.
[0020]
The inspection of the shroud support 35 is performed in a state where water is filled in the reactor pressure vessel 13 and the well pool, and radiation from the reactor pressure vessel 13 to the operation floor 9 side space is shielded with water. . For this purpose, an underwater vehicle 1 that uses a lighting device such as a camera to propel the water in the reactor pressure vessel 13 is used.
[0021]
When the underwater vehicle is made to reach a narrow part between the inner wall surface of the reactor pressure vessel 13 and the outer peripheral surface of the shroud support 35 and the shroud support 35 (target inspection part) is observed from below and inspected, the underwater vehicle is viewed from above. 1 is lowered to reach a narrow part between the inner wall surface of the reactor pressure vessel 13 and the outer peripheral surface of the flow baffle 17, and even if it can be executed, it takes too much time and is in a high radiation environment. The time during which the underwater vehicle 1 stays in the pressure vessel 13 becomes longer.
[0022]
Therefore, as shown in FIG. 2, the underwater vehicle 1 is stored in a lower region in the container 5 in a state indicated by a solid line, and the container 5 in this state moves down the grids of the upper grid plate 12 and the lower grid plate 11 from above. Is passed through the flow baffle 17, the shroud support 35, and the shroud 36, and is suspended from the bottom of the reactor pressure vessel 13. The suspended vessel 5 is supported by a control rod drive mechanism housing 18 whose lower end protrudes upward from the bottom of the reactor pressure vessel 13 and is restrained from moving in the downward and horizontal directions. Further, the upper part of the container 5 is fitted into the lattice of the lower lattice plate 11 and the movement in the horizontal direction is restricted. As a result, the container 5 is held in such a posture that the doorway of the underwater vehicle 1 provided at the lower part of the container 5 opens in the right direction in FIG. 2, that is, facing the inner wall surface of the reactor pressure vessel 13.
[0023]
In the vicinity of the target inspection site, the underwater vehicle 1 passes through the lower part of the flow baffle 17 by the rotary attaching / detaching arm 33 which is rotationally driven from the state shown by the solid line in FIG. The underwater vehicle is allowed to reach below a narrow portion between the wall surface and the outer peripheral surface of the flow baffle 17.
[0024]
The underwater vehicle 1 sent out by the rotating action of the rotary attaching / detaching arm 33 below the narrow part is controlled so as to be detached from the rotating attach / detach arm 33 and propelled in the flying direction to approach the shroud support 35. In the approached state, the target inspection site is illuminated by the illumination 23 mounted on the underwater vehicle 1 and photographed with a camera for visual confirmation. By this visual confirmation, an abnormality such as a crack in the shroud support 35 is found, and inspection and inspection are performed.
[0025]
A signal cable 2 is connected to the underwater vehicle 1, and a control signal from an underwater vehicle control device (including a target inspection unit monitoring monitor) 4 is transmitted to the underwater vehicle 1 through the signal cable 2. The video signal of the target inspection site obtained by the camera in the underwater vehicle 1 is made into an image and can be observed through the signal cable 2 on the target inspection unit monitoring monitor in the underwater vehicle control device 4.
[0026]
A container 5 in which the underwater vehicle 1 is stored is connected to a wire rope 6. The container 5 is moved up and down using the vertical movement mechanism 7. Further, when the container 5 is moved back and forth and left and right, it is implemented by moving the fuel handling machine 8 in a two-dimensional direction in a plane with the vertical movement mechanism 7 mounted on the fuel handling machine 8 installed on the operation floor 9.
[0027]
In order to pass the container 5 through the lattice of the upper lattice plate 12 and the lower lattice plate 11, the container 5 is placed above the lattice to be passed by moving the fuel handling device 8 in a two-dimensional direction. Next, the container 5 is moved by the vertical movement mechanism 7 in the hanging direction, passed through the lattice, and landed on the control rod drive mechanism housing 18. In this case, the signal cable 2 is unwound from the signal cable winding device 3 that is mounted on the fuel handling machine 8 and can be moved in the two-dimensional plane as in the vertical movement mechanism 7 to move the container 5. Follow. In this way, the suspension of the vessel 5 to the bottom of the reactor pressure vessel 13 is achieved.
[0028]
Since the container 5 is longer than the distance between the upper lattice plate 12 and the lower lattice plate 11, if the lattice of the upper lattice plate 12 is passed when the container 5 is suspended, the upper lattice plate 12 is used. Becomes a guide and allows the container 5 to be easily passed through the lattice of the lower lattice plate 11.
[0029]
In this embodiment, the underwater vehicle 1 is positioned below the narrow portion between the inner wall surface of the reactor pressure vessel 13 and the outer peripheral surface of the flow baffle 17. It can be done quickly by sending it to the position. Therefore, it is possible to omit the difficult operation of the underwater vehicle 1 such that the propulsion control of the underwater vehicle 1 makes it go under the narrow flow baffle 17.
[0030]
A mechanism for sending the underwater vehicle 1 to the outside of the container 5 by the rotating action of the rotary attaching / detaching arm 33 is shown in FIGS. According to this, while the container 5 is moving, the underwater vehicle 1 is attracted to the permanent magnet 14 attached to the rotary attaching / detaching arm 33 and held at the position A. After arriving at the bottom of the reactor pressure vessel 13, the underwater vehicle 1 is moved to an unobstructed position B by the rotating action of the rotary attaching / detaching arm 33, and cancels the magnetic field of the permanent magnet 14 holding the underwater vehicle 1. The electromagnet 15 is excited to open the underwater vehicle 1 into the water.
[0031]
The electromagnet 15 is also attached to the rotary attaching / detaching arm 33. Separately from the signal cable 2, another cable (not shown) is wound around the cable winder, and the cable winder is mounted on the fuel handling machine 8 so that the cable winder can be moved in the horizontal two-dimensional direction. To do. The cable is taken up or rolled up by the cable winding device so that the cable follows the movement of the underwater vehicle 1. Electric power is supplied to the electromagnet 15 through another cable to excite the electromagnet 15, or the electric power is cut off to be non-excited. Excitation and de-excitation of the electromagnet 15 may be switched by switching a switch provided in a dedicated control device on the operation floor 9, or a switch for switching the electromagnet 15 to excitation and de-excitation in the underwater vehicle control device 4. May be provided and switched by the switch.
[0032]
As shown in FIG. 2, the rotary attaching / detaching arm 33 is bent in an L shape, and is attached to a blanket 46 fixed to the inner wall surface of the container 5 so that one end of the rotary attaching / detaching arm 33 is rotatable on a vertical surface with a rotary shaft 41. It is done. One end of a link 43 is rotatably connected to the rotation attaching / detaching arm 33 by a rotating shaft 42 on a vertical surface, and one end of a link 44 is rotatably connected to a vertical surface by a rotating shaft 45 on the other end of the link 43. The The other end of the link 44 is attached to the blanket 46 so as to be rotatable on a vertical surface by a rotating shaft 48.
[0033]
A cylinder of the air cylinder 16 is connected to another blanket 47 fixed to the inner wall surface of the container 5 so as to be rotatable on a vertical surface by a rotation shaft 49, and a piston rod of the air cylinder 16 rotates on a vertical surface to the rotation shaft 45. Connected freely.
[0034]
With such a combination of the link mechanism and the air cylinder 16, the rotary attaching / detaching arm 33 is pneumatically driven in a direction in which the piston rod of the air cylinder 16 enters and exits the cylinder, so that the position A in the solid line display state in FIG. It is driven to reciprocate between the state with the position B in the dotted line display state. Thereby, it is possible to pass between the position A and the position B through the flow baffle 17 without the need to control the operation of the underwater vehicle 1. At this time, since it is not necessary to control the operation of the underwater vehicle 1, the inner wall surface of the reactor pressure vessel 13 indicated by the position A to the position B in the vessel 5 can be safely and quickly without causing a collision accident due to an operation mistake or the like. The underwater vehicle 1 can be moved below a narrow portion with the outer peripheral surface of the flow baffle 17.
[0035]
Control of the air pressure for driving the air cylinder 16 is performed through a pneumatic supply hose and an exhaust hose connected to the air cylinder 16, and each of these hoses is equipped in a hose winding device so as to be freely wound and unwound. The hose winding device is mounted on the fuel handling machine 8 and can move in a two-dimensional horizontal direction. The supply hose and the exhaust hose are made to follow the movement of the container 5 by the movement and the winding and unwinding action of the supply hose and the exhaust hose by the hose winding device. Exhaust, which is the reverse of supplying air pressure to the air cylinder 16, is performed through a supply hose and an exhaust hose by operating valves that control the supply and exhaust of these air. These valves may be placed on the operation floor 9 together with an air pressure generating device such as a compressor, or may be mounted on the fuel handling machine 8.
[0036]
As shown in FIG. 3, the rotary attachment / detachment arm 33 includes two cameras 19 for evaluating the position of the underwater vehicle 1, and the ultrasonic wave of the ultrasonic distance measuring device for measuring the distance between the rotation attachment / detachment arm 33 and the underwater vehicle 1. Two transmitters 20 and two lights 21 are installed.
[0037]
As shown in FIG. 4, the underwater vehicle 1 is equipped with a target inspection site monitoring camera 22 and an illumination 23, and the target inspection site monitoring camera 22 is movable so that the monitoring direction can be changed. The underwater vehicle 1 rotates up and down thruster 24 and forward and backward turning thruster 25 to freely move up and down, forward and backward, and right and left to the vicinity of the target inspection site, and its movement is operated on the control panel of the underwater vehicle control device 4. Can be controlled.
[0038]
The feature of the underwater vehicle 1 is that the position of the underwater vehicle 1 can be visually confirmed even when the surroundings are dark so that the position of the underwater vehicle 1 can be easily evaluated on the underwater vehicle 1 body. An ultrasonic receiver 27 for the distance device was installed. In addition, an integrated radiation dosimeter 28 was attached to the underwater vehicle 1 in order to accurately evaluate the integrated radiation dose. However, the radiation integrated dosimeter may be attached to a container for storing the underwater vehicle.
[0039]
When the position of the underwater vehicle 1 is evaluated, the time required to arrive at the target inspection site can be minimized, and the time required for the inspection operation can be minimized because the inspection region can be prevented from being duplicated. . That is, the radiation accumulated dose can be minimized.
[0040]
The position evaluation of the underwater vehicle 1 can be achieved by using the triangulation measurement method using two cameras 19 installed on the rotary attaching / detaching arm 33. In addition to this triangulation measurement method, the distance between the rotation attachment / detachment arm 33 and the underwater vehicle 1 is determined using the ultrasonic transmitter 20 installed on the rotation attachment / detachment arm 33 and the ultrasonic receiver 27 installed on the body of the underwater vehicle 1. By obtaining this distance with higher accuracy than the propagation time of the ultrasonic wave and using this distance for the position evaluation calculation, it is possible to improve the position evaluation accuracy as compared with the case of the triangular measurement method alone. Further, even when one camera 19 breaks down or only one image of the camera 19 is obtained due to an obstacle, the position of the underwater vehicle 1 is evaluated by combining one camera 19 and ultrasonic distance measurement. Can be done. A video signal of the camera 19 and a signal related to ultrasonic reception are sent to the underwater vehicle control device 4 through the signal cable 2 and processed on the signal, and then displayed on the monitor.
[0041]
As described above, and the radiation resistance of the ultrasonic transmitter / receiver is higher than that of the camera, this embodiment in which two cameras 19 are combined with the ultrasonic transmitter / receiver is compared with the case of using only two cameras. , Positioning accuracy is high and radiation resistance is excellent.
[0042]
A mechanism for feeding the signal cable 2 from the container 5 to the underwater vehicle 1 required when the underwater vehicle 1 is propelled and moved by itself is installed in the space inside the container 5 above the air cylinder 16. That is, as shown in FIG. 5, the signal cable 2 drawn into the container 5 held by the wire cable 6 passes through the moving plate 30 that can move up and down in the container 5 and is connected to the underwater vehicle 1.
[0043]
The moving plate 30 is screwed onto a screw shaft 32 that is rotationally driven by a motor 31 fixed to the container 5. Therefore, when the screw shaft 32 is rotationally driven by the motor 31, the moving plate 30 can move up and down according to the direction of rotation. In order to ensure the movement, a rotation stopper is provided between the movement plate 30 and the inner wall surface of the container to prevent the rotation of the movement plate 30 with the screw shaft 32.
[0044]
The signal cable 2 existing around the screw shaft 32 is formed in a coil spring shape, and the coiled coil spring portion 29 expands and contracts according to the vertical movement of the moving plate 30 to prevent the signal cable 2 from being damaged. . When the motor 31 is electric, electric power is supplied to the motor 31 with a power cable. Further, the power cable and the cable for transmitting the control signal of the motor 31 can be taken up and unwound by the cable take-up device, and the take-up device is supported by the fuel handling machine 8 so as to be movable in the horizontal two-dimensional direction. As a result, the power cable and the cable that transmits the control signal of the motor 31 are caused to follow the movement of the container 5. The control device of the motor 31 connected to the cable for transmitting the control signal of the motor 31 and the power source connected to the power cable may be mounted on the fuel handling machine 8 or installed on the operation floor 9.
[0045]
When the underwater vehicle 1 moves and pulls the signal cable 2, the motor 31 is driven and the screw shaft 32 is rotated to move the moving plate 30 downward. Thereby, since the signal cable 2 moves downward together with the moving plate 30, the underwater vehicle 1 can move upward.
[0046]
When the underwater vehicle 1 is collected after the inspection, the underwater vehicle 1 is propelled downward and the motor 31 rotates the screw shaft 32 in the reverse direction to raise the moving plate 30 to bring the signal cable 2 into the container. Pull in. When the camera 19 or the ultrasonic distance measuring device detects that the underwater vehicle 1 is lowered from the inspection position and is extremely close to the rotary attaching / detaching arm 33, the electromagnet 15 is switched to a non-excited state and the underwater vehicle 1 is magnetically applied to the permanent magnet 14. Adsorbed by
[0047]
Next, the piston rod of the air cylinder 16 is contracted to rotate the rotary attaching / detaching arm 33 from the two-dot chain line display state of FIG. 2 to the solid line display state around the rotation shaft 41, and the underwater vehicle 1 is placed in the container 5. Under the flow baffle 17, it is moved.
[0048]
When the underwater vehicle 1 is thus housed in the container 5, the container 5 is passed through each lattice of the lower lattice plate 11 and the upper lattice plate 12 by winding the wire cable 6 around the wire cable winding device 7. Pull up. At that time, other cables and hoses are also wound up to follow the movement of the container 5.
[0049]
The measurement signal from the integrated radiation dosimeter 28 is received by the underwater vehicle control device 4 through the signal cable 2 to confirm the accumulated dose of radiation received by the underwater vehicle 1, and the radiation that still needs to be replaced by the underwater vehicle 1. If the accumulated dose has not been reached, the position of the container 5 is displaced by the movement of the fuel handling machine 8 toward a position close to the next inspection site, and the inspection is repeated. If the accumulated dose of radiation that requires replacement of the underwater vehicle 1 has been reached, the entire inspection of the underwater vehicle 1 or partial replacement for the camera 22 or the like is performed and the inspection is continued. At these exchange times, the camera 19 is also examined for necessity.
[0050]
【The invention's effect】
According to the present invention, the time required for installation, removal work and inspection work of the underwater vehicle can be shortened.
[0051]
Further, in the in-reactor inspection apparatus of the present invention in which an accumulated radiation dosimeter is attached to an underwater vehicle or a container that houses the underwater vehicle, the underwater vehicle can be appropriately replaced based on the actual accumulated radiation dose. The underwater vehicle replacement frequency can be lowered. As a result, there is an effect that the time required for the work and the apparatus cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a reactor pressure vessel showing an application of an in-reactor inspection apparatus according to an embodiment of the present invention to the reactor pressure vessel.
FIG. 2 is an elevational view of an underwater vehicle delivery mechanism (a structure in the vicinity of a rotary attaching / detaching arm) in an embodiment of the present invention.
3 is a cross-sectional view taken along the line AA in FIG. 2;
4A and 4B are views showing an underwater vehicle according to an embodiment of the present invention, in which FIG. 4A is a side view of the underwater vehicle, and FIG. 4B is a bottom view of the underwater vehicle.
FIG. 5 is a schematic diagram of a signal cable delivery mechanism to an underwater vehicle in an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Underwater vehicle, 2 ... Signal cable, 3 ... Signal cable winding device, 4 ... Underwater vehicle control device, 5 ... Container, 6 ... Wire cable, 7 ... Wire cable winding device, 8 ... Fuel handling machine, 9 ... Operation floor, 10 ... CRD housing, 11 ... Lower lattice plate, 12 ... Upper lattice plate, 13 ... Reactor pressure vessel, 14 ... Permanent magnet, 15 ... Electromagnet, 16 ... Air cylinder, 17 ... Flow baffle, 18 ... Control rod Drive mechanism housing, 19 ... camera, 20 ... ultrasonic transmitter, 21 ... illumination, 22 ... camera for monitoring target inspection site, 23 ... illumination, 24 ... up / down thruster, 25 ... back and forth turning thruster, 26 ... position rating Electric light, 27 ... Ultrasonic receiver, 28 ... Radiation integrated dosimeter, 29 ... Coil spring part, 30 ... Moving plate, 31 ... Motor, 32 ... Screw shaft, 35 ... Interview loud support, 36 ... shroud.

Claims (5)

原子炉圧力容器内の検査に用いる水中ビークルを着脱自在に装備したアームと、前記アームと前記水中ビークルを収納する容器と、前記アームを前記容器の横方向内外へ向かって駆動する前記アームの駆動機構とを備えた原子炉内検査装置。  An arm detachably equipped with an underwater vehicle used for inspection in a reactor pressure vessel, a container for housing the arm and the underwater vehicle, and driving of the arm for driving the arm inward and outward in the lateral direction of the vessel In-reactor inspection device equipped with a mechanism. 請求項1において、前記容器の形状が原子炉圧力容器内の上部格子板と下部格子板間の上下間距離より長いことを特徴とする原子炉内検査装置。 2. The in- reactor inspection apparatus according to claim 1 , wherein the shape of the vessel is longer than a vertical distance between an upper lattice plate and a lower lattice plate in the reactor pressure vessel. 請求項1又は請求項2において、前記アームと水中ビークルとの間に前記水中ビークルの位置確認手段が装備されていることを特徴とする原子炉内検査装置。 According to claim 1 or claim 2, wherein the arm and the nuclear reactor inspection apparatus, wherein a position confirmation means water vehicle is equipped between the underwater vehicle. 請求項3において、前記位置確認手段は、前記アームに装備されたカメラと照明および超音波発振器と、前記水中ビークルには発光する機器又は反射鏡と超音波受信器を備え、前記発光する機器又は反射鏡からの光を前記カメラに捕えて画像による位置評定を行う位置評定機構と、前記超音波発振器からの音波を前記超音波受信器で受信して超音波送受信による距離測定機構であることを特徴とする原子炉内検査装置。 In Claim 3 , The said position confirmation means is equipped with the camera equipped with the said arm, illumination, and an ultrasonic oscillator, The apparatus or reflector and ultrasonic receiver which light-emit to the said underwater vehicle, The said light-emitting apparatus or A position rating mechanism that captures light from the reflecting mirror to the camera and performs position evaluation by an image; and a distance measuring mechanism that receives a sound wave from the ultrasonic oscillator by the ultrasonic receiver and transmits and receives the ultrasonic wave. In-reactor inspection equipment. 請求項1から請求項4までのいずれか一項において、前記水中ビークルまたは、水中ビークルを収納する容器に放射線集積線量計を装着したことを特徴とする原子炉内検査装置。The in-reactor inspection apparatus according to any one of claims 1 to 4 , wherein an integrated radiation dosimeter is attached to the underwater vehicle or a container that stores the underwater vehicle.
JP2000372913A 2000-12-04 2000-12-04 In-reactor inspection equipment Expired - Lifetime JP3767376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372913A JP3767376B2 (en) 2000-12-04 2000-12-04 In-reactor inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372913A JP3767376B2 (en) 2000-12-04 2000-12-04 In-reactor inspection equipment

Publications (2)

Publication Number Publication Date
JP2002168991A JP2002168991A (en) 2002-06-14
JP3767376B2 true JP3767376B2 (en) 2006-04-19

Family

ID=18842380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372913A Expired - Lifetime JP3767376B2 (en) 2000-12-04 2000-12-04 In-reactor inspection equipment

Country Status (1)

Country Link
JP (1) JP3767376B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653982B2 (en) * 2004-08-11 2011-03-16 日立Geニュークリア・エナジー株式会社 In-reactor inspection apparatus and in-reactor inspection method
JP5273975B2 (en) * 2007-09-18 2013-08-28 日立Geニュークリア・エナジー株式会社 Submarine device and nuclear reactor inspection method
CN111915718B (en) * 2020-06-22 2024-01-09 中国船舶集团有限公司第七一六研究所 Automatic docking system suitable for ship shore LNG loading and unloading arm

Also Published As

Publication number Publication date
JP2002168991A (en) 2002-06-14

Similar Documents

Publication Publication Date Title
US3987666A (en) Device for remote inspection and testing of a structure
JP4302773B2 (en) Inspection device
US8855268B1 (en) System for inspecting objects underwater
JP5997761B2 (en) Underwater robotic vent and inspection system
JPWO2017199940A1 (en) Investigation apparatus and computer program for inner wall of pipeline
KR102511349B1 (en) Pipe nondestructive inspection appparatus and method
JP3767376B2 (en) In-reactor inspection equipment
JP3075952B2 (en) Shroud inspection device
CN112285132A (en) Live-line online detection system for power transmission line hardware
US5519741A (en) System for inspection and mending in a reactor vessel of a nuclear reactor
KR910003804B1 (en) Refueling of nuclear reactor
CN110998299A (en) X-ray inspection device for unmanned aerial vehicle, X-ray inspection device using unmanned aerial vehicle, and X-ray generation device for unmanned aerial vehicle
KR101628751B1 (en) Remote inspection system by travel on the Annulus for Tube Bundle and Tube Sheet of Steam generator
US3691385A (en) Control system for welding inspection machine
JP2007284174A (en) Cable handling device
JPH0634090B2 (en) Traveling device for in-cell inspection device
JP4546746B2 (en) Inspection device, inspection device input device, and inspection method
JP3207366B2 (en) Inspection method and device for inspecting overhead transmission lines with live lines
JPH07311292A (en) In-vessel inspection device and its inspection method
US6665364B2 (en) Inspection method and apparatus for piping
KR20120019156A (en) Apparatus to inspect outer surface of the metal containment vessel of nuclear power plants
CN215264055U (en) Visit cabin formula radioactivity monitoring facilities
JP2007163513A (en) Control rod drive, testing method and device of control rod drive, inspection device of control rod drive, storage method and apparatus of control rod drive, and torque transport unit
JP6045212B2 (en) Remote inspection device and remote inspection method
CN213649884U (en) Multipurpose search and rescue helicopter model airplane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060123

R151 Written notification of patent or utility model registration

Ref document number: 3767376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

EXPY Cancellation because of completion of term