JP4546746B2 - Inspection device, inspection device input device, and inspection method - Google Patents

Inspection device, inspection device input device, and inspection method Download PDF

Info

Publication number
JP4546746B2
JP4546746B2 JP2004043060A JP2004043060A JP4546746B2 JP 4546746 B2 JP4546746 B2 JP 4546746B2 JP 2004043060 A JP2004043060 A JP 2004043060A JP 2004043060 A JP2004043060 A JP 2004043060A JP 4546746 B2 JP4546746 B2 JP 4546746B2
Authority
JP
Japan
Prior art keywords
inspection
main body
underwater vehicle
inspection object
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004043060A
Other languages
Japanese (ja)
Other versions
JP2005233766A (en
Inventor
遠藤  洋
健一 大谷
正憲 鈴木
善夫 野中
誠 妹尾
哲也 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004043060A priority Critical patent/JP4546746B2/en
Publication of JP2005233766A publication Critical patent/JP2005233766A/en
Application granted granted Critical
Publication of JP4546746B2 publication Critical patent/JP4546746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

本発明は、水中構造物、例えば原子炉の炉内構造物の検査を行うための検査装置、この検査装置を検査位置近傍まで投入する投入装置、および前記検査装置を使用した検査方法に関する。   The present invention relates to an inspection apparatus for inspecting an underwater structure, for example, an in-reactor structure of a nuclear reactor, an input apparatus for introducing the inspection apparatus to the vicinity of an inspection position, and an inspection method using the inspection apparatus.

従来の炉底部検査では、原子炉内に装荷された燃料集合体や制御棒案内管を炉内から撤去した後、燃料交換機台車から水中カメラを炉底部まで吊り降ろして炉底部の様子を目視検査等実施していた。また、炉底部検査装置に関連する従来技術としては、特許文献1に開示された発明が公知である。この発明は、目視観察用のカメラおよび照明装置を搭載した耐圧性のケーシングに推進機構および姿勢制御手段を設けて水中ビークルを構成し、この水中ビークルを遠隔操作によって水中で遊泳させながら容器内の目視検査を行うようにした容器内検査装置において、水中ビークルを収納する収納容器と、この収納容器を容器内の目的検査部位の近傍に移動設置する移動手段とを備えたもので、この構成により、目的検査部位に接近するまでの水中ビークルの走行距離を短縮し、ケーブルが引っ掛かったり、絡まったりすることなく、あるいは障害物への衝突を防止し、狭隘部への接近時間を短縮できるとしている。
特開平7−218681号公報
In the conventional furnace bottom inspection, after removing the fuel assemblies and control rod guide tubes loaded in the reactor from the furnace, the underwater camera is suspended from the fuel exchanger carriage to the furnace bottom, and the state of the furnace bottom is visually inspected. And so on. Moreover, the invention disclosed in Patent Document 1 is known as a conventional technique related to the furnace bottom inspection apparatus. According to the present invention, an underwater vehicle is configured by providing a propulsion mechanism and a posture control means on a pressure-resistant casing equipped with a camera for visual observation and an illuminating device, and the underwater vehicle is swimmed in water by remote control while being stored in the container. In the in-container inspection apparatus adapted to perform a visual inspection, it comprises a storage container for storing an underwater vehicle, and a moving means for moving and installing the storage container in the vicinity of a target inspection site in the container. The distance of the underwater vehicle to approach the target inspection site is shortened, the cable is not caught or entangled, or the collision with the obstacle is prevented, and the approach time to the narrow part can be shortened. .
Japanese Patent Laid-Open No. 7-218681

従来技術では、炉底部の状況を遠隔で目視確認するためには、原子炉停止後に原子炉圧力容器の蓋を開放した後、原子炉圧力容器内の炉上部機構、燃料集合体及び制御棒案内管等の炉内構造物を炉内から撤去する必要があり、この機器の撤去に要する作業時間が定期点検期間延長を招いていた。また、前記特許文献1に開示されている水中ビークルによる検査では、上記の制御棒案内管(以下、CR案内管と略記)を全て撤去することに対する検査時間の課題はある程度回避されており、かつ炉底部状況の全般的な目視確認は可能である。   In the prior art, in order to visually confirm the state of the bottom of the reactor remotely, after opening the reactor pressure vessel cover after shutting down the reactor, the reactor upper mechanism, fuel assembly and control rod guide in the reactor pressure vessel It was necessary to remove the in-furnace structures such as tubes from the inside of the furnace, and the work time required to remove this equipment was extending the periodical inspection period. Further, in the inspection by the underwater vehicle disclosed in Patent Document 1, the problem of the inspection time for removing all the control rod guide tubes (hereinafter abbreviated as CR guide tubes) is avoided to some extent, and A general visual check of the bottom of the furnace is possible.

しかし、炉底部での検査が要求される制御棒駆動機構(以下、CRDと略記)スタブやCRDハウジング等の溶接部表面の詳細検査を実施する前の検査部表面に堆積したソフトクラッドの除去については特に考慮されていない。また、特許文献1に開示されている水中ビークルの形状及び目視確認用のカメラの配置では、CRDスタブ溶接部全域に渡る詳細目視検査は困難であった。   However, control rod drive mechanism (hereinafter abbreviated as CRD), which requires inspection at the bottom of the furnace, removes the soft clad deposited on the surface of the inspection part before carrying out detailed inspection of the surface of the welded part such as a stub or CRD housing. Is not specifically considered. Further, with the shape of the underwater vehicle and the arrangement of the camera for visual confirmation disclosed in Patent Document 1, detailed visual inspection over the entire CRD stub weld is difficult.

また、従来の水中ビークルによる炉底部検査では、水中ビークルを収納容器に収納し、この収納容器を容器内の目的検査部位の近傍に移動設置することにより目的検査部位に接近するまでの水中ビークルの走行距離を短縮し、ケーブルが引っ掛かったり、絡まったりすることないようにすることを意図しているが、炉底部に林立する検査対象であるCRDスタブやCDRハウジング等の間をぬって移動することに伴う水中ビークルが牽引するケーブルと検査対象とのケーブル絡まり等の干渉回避の点までは考慮されていなかった。   In addition, in the conventional furnace bottom inspection using an underwater vehicle, the underwater vehicle is stored in a storage container, and the storage container is moved to the vicinity of the target inspection site in the container so that the underwater vehicle until the target inspection site is approached. It is intended to shorten the mileage and prevent cables from getting caught or tangled, but moving between CRD stubs and CDR housings that are to be inspected at the bottom of the furnace. The point of avoiding interference such as cable entanglement between the cable pulled by the underwater vehicle and the inspection object was not considered.

そこで、本発明の目的は、水中に存在する検査対象物を検査する際に、最小限の作業で検査可能で、遠隔操作による検査時のケーブルの干渉を回避することができるようにすることにある。   Accordingly, an object of the present invention is to enable inspection with a minimum amount of work when inspecting an inspection object existing in water, and to avoid interference of cables during inspection by remote operation. is there.

前記目的を達成するため、第1の手段は、水中に存在する検査対象物を遠隔で検査する検査装置において、前記検査対象物の検査対象面と対向する面が本体の両側に形成され、当該両側の面共に前記検査対象面の曲面の曲率に合わせた外面形状を有する本体部と、水平2方向、及び垂直方向に前記本体部を水中で移動させる第1ないし第3の推進手段と、前記本体部に取り付けられ、所望の検査手段および/または加工手段を備えた検査ユニットと、前記第1ないし第3の推進手段を制御し、前記本体部の水中での移動を制御する制御装置と、を備え、前記制御装置は、前記水平2方向に移動させる第1及び第2の推進手段のうち、第1の推進手段が前記本体部を長手方向に、第2の推進手段が前記本体部を長手方向と直交する方向にそれぞれ移動させ、前記第2の推進手段を駆動して、前記本体部を前記検査対象物の側面に押し付けた状態で当該本体部の姿勢を保持させ、前記本体部を前記検査対象物の側面に押し付けた状態で前記第1の推進手段を駆動して前記本体部を前記検査対象部の外面形状に沿って旋回動作を行わせることを特徴とする。 In order to achieve the object, the first means is an inspection apparatus for remotely inspecting an inspection object existing in water, wherein surfaces opposite to the inspection object surface of the inspection object are formed on both sides of the main body, A body part having an outer surface shape matched to the curvature of the curved surface of the surface to be inspected on both sides, first to third propulsion means for moving the body part in water in two horizontal directions and in a vertical direction; An inspection unit attached to the main body and having desired inspection means and / or processing means; a control device for controlling the first to third propulsion means and controlling movement of the main body in water; The control device includes a first propulsion unit that moves the main body in the longitudinal direction and a second propulsion unit that moves the main body out of the first and second propulsion units that move in the two horizontal directions. Each direction perpendicular to the longitudinal direction Move, drive the second propulsion means, hold the body portion in a state of pressing the body portion against the side surface of the inspection object, and press the body portion against the side surface of the inspection object In this state, the first propulsion means is driven to cause the main body portion to turn along the outer surface shape of the inspection target portion .

第2の手段は、CDRハウジングの上端に着座するベースと、第1の手段に係る検査装置を支持し、前記検査装置の下部に位置する前記ベースおよび前記検査装置の上部に位置するトップガードを連結する支持部材と、前記検査装置を前記ベースと前記トップガードとの間で固定すると共に、外部からの操作により前記支持部材の前記連結状態の設定解除可能な固定部材とから検査装置の投入装置を構成し、当該投入装置により前記ベースと前記トップガードとの間に前記検査装置を挟持した状態で炉外から炉内の前記CDRハウジングまで吊り下げて前記検査装置を炉内に投入するようにしたことを特徴とする。   The second means includes a base that sits on the upper end of the CDR housing, a base that supports the inspection device according to the first means, and a base that is positioned below the inspection device and a top guard that is positioned above the inspection device. An inspection device input device from a supporting member to be connected and a fixing member that fixes the inspection device between the base and the top guard and can release the setting of the connection state of the support member by an external operation. The inspection apparatus is suspended from the outside of the furnace to the CDR housing in the furnace while the inspection apparatus is sandwiched between the base and the top guard by the input apparatus, and the inspection apparatus is input into the furnace. It is characterized by that.

第3の手段は、第1の手段に係る検査装置の前記曲面状に形成された外面を検査対象物表面に対向させて位置決めし、前記第1ないし第3の推進手段の駆動し、前記検査対象物表面に押し付けた状態で、前記検査対象物表面に沿って移動させ、前記検査ユニットによって所定の検査を行わせることを特徴とする。   The third means positions the outer surface formed in the curved shape of the inspection apparatus according to the first means so as to face the surface of the inspection object, drives the first to third propulsion means, and performs the inspection. In a state of being pressed against the surface of the object, the object is moved along the surface of the object to be inspected, and a predetermined inspection is performed by the inspection unit.

第4の手段は、第3の手段において、前記本体部の進行方向の左右に配列された原子炉圧力容器内のCRDスタブまたはCRDハウジングの前記本体部が存在する側の半周分について前記検査を行い、順次次のCRDスタブまたはCRDハウジングに移動して前記検査を行うことを特徴とする。   According to a fourth means, in the third means, the inspection is performed on a half circumference of the CRD stub in the reactor pressure vessel or the CRD housing on the side where the main body portion exists, arranged in the right and left of the traveling direction of the main body portion. The inspection is performed by sequentially moving to the next CRD stub or CRD housing.

本発明によれば、水中に存在する検査対象物を検査する際に、最小限の作業で検査可能で、遠隔操作による検査時のケーブルの干渉を回避することができる。   ADVANTAGE OF THE INVENTION According to this invention, when inspecting the test object which exists in water, it can test | inspect with minimum work and can avoid the interference of the cable at the time of the test | inspection by remote operation.

以下、図面を参照し、本発明の実施形態に係る検査装置ついて説明する。
図1は本実施形態に係る検査装置を使用する原子炉圧力容器の全体構成を示す断面図である。同図において、検査装置は原子炉圧力容器40の底部を炉水が入った状態で検査するために、地上部である燃料取扱機走行台車50の燃料取扱機横行台車55上から遠隔で水中に投入するものである。図1において、原子炉圧力容器40の底部には炉心シュラウド90が設置され、炉心シュラウド90の上部には上部格子板60が設けられ、下部には炉心支持板70が配置されている。原子炉圧力容器40の炉底部41は図2及び図3に示すようにCRDハウジング81及びそれを圧力容器40に固定するためのCRDスタブ82が格子状に配置され、その上にCR案内管83が設置されている。符号95はシュラウドサポートである。
Hereinafter, an inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an overall configuration of a reactor pressure vessel using an inspection apparatus according to the present embodiment. In this figure, the inspection device inspects the bottom of the reactor pressure vessel 40 in a state in which the reactor water is contained, so that it can be remotely placed underwater from the fuel handling machine traversing carriage 55 of the fuel handling machine traveling carriage 50 which is the ground part. It is to be input. In FIG. 1, a core shroud 90 is installed at the bottom of a reactor pressure vessel 40, an upper lattice plate 60 is provided at the upper part of the core shroud 90, and a core support plate 70 is arranged at the lower part. As shown in FIGS. 2 and 3, the reactor bottom portion 41 of the reactor pressure vessel 40 is provided with a CRD housing 81 and a CRD stub 82 for fixing the CRD housing 81 to the pressure vessel 40 in a lattice shape, and a CR guide tube 83 is provided thereon. Is installed. Reference numeral 95 denotes a shroud support.

本実施形態に係る検査装置は図4に示す水中ビークル1と図示しない地上部の制御装置、及びその間のケーブル15から成り、水中ビークル1の本体部1aには、左右移動用スラスタ11、前後進用スラスタ12、上下昇降用スラスタ13、及びそれらを駆動するための左右移動用モータ110、前後進用モータ120、上下昇降用モータ130を備えている。また、水中ビークル1の本体には検査ユニット10が設けられている。この検査ユニット10には照明付検査用カメラ101とブラシ102が搭載されており、炉底部41の検査と検査前のソフトクラッドの除去ができるようになっている。ブラシ102はブラシ用モータ103によって回転駆動される。   The inspection apparatus according to the present embodiment includes an underwater vehicle 1 shown in FIG. 4, a ground control device (not shown), and a cable 15 therebetween, and a main body 1 a of the underwater vehicle 1 includes a left and right moving thruster 11, a forward and backward movement. And a vertical movement motor 110, a forward / backward movement motor 120, and a vertical movement motor 130. An inspection unit 10 is provided in the main body of the underwater vehicle 1. The inspection unit 10 is equipped with an illuminated inspection camera 101 and a brush 102 so that the furnace bottom 41 can be inspected and the soft clad before the inspection can be removed. The brush 102 is rotationally driven by a brush motor 103.

検査ユニット10は、水中ビークル1本体とリニアガイド104を介して水中ビークル1の進行方向に対して左右方向に水平移動できるように設定されており、水平用モータ105により位置決めが可能となっている。この検査ユニット10はさらに上下用モータ106を有し、上下方向の位置決めも可能となっている。水中ビークル1本体には照明付前方カメラ14が設けられ、周囲の状況を監視することができる。   The inspection unit 10 is set so as to be horizontally movable in the horizontal direction with respect to the traveling direction of the underwater vehicle 1 via the underwater vehicle 1 main body and the linear guide 104, and can be positioned by the horizontal motor 105. . The inspection unit 10 further includes a vertical motor 106, which can be positioned in the vertical direction. The underwater vehicle 1 body is provided with a front camera 14 with illumination, and the surrounding situation can be monitored.

上記水中ビークル1の各スラスタ11,12,13、検査ユニット移動用モータ105,06、照明及びカメラ14,101は全て地上の制御装置から制御盤やジョイスティックを使用して操作員により遠隔操作ができるように構成されている。また、水中ビークル1によって得られたカメラ映像はケーブル15を介して地上部へ送られ、地上の操作員がモニタで監視できる。   The thrusters 11, 12, and 13, the inspection unit moving motors 105 and 06, the illumination, and the cameras 14 and 101 of the underwater vehicle 1 can all be remotely operated by an operator from a control device on the ground using a control panel and a joystick. It is configured as follows. Further, the camera image obtained by the underwater vehicle 1 is sent to the ground part via the cable 15 and can be monitored by a ground operator with a monitor.

この水中ビークル1は図5に示すように上から見ると本体部1aが円筒状の検査対象物に合わせた曲面形状をしており、当該本体部1aの検査対象物に対向する面が凹面状の曲面部1bとなっている。そして、この曲面部1bを検査対象物に対面させ、前記左右移動用スラスタ11を駆動させることによって検査対象であるCRDハウジング81(図5上側の二点鎖線の状態)またはCRDスタブ82(図5下側の実線の状態)に押し付けた状態て姿勢を保持することができ、この状態で前後進用スラスタ12によって検査対象面に沿って旋回動作が可能である。このとき、水中ビークル1の左右の曲面部1bに設けられたボールキャスタ16により、水中ビークル1と検査対象面との摩擦を減少させてCRDハウジング81またはCRDスタブ82の曲面に沿って旋回が容易に行われるようにするとともに、水中ビークル1の前記曲面部1bと検査対象面とを密着させずに左右移動用スラスタ11の回転による水流を逃がす効果を得ている。これは、CRDハウジング81またはCRDスタブ82の検査対象面に水中ビークル1の曲面部1bが密着すると、両面間が負圧になり、水中ビークル1が検査対象面から移動することができなくなるからで、このような状態になることは前記両者間に隙間を設けることによって防止することができる。   As shown in FIG. 5, the underwater vehicle 1 has a curved surface shape in which the main body 1a matches a cylindrical inspection object when viewed from above, and the surface of the main body 1a facing the inspection object is concave. The curved surface portion 1b. Then, the curved surface portion 1b faces the inspection object, and the left and right movement thruster 11 is driven to drive the CRD housing 81 (the state of the two-dot chain line on the upper side of FIG. 5) or the CRD stub 82 (FIG. 5). The posture can be maintained in a state of being pressed against the lower solid line state, and in this state, the forward / backward thruster 12 can turn along the inspection target surface. At this time, the ball casters 16 provided on the left and right curved surface portions 1b of the underwater vehicle 1 reduce the friction between the underwater vehicle 1 and the surface to be inspected, and can easily turn along the curved surface of the CRD housing 81 or the CRD stub 82. In addition, the water flow caused by the rotation of the left and right moving thruster 11 is obtained without bringing the curved surface portion 1b of the underwater vehicle 1 into close contact with the surface to be inspected. This is because, when the curved surface portion 1b of the underwater vehicle 1 is in close contact with the inspection target surface of the CRD housing 81 or the CRD stub 82, negative pressure is generated between both surfaces, and the underwater vehicle 1 cannot move from the inspection target surface. Such a state can be prevented by providing a gap between the two.

炉底部41は図2のように球面上の底部にCRDハウジング81、CRDスタブ82等が配置されているため、CRDハウジング81あるいはCRDスタブ82の外周面に沿った旋回動作に合わせて検査ユニット10を上下に移動することにより検査対象部に位置合わせができる。図6は炉底部41のCRDスタブ82と原子炉圧力容器40の接合部を点検している場合を示している。図6のように炉底部41の外周部では原子炉圧力容器40の傾斜が高くなっているため、水中ビークル1は図の右側(炉の外側)ではCRDハウジング81表面に沿って旋回し、左側(炉の内側)ではCRDスタブ82表面に沿って旋回することとなる。従って、水中ビークル1の下部に取り付けられた検査ユニット10は、水中ビークル1の下部において左右水平方向に移動することによりでCRDハウジング81とCRDスタブ82の径の違いから生じる段差分を吸収して、どちらの場合でも検査用カメラ101とブラシ102を検査対象部位に接近させることができる。さらには、水中ビークル1を同一位置に停止させた状態で上下用モータ106を駆動することにより検査ユニット10を上下方向に移動させて検査対象部位に近接させることもできる。この図6に示すように水中ビークル1の側面がCRDハウジング81あるいはCRDスタブ表面に沿って移動し、水中ビークル1の下部に検査ユニット10が設けられていることから、水中ビークル1は水中で図6のような姿勢を保持する必要がある。そのため、水中ビークル1の浮心が重心より上にくるように予め重心と浮心の位置が設定され、また、水中姿勢が安定するように幅方向(図4)および厚み方向(図6)の中心軸X上に前記浮心と重心が位置するように構成されている。   Since the CRD housing 81 and the CRD stub 82 are arranged on the bottom of the spherical surface of the furnace bottom 41 as shown in FIG. 2, the inspection unit 10 is adapted to the turning operation along the outer peripheral surface of the CRD housing 81 or the CRD stub 82. By moving up and down, the position can be aligned with the inspection target part. FIG. 6 shows a case where the joint between the CRD stub 82 of the reactor bottom 41 and the reactor pressure vessel 40 is being inspected. As shown in FIG. 6, since the reactor pressure vessel 40 is inclined at the outer periphery of the reactor bottom 41, the underwater vehicle 1 is swung along the surface of the CRD housing 81 on the right side (outside the reactor). In (furnace inside), it turns along the surface of the CRD stub 82. Accordingly, the inspection unit 10 attached to the lower part of the underwater vehicle 1 absorbs a level difference caused by the difference in diameter between the CRD housing 81 and the CRD stub 82 by moving in the horizontal direction in the lower part of the underwater vehicle 1. In either case, the inspection camera 101 and the brush 102 can be brought close to the region to be inspected. Further, by driving the vertical motor 106 with the underwater vehicle 1 stopped at the same position, the inspection unit 10 can be moved in the vertical direction to be close to the site to be inspected. As shown in FIG. 6, the side surface of the underwater vehicle 1 moves along the surface of the CRD housing 81 or the CRD stub, and the inspection unit 10 is provided below the underwater vehicle 1. It is necessary to maintain a posture like 6. Therefore, the positions of the center of gravity and the center of buoyancy are set in advance so that the buoyancy of the underwater vehicle 1 is above the center of gravity, and the width direction (FIG. 4) and the thickness direction (FIG. 6) are set so that the underwater posture is stabilized. The buoyancy center and the center of gravity are located on the central axis X.

原子炉の点検をするときに、水中ビークル1は図7に示す投入装置3を用いて炉底部41に投入される。投入装置3は水中ビークル1を搭載してオペレーションフロア51上に設置されている燃料取扱機走行台車50上の燃料取扱機横行台車55上に設けられたホイスト31から昇降用ケーブル32により吊下げられ、上部格子板60及び炉心支持板70を通過してCRDハウジング81上に着座させる。図8に投入装置3の詳細を示す。投入装置3は、ベース33とトップガイド34をスタンド35で接続した構造をしている。スタンド35には水中ビークル1の本体底部に合わせた形状を持つ固定バー36があり、スタンド35の上部には水圧シリンダ38により上下に駆動できる可動バー37を備え、水中ビークル1を挟み込んで固定できるようになっている。水中ビークル1はこの投入装置3がCRDハウジング81に着座した後に可動バー37を上げることによって投入装置3から解放され、自身のスラスタを駆動して炉底部を遊泳して一連の検査を実施した後で再度、投入装置3に戻る。これにより投入装置3を着座する箇所以外のCR案内管83は撤去せずに検査を行うことができる。投入装置3には水中ビークル1の監視や検査作業の補助として、水中照明、監視用水中カメラ等を設置することが望ましい。また、水中ビークル1と地上部制御装置を接続するケーブル15の送り出し、巻き取りを補助する機構を設けてもよい。   When the reactor is inspected, the underwater vehicle 1 is charged into the reactor bottom 41 using the charging device 3 shown in FIG. The charging device 3 is suspended by a hoisting cable 32 from a hoist 31 provided on a fuel handling machine traveling carriage 55 on a fuel handling machine traveling carriage 50 installed on the operation floor 51 with the underwater vehicle 1 mounted thereon. Then, it passes through the upper lattice plate 60 and the core support plate 70 and is seated on the CRD housing 81. FIG. 8 shows details of the charging device 3. The charging device 3 has a structure in which a base 33 and a top guide 34 are connected by a stand 35. The stand 35 has a fixed bar 36 having a shape that matches the bottom of the body of the underwater vehicle 1, and a movable bar 37 that can be driven up and down by a hydraulic cylinder 38 at the top of the stand 35, so that the underwater vehicle 1 can be sandwiched and fixed. It is like that. The underwater vehicle 1 is released from the throwing device 3 by raising the movable bar 37 after the throwing device 3 is seated on the CRD housing 81, and after performing a series of inspections by driving its own thruster and swimming in the bottom of the furnace. Then, it returns to the charging device 3 again. Thereby, the inspection can be performed without removing the CR guide tube 83 other than the place where the loading device 3 is seated. It is desirable to install underwater lighting, a monitoring underwater camera and the like in the charging device 3 as an aid for monitoring and inspection work of the underwater vehicle 1. Further, a mechanism for assisting the feeding and winding of the cable 15 connecting the underwater vehicle 1 and the ground control device may be provided.

このように構成された水中ビークル1では、3方向の加速度計を水中ビークル1搭載し、ケーブル15を経由してそれらの計測結果を地上側のコンピュータ400に取り込む。コンピュータ400では、測定結果を2度積分することにより各時点での水中ビークル1の3次元位置を知ることができる。この時系列3次元位置をコンピュータ400の記憶装置に記憶し、コンピュータ400の表示装置に2次元移動軌跡として表示できるようにすると、コンピュータ400の表示を見ながら操作員410が水中ビークル1を投入装置3から投入して移動してきた2次元移動軌跡に沿って投入装置3まで運転操作することができる。このように時系列3次元位置を記憶装置に記憶する機能を備えていることにより、移動軌跡が明確になるので、炉底部の検査が終了した部位を識別することが可能となり、検査作業の効率向上を図ることができる。   In the underwater vehicle 1 configured as described above, a three-direction accelerometer is mounted on the underwater vehicle 1, and those measurement results are taken into the ground-side computer 400 via the cable 15. The computer 400 can know the three-dimensional position of the underwater vehicle 1 at each time point by integrating the measurement result twice. When this time-series three-dimensional position is stored in the storage device of the computer 400 and can be displayed as a two-dimensional movement locus on the display device of the computer 400, the operator 410 can insert the underwater vehicle 1 while watching the display of the computer 400. The driving device 3 can be operated along the two-dimensional movement trajectory that has been input from 3 and moved. By providing the function of storing the time-series three-dimensional position in the storage device in this way, the movement trajectory becomes clear, so that it is possible to identify the part where the inspection of the furnace bottom has been completed, and the efficiency of the inspection work Improvements can be made.

また、並進方向の加速度計のみならず3軸回りの角速度計を搭載した場合は、上記と同様の処置をすることにより水中ビークル1の時系列位置に合わせて姿勢情報も扱うことができる。   Further, in the case where not only the accelerometer in the translation direction but also an angular velocity meter around three axes is mounted, the posture information can be handled in accordance with the time-series position of the underwater vehicle 1 by performing the same procedure as described above.

この水中ビークル1を用いて炉底部41の検査を実施するとき、あるCRDハウジング81またはCRDスタブ32の表面を360度検査してから、隣のCRDハウジング71またはCRDスタブ82を同様に360度検査する方法を繰り返していると、水中ビークルが牽引しているケーブル15が炉内構造物に干渉したり絡まったりする虞が大きくなる。そこで、上記のように360度全てを検査するのではなく、図9に示すように水中ビークル1が存在している側の半周分のみを検査しながら前進していく方法をとると、検査中のケーブルの干渉や絡まりを回避することができる。   When the furnace bottom 41 is inspected using the underwater vehicle 1, the surface of a certain CRD housing 81 or CRD stub 32 is inspected 360 degrees, and the adjacent CRD housing 71 or CRD stub 82 is similarly inspected 360 degrees. If this method is repeated, there is a high possibility that the cable 15 pulled by the underwater vehicle may interfere with or become entangled with the in-furnace structure. Therefore, instead of inspecting all 360 degrees as described above, if the method of moving forward while inspecting only the half circumference on the side where the underwater vehicle 1 exists as shown in FIG. Can avoid interference and entanglement of the cable.

なお、前記水中ビークル1に設けられた照明付検査用カメラ11はチルト機構を備えていれば、更に検査範囲を広げることができる。また、照明付前方カメラ14は広角カメラまたは魚眼レンズを使用し、あるいはパン/チルト機構を備えていれば水中ビークル1の位置から監視できる範囲が広がるので、更に利便性が向上する。   If the illuminated inspection camera 11 provided in the underwater vehicle 1 includes a tilt mechanism, the inspection range can be further expanded. Moreover, if the front camera 14 with illumination uses a wide-angle camera or a fish-eye lens, or if a pan / tilt mechanism is provided, the range that can be monitored from the position of the underwater vehicle 1 is widened, so that convenience is further improved.

以上のように、左右に存在する検査対象表面に位置決めしながら前後進用スラスタで移動させて検査するようにすると、水中ビークル1を投入する箇所以外のCR案内管83を取り除くことなく、炉底部41の検査が可能となる。また、検査ユニット10を機械的に水平方向及び垂直方向にスライドさせることにより、水中ビークル1を円筒状の検査対象表面に沿って移動させながら検査ユニット10を3次元的に複雑な炉底部41の形状に追従させることができ、検査前のソフトクラッドの除去も容易に行える。   As described above, when the inspection is performed by moving it with the thruster for back and forth while positioning on the inspection target surface existing on the left and right, the furnace bottom portion is removed without removing the CR guide tube 83 other than the portion where the underwater vehicle 1 is introduced. 41 inspections are possible. Further, the inspection unit 10 is mechanically slid in the horizontal direction and the vertical direction, so that the underwater vehicle 1 is moved along the cylindrical inspection target surface while the inspection unit 10 is three-dimensionally complicated. It can follow the shape and can easily remove the soft clad before inspection.

さらに、水中ビークル1の位置を計測してコンピュータ400の表示画面に表示させることにより検査を実施した箇所を明確にすることができるとともに、水中ビークル1のケーブル15の絡まり防止にも役立てることができる。加えて、進行方向の左側のみまたは右側のみに位置するCRDスタブ82またはCRDハウジング81の半周分のみを検査して、隣接するCRDスタブ82またはCRDハウジング81に順次移動して検査するようにすれば、ケーブル15は同じ隣接空間をA方向およびB方向に往復するだけなので、ケーブル15の絡まり防止にも効果がある。   Further, by measuring the position of the underwater vehicle 1 and displaying it on the display screen of the computer 400, it is possible to clarify the location where the inspection is performed, and to help prevent the cable 15 of the underwater vehicle 1 from being tangled. . In addition, if only the half circumference of the CRD stub 82 or the CRD housing 81 located only on the left side or only the right side of the traveling direction is inspected, the CRD stub 82 or the CRD housing 81 is sequentially moved to the adjacent CRD stub 82 and inspected. Since the cable 15 only reciprocates in the same adjacent space in the A direction and the B direction, it is effective in preventing the cable 15 from being tangled.

以上のように本実施形態によれば従来の装置ではCR案内管を全て撤去しなければ詳細な目視検査が不可能であった炉底部に対して、ソフトクラッドの除去と詳細目視検査を同時に実施することができる。その際、ケーブルが絡むような干渉を最小限に抑えることができる。   As described above, according to the present embodiment, the soft clad removal and the detailed visual inspection are simultaneously performed on the furnace bottom portion in which the conventional apparatus cannot perform the detailed visual inspection without removing all the CR guide tubes. can do. At that time, it is possible to minimize interference such as tangling of the cable.

本発明の実施形態に係る検査装置を使用する原子炉圧力容器の全体的な構成を示す断面図である。It is sectional drawing which shows the whole structure of the reactor pressure vessel which uses the inspection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る検査装置を使用する原子炉圧力容器の炉底部の拡大断面図(側面図)である。It is an expanded sectional view (side view) of the furnace bottom part of the reactor pressure vessel which uses the inspection apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る検査装置を使用する原子炉圧力容器の炉底部の拡大断面図(平面図)である。It is an expanded sectional view (plan view) of the furnace bottom part of the reactor pressure vessel which uses the inspection device concerning the embodiment of the present invention. 本発明の実施形態に係る水中ビークルの構成を示す図である。It is a figure showing composition of an underwater vehicle concerning an embodiment of the present invention. 本発明の実施形態に係る水中ビークルが検査対象面に沿って旋回移動をするときの状態を示す説明図(平面図)である。It is explanatory drawing (plan view) which shows a state when the underwater vehicle which concerns on embodiment of this invention carries out turning movement along the surface to be examined. 本発明の実施形態に係る水中ビークルがCRDハウジングとCRDスタブを検査するときの状態を示す説明図(側面図)である。It is explanatory drawing (side view) which shows a state when the underwater vehicle which concerns on embodiment of this invention test | inspects a CRD housing and a CRD stub. 本発明の実施形態に係る水中ビークルを炉底部に投入する投入装置の使用状態を示す説明図(側面図)である。It is explanatory drawing (side view) which shows the use condition of the charging device which throws in the underwater vehicle which concerns on embodiment of this invention into a furnace bottom part. 本発明の実施形態に係る水中ビークルを炉底部に投入する投入装置の構成を示す図(側面図)である。It is a figure (side view) which shows the structure of the charging device which throws the underwater vehicle which concerns on embodiment of this invention into a furnace bottom part. 本発明の実施形態に係る水中ビークルによる検査手順の説明図である。It is explanatory drawing of the test | inspection procedure by the underwater vehicle which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 水中ビークル
1a 本体部
1b 曲面部
3 投入装置
10 検査ユニット
11 左右移動用スラスタ
12 前後進用スラスタ
13 上下移動用スラスタ
14 照明付前方カメラ
15 ケーブル
16 ボールキャスタ
33 ベース
34 トップガード
35 スタンド
36 固定バー
37 可動バー
40 原子炉圧力容器
41 炉底部
81 CRDハウジング
82 CRDスタブ
83 CR案内管
101 照明付検査用カメラ
102 ブラシ
104 リニアガイド
105 水平用モータ
106 上下用モータ
110 左右移動用モータ
120 前後進用モータ
130 上下移動用モータ
400 コンピュータ
DESCRIPTION OF SYMBOLS 1 Underwater vehicle 1a Main body part 1b Curved surface part 3 Throwing apparatus 10 Inspection unit 11 Thruster for left-right movement 12 Thruster for forward / backward movement 13 Thruster for vertical movement 14 Illuminated front camera 15 Cable 16 Ball caster 33 Base 34 Top guard 35 Stand 36 Fixed bar 37 Movable Bar 40 Reactor Pressure Vessel 41 Reactor Bottom 81 CRD Housing 82 CRD Stub 83 CR Guide Tube 101 Illuminated Inspection Camera 102 Brush 104 Linear Guide 105 Horizontal Motor 106 Vertical Motor 110 Left / Right Motor 120 Forward / Reverse Motor 130 Motor for moving up and down 400 Computer

Claims (12)

水中に存在する検査対象物を遠隔で検査する検査装置において、
前記検査対象物の検査対象面と対向する面が本体の両側に形成され、当該両側の面共に前記検査対象面の曲面の曲率に合わせた外面形状を有する本体部と、
水平2方向、及び垂直方向に前記本体部を水中で移動させる第1ないし第3の推進手段と、
前記本体部に取り付けられ、所望の検査手段および/または加工手段を備えた検査ユニットと、
前記第1ないし第3の推進手段を制御し、前記本体部の水中での移動を制御する制御装置と、
を備え
前記制御装置は、
前記水平2方向に移動させる第1及び第2の推進手段のうち、第1の推進手段が前記本体部を長手方向に、第2の推進手段が前記本体部を長手方向と直交する方向にそれぞれ移動させ、
前記第2の推進手段を駆動して、前記本体部を前記検査対象物の側面に押し付けた状態で当該本体部の姿勢を保持させ、
前記本体部を前記検査対象物の側面に押し付けた状態で前記第1の推進手段を駆動して前記本体部を前記検査対象部の外面形状に沿って旋回動作を行わせること
を特徴とする検査装置。
In an inspection device that remotely inspects inspection objects existing in water,
A body part having a surface shape opposite to the inspection object surface of the inspection object is formed on both sides of the main body, and both the surfaces on both sides have an outer surface shape that matches the curvature of the curved surface of the inspection object surface;
First to third propulsion means for moving the main body underwater in two horizontal directions and in a vertical direction;
An inspection unit that is attached to the main body and includes desired inspection means and / or processing means;
A control device for controlling the first to third propulsion means and controlling movement of the main body in water;
Equipped with a,
The controller is
Of the first and second propulsion means for moving in the two horizontal directions, the first propulsion means has the main body portion in the longitudinal direction, and the second propulsion means has the main body portion in the direction orthogonal to the longitudinal direction. Move
Driving the second propulsion means to maintain the posture of the main body in a state in which the main body is pressed against the side surface of the inspection object;
An inspection characterized in that the first propulsion means is driven in a state where the main body portion is pressed against a side surface of the inspection object, and the main body portion is swung along the outer surface shape of the inspection object portion. apparatus.
前記本体部に前記検査対象物の検査対象面と対向する面との間に所定の間隙を確保するための突起が設けられていることを特徴とする請求項1記載の検査装置。   The inspection apparatus according to claim 1, wherein the main body is provided with a protrusion for ensuring a predetermined gap between a surface of the inspection object facing the inspection object surface. 前記本体部の位置を検出するための照明手段および撮像手段をさらに備えていることを特徴とする請求項1記載の検査装置。   The inspection apparatus according to claim 1, further comprising an illuminating unit and an imaging unit for detecting the position of the main body. 検査対象部位を監視するための照明手段および撮像手段とさらに備えていることを特徴とする請求項1または3記載の検査装置。   The inspection apparatus according to claim 1, further comprising an illuminating unit and an imaging unit for monitoring a region to be inspected. 前記検査ユニットを前記本体部に対して垂直な方向に移動させる第1の移動手段と、前記本体部底面に対して平行な方向に移動させる第2の移動手段とを備えていることを特徴とする請求項1または4記載の検査装置。   The apparatus includes: a first moving unit that moves the inspection unit in a direction perpendicular to the main body; and a second moving unit that moves the inspection unit in a direction parallel to the bottom surface of the main body. The inspection apparatus according to claim 1 or 4. 前記本体部の3次元位置を検出する検出手段をさらに備えていることを特徴とする請求項1ないし5のいずれか1項に記載の検査装置。   The inspection apparatus according to claim 1, further comprising detection means for detecting a three-dimensional position of the main body. 前記検出手段が、
前記本体部の3次元位置を計測する手段と、
前記本体部の時系列3次元位置を記憶する手段と、
当該記憶する手段に記憶された3次元軌跡データから2次元移動軌跡を表示する手段と、
を含んでいることを特徴とする請求項6記載の検査装置。
The detection means is
Means for measuring the three-dimensional position of the main body;
Means for storing a time-series three-dimensional position of the main body;
Means for displaying a two-dimensional movement locus from the three-dimensional locus data stored in the means for storing;
The inspection apparatus according to claim 6, further comprising:
前記2次元移動軌跡に沿って水中ビークルを移動開始位置まで遠隔運転操作する手段をさらに備えていることを特徴とする請求項7記載の検査装置。   8. The inspection apparatus according to claim 7, further comprising means for remotely operating the underwater vehicle to the movement start position along the two-dimensional movement locus. 前記検査対象物が原子炉炉内構造物であることを特徴とする請求項1ないし8のいずれか1項に記載の検査装置。   The inspection apparatus according to claim 1, wherein the inspection object is a reactor internal structure. CDRハウジングの上端に着座するベースと、
請求項1ないし8のいずれか1項に記載の検査装置を支持し、前記検査装置の下部に位置する前記ベースおよび前記検査装置の上部に位置するトップガードを連結する支持部材と、
前記検査装置を前記ベースと前記トップガードとの間で固定すると共に、外部からの操作により前記支持部材の前記連結状態の設定解除可能な固定部材と、
を備え、前記ベースと前記トップガードとの間に前記検査装置を挟持した状態で炉外から炉内の前記CDRハウジングまで吊り下げて前記検査装置を炉内に投入することを特徴とする検査装置の投入装置。
A base seated on the upper end of the CDR housing;
A support member that supports the inspection device according to any one of claims 1 to 8, and connects the base located at a lower portion of the inspection device and a top guard located at an upper portion of the inspection device;
Fixing the inspection device between the base and the top guard, and a fixing member capable of releasing the setting of the connection state of the support member by an external operation;
The inspection apparatus is suspended from the outside of the furnace to the CDR housing in the furnace while the inspection apparatus is sandwiched between the base and the top guard, and the inspection apparatus is put into the furnace. Input device.
請求項1ないし9のいずれか1項に記載の検査装置の前記曲面状に形成された外面を検査対象物表面に対向させて位置決めし、
前記第1ないし第3の推進手段の駆動し、前記検査対象物表面に押し付けた状態で、前記検査対象物表面に沿って移動させ、前記検査ユニットによって所定の検査を行わせることを特徴とする検査方法。
The outer surface formed in the curved shape of the inspection device according to any one of claims 1 to 9 is positioned so as to face the surface of the inspection object,
The first to third propulsion means are driven and moved along the surface of the inspection object while being pressed against the surface of the inspection object, and a predetermined inspection is performed by the inspection unit. Inspection method.
前記本体部の進行方向の左右に配列された原子炉圧力容器内のCRDスタブまたはCRDハウジングの前記本体部が存在する側の半周分について前記検査を行い、順次隣接するCRDスタブまたはCRDハウジングに移動して前記検査を行うことを特徴とする請求項11記載の検査方法。   The inspection is performed on the half circumference of the CRD stub or CRD housing in the reactor pressure vessel arranged on the left and right of the main body in the traveling direction, and the movement is sequentially performed to the adjacent CRD stub or CRD housing. The inspection method according to claim 11, wherein the inspection is performed.
JP2004043060A 2004-02-19 2004-02-19 Inspection device, inspection device input device, and inspection method Expired - Lifetime JP4546746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043060A JP4546746B2 (en) 2004-02-19 2004-02-19 Inspection device, inspection device input device, and inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043060A JP4546746B2 (en) 2004-02-19 2004-02-19 Inspection device, inspection device input device, and inspection method

Publications (2)

Publication Number Publication Date
JP2005233766A JP2005233766A (en) 2005-09-02
JP4546746B2 true JP4546746B2 (en) 2010-09-15

Family

ID=35016886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043060A Expired - Lifetime JP4546746B2 (en) 2004-02-19 2004-02-19 Inspection device, inspection device input device, and inspection method

Country Status (1)

Country Link
JP (1) JP4546746B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965867B2 (en) * 2006-02-13 2012-07-04 株式会社東芝 Underwater mobile repair inspection device and underwater mobile repair inspection method
JP5273975B2 (en) * 2007-09-18 2013-08-28 日立Geニュークリア・エナジー株式会社 Submarine device and nuclear reactor inspection method
US9646727B2 (en) * 2011-08-03 2017-05-09 Ge-Hitachi Nuclear Energy Americas Llc System and apparatus for visual inspection of a nuclear vessel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040194A (en) * 2001-07-31 2003-02-13 Toshiba Corp Moving system for underwater narrow part

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566286A (en) * 1991-09-09 1993-03-19 Toshiba Corp Device for inspecting structure within reactor
JP3146101B2 (en) * 1994-01-28 2001-03-12 株式会社東芝 Reactor inspection equipment
JPH07311292A (en) * 1994-05-20 1995-11-28 Toshiba Corp In-vessel inspection device and its inspection method
JPH0862377A (en) * 1994-08-25 1996-03-08 Hitachi Ltd Submergible tv camera robot
JPH08282587A (en) * 1995-04-12 1996-10-29 Hitachi Ltd Underwater working device in container
JPH0961513A (en) * 1995-08-30 1997-03-07 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for detecting position in water
JP3896674B2 (en) * 1998-01-28 2007-03-22 石川島播磨重工業株式会社 Underwater work equipment
JPH11326291A (en) * 1998-05-14 1999-11-26 Toshiba Corp Apparatus and method for ultrasonic examination of narrow part of reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040194A (en) * 2001-07-31 2003-02-13 Toshiba Corp Moving system for underwater narrow part

Also Published As

Publication number Publication date
JP2005233766A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
Roman et al. Pipe crawling inspection robots: an overview
US3987666A (en) Device for remote inspection and testing of a structure
EP2762401B1 (en) Mobile underwater inspection apparatus and underwater inspection equipment
JPS6229740B2 (en)
JP7389196B2 (en) Reciprocating device
US20030128794A1 (en) Device and method for repairing inside of reactor pressure vessel
JP2007003442A (en) Ut inspection method and device for nozzle weld zone of reactor vessel
JP4546746B2 (en) Inspection device, inspection device input device, and inspection method
JPH0919884A (en) Mobile robot
JP2008116421A (en) Underwater inspection apparatus and method
JPH1114784A (en) Reactor internal inspecting device
JPH0868622A (en) Inspection system of stack cylinder
JPH0694885A (en) Underwater inspection device and underwater inspection method
JP2007003400A (en) Inspection device for control rod through-hole member
KR101434605B1 (en) Measurement method for underwater structure and measurement apparatus thereof
JP3819380B2 (en) In-reactor inspection equipment
JP4090712B2 (en) Underwater narrow part movement system
JP4616626B2 (en) Furnace bottom inspection device
KR102146208B1 (en) Ultrasonic testing device
JPH08146186A (en) Nuclear reactor internal structure inspection device and inspection method
JPH0634090B2 (en) Traveling device for in-cell inspection device
EP3421986B1 (en) Device, system and method for automated non-destructive inspection of metal structures
US6434207B1 (en) Inspection method and apparatus for piping
JP3767376B2 (en) In-reactor inspection equipment
JP3518824B2 (en) Furnace structure visual inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4546746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term