JP2002166354A - 研磨パッド - Google Patents
研磨パッドInfo
- Publication number
- JP2002166354A JP2002166354A JP2000369077A JP2000369077A JP2002166354A JP 2002166354 A JP2002166354 A JP 2002166354A JP 2000369077 A JP2000369077 A JP 2000369077A JP 2000369077 A JP2000369077 A JP 2000369077A JP 2002166354 A JP2002166354 A JP 2002166354A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- hardness
- polishing pad
- shore
- surface side
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
(57)【要約】
【課題】 CMP法で使用する研磨パッドにおいて、高
い平坦度とウエハ面内での高い均一性とが両立可能であ
って、使用時に剥離等の生じる恐れがなく耐久性に優れ
るものを提供する 【解決手段】 研磨パッドを貼り合わせ構造ではなく、
一枚のシートで構成し、その研磨面のshore-D硬度を3
0以上80以下で、かつ裏面側のshore-D硬度が10以
上で、研磨面側の硬度よりも5以上低い構造とする。
い平坦度とウエハ面内での高い均一性とが両立可能であ
って、使用時に剥離等の生じる恐れがなく耐久性に優れ
るものを提供する 【解決手段】 研磨パッドを貼り合わせ構造ではなく、
一枚のシートで構成し、その研磨面のshore-D硬度を3
0以上80以下で、かつ裏面側のshore-D硬度が10以
上で、研磨面側の硬度よりも5以上低い構造とする。
Description
【0001】
【発明の属する技術分野】本発明は、ウエハ表面の凹凸
をケミカルメカニカル研磨法で平坦化する際に使用され
る研磨パッド、研磨装置、半導体デバイスの製造方法に
関する。
をケミカルメカニカル研磨法で平坦化する際に使用され
る研磨パッド、研磨装置、半導体デバイスの製造方法に
関する。
【0002】
【従来の技術】半導体デバイスを製造する際には、ウエ
ハ表面に導電性膜を形成し、フォトリソグラフィー・エ
ッチングすることにより配線層を形成する工程や、配線
層の上に層間絶縁膜を形成する工程等が行われ、これら
の工程によってウエハ表面に金属等の導電体や絶縁体か
らなる凹凸が生じる。近年、半導体集積回路の高密度化
を目的として配線の微細化や多層配線化が進んでいる
が、これに伴い、ウエハ表面の凹凸を平坦化する技術が
重要となってきた。
ハ表面に導電性膜を形成し、フォトリソグラフィー・エ
ッチングすることにより配線層を形成する工程や、配線
層の上に層間絶縁膜を形成する工程等が行われ、これら
の工程によってウエハ表面に金属等の導電体や絶縁体か
らなる凹凸が生じる。近年、半導体集積回路の高密度化
を目的として配線の微細化や多層配線化が進んでいる
が、これに伴い、ウエハ表面の凹凸を平坦化する技術が
重要となってきた。
【0003】ウエハ表面の凹凸を平坦化する方法として
は、従来、ケミカルメカニカル研磨(Chemical Mechan
ical Polishing:以下CMPという)法が採用されて
いる。CMP法は、ウエハ表面の被研磨面を研磨パッド
の研磨面に押し付けた状態で、砥粒が分散されたスラリ
ー状研磨剤溶液を用いて研磨する技術である。CMP法
で使用する研磨装置は、例えば、図1に示すように、研
磨パッド1を支持する研磨定盤2と、被研磨材5を支持
する支持台6と、スラリー状研磨剤溶液の供給機構10
とを備えている。研磨パッド1は、例えば、両面テープ
(図示せず)で貼り付けることにより、研磨定盤2に装
着される。研磨定盤2と支持台6とは、それぞれに支持
された研磨パッド1と被研磨材5とが対向するように配
置され、それぞれに回転軸8、9を備えている。また、
支持台6側には、被研磨材5を研磨パッド1に押し付け
るための加圧機構が設けてある。また、研磨パッドの研
磨面を、ダイヤモンドを電着したドレッサー等で削り取
るドレッシング工程が研磨前及び研磨中に行なわれる。
は、従来、ケミカルメカニカル研磨(Chemical Mechan
ical Polishing:以下CMPという)法が採用されて
いる。CMP法は、ウエハ表面の被研磨面を研磨パッド
の研磨面に押し付けた状態で、砥粒が分散されたスラリ
ー状研磨剤溶液を用いて研磨する技術である。CMP法
で使用する研磨装置は、例えば、図1に示すように、研
磨パッド1を支持する研磨定盤2と、被研磨材5を支持
する支持台6と、スラリー状研磨剤溶液の供給機構10
とを備えている。研磨パッド1は、例えば、両面テープ
(図示せず)で貼り付けることにより、研磨定盤2に装
着される。研磨定盤2と支持台6とは、それぞれに支持
された研磨パッド1と被研磨材5とが対向するように配
置され、それぞれに回転軸8、9を備えている。また、
支持台6側には、被研磨材5を研磨パッド1に押し付け
るための加圧機構が設けてある。また、研磨パッドの研
磨面を、ダイヤモンドを電着したドレッサー等で削り取
るドレッシング工程が研磨前及び研磨中に行なわれる。
【0004】CMPプロセスにおいて重要なことは、研
磨平坦性と研磨均一性を両立することである。というの
は、ウエハ表面の凸部のみを選択的に研磨するのが研磨
平坦性であるが、研磨パッドが軟質であると、ウエハ表
面の微細な凹凸に研磨パッド表面が追従して変形するた
め、凸部のみを選択的に研磨することができない。従っ
て、研磨パッドに研磨平坦性を求めるためには、ウエハ
表面の凹凸に追従しない硬質性が求められる。
磨平坦性と研磨均一性を両立することである。というの
は、ウエハ表面の凸部のみを選択的に研磨するのが研磨
平坦性であるが、研磨パッドが軟質であると、ウエハ表
面の微細な凹凸に研磨パッド表面が追従して変形するた
め、凸部のみを選択的に研磨することができない。従っ
て、研磨パッドに研磨平坦性を求めるためには、ウエハ
表面の凹凸に追従しない硬質性が求められる。
【0005】また、ウエハ全面を均一に研磨するのが研
磨均一性であるが、研磨パッドが硬質であると、ウエハ
そのものの反りに追従することができず、ウエハの中心
部分を選択的に研磨することになる。よって、研磨パッ
ドに研磨均一性を求めるためには、ウエハの反りに追従
する軟質性が求められる。このような相反する要求特性
を満足するために、特開平6−21028号公報、特表
平5−505769号公報、あるいは特開平10−13
8123号公報などに、硬さの異なる二枚のポリウレタ
ン発泡シートを貼り合わせた構造の研磨パッドが開示さ
れている。この貼り合わせ構造の研磨パッドでは、研磨
面側に硬質のポリウレタン発泡シートを、裏面側に軟質
のポリウレタン発泡シートを配置し、硬質シートでウエ
ハの凸部を選択的に研磨し、軟質発泡シートでウエハの
反りに追従させながら、研磨平坦性と研磨均一性を両立
させている。
磨均一性であるが、研磨パッドが硬質であると、ウエハ
そのものの反りに追従することができず、ウエハの中心
部分を選択的に研磨することになる。よって、研磨パッ
ドに研磨均一性を求めるためには、ウエハの反りに追従
する軟質性が求められる。このような相反する要求特性
を満足するために、特開平6−21028号公報、特表
平5−505769号公報、あるいは特開平10−13
8123号公報などに、硬さの異なる二枚のポリウレタ
ン発泡シートを貼り合わせた構造の研磨パッドが開示さ
れている。この貼り合わせ構造の研磨パッドでは、研磨
面側に硬質のポリウレタン発泡シートを、裏面側に軟質
のポリウレタン発泡シートを配置し、硬質シートでウエ
ハの凸部を選択的に研磨し、軟質発泡シートでウエハの
反りに追従させながら、研磨平坦性と研磨均一性を両立
させている。
【0006】
【発明が解決しようとする課題】しかしながら、このよ
うな貼り合わせ構造の研磨パッドは、研磨時に貼り合わ
せ面から剥離が生じたり、スラリー状研磨剤溶液が貼り
合わせ面に浸透したりして、研磨性能が経時劣化する恐
れがある。特に貼り合わせ時に、貼り合わせ面に気泡等
が混入すると、このような事が起こりやすくなる。ま
た、特開平6−21028号公報には、二枚の弾性(発
泡ポリウレタン)シートを接着剤によって連結すると、
研磨平坦性に課題が生じる恐れがあると記載されてい
る。
うな貼り合わせ構造の研磨パッドは、研磨時に貼り合わ
せ面から剥離が生じたり、スラリー状研磨剤溶液が貼り
合わせ面に浸透したりして、研磨性能が経時劣化する恐
れがある。特に貼り合わせ時に、貼り合わせ面に気泡等
が混入すると、このような事が起こりやすくなる。ま
た、特開平6−21028号公報には、二枚の弾性(発
泡ポリウレタン)シートを接着剤によって連結すると、
研磨平坦性に課題が生じる恐れがあると記載されてい
る。
【0007】本発明は、このような従来技術の問題点に
着目してなされたものであり、CMP法で使用する研磨
パッドにおいて、高い平坦度とウエハ面内での高い均一
性とが両立可能であって、使用時に剥離等の生じる恐れ
がなく耐久性に優れるものを提供する。また、同時に該
研磨パッドを用いた研磨装置、ならびに該研磨装置を用
いた半導体デバイスの製造方法を提供する事を目的とす
る。
着目してなされたものであり、CMP法で使用する研磨
パッドにおいて、高い平坦度とウエハ面内での高い均一
性とが両立可能であって、使用時に剥離等の生じる恐れ
がなく耐久性に優れるものを提供する。また、同時に該
研磨パッドを用いた研磨装置、ならびに該研磨装置を用
いた半導体デバイスの製造方法を提供する事を目的とす
る。
【0008】
【課題を解決するための手段】上記課題を解決するため
に、本願は以下の発明を提供する。 (1) ケミカルメカニカル研磨用の研磨パッドにおい
て、前記研磨パッドは一枚の発泡シートで構成され、研
磨面側のshore-D硬度が30以上80以下で、かつ裏面
側のshore-D硬度が10以上で、研磨面側のshore-D硬度
よりも5以上低いことを特徴とする研磨パッド。 (2) (1)記載の研磨パッドにおいて、研磨面側の
shore-D硬度が50以上80以下で、かつ裏面側のshore
-D硬度が20以上で、研磨面側のshore-D硬度よりも5
以上低いことを特徴とする金属膜研磨もしくはSTI研
磨の第1ステップ用の研磨パッド。 (3) (1)記載の研磨パッドにおいて、研磨面側の
shore-D硬度が30以上60以下で、かつ裏面側のshore
-D硬度が10以上で、研磨面側のshore-D硬度よりも5
以上低いことを特徴とする金属膜研磨もしくはSTI研
磨の第2ステップ用の研磨パッド。
に、本願は以下の発明を提供する。 (1) ケミカルメカニカル研磨用の研磨パッドにおい
て、前記研磨パッドは一枚の発泡シートで構成され、研
磨面側のshore-D硬度が30以上80以下で、かつ裏面
側のshore-D硬度が10以上で、研磨面側のshore-D硬度
よりも5以上低いことを特徴とする研磨パッド。 (2) (1)記載の研磨パッドにおいて、研磨面側の
shore-D硬度が50以上80以下で、かつ裏面側のshore
-D硬度が20以上で、研磨面側のshore-D硬度よりも5
以上低いことを特徴とする金属膜研磨もしくはSTI研
磨の第1ステップ用の研磨パッド。 (3) (1)記載の研磨パッドにおいて、研磨面側の
shore-D硬度が30以上60以下で、かつ裏面側のshore
-D硬度が10以上で、研磨面側のshore-D硬度よりも5
以上低いことを特徴とする金属膜研磨もしくはSTI研
磨の第2ステップ用の研磨パッド。
【0009】(4) (1)記載の研磨パッドにおい
て、研磨面側のshore-D硬度が40以上70以下で、か
つ裏面側のshore-D硬度が20以上で、研磨面側のshore
-D硬度よりも5以上低いことを特徴とする酸化膜研磨用
の研磨パッド。 (5) 熱可塑性フッ素樹脂を含有することを特徴とす
る(1)から(4)のいずれかに記載の研磨パッド。 (6) (1)から(5)のいずれかに記載の研磨パッ
ドが装着されていることを特徴とする研磨装置。 (7) (6)に記載の研磨装置を用いて、ウエハ表面
の凹凸をケミカルメカニカル研磨法で平坦化する工程を
含むことを特徴とする半導体デバイスの製造方法。
て、研磨面側のshore-D硬度が40以上70以下で、か
つ裏面側のshore-D硬度が20以上で、研磨面側のshore
-D硬度よりも5以上低いことを特徴とする酸化膜研磨用
の研磨パッド。 (5) 熱可塑性フッ素樹脂を含有することを特徴とす
る(1)から(4)のいずれかに記載の研磨パッド。 (6) (1)から(5)のいずれかに記載の研磨パッ
ドが装着されていることを特徴とする研磨装置。 (7) (6)に記載の研磨装置を用いて、ウエハ表面
の凹凸をケミカルメカニカル研磨法で平坦化する工程を
含むことを特徴とする半導体デバイスの製造方法。
【0010】以下、本発明を詳細に説明する。本発明の
研磨パッドは、一枚のシートから構成され、研磨パッド
研磨面側のshore-D硬度が30以上80以下、裏面側のs
hore-D硬度が10以上で、研磨面側よりも5以上低いこ
とを特徴とする研磨パッドであり、CMP法による研磨
に使用可能である。しかしながら、一口にCMP法と称
しても、金属膜や層間絶縁膜、またSTI(Shallow Tr
ench Isolation)やポリシリコンの研磨等、その被研磨
対象は様々である。さらに、金属膜研磨やSTI研磨で
は、第1ステップで研磨平坦性を重視した研磨を行な
い、第2ステップで研磨均一性を重視した研磨を行なう
という、いわゆる2ステップ研磨が行なわれることもあ
り、多種多様のCMP研磨工程が行われている。
研磨パッドは、一枚のシートから構成され、研磨パッド
研磨面側のshore-D硬度が30以上80以下、裏面側のs
hore-D硬度が10以上で、研磨面側よりも5以上低いこ
とを特徴とする研磨パッドであり、CMP法による研磨
に使用可能である。しかしながら、一口にCMP法と称
しても、金属膜や層間絶縁膜、またSTI(Shallow Tr
ench Isolation)やポリシリコンの研磨等、その被研磨
対象は様々である。さらに、金属膜研磨やSTI研磨で
は、第1ステップで研磨平坦性を重視した研磨を行な
い、第2ステップで研磨均一性を重視した研磨を行なう
という、いわゆる2ステップ研磨が行なわれることもあ
り、多種多様のCMP研磨工程が行われている。
【0011】例えば、金属膜研磨は、ビアコンタクト形
成用のタングステンの研磨や、ダマシン法によるアルミ
や銅等の配線金属の研磨である。タングステンの研磨プ
ロセスは、層間絶縁膜にコンタクトホールを開け、その
上にタングステンをCVD法で堆積し、例えば図1の様
な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3などの砥粒を
H2O2、Fe(NO3)2、KIO3、K3Fe(CN)6、NaClO3等の添加剤
と共に、超純水中に均一に分散させたスラリー状研磨剤
溶液、及び研磨パッドを用いて、CMP研磨を行ない表
面を平坦化する。また、Cu配線形成工程では、層間絶
縁膜に溝やコンタクトホールをドライエッチングで開口
し、バリアメタルとして、TiNを薄くCVD法やPVD
法等で堆積し、全面にCuをCVD法やPVD法等でシ
ード層として堆積し、溝やコンタクトホールの中にメッ
キ法やCVD法等でCuを埋め込む。ここで、例えば図
1の様な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3等の砥
粒をH2O2、Fe(NO3)2、KIO3、K3Fe(CN)6、NaClO3等の添
加剤と共に、超純水中に均一に分散させたスラリー状研
磨剤溶液、及び研磨パッド用いて、第1ステップのCM
P研磨を行ない表面を平坦化する。さらに、図1の様な
研磨装置と、添加剤量を変えて金属への酸化作用を抑制
したスラリー状研磨剤溶液、及び研磨パッドを用いて2
ステップ目の研磨を行ない、ウエハ全面での均一性を向
上させる。被研磨対象がAl(Al配線)の場合は、C
uの場合と同様に層間絶縁膜にコンタクトホールや溝を
形成した後、Tiを堆積し、Alをリフローにて埋め
る。ここで、図1の様な研磨装置と、SiO2、CeO2、Al2O
3、Mn2O3等の砥粒をH2O2、Fe(NO3)2、KIO3、K3Fe(C
N)6、NaClO3等の添加剤と共に、超純水中に均一に分散
させたスラリー状研磨剤溶液、及び研磨パッドを用い
て、第1ステップのCMP研磨を行ない表面を平坦化す
る。さらに、図1の様な研磨装置や、添加剤量を変えて
金属への酸化作用を抑制したスラリー状研磨溶液、及び
研磨パッドを用いて2ステップ目の研磨を行ない、ウエ
ハ全面での均一性を向上させる。また、金属膜用の研磨
では添加剤のみで、砥粒を含有しないスラリー状研磨剤
溶液を用いることもできる。
成用のタングステンの研磨や、ダマシン法によるアルミ
や銅等の配線金属の研磨である。タングステンの研磨プ
ロセスは、層間絶縁膜にコンタクトホールを開け、その
上にタングステンをCVD法で堆積し、例えば図1の様
な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3などの砥粒を
H2O2、Fe(NO3)2、KIO3、K3Fe(CN)6、NaClO3等の添加剤
と共に、超純水中に均一に分散させたスラリー状研磨剤
溶液、及び研磨パッドを用いて、CMP研磨を行ない表
面を平坦化する。また、Cu配線形成工程では、層間絶
縁膜に溝やコンタクトホールをドライエッチングで開口
し、バリアメタルとして、TiNを薄くCVD法やPVD
法等で堆積し、全面にCuをCVD法やPVD法等でシ
ード層として堆積し、溝やコンタクトホールの中にメッ
キ法やCVD法等でCuを埋め込む。ここで、例えば図
1の様な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3等の砥
粒をH2O2、Fe(NO3)2、KIO3、K3Fe(CN)6、NaClO3等の添
加剤と共に、超純水中に均一に分散させたスラリー状研
磨剤溶液、及び研磨パッド用いて、第1ステップのCM
P研磨を行ない表面を平坦化する。さらに、図1の様な
研磨装置と、添加剤量を変えて金属への酸化作用を抑制
したスラリー状研磨剤溶液、及び研磨パッドを用いて2
ステップ目の研磨を行ない、ウエハ全面での均一性を向
上させる。被研磨対象がAl(Al配線)の場合は、C
uの場合と同様に層間絶縁膜にコンタクトホールや溝を
形成した後、Tiを堆積し、Alをリフローにて埋め
る。ここで、図1の様な研磨装置と、SiO2、CeO2、Al2O
3、Mn2O3等の砥粒をH2O2、Fe(NO3)2、KIO3、K3Fe(C
N)6、NaClO3等の添加剤と共に、超純水中に均一に分散
させたスラリー状研磨剤溶液、及び研磨パッドを用い
て、第1ステップのCMP研磨を行ない表面を平坦化す
る。さらに、図1の様な研磨装置や、添加剤量を変えて
金属への酸化作用を抑制したスラリー状研磨溶液、及び
研磨パッドを用いて2ステップ目の研磨を行ない、ウエ
ハ全面での均一性を向上させる。また、金属膜用の研磨
では添加剤のみで、砥粒を含有しないスラリー状研磨剤
溶液を用いることもできる。
【0012】ウエハ基板そのものに素子を埋め込み後
に、平坦化を行なう、いわゆるSTI工程は、基板のS
iにストッパ膜として、例えばシリコン窒化膜をパター
ニングし、Siをドライエッチングによりトレンチエッ
チングし、バイアスCVD法でSiO2膜を堆積する。ここ
で、図1の様な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3
などの砥粒をKOHやNH4OH、アミン等の添加剤の入った超
純水中に均一に分散させたスラリー状研磨剤溶液、及び
研磨パッドを用いて、第1ステップのCMP研磨を行な
い表面を平坦化する。さらに、図1の様な研磨装置と、
添加剤量を変えてSiO2への化学作用を抑制したスラリー
状研磨溶液、及び研磨パッドを用いて2ステップ目の研
磨を行ない、ウエハ全面での均一性を向上させる。スト
ッパ層で自動的に研磨が終了し、表面が平坦化される。
に、平坦化を行なう、いわゆるSTI工程は、基板のS
iにストッパ膜として、例えばシリコン窒化膜をパター
ニングし、Siをドライエッチングによりトレンチエッ
チングし、バイアスCVD法でSiO2膜を堆積する。ここ
で、図1の様な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3
などの砥粒をKOHやNH4OH、アミン等の添加剤の入った超
純水中に均一に分散させたスラリー状研磨剤溶液、及び
研磨パッドを用いて、第1ステップのCMP研磨を行な
い表面を平坦化する。さらに、図1の様な研磨装置と、
添加剤量を変えてSiO2への化学作用を抑制したスラリー
状研磨溶液、及び研磨パッドを用いて2ステップ目の研
磨を行ない、ウエハ全面での均一性を向上させる。スト
ッパ層で自動的に研磨が終了し、表面が平坦化される。
【0013】また、DRAM 用のキャパシタ用のトレ
ンチ形成工程は、シリコン窒化膜をストッパ膜としてS
i基板にパターニングした後、深いトレンチ溝を形成
し、ポリSiを全面に堆積する。ここで、図1の様な研
磨装置と、SiO2、CeO2、Al2O3、Mn2O3などの砥粒をKOH
やNH4OH、アミン等の添加剤の入った超純水中に均一に
分散させたスラリー状研磨剤溶液、及び研磨パッドを用
いて、CMP研磨を行なう。ストッパ層で研磨が終了
し、表面が平坦化される。
ンチ形成工程は、シリコン窒化膜をストッパ膜としてS
i基板にパターニングした後、深いトレンチ溝を形成
し、ポリSiを全面に堆積する。ここで、図1の様な研
磨装置と、SiO2、CeO2、Al2O3、Mn2O3などの砥粒をKOH
やNH4OH、アミン等の添加剤の入った超純水中に均一に
分散させたスラリー状研磨剤溶液、及び研磨パッドを用
いて、CMP研磨を行なう。ストッパ層で研磨が終了
し、表面が平坦化される。
【0014】また、SiO2膜、熱酸化膜、BPSG膜(ホ
ウ素リンシリケートガラス)、FSG(フルオロシリケ
ートガラス)等の層間絶縁膜層の研磨プロセスは、例え
ば、下地トランジスタ形成後に、層間絶縁膜をプラズマ
CVD(Chemical Vapor Deposition)で堆積形成し、
図1の様な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3など
の砥粒をKOHやNH4OH、アミン等の添加剤の入った超純水
中に均一に分散させたスラリー状研磨剤溶液、及び研磨
パッドを用いて、CMP研磨を行ない表面を平坦化す
る。その後、Al配線を形成し、層間絶縁膜をバイアス
CVD法により堆積する。この際、層間絶縁膜の肩がピ
ラミッド状に残るため、突起した絶縁膜を前述した様に
CMP法により研磨し、平坦化した後、さらにこの上に
層間絶縁膜を堆積し、その上にAl配線を形成する。以
下、この工程を繰り返して多層配線を形成する。
ウ素リンシリケートガラス)、FSG(フルオロシリケ
ートガラス)等の層間絶縁膜層の研磨プロセスは、例え
ば、下地トランジスタ形成後に、層間絶縁膜をプラズマ
CVD(Chemical Vapor Deposition)で堆積形成し、
図1の様な研磨装置と、SiO2、CeO2、Al2O3、Mn2O3など
の砥粒をKOHやNH4OH、アミン等の添加剤の入った超純水
中に均一に分散させたスラリー状研磨剤溶液、及び研磨
パッドを用いて、CMP研磨を行ない表面を平坦化す
る。その後、Al配線を形成し、層間絶縁膜をバイアス
CVD法により堆積する。この際、層間絶縁膜の肩がピ
ラミッド状に残るため、突起した絶縁膜を前述した様に
CMP法により研磨し、平坦化した後、さらにこの上に
層間絶縁膜を堆積し、その上にAl配線を形成する。以
下、この工程を繰り返して多層配線を形成する。
【0015】このように、CMP研磨工程が多種多様で
あるため、被研磨対象または研磨工程によって、該研磨
パッドの好ましい硬度範囲も異なってくる。より詳細に
は、被研磨対象が金属膜やSTIの第1ステップ用の場
合には、該研磨パッドの好ましい硬度範囲は、研磨面側
のshore-D硬度が50以上80以下、裏面側のshore-D硬
度が20以上で、研磨面側のshore-D硬度よりも5以上
低い硬度であり、より好ましくは研磨面側のshore-D硬
度が55以上75以下、裏面側のshore-D硬度が25以
上で、研磨面側のshore-D硬度よりも10以上低い硬度
である。さらに好ましくは、研磨面側のshore-D硬度が
55以上70以下、裏面側のshore-D硬度が25以上4
5以下である。特に好ましくは研磨面側のshore-D硬度
が60以上70以下、裏面側のshore-D硬度が30以上
40以下である。研磨面側のshore-D硬度が80よりも
高いと研磨均一性の低下やスクラッチを引き起こす恐れ
があるし、50よりも低い場合は、例えばCu配線の広
幅部でディッシングやCu配線密集部でのエロージョン
が発生する恐れがある。また、裏面側のshore-D硬度が
研磨面側のshore-D硬度と比較して、その差が5よりも
小さいと、ウエハの反りに追従できずに研磨均一性が低
下する恐れがあるし、裏面側のshore-D硬度が20より
も低い場合は、軟質すぎるため、かえって、研磨均一性
が低下する恐れがある。
あるため、被研磨対象または研磨工程によって、該研磨
パッドの好ましい硬度範囲も異なってくる。より詳細に
は、被研磨対象が金属膜やSTIの第1ステップ用の場
合には、該研磨パッドの好ましい硬度範囲は、研磨面側
のshore-D硬度が50以上80以下、裏面側のshore-D硬
度が20以上で、研磨面側のshore-D硬度よりも5以上
低い硬度であり、より好ましくは研磨面側のshore-D硬
度が55以上75以下、裏面側のshore-D硬度が25以
上で、研磨面側のshore-D硬度よりも10以上低い硬度
である。さらに好ましくは、研磨面側のshore-D硬度が
55以上70以下、裏面側のshore-D硬度が25以上4
5以下である。特に好ましくは研磨面側のshore-D硬度
が60以上70以下、裏面側のshore-D硬度が30以上
40以下である。研磨面側のshore-D硬度が80よりも
高いと研磨均一性の低下やスクラッチを引き起こす恐れ
があるし、50よりも低い場合は、例えばCu配線の広
幅部でディッシングやCu配線密集部でのエロージョン
が発生する恐れがある。また、裏面側のshore-D硬度が
研磨面側のshore-D硬度と比較して、その差が5よりも
小さいと、ウエハの反りに追従できずに研磨均一性が低
下する恐れがあるし、裏面側のshore-D硬度が20より
も低い場合は、軟質すぎるため、かえって、研磨均一性
が低下する恐れがある。
【0016】また、被研磨対象が金属膜やSTIの第2
ステップ用の場合は、該研磨パッドの好ましい硬度範囲
は、研磨面側のshore-D硬度が30以上60以下、裏面
側のshore-D硬度が10以上で、研磨面側の硬度よりも
5以上低い硬度であり、より好ましくは研磨面側のshor
e-D硬度が35以上55以下、裏面側のshore-D硬度が1
5以上で、研磨面側の硬度よりも10以上低い硬度であ
る。さらに好ましくは、研磨面側のshore-D硬度が40
以上50以下、裏面側のshore-D硬度が20以上30以
下である。研磨面側のshore-D硬度が30よりも低いと
ディッシングやエロージョンが発生する恐れがあるし、
60を越えると第2ステップとしての所望の研磨均一性
が得られない恐れがある。また裏面側のshore-D硬度が
研磨面側のshore-D硬度と比較して、その差が5よりも
小さいと、ウエハの反りに追従できずに研磨均一性が低
下する恐れがあるし、裏面側のshore-D硬度が15より
も低い場合は、軟質すぎるため、かえって、研磨均一性
が低下する恐れがある。
ステップ用の場合は、該研磨パッドの好ましい硬度範囲
は、研磨面側のshore-D硬度が30以上60以下、裏面
側のshore-D硬度が10以上で、研磨面側の硬度よりも
5以上低い硬度であり、より好ましくは研磨面側のshor
e-D硬度が35以上55以下、裏面側のshore-D硬度が1
5以上で、研磨面側の硬度よりも10以上低い硬度であ
る。さらに好ましくは、研磨面側のshore-D硬度が40
以上50以下、裏面側のshore-D硬度が20以上30以
下である。研磨面側のshore-D硬度が30よりも低いと
ディッシングやエロージョンが発生する恐れがあるし、
60を越えると第2ステップとしての所望の研磨均一性
が得られない恐れがある。また裏面側のshore-D硬度が
研磨面側のshore-D硬度と比較して、その差が5よりも
小さいと、ウエハの反りに追従できずに研磨均一性が低
下する恐れがあるし、裏面側のshore-D硬度が15より
も低い場合は、軟質すぎるため、かえって、研磨均一性
が低下する恐れがある。
【0017】さらに、被研磨対象が層間絶縁膜層の場合
は、該研磨パッドの好ましい硬度範囲は、研磨面側のsh
ore-D硬度が40以上70以下、裏面側のshore-D硬度が
20以上で、研磨面側のshore-D硬度よりも5以上低い
硬度であり、より好ましくは研磨面側のshore-D硬度が
45以上65以下、裏面側のshore-D硬度が25以上
で、研磨面側のshore-D硬度よりも10以上低い硬度で
あり、さらに好ましくは研磨面側のshore-D硬度が50
以上60以下、裏面側のshore-D硬度が30以上40以
下である。研磨面側のshore-D硬度が40よりも低い
と、研磨平坦性が損なわれる恐れがあるし、70を越え
ると研磨均一性の低下やスクラッチが発生する恐れがあ
る。また裏面側のshore-D硬度が研磨面側のshore-D硬度
と比較して、その差が5よりも小さいと、ウエハの反り
に追従できずに研磨均一性が低下する恐れがあるし、裏
面側のshore-D硬度が20よりも低い場合は、軟質すぎ
るため、かえって、研磨均一性が低下する恐れがある。
は、該研磨パッドの好ましい硬度範囲は、研磨面側のsh
ore-D硬度が40以上70以下、裏面側のshore-D硬度が
20以上で、研磨面側のshore-D硬度よりも5以上低い
硬度であり、より好ましくは研磨面側のshore-D硬度が
45以上65以下、裏面側のshore-D硬度が25以上
で、研磨面側のshore-D硬度よりも10以上低い硬度で
あり、さらに好ましくは研磨面側のshore-D硬度が50
以上60以下、裏面側のshore-D硬度が30以上40以
下である。研磨面側のshore-D硬度が40よりも低い
と、研磨平坦性が損なわれる恐れがあるし、70を越え
ると研磨均一性の低下やスクラッチが発生する恐れがあ
る。また裏面側のshore-D硬度が研磨面側のshore-D硬度
と比較して、その差が5よりも小さいと、ウエハの反り
に追従できずに研磨均一性が低下する恐れがあるし、裏
面側のshore-D硬度が20よりも低い場合は、軟質すぎ
るため、かえって、研磨均一性が低下する恐れがある。
【0018】本発明者らは、発泡体の硬度と発泡構造の
関係において、鋭意探索した結果、硬度は、発泡倍率、
気泡壁の力学的強度、気泡構造(気泡径および気泡形
状)に影響されることを見いだし、本発明を完成させる
に至った。すなわち、発泡シート表面側(研磨パッド研
磨面側)の発泡構造と裏面側(研磨パッド裏面側)の発
泡構造を異なるものとすることで、研磨平坦性と研磨均
一性を両立する、研磨に適正な力学物性を一枚のシート
で成り立たせるものである。
関係において、鋭意探索した結果、硬度は、発泡倍率、
気泡壁の力学的強度、気泡構造(気泡径および気泡形
状)に影響されることを見いだし、本発明を完成させる
に至った。すなわち、発泡シート表面側(研磨パッド研
磨面側)の発泡構造と裏面側(研磨パッド裏面側)の発
泡構造を異なるものとすることで、研磨平坦性と研磨均
一性を両立する、研磨に適正な力学物性を一枚のシート
で成り立たせるものである。
【0019】また、前述した発泡構造を有する発泡シー
トは、様々な発泡プロセスで製造することが可能であ
る。一般的に、発泡プロセスは含浸発泡プロセスと押し
出し発泡プロセスに分けられ、含浸発泡プロセスは、押
出シーティング、発泡剤含浸、発泡、というプロセスを
へて発泡シートが製造され、押し出し発泡プロセスで
は、押し出し機内で、溶融させた樹脂に発泡剤を溶解さ
せ、押し出し機系内で加圧下におかれている発泡剤含有
の溶融樹脂が、ダイから放出される際、圧力が急激に低
下することで瞬時に発泡させるプロセスである。また、
押し出し機から型内に発泡剤を含有した溶融樹脂を流入
させ、型内で発泡させる射出成形発泡プロセスがある。
トは、様々な発泡プロセスで製造することが可能であ
る。一般的に、発泡プロセスは含浸発泡プロセスと押し
出し発泡プロセスに分けられ、含浸発泡プロセスは、押
出シーティング、発泡剤含浸、発泡、というプロセスを
へて発泡シートが製造され、押し出し発泡プロセスで
は、押し出し機内で、溶融させた樹脂に発泡剤を溶解さ
せ、押し出し機系内で加圧下におかれている発泡剤含有
の溶融樹脂が、ダイから放出される際、圧力が急激に低
下することで瞬時に発泡させるプロセスである。また、
押し出し機から型内に発泡剤を含有した溶融樹脂を流入
させ、型内で発泡させる射出成形発泡プロセスがある。
【0020】いずれのプロセスにおいても、無機粒子や
ゴム粒子等の気泡核材を用いることができるし、また、
含浸発泡プロセスでは発泡の前後に、押し出し発泡プロ
セスでは発泡シート成形後に架橋を行なうことが出来
る。本発明の研磨面側と裏面側とで硬度の異なる研磨パ
ッドの第一の実施態様は、発泡シートに表面と裏面とで
異なる発泡倍率を形成させることである。具体的な製造
方法として、含浸発泡プロセスでは、未発泡樹脂シート
への発泡剤の含浸濃度を、表面側は高く、裏面側は低く
し、発泡剤の濃度勾配をもたせる方法が挙げられる。よ
り詳細には、発泡剤が物理発泡剤である場合は、発泡す
る前に発泡剤含有樹脂シートを加熱ロールに接触させ、
研磨面のみ発泡剤を減少させる方法が挙げられる。
ゴム粒子等の気泡核材を用いることができるし、また、
含浸発泡プロセスでは発泡の前後に、押し出し発泡プロ
セスでは発泡シート成形後に架橋を行なうことが出来
る。本発明の研磨面側と裏面側とで硬度の異なる研磨パ
ッドの第一の実施態様は、発泡シートに表面と裏面とで
異なる発泡倍率を形成させることである。具体的な製造
方法として、含浸発泡プロセスでは、未発泡樹脂シート
への発泡剤の含浸濃度を、表面側は高く、裏面側は低く
し、発泡剤の濃度勾配をもたせる方法が挙げられる。よ
り詳細には、発泡剤が物理発泡剤である場合は、発泡す
る前に発泡剤含有樹脂シートを加熱ロールに接触させ、
研磨面のみ発泡剤を減少させる方法が挙げられる。
【0021】また、別の実施方法としては、発泡時の加
熱温度を表面と裏面とで異なる温度で行なうことで、発
泡シートの表面と裏面とで異なる発泡倍率を形成すると
いう方法が挙げられる。さらに、別の実施方法として
は、発泡前のシートを表裏で異なる架橋密度を形成させ
た後、発泡させることで、発泡シートに表裏で異なる発
泡倍率を形成するという方法も挙げられる。架橋方法に
は架橋剤を用いる方法や電子線や紫外線、またはγ線等
を用いる放射線による架橋方法が挙げられる。電子線に
よる架橋では、Depth-Dose曲線にしたがって、シートの
厚み方向で照射線量が変化するため、所望の電子線照射
装置の加速電圧と樹脂密度によって、厚み方向で勾配を
形成するように所望の架橋密度を形成させることができ
る。例えば、片面のみ電子線を照射する、もしくは表面
と裏面とで照射線量を変えて照射する等である。また、
押し出し発泡や射出成形発泡では、発泡時に成形する温
度を表面と裏面とで変えることによって、発泡シートの
表面と裏面とで異なる発泡倍率を形成することができ
る。
熱温度を表面と裏面とで異なる温度で行なうことで、発
泡シートの表面と裏面とで異なる発泡倍率を形成すると
いう方法が挙げられる。さらに、別の実施方法として
は、発泡前のシートを表裏で異なる架橋密度を形成させ
た後、発泡させることで、発泡シートに表裏で異なる発
泡倍率を形成するという方法も挙げられる。架橋方法に
は架橋剤を用いる方法や電子線や紫外線、またはγ線等
を用いる放射線による架橋方法が挙げられる。電子線に
よる架橋では、Depth-Dose曲線にしたがって、シートの
厚み方向で照射線量が変化するため、所望の電子線照射
装置の加速電圧と樹脂密度によって、厚み方向で勾配を
形成するように所望の架橋密度を形成させることができ
る。例えば、片面のみ電子線を照射する、もしくは表面
と裏面とで照射線量を変えて照射する等である。また、
押し出し発泡や射出成形発泡では、発泡時に成形する温
度を表面と裏面とで変えることによって、発泡シートの
表面と裏面とで異なる発泡倍率を形成することができ
る。
【0022】第二の実施態様は、発泡シートの表面側
(研磨パッドの研磨面側)の気泡壁強度を裏面側に対し
て、強くすることである。より詳細には、表面側の架橋
密度を高くすることで、気泡壁の強度を高くすることが
できる。従って、第一の実施態様が架橋によるプロセス
における場合は結果的に、第二の実施態様も同時に満足
することができる。また、発泡シート成形後に電子線等
による架橋を表面側のみに行なうことで、第二の実施態
様を満足することができる。
(研磨パッドの研磨面側)の気泡壁強度を裏面側に対し
て、強くすることである。より詳細には、表面側の架橋
密度を高くすることで、気泡壁の強度を高くすることが
できる。従って、第一の実施態様が架橋によるプロセス
における場合は結果的に、第二の実施態様も同時に満足
することができる。また、発泡シート成形後に電子線等
による架橋を表面側のみに行なうことで、第二の実施態
様を満足することができる。
【0023】第三の実施態様は、表面と裏面とで気泡構
造が異なる発泡シートを形成させ、研磨面側と裏面側で
硬度の異なる研磨パッドを生成する事である。このよう
な気泡構造の一つは発泡シート表面側の気泡径を裏面側
に比べて小さくすることであり、また別の一つは表面側
の気泡数を裏面側と比較して少なくすることである。さ
らに別の構造は、裏面側の気泡形状を厚み方向に長径を
有する楕円形にすることである。以下、より詳細に説明
すると、気泡径を表裏で異なるように形成する方法は、
発泡シート成形後に発泡シートの研磨面側を加熱もしく
は減圧下で加熱することによって、脱泡する事で所望の
形状を得ることができる。この場合、減圧の条件によっ
ては、気泡数を減少させることもできる。また、含浸発
泡プロセスにおいて、結晶が気泡核となる場合は、シー
ティング時の冷却速度を樹脂シートの表面と裏面とで変
えることによって、気泡核数を変え、表面と裏面とで異
なる気泡核数を有する発泡シートを形成することができ
る。また、水平方向の伸びを規定した状態で、発泡させ
ることによって厚み方向に配向した気泡構造が得られ
る。従って、第一の実施態様に示したような方法で裏面
側の発泡倍率を高くすることで、裏面側は厚み方向に楕
円形の気泡を有し、表面側は球もしくは正十二面体に近
い形状の気泡構造を得ることができる。気泡が厚み方向
に長径を有する楕円形になると、球形の気泡と比べて、
圧縮に対して、より弾性変形が可能となるため、裏面側
の気泡形状としては望ましい。
造が異なる発泡シートを形成させ、研磨面側と裏面側で
硬度の異なる研磨パッドを生成する事である。このよう
な気泡構造の一つは発泡シート表面側の気泡径を裏面側
に比べて小さくすることであり、また別の一つは表面側
の気泡数を裏面側と比較して少なくすることである。さ
らに別の構造は、裏面側の気泡形状を厚み方向に長径を
有する楕円形にすることである。以下、より詳細に説明
すると、気泡径を表裏で異なるように形成する方法は、
発泡シート成形後に発泡シートの研磨面側を加熱もしく
は減圧下で加熱することによって、脱泡する事で所望の
形状を得ることができる。この場合、減圧の条件によっ
ては、気泡数を減少させることもできる。また、含浸発
泡プロセスにおいて、結晶が気泡核となる場合は、シー
ティング時の冷却速度を樹脂シートの表面と裏面とで変
えることによって、気泡核数を変え、表面と裏面とで異
なる気泡核数を有する発泡シートを形成することができ
る。また、水平方向の伸びを規定した状態で、発泡させ
ることによって厚み方向に配向した気泡構造が得られ
る。従って、第一の実施態様に示したような方法で裏面
側の発泡倍率を高くすることで、裏面側は厚み方向に楕
円形の気泡を有し、表面側は球もしくは正十二面体に近
い形状の気泡構造を得ることができる。気泡が厚み方向
に長径を有する楕円形になると、球形の気泡と比べて、
圧縮に対して、より弾性変形が可能となるため、裏面側
の気泡形状としては望ましい。
【0024】従って、好ましい気泡構造は研磨面側の気
泡径は、0.1μm以上100μm以下で、裏面側は1
0μm以上300μm以下である。研磨面側が100μ
mを越えると所望の硬度が得られにくいし、0.1μm
よりも小さいと、発泡倍率によっては気泡壁強度が低下
する恐れがある。また、裏面側の気泡径が10μmより
も小さいと所望の弾性変形が得られにくいし、300μ
mよりも大きいと柔軟性が損なわれ、研磨均一性が低下
する恐れがある。より好ましい気泡径は研磨面側で0.
5μm以上50μm以下、裏面側で10μm以上200
μm以下、さらに好ましくは研磨面側で1μm以上30
μm以下、裏面側で20μm以上100μm以下であ
る。気泡が楕円形状であるときには、平均気泡径は長径
と短径の平均で表わす。また裏面側の気泡の扁平率は、
厚み方向の長径と水平方向の短径の比率を長径/短径で
表わしたとき1.5以上5以下が望ましい。1.5以下
では所望の効果が得られないし、5を越えると、柔軟性
が損なわれ、研磨均一性が低下する恐れがある。より望
ましい扁平率は1.5以上3以下、さらに望ましくは
1.5以上2以下である。
泡径は、0.1μm以上100μm以下で、裏面側は1
0μm以上300μm以下である。研磨面側が100μ
mを越えると所望の硬度が得られにくいし、0.1μm
よりも小さいと、発泡倍率によっては気泡壁強度が低下
する恐れがある。また、裏面側の気泡径が10μmより
も小さいと所望の弾性変形が得られにくいし、300μ
mよりも大きいと柔軟性が損なわれ、研磨均一性が低下
する恐れがある。より好ましい気泡径は研磨面側で0.
5μm以上50μm以下、裏面側で10μm以上200
μm以下、さらに好ましくは研磨面側で1μm以上30
μm以下、裏面側で20μm以上100μm以下であ
る。気泡が楕円形状であるときには、平均気泡径は長径
と短径の平均で表わす。また裏面側の気泡の扁平率は、
厚み方向の長径と水平方向の短径の比率を長径/短径で
表わしたとき1.5以上5以下が望ましい。1.5以下
では所望の効果が得られないし、5を越えると、柔軟性
が損なわれ、研磨均一性が低下する恐れがある。より望
ましい扁平率は1.5以上3以下、さらに望ましくは
1.5以上2以下である。
【0025】以上、説明したような、本発明の実施態様
は単独で用いることもできるし、複数の手法を、同時に
用いることもできる。本発明で用いられる樹脂はフッ素
樹脂、オレフィン樹脂、アクリル樹脂、ポリカーボネー
ト、ポリスチレン等の熱可塑性樹脂を単独あるいは混合
物で用いることができる。熱可塑性フッ素樹脂は例え
ば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサ
フルオロプロピレン共重合体、フッ化ビニリデン−テト
ラフルオロエチレン共重合体等、ポリフッ化ビニル、エ
チレン−テトラフルオロエチレン共重合体、テトラフル
オロエチレン−ヘキサフルオロプロピレン共重合体、テ
トラフルオロエチレン−パーフルオロメチル−パーフル
オロビニルエーテル共重合体、テトラフルオロエチレン
−パーフルオロエチル−パーフルオロビニルエーテル共
重合体、テトラフルオロエチレン−パーフルオロプロピ
ル−パーフルオロビニルエーテル共重合体等の単独もし
くは混合物である。
は単独で用いることもできるし、複数の手法を、同時に
用いることもできる。本発明で用いられる樹脂はフッ素
樹脂、オレフィン樹脂、アクリル樹脂、ポリカーボネー
ト、ポリスチレン等の熱可塑性樹脂を単独あるいは混合
物で用いることができる。熱可塑性フッ素樹脂は例え
ば、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサ
フルオロプロピレン共重合体、フッ化ビニリデン−テト
ラフルオロエチレン共重合体等、ポリフッ化ビニル、エ
チレン−テトラフルオロエチレン共重合体、テトラフル
オロエチレン−ヘキサフルオロプロピレン共重合体、テ
トラフルオロエチレン−パーフルオロメチル−パーフル
オロビニルエーテル共重合体、テトラフルオロエチレン
−パーフルオロエチル−パーフルオロビニルエーテル共
重合体、テトラフルオロエチレン−パーフルオロプロピ
ル−パーフルオロビニルエーテル共重合体等の単独もし
くは混合物である。
【0026】オレフィン樹脂は例えば、低密度ポリエチ
レン、高密度ポリエチレン、直鎖状低密度ポリエチレ
ン、ポリプロピレン、アイオノマー、ポリー4−メチル
ー1−ペンテン等である。アクリル樹脂はメタクリル酸
エステル、例えばメタクリル酸メチル、メタクリル酸エ
チルなどを主体とするものである。一般にアクリル樹脂
はその耐熱性や物性を改良するためにコモノマーとの共
重合体である事が多いが、40重量%以下のコモノマー
はアクリル樹脂に含まれるものとする。このような、コ
モノマーの例としては、メタクリル酸エステル、例えば
メタクリル酸メチル、メタクリル酸エチル等、アクリル
酸エステル、例えばアクリル酸メチル、アクリル酸エチ
ル、アクリル酸ブチル等、やスチレン、α−メチルスチ
レン、アクリロニトリル、メタクリロニトリルなどがあ
る。また、アクリル樹脂は一般的に溶液重合方法と懸濁
重合方法の二通りの重合方法で製造されるが、異物が少
ないという点において、溶液重合方法で製造された樹脂
を用いることが好ましい。また、ゴム粒子の混入してい
るアクリル樹脂、例えばハイインパクトPMMAを用い
ることもできる。
レン、高密度ポリエチレン、直鎖状低密度ポリエチレ
ン、ポリプロピレン、アイオノマー、ポリー4−メチル
ー1−ペンテン等である。アクリル樹脂はメタクリル酸
エステル、例えばメタクリル酸メチル、メタクリル酸エ
チルなどを主体とするものである。一般にアクリル樹脂
はその耐熱性や物性を改良するためにコモノマーとの共
重合体である事が多いが、40重量%以下のコモノマー
はアクリル樹脂に含まれるものとする。このような、コ
モノマーの例としては、メタクリル酸エステル、例えば
メタクリル酸メチル、メタクリル酸エチル等、アクリル
酸エステル、例えばアクリル酸メチル、アクリル酸エチ
ル、アクリル酸ブチル等、やスチレン、α−メチルスチ
レン、アクリロニトリル、メタクリロニトリルなどがあ
る。また、アクリル樹脂は一般的に溶液重合方法と懸濁
重合方法の二通りの重合方法で製造されるが、異物が少
ないという点において、溶液重合方法で製造された樹脂
を用いることが好ましい。また、ゴム粒子の混入してい
るアクリル樹脂、例えばハイインパクトPMMAを用い
ることもできる。
【0027】これらの樹脂の中でも、熱可塑性フッ素樹
脂は、耐薬品性、耐水性に優れるので、研磨パッドとし
ての耐久性を有するため好ましく、また、熱可塑性フッ
素樹脂の中でも水素原子を有する樹脂は電子線による架
橋特性を示すため、より好ましい樹脂の種類の一つであ
る。また、ポリフッ化ビニリデンならびにフッ化ビニリ
デン共重合体とアクリル樹脂は相溶性を示し、その混合
物は、耐薬品性、耐水性に優れるフッ素樹脂の特性とア
クリル樹脂の硬質性を兼ね備える、好ましい樹脂の種類
の一つである。
脂は、耐薬品性、耐水性に優れるので、研磨パッドとし
ての耐久性を有するため好ましく、また、熱可塑性フッ
素樹脂の中でも水素原子を有する樹脂は電子線による架
橋特性を示すため、より好ましい樹脂の種類の一つであ
る。また、ポリフッ化ビニリデンならびにフッ化ビニリ
デン共重合体とアクリル樹脂は相溶性を示し、その混合
物は、耐薬品性、耐水性に優れるフッ素樹脂の特性とア
クリル樹脂の硬質性を兼ね備える、好ましい樹脂の種類
の一つである。
【0028】本発明では、前述した樹脂の特性に合わせ
た加工方法によって、表裏の発泡構造が異なる発泡シー
トを製造することができる。例えば、樹脂が水素を含む
フッ素樹脂の場合は、電子線照射によって、表裏で異な
る架橋密度を形成し、その後に発泡剤を含浸し発泡させ
る含浸発泡方法が好ましく、具体的な照射線量は、表面
側の照射線量を15Mrad以上25Mrad以下、裏
面側の照射線量を0Mrad以上10Mrad以下が好
ましい。表面側の照射線量が25Mradを越えると、
樹脂の分解が起こるし、15Mradより少ない線量で
は所望の架橋密度を得ることができない恐れがある。ま
た、裏面側の照射線量が10Mradを越えると、所望
の効果を得ることができない恐れがある。
た加工方法によって、表裏の発泡構造が異なる発泡シー
トを製造することができる。例えば、樹脂が水素を含む
フッ素樹脂の場合は、電子線照射によって、表裏で異な
る架橋密度を形成し、その後に発泡剤を含浸し発泡させ
る含浸発泡方法が好ましく、具体的な照射線量は、表面
側の照射線量を15Mrad以上25Mrad以下、裏
面側の照射線量を0Mrad以上10Mrad以下が好
ましい。表面側の照射線量が25Mradを越えると、
樹脂の分解が起こるし、15Mradより少ない線量で
は所望の架橋密度を得ることができない恐れがある。ま
た、裏面側の照射線量が10Mradを越えると、所望
の効果を得ることができない恐れがある。
【0029】また、ポリフッ化ビニリデンならびにフッ
化ビニリデン共重合体とアクリル樹脂の混合物の場合、
混合比率によっては、前述したような電子線架橋による
方法よりは、発泡シート成形後に表面側を減圧下で加熱
成形する手法が好ましい。具体的には混合樹脂のTg
(ガラス転移温度)もしくは融点の10℃以上150℃
以下の温度で、発泡シート表面を減圧下で加熱し、所望
の発泡構造を作成することができる。
化ビニリデン共重合体とアクリル樹脂の混合物の場合、
混合比率によっては、前述したような電子線架橋による
方法よりは、発泡シート成形後に表面側を減圧下で加熱
成形する手法が好ましい。具体的には混合樹脂のTg
(ガラス転移温度)もしくは融点の10℃以上150℃
以下の温度で、発泡シート表面を減圧下で加熱し、所望
の発泡構造を作成することができる。
【0030】本発明で用いられる発泡剤としては物理発
泡剤、または化学発泡剤どちらを用いてもかまわない
が、研磨パッドに残査が残りにくい点から、揮発性の物
理発泡剤を用いることが好ましい。例えば1,1,1,
2−テトラフルオロエタン等のフロン類や、プロパン、
ブタン、ペンタン等の炭化水素類、炭酸ガス、窒素等の
無機ガスや水を用いることができる。また、化学発泡剤
と物理発泡剤とを併用しても構わないし、含浸発泡プロ
セスや押し出し発泡プロセスのどちらにでも適用するこ
とができる。
泡剤、または化学発泡剤どちらを用いてもかまわない
が、研磨パッドに残査が残りにくい点から、揮発性の物
理発泡剤を用いることが好ましい。例えば1,1,1,
2−テトラフルオロエタン等のフロン類や、プロパン、
ブタン、ペンタン等の炭化水素類、炭酸ガス、窒素等の
無機ガスや水を用いることができる。また、化学発泡剤
と物理発泡剤とを併用しても構わないし、含浸発泡プロ
セスや押し出し発泡プロセスのどちらにでも適用するこ
とができる。
【0031】本発明では、気泡径を調整する気泡核材と
して、また硬度調整の充填材として、1重量%以上30
重量%以下の無機粒子を添加しても良い。無機粒子の添
加量が1重量%未満であれば、前述の様な所望の効果が
得られにくいし、30重量%より多いと後述するような
二次凝集が起こりやすい。より好ましい添加量は1重量
%以上20重量%以下であり、さらに好ましくは3重量
%以上10重量%以下である。特に好ましくは3重量%
以上8重量%以下である。
して、また硬度調整の充填材として、1重量%以上30
重量%以下の無機粒子を添加しても良い。無機粒子の添
加量が1重量%未満であれば、前述の様な所望の効果が
得られにくいし、30重量%より多いと後述するような
二次凝集が起こりやすい。より好ましい添加量は1重量
%以上20重量%以下であり、さらに好ましくは3重量
%以上10重量%以下である。特に好ましくは3重量%
以上8重量%以下である。
【0032】無機粒子の添加で重要なことは、樹脂中に
存在する無機粒子の粒径である。一般に無機粒子は二次
凝集を起こしやすく、結果的に大粒径の無機粒子が存在
し、研磨時にウエハ表面にスクラッチが発生しやすい。
また、均一に硬度を調整する目的からも微分散の状態を
得るのが好ましい。したがって、研磨パッド中に分散し
た状態の二次粒子径が500nm以下になるようにする
ことが好ましい。より好ましい二次粒子径は300nm
以下であり、特に好ましくは250nm以下である。ま
た、前述のような分散状態を得るためには、用いる無機
粒子の一次粒子径が200nm以下のものを用いること
が好ましい。より好ましい一次粒子径は100nm以下
であり、さらに好ましくは50nm以下であり、特に好
ましくは30nm以下である。一次粒子径の下限は特に
規定しないが、取り扱い性及び実質的に製造可能な物と
して1nm以上であり、好ましくは5nm以上であり、
より好ましくは10nm以上である。
存在する無機粒子の粒径である。一般に無機粒子は二次
凝集を起こしやすく、結果的に大粒径の無機粒子が存在
し、研磨時にウエハ表面にスクラッチが発生しやすい。
また、均一に硬度を調整する目的からも微分散の状態を
得るのが好ましい。したがって、研磨パッド中に分散し
た状態の二次粒子径が500nm以下になるようにする
ことが好ましい。より好ましい二次粒子径は300nm
以下であり、特に好ましくは250nm以下である。ま
た、前述のような分散状態を得るためには、用いる無機
粒子の一次粒子径が200nm以下のものを用いること
が好ましい。より好ましい一次粒子径は100nm以下
であり、さらに好ましくは50nm以下であり、特に好
ましくは30nm以下である。一次粒子径の下限は特に
規定しないが、取り扱い性及び実質的に製造可能な物と
して1nm以上であり、好ましくは5nm以上であり、
より好ましくは10nm以上である。
【0033】本発明で用いられる無機粒子の例として
は、被研磨物であるウエハへの影響と無機粒子の要求特
性とを考慮して、シリカ、アルミナ、酸化セリウム、二
酸化マンガン、酸化チタン、ジルコニア、チッ化ホウ
素、カーボン、タルク等から適宜選択することができ
る。また、無機粒子と熱可塑性フッ素樹脂やアクリル樹
脂との親和性を考慮し、該無機粒子がより微分散した状
態を得るために、炭素含有量が0.5%以上10%以下
となるように表面処理された無機粒子を用いることがで
きる。この含有量が10%を超えると本件の要求特性を
満たさない可能性がある。より好ましい炭素含有量は
0.5%以上7%以下、さらに好ましくは0.7%以上
5%以下、特に好ましくは0.8%以上3%以下であ
る。
は、被研磨物であるウエハへの影響と無機粒子の要求特
性とを考慮して、シリカ、アルミナ、酸化セリウム、二
酸化マンガン、酸化チタン、ジルコニア、チッ化ホウ
素、カーボン、タルク等から適宜選択することができ
る。また、無機粒子と熱可塑性フッ素樹脂やアクリル樹
脂との親和性を考慮し、該無機粒子がより微分散した状
態を得るために、炭素含有量が0.5%以上10%以下
となるように表面処理された無機粒子を用いることがで
きる。この含有量が10%を超えると本件の要求特性を
満たさない可能性がある。より好ましい炭素含有量は
0.5%以上7%以下、さらに好ましくは0.7%以上
5%以下、特に好ましくは0.8%以上3%以下であ
る。
【0034】また、気泡径の調整を目的に、気泡核材と
して粒径1μm以下のゴム粒子を用いることができる。
例えばアクリルゴム粒子やスチレンーブタジエンゴム粒
子などである。ゴム粒子の粒径が1μmより大きけれ
ば、所望の効果が得られない恐れがある。粒径の下限は
特に規定するものではないが、分散性や入手の容易性か
ら考慮して0.05μm以上のものが好ましい。より好
ましい粒径の範囲は0.1μm以上0.5μm以下であ
る。
して粒径1μm以下のゴム粒子を用いることができる。
例えばアクリルゴム粒子やスチレンーブタジエンゴム粒
子などである。ゴム粒子の粒径が1μmより大きけれ
ば、所望の効果が得られない恐れがある。粒径の下限は
特に規定するものではないが、分散性や入手の容易性か
ら考慮して0.05μm以上のものが好ましい。より好
ましい粒径の範囲は0.1μm以上0.5μm以下であ
る。
【0035】本発明の研磨パッドには、パッド表面にス
ラリーを均一に保持させるため、また研磨屑を円滑に排
出するために、溝を設けることができる。溝形状は多数
の同心円や格子状、放射状また螺旋状等の溝形状を用い
ることができる。この溝は、旋盤やフライスによる切削
方法等で研磨パッド表面に作成できる。本発明では、例
えば図1に示すような研磨装置に、表面と裏面とで異な
る硬度を有する発泡シートからなる研磨パッド1を、表
面側を研磨面側となるように、両面テープ(図示せず)
等を用いて貼り付けることにより、研磨定盤2に装着で
きる。研磨定盤2と支持台6とは、それぞれに支持され
た研磨パッド1と被研磨材のウエハ5とが対向するよう
に配置され、それぞれが回転し、スラリー状研磨剤溶液
を供給しながら、ウエハ表面の凹凸を研磨することがで
きる。また、研磨パッド1の研磨面を、ダイヤモンドを
電着したドレッサ等で削り取るドレッシング工程が研磨
前及び研磨中に行われる。
ラリーを均一に保持させるため、また研磨屑を円滑に排
出するために、溝を設けることができる。溝形状は多数
の同心円や格子状、放射状また螺旋状等の溝形状を用い
ることができる。この溝は、旋盤やフライスによる切削
方法等で研磨パッド表面に作成できる。本発明では、例
えば図1に示すような研磨装置に、表面と裏面とで異な
る硬度を有する発泡シートからなる研磨パッド1を、表
面側を研磨面側となるように、両面テープ(図示せず)
等を用いて貼り付けることにより、研磨定盤2に装着で
きる。研磨定盤2と支持台6とは、それぞれに支持され
た研磨パッド1と被研磨材のウエハ5とが対向するよう
に配置され、それぞれが回転し、スラリー状研磨剤溶液
を供給しながら、ウエハ表面の凹凸を研磨することがで
きる。また、研磨パッド1の研磨面を、ダイヤモンドを
電着したドレッサ等で削り取るドレッシング工程が研磨
前及び研磨中に行われる。
【0036】繰り返すが、本発明は、研磨面側が高硬度
で、裏面側が低硬度の一枚のシートからなる研磨パッド
であるため、研磨平坦性と研磨均一性とを両立すること
ができ、かつ研磨中に剥離や、研磨性能の経時劣化の恐
れがない研磨パッド、及び該研磨パッドを用いた研磨装
置並びに該研磨装置を用いた半導体デバイスの製造方法
を提供するものである。
で、裏面側が低硬度の一枚のシートからなる研磨パッド
であるため、研磨平坦性と研磨均一性とを両立すること
ができ、かつ研磨中に剥離や、研磨性能の経時劣化の恐
れがない研磨パッド、及び該研磨パッドを用いた研磨装
置並びに該研磨装置を用いた半導体デバイスの製造方法
を提供するものである。
【0037】
【発明の実施の形態】以下、本発明について実施例を挙
げて説明する。 (1)研磨面側の硬度の測定方法 研磨パッドの裏面側から厚み方向の中心までの、研磨パ
ッド厚みの半分をベルトサンダーを用いて削り、研磨面
側のシートを厚み3mm以上4mm以下になるように複
数枚重ね、JIS K7215に準拠してD型デュロメ
ータによる硬度測定方法によって求めた。 (2)裏面側の硬度の測定方法 研磨パッドの研磨面側から厚み方向の中心までの、研磨
パッド厚みの半分をベルトサンダーを用いて削り、裏面
側のシートを厚み3mm以上4mm以下になるように複
数枚重ね、JIS K7215に準拠してD型デュロメ
ータによる硬度測定方法によって求めた。
げて説明する。 (1)研磨面側の硬度の測定方法 研磨パッドの裏面側から厚み方向の中心までの、研磨パ
ッド厚みの半分をベルトサンダーを用いて削り、研磨面
側のシートを厚み3mm以上4mm以下になるように複
数枚重ね、JIS K7215に準拠してD型デュロメ
ータによる硬度測定方法によって求めた。 (2)裏面側の硬度の測定方法 研磨パッドの研磨面側から厚み方向の中心までの、研磨
パッド厚みの半分をベルトサンダーを用いて削り、裏面
側のシートを厚み3mm以上4mm以下になるように複
数枚重ね、JIS K7215に準拠してD型デュロメ
ータによる硬度測定方法によって求めた。
【0038】(3)ガラス転移温度、融点の測定方法 ASTM−D3418に準拠してDSCを用いて、昇温
速度5℃/minの条件下で測定した。 (4)研磨パッド中の無機粒子の二次粒子径測定方法 研磨パッドの厚み方向断面における、研磨面から0.5
mmまでの深さの任意の領域を、走査型電子顕微鏡にて
無機粒子の粒子径が確認できる様な倍率(約1万倍から
5万倍)で、ソリッドの領域がトータルで1μm×1μ
mとなるように観察し、この領域に存在する粒子を全て
観察し、その中の大きい方から粒子10個の平均値を二
次粒子径とした。 (5)無機粒子の一次粒子径 透過型電子顕微鏡で無機粒子の一次粒子100個を観察
し、数平均粒子径を一次粒子径とした。
速度5℃/minの条件下で測定した。 (4)研磨パッド中の無機粒子の二次粒子径測定方法 研磨パッドの厚み方向断面における、研磨面から0.5
mmまでの深さの任意の領域を、走査型電子顕微鏡にて
無機粒子の粒子径が確認できる様な倍率(約1万倍から
5万倍)で、ソリッドの領域がトータルで1μm×1μ
mとなるように観察し、この領域に存在する粒子を全て
観察し、その中の大きい方から粒子10個の平均値を二
次粒子径とした。 (5)無機粒子の一次粒子径 透過型電子顕微鏡で無機粒子の一次粒子100個を観察
し、数平均粒子径を一次粒子径とした。
【0039】(6)発泡倍率 次式により算出した。 発泡倍率=樹脂密度(g/cm3)/発泡シート密度
(g/cm3) (7)平均気泡径 サンプルの研磨面をスライスし、電子顕微鏡で観察し
た。得られた写真に1cmのグリッド線を引き、AST
M−D3576に準拠してグリッド線上に存在する気泡
の数を数え、次式を用いて、平均気泡径を求めた。 平均気泡径=グリッド線長さ(μm)/気泡の個数
(個)/0.616 (8)無機粒子の炭素含有量 所定量の無機粒子を1000℃で2時間加熱し、生成し
た二酸化炭素の量と初期のサンプル量とから、炭素含有
量を測定した。
(g/cm3) (7)平均気泡径 サンプルの研磨面をスライスし、電子顕微鏡で観察し
た。得られた写真に1cmのグリッド線を引き、AST
M−D3576に準拠してグリッド線上に存在する気泡
の数を数え、次式を用いて、平均気泡径を求めた。 平均気泡径=グリッド線長さ(μm)/気泡の個数
(個)/0.616 (8)無機粒子の炭素含有量 所定量の無機粒子を1000℃で2時間加熱し、生成し
た二酸化炭素の量と初期のサンプル量とから、炭素含有
量を測定した。
【0040】
【実施例1】ポリフッ化ビニリデン(アトフィナ社製1
000HD)とシリカ(日本アエロジル株式会社製アエ
ロジル(登録商標)R972、一次粒子径16nm、炭
素含有量1%)を、重量比95/5の比率でヘンシェル
ミキサーを用いて混合し、二軸押し出し機を用いて、加
熱押し出し成形によって、1.3mm厚みの押出シート
を成形する。該押出シートを加速電圧500kVの電子
線照射設備を用いて、表面に20Mrad、裏面に5M
rad照射して架橋する。該架橋済みシートを圧力容器
に入れ、発泡剤としてテトラフルオロエタンを圧入し、
70℃で30時間保持する。該発泡剤含浸済シートを、
遠赤外線ヒーターを備えた温度200℃の加熱炉中に保
持して、該シートを発泡させる。該発泡シートの発泡倍
率は3.5倍で、表面側の平均気泡径は10μmであ
り、裏面側の気泡は厚み方向に長径を有する楕円形をし
ており、厚み方向の長径と水平方向の短径との比は2で
あり、平均気泡径は70μmである。発泡シートを#2
40のベルトサンダーで、両面バフ研磨し、所望の大き
さに切り出し、両面テープを貼り、研磨パッドとする。
該研磨パッドに同心円形状の溝(溝幅0.2mm、溝深
さ0.4mm、溝ピッチ2.0mm)を切削加工によっ
て溝付研磨パッドを作成する。該研磨パッドの研磨面側
のD硬度は50、裏面側のD硬度は29である。無機粒
子の二次粒子径は300nmである。
000HD)とシリカ(日本アエロジル株式会社製アエ
ロジル(登録商標)R972、一次粒子径16nm、炭
素含有量1%)を、重量比95/5の比率でヘンシェル
ミキサーを用いて混合し、二軸押し出し機を用いて、加
熱押し出し成形によって、1.3mm厚みの押出シート
を成形する。該押出シートを加速電圧500kVの電子
線照射設備を用いて、表面に20Mrad、裏面に5M
rad照射して架橋する。該架橋済みシートを圧力容器
に入れ、発泡剤としてテトラフルオロエタンを圧入し、
70℃で30時間保持する。該発泡剤含浸済シートを、
遠赤外線ヒーターを備えた温度200℃の加熱炉中に保
持して、該シートを発泡させる。該発泡シートの発泡倍
率は3.5倍で、表面側の平均気泡径は10μmであ
り、裏面側の気泡は厚み方向に長径を有する楕円形をし
ており、厚み方向の長径と水平方向の短径との比は2で
あり、平均気泡径は70μmである。発泡シートを#2
40のベルトサンダーで、両面バフ研磨し、所望の大き
さに切り出し、両面テープを貼り、研磨パッドとする。
該研磨パッドに同心円形状の溝(溝幅0.2mm、溝深
さ0.4mm、溝ピッチ2.0mm)を切削加工によっ
て溝付研磨パッドを作成する。該研磨パッドの研磨面側
のD硬度は50、裏面側のD硬度は29である。無機粒
子の二次粒子径は300nmである。
【0041】この研磨パッドを研磨装置(岡本工作機械
製作所製のGRIND−X SPP600S)の研磨定
盤に貼り付け、#140のダイヤモンド電着リングを用
い5分間ドレッシングを行なう。次に研磨装置の支持台
に、最表面にCu薄膜が150nm形成されているウエ
ハを取り付け、Cu研磨用のスラリー状研磨剤(cab
ot社製EP−C5001)を用いて定盤58rpm/
支持台62rpm、荷重20.7KPa(3psi)で
Cu研磨の第1ステップを行なうと、研磨均一性、研磨
平坦性ともに良好であり、研磨パッドの溝深さが0.2
mmになるまで研磨する時、研磨均一性、研磨平坦性の
経時劣化は認められない。。
製作所製のGRIND−X SPP600S)の研磨定
盤に貼り付け、#140のダイヤモンド電着リングを用
い5分間ドレッシングを行なう。次に研磨装置の支持台
に、最表面にCu薄膜が150nm形成されているウエ
ハを取り付け、Cu研磨用のスラリー状研磨剤(cab
ot社製EP−C5001)を用いて定盤58rpm/
支持台62rpm、荷重20.7KPa(3psi)で
Cu研磨の第1ステップを行なうと、研磨均一性、研磨
平坦性ともに良好であり、研磨パッドの溝深さが0.2
mmになるまで研磨する時、研磨均一性、研磨平坦性の
経時劣化は認められない。。
【0042】
【実施例2】ポリフッ化ビニリデン(アトフィナ社製1
000HD)とアクリル樹脂(旭化成工業株式会社製デ
ルペット(登録商標)80N)とシリカ(日本アエロジ
ル株式会社製アエロジル(登録商標)R972、一次粒
子径16nm、炭素含有量1%)を、重量比47.5/
47.5/5(樹脂組成比:ポリフッ化ビニリデン/ア
クリル樹脂=50/50)の比率でヘンシェルミキサー
を用いて混合し、二軸押し出し機を用いて、加熱押し出
し成形によって、1.3mm厚みのシートを成形する。
該シートを圧力容器に入れ、発泡剤としてテトラフルオ
ロエタンを圧入し、50℃で20時間保持する。該発泡
剤含浸済シートを、遠赤外線ヒーターを備えた温度17
0℃の加熱炉中に保持して、該シートを発泡させる。該
発泡シートの発泡倍率は3.5倍で、平均気泡径は10
μmである。該発泡シートの研磨面側だけを減圧下で1
20℃で加熱する。該架橋済該発泡シートを#240の
ベルトサンダーで、両面バフ研磨し、所望の大きさに切
り出し、両面テープを貼り、研磨パッドとする。該研磨
パッドに同心円形状の溝(溝幅0.2mm、溝深さ0.
4mm、溝ピッチ2.0mm)を切削加工によって溝付
研磨パッドを作成する。該研磨パッドのガラス転移温度
は55℃、D硬度は研磨面側で55、裏面側は33で、
無機粒子の二次粒子径は300nmである。
000HD)とアクリル樹脂(旭化成工業株式会社製デ
ルペット(登録商標)80N)とシリカ(日本アエロジ
ル株式会社製アエロジル(登録商標)R972、一次粒
子径16nm、炭素含有量1%)を、重量比47.5/
47.5/5(樹脂組成比:ポリフッ化ビニリデン/ア
クリル樹脂=50/50)の比率でヘンシェルミキサー
を用いて混合し、二軸押し出し機を用いて、加熱押し出
し成形によって、1.3mm厚みのシートを成形する。
該シートを圧力容器に入れ、発泡剤としてテトラフルオ
ロエタンを圧入し、50℃で20時間保持する。該発泡
剤含浸済シートを、遠赤外線ヒーターを備えた温度17
0℃の加熱炉中に保持して、該シートを発泡させる。該
発泡シートの発泡倍率は3.5倍で、平均気泡径は10
μmである。該発泡シートの研磨面側だけを減圧下で1
20℃で加熱する。該架橋済該発泡シートを#240の
ベルトサンダーで、両面バフ研磨し、所望の大きさに切
り出し、両面テープを貼り、研磨パッドとする。該研磨
パッドに同心円形状の溝(溝幅0.2mm、溝深さ0.
4mm、溝ピッチ2.0mm)を切削加工によって溝付
研磨パッドを作成する。該研磨パッドのガラス転移温度
は55℃、D硬度は研磨面側で55、裏面側は33で、
無機粒子の二次粒子径は300nmである。
【0043】この研磨パッドを研磨装置(岡本工作機械
製作所製のGRIND−X SPP600S)の研磨定
盤に貼り付け、#140のダイヤモンド電着リングを用
い5分間ドレッシングを行なう。次に研磨装置の支持台
に、最表面にCu薄膜が150nm形成されているウエ
ハを取り付け、Cu研磨用のスラリー状研磨剤(cab
ot社製EP−C5001)を用いて定盤58rpm/
支持台62rpm、荷重20.7KPa(3psi)で
Cu研磨の第1ステップを行なうと、研磨均一性、研磨
平坦性ともに良好であり、研磨パッドの溝深さが0.2
mmになるまで研磨する時、研磨均一性、研磨平坦性の
経時劣化は認められない。
製作所製のGRIND−X SPP600S)の研磨定
盤に貼り付け、#140のダイヤモンド電着リングを用
い5分間ドレッシングを行なう。次に研磨装置の支持台
に、最表面にCu薄膜が150nm形成されているウエ
ハを取り付け、Cu研磨用のスラリー状研磨剤(cab
ot社製EP−C5001)を用いて定盤58rpm/
支持台62rpm、荷重20.7KPa(3psi)で
Cu研磨の第1ステップを行なうと、研磨均一性、研磨
平坦性ともに良好であり、研磨パッドの溝深さが0.2
mmになるまで研磨する時、研磨均一性、研磨平坦性の
経時劣化は認められない。
【0044】
【発明の効果】以上説明したように、本発明の研磨パッ
ドは、高い平坦度とウエハ面内での高い均一性が両立可
能であって、かつ使用時に剥離等の生じる恐れがないた
め耐久性にも優れる。本発明の研磨装置によれば、研磨
パッドに剥離等が生じる恐れがない状態で、高い平坦度
とウエハ面内での高い均一性とが両立されたCMP法で
の研磨を行なうことができる。本発明の半導体デバイス
の製造方法によれば、平坦化工程が良好に行なわれると
いう効果がある。
ドは、高い平坦度とウエハ面内での高い均一性が両立可
能であって、かつ使用時に剥離等の生じる恐れがないた
め耐久性にも優れる。本発明の研磨装置によれば、研磨
パッドに剥離等が生じる恐れがない状態で、高い平坦度
とウエハ面内での高い均一性とが両立されたCMP法で
の研磨を行なうことができる。本発明の半導体デバイス
の製造方法によれば、平坦化工程が良好に行なわれると
いう効果がある。
【図1】CMP法で使用する研磨装置の一例を示す概略
構成図。
構成図。
1;研磨パッド 2;定盤 5;被研磨材 6;支持台 8;回転軸 9;回転軸 10;研磨液供給管
Claims (7)
- 【請求項1】 ケミカルメカニカル研磨用の研磨パッド
において、前記研磨パッドは一枚の発泡シートで構成さ
れ、研磨面側のshore-D硬度が30以上80以下で、か
つ裏面側のshore-D硬度が10以上で、研磨面側のshore
-D硬度よりも5以上低いことを特徴とする研磨パッド。 - 【請求項2】 請求項1に記載の研磨パッドにおいて、
研磨面側のshore-D硬度が50以上80以下で、かつ裏
面側のshore-D硬度が20以上で、研磨面側のshore-D硬
度よりも5以上低いことを特徴とする金属膜研磨もしく
はSTI研磨の第1ステップ用の研磨パッド。 - 【請求項3】 請求項1に記載の研磨パッドにおいて、
研磨面側のshore-D硬度が30以上60以下で、かつ裏
面側のshore-D硬度が10以上で、研磨面側のshore-D硬
度よりも5以上低いことを特徴とする金属膜研磨もしく
はSTI研磨の第2ステップ用の研磨パッド。 - 【請求項4】 請求項1に記載の研磨パッドにおいて、
研磨面側のshore-D硬度が40以上70以下で、かつ裏
面側のshore-D硬度が20以上で、研磨面側のshore-D硬
度よりも5以上低いことを特徴とする酸化膜研磨用の研
磨パッド。 - 【請求項5】 熱可塑性フッ素樹脂を含有することを特
徴とする請求項1から4のいずれか1項に記載の研磨パ
ッド。 - 【請求項6】 請求項1から5のいずれか1項に記載の
研磨パッドが装着されていることを特徴とする研磨装
置。 - 【請求項7】 請求項6に記載の研磨装置を用いて、ウ
エハ表面の凹凸をケミカルメカニカル研磨法で平坦化す
る工程を含むことを特徴とする半導体デバイスの製造方
法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000369077A JP2002166354A (ja) | 2000-12-04 | 2000-12-04 | 研磨パッド |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000369077A JP2002166354A (ja) | 2000-12-04 | 2000-12-04 | 研磨パッド |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002166354A true JP2002166354A (ja) | 2002-06-11 |
Family
ID=18839175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000369077A Withdrawn JP2002166354A (ja) | 2000-12-04 | 2000-12-04 | 研磨パッド |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002166354A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006175576A (ja) * | 2004-12-24 | 2006-07-06 | Fujibo Holdings Inc | 研磨布 |
JP2007245298A (ja) * | 2006-03-16 | 2007-09-27 | Toyo Tire & Rubber Co Ltd | 研磨パッド |
JP4750214B1 (ja) * | 2010-06-15 | 2011-08-17 | 三井金属鉱業株式会社 | 研摩スラリー及びその研摩方法 |
-
2000
- 2000-12-04 JP JP2000369077A patent/JP2002166354A/ja not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006175576A (ja) * | 2004-12-24 | 2006-07-06 | Fujibo Holdings Inc | 研磨布 |
JP2007245298A (ja) * | 2006-03-16 | 2007-09-27 | Toyo Tire & Rubber Co Ltd | 研磨パッド |
JP4750214B1 (ja) * | 2010-06-15 | 2011-08-17 | 三井金属鉱業株式会社 | 研摩スラリー及びその研摩方法 |
WO2011158522A1 (ja) * | 2010-06-15 | 2011-12-22 | 三井金属鉱業株式会社 | 研摩スラリー及びその研摩方法 |
JP2012000696A (ja) * | 2010-06-15 | 2012-01-05 | Mitsui Mining & Smelting Co Ltd | 研摩スラリー及びその研摩方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100770852B1 (ko) | 화학 기계적 평탄화용 그루브형 연마 패드 | |
JP5149243B2 (ja) | 微小孔性研磨パッド | |
US6736709B1 (en) | Grooved polishing pads for chemical mechanical planarization | |
US6749485B1 (en) | Hydrolytically stable grooved polishing pads for chemical mechanical planarization | |
US6860802B1 (en) | Polishing pads for chemical mechanical planarization | |
US6998166B2 (en) | Polishing pad with oriented pore structure | |
KR100574311B1 (ko) | 연마 패드 | |
TWI500480B (zh) | 具有粒子於聚合基質內之cmp多孔墊及藉其拋光基板之方法 | |
TWI517230B (zh) | 化學機械平面化墊體及其形成與使用方法 | |
JPS63283857A (ja) | 研磨布 | |
JP2002151447A (ja) | 研磨パッド | |
CN105518832A (zh) | 具有多孔界面及实心核心的抛光垫、以及相关的装置和方法 | |
US20060154579A1 (en) | Thermoplastic chemical mechanical polishing pad and method of manufacture | |
CN114410102B (zh) | 一种微孔热塑性聚氨酯纳米复合发泡卷材及其制备方法与在抛光垫中的应用 | |
JP3910921B2 (ja) | 研磨布および半導体装置の製造方法 | |
US6561890B2 (en) | Polishing pad | |
JPWO2007089004A1 (ja) | 化学機械研磨パッド | |
JP2000263423A (ja) | 研磨パッドおよび研磨装置 | |
JP2002166354A (ja) | 研磨パッド | |
JP2002176017A (ja) | 研磨パッド | |
JP2000349053A (ja) | 溝付研磨パッド | |
JP2001205552A (ja) | 研磨パッド | |
JP2006339573A (ja) | 研磨パッドおよび研磨装置 | |
US20050266226A1 (en) | Chemical mechanical polishing pad and method for selective metal and barrier polishing | |
JP2015095582A (ja) | 化学機械研磨パッドおよびそれを用いた化学機械研磨方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080205 |