JP2002166170A - Exhaust gas cleaning catalyst and method for preparing the same - Google Patents

Exhaust gas cleaning catalyst and method for preparing the same

Info

Publication number
JP2002166170A
JP2002166170A JP2000363906A JP2000363906A JP2002166170A JP 2002166170 A JP2002166170 A JP 2002166170A JP 2000363906 A JP2000363906 A JP 2000363906A JP 2000363906 A JP2000363906 A JP 2000363906A JP 2002166170 A JP2002166170 A JP 2002166170A
Authority
JP
Japan
Prior art keywords
alumina
exhaust gas
crystallite diameter
gas purifying
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000363906A
Other languages
Japanese (ja)
Inventor
Masaki Nakamura
雅紀 中村
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000363906A priority Critical patent/JP2002166170A/en
Publication of JP2002166170A publication Critical patent/JP2002166170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas cleaning catalyst where sulfur stuck to a catalyst is easily removed even by a less amount of noble metals carried than that of conventional catalysts and which is excellent particularly in purging efficiency of NOx in the range of excess oxygen. SOLUTION: This catalyst is an exhaust gas cleaning catalyst containing a compound of 1A-3A groups, two or more types of aluminas different in crystallite diameter and a catalytic noble metal, which adsorbs NOx at lean time and reduces adsorbed NOx at rich time or at stoichiometric time. An alumina smaller in crystallite diameter carries catalytic noble metal and furthermore the compound of 1A-3A groups. Powders obtained by drying after mixing the two or more types of aluminas and by baking them at 500-800 deg.C are mixed with the catalytic noble metal in an aqueous solution containing the compound of 1A-3A groups, and carried by a refractory inorganic carrier, obtaining the catalyst.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車(ガソリ
ン、ディーゼル)、ボイラーなどの内燃機関から排出さ
れる排気ガス中の炭化水素(HC)、一酸化炭素(C
O)及び窒素酸化物(NOx)を浄化する排気ガス浄化
触媒及びその製造方法に係り、特に酸素過剰領域でのN
Ox浄化方法に着目した排気ガス浄化触媒及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hydrocarbons (HC) and carbon monoxide (C) in exhaust gas discharged from internal combustion engines such as automobiles (gasoline and diesel) and boilers.
The present invention relates to an exhaust gas purifying catalyst for purifying O) and nitrogen oxides (NOx) and a method for producing the same, and particularly to N in an oxygen-excess region.
The present invention relates to an exhaust gas purification catalyst focusing on an Ox purification method and a method for producing the same.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題、地球温暖化
問題から、低燃費自動車の要求が高まっており、ガソリ
ン自動車に対しては希薄燃焼自動車の開発が注目されて
いる。かかる希薄燃焼自動車においては、希薄燃焼走行
時、排気ガス雰囲気が理論空燃状態に比べ酸素過剰雰囲
気(リーン)となるが、リーン域で通常の三元触媒を適
用させた場合、過剰な酸素の影響からNOx浄化作用が
不十分となるという問題があった。このため酸素が過剰
となってもNOxを浄化できる触媒の開発が望まれてい
た。
2. Description of the Related Art In recent years, the demand for fuel-efficient vehicles has been increasing due to the problem of depletion of petroleum resources and the problem of global warming, and development of lean-burn vehicles has attracted attention for gasoline vehicles. In such a lean-burn vehicle, during lean-burn operation, the exhaust gas atmosphere becomes an oxygen-excess atmosphere (lean) compared to the stoichiometric air-fuel state. However, when a normal three-way catalyst is applied in a lean region, excess oxygen is generated. There is a problem that the NOx purification action becomes insufficient due to the influence. Therefore, development of a catalyst that can purify NOx even when oxygen becomes excessive has been desired.

【0003】[0003]

【発明が解決しようとする課題】従来からリーン域のN
Oxを浄化する触媒は種々提案されており、例えば白金
(Pt)とランタン(La)を多孔質担体に担持した触
媒(特開平5−168860号公報)に代表されるよう
に、リーン域でNOxを吸収し、ストイキ時にNOxを
放出させ浄化する触媒が提案されている。ところが、燃
料及び潤滑油内には硫黄(S)が含まれており、この硫
黄が酸化物として排気ガス中に排出されるため、NOx
吸収材が硫黄による被毒を受け、NOx吸収能が低下す
る(これを「硫黄被毒」という)。この硫黄被毒は、排
気ガス中に硫黄が何らかの形で含まれている限り、避け
ることはできず、触媒中に付着した硫黄を如何に脱離さ
せるかが重要な課題となっている。
SUMMARY OF THE INVENTION Conventionally, N
Various catalysts for purifying Ox have been proposed. For example, as represented by a catalyst in which platinum (Pt) and lanthanum (La) are supported on a porous carrier (JP-A-5-168860), NOx in a lean region is represented. There has been proposed a catalyst that absorbs NOx and releases and purifies NOx during stoichiometry. However, the fuel and the lubricating oil contain sulfur (S), and this sulfur is discharged as an oxide into the exhaust gas, so that NOx
The absorbent is poisoned by sulfur, and the NOx absorption capacity is reduced (this is referred to as "sulfur poisoning"). This sulfur poisoning cannot be avoided as long as the exhaust gas contains some form of sulfur, and how to remove sulfur attached to the catalyst has become an important issue.

【0004】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、従来より貴金属担持量が少なくても、触媒に付着し
た硫黄の脱離処理が容易で、特に酸素過剰領域でのNO
x浄化効率が良好な排気ガス浄化触媒を提供することに
ある。
[0004] The present invention has been made in view of such problems of the prior art, and an object of the present invention is to remove sulfur adhering to a catalyst even if the amount of noble metal carried is smaller than before. , Especially in the oxygen-excess region.
x It is to provide an exhaust gas purification catalyst having good purification efficiency.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究を重ねた結果、1A〜3A族化合
物、2種以上のアルミナ及び触媒貴金属を含有する排気
ガス浄化触媒を用い、SOx脱離性能とNOx吸収性能
を両立させることにより、上記課題が解決できることを
見出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that an exhaust gas purifying catalyst containing a 1A-3A group compound, two or more kinds of alumina and a catalytic noble metal is used. The present inventors have found that the above-mentioned problems can be solved by achieving both the SOx desorption performance and the NOx absorption performance, and have completed the present invention.

【0006】即ち、本発明の排気ガス浄化触媒は、アル
カリ金属、アルカリ土類金属及び希土類から成る群より
選ばれた少なくとも1種の元素を含む1A〜3A族化合
物と、結晶子径によって分類される2種以上のアルミナ
と、白金、ロジウム及びパラジウムから成る群より選ば
れた少なくとも1種の触媒貴金属と、を含有し、リーン
時にNOxを吸着し、リッチ時又はストイキ時に吸着し
たNOxを還元することを特徴とする。
That is, the exhaust gas purifying catalyst of the present invention is classified by a group 1A to 3A compound containing at least one element selected from the group consisting of alkali metals, alkaline earth metals and rare earths, and a crystallite diameter. Containing two or more types of alumina and at least one type of catalytic noble metal selected from the group consisting of platinum, rhodium and palladium, adsorbs NOx when lean, and reduces NOx adsorbed during rich or stoichiometric It is characterized by the following.

【0007】また、本発明の排気ガス浄化触媒の好適形
態は、上記2種以上アルミナにおけるアルミナ結晶子径
の差が1〜45nmであり、このうちの結晶子径の小さ
なアルミナが上記触媒貴金属を担持して成ることを特徴
とする。
In a preferred embodiment of the exhaust gas purifying catalyst according to the present invention, the difference between the alumina crystallite diameters of the two or more types of alumina is 1 to 45 nm. It is characterized by being carried.

【0008】更に、本発明の排気ガス浄化触媒の製造方
法は、上記排気ガス浄化触媒を製造する方法であって、
上記2種以上のアルミナを水溶液中で混合し乾燥して、
500〜800℃の温度で焼成して粉末とし、この粉末
と上記触媒貴金属とを上記1A〜3A族化合物を含む水
溶液に混合し、粉砕して得られたスラリを耐火性無機担
体に担持することを特徴とする。
Further, the method for producing an exhaust gas purifying catalyst of the present invention is a method for producing the above exhaust gas purifying catalyst,
The above two or more aluminas are mixed and dried in an aqueous solution,
Baking at a temperature of 500 to 800 ° C. to form a powder, mixing the powder and the catalyst noble metal with an aqueous solution containing the 1A to 3A group compound, and supporting a slurry obtained by grinding on a refractory inorganic carrier; It is characterized by.

【0009】更にまた、本発明の他の排気ガス浄化触媒
の製造方法は、上記排気ガス浄化触媒を製造する方法で
あって、上記触媒貴金属を担持した上記結晶子径の小さ
なアルミナと、結晶子径の大きなアルミナとを水溶液中
で混合し乾燥して、500〜800℃の温度で焼成して
粉末とし、この粉末を上記1A〜3A族化合物の水溶液
に混合し、粉砕して得られたスラリを耐火性無機担体に
担持することを特徴とする。
Still another aspect of the present invention is a method for producing an exhaust gas purifying catalyst, comprising: the alumina having a small crystallite diameter supporting the catalytic noble metal; Alumina having a large diameter is mixed in an aqueous solution, dried, and calcined at a temperature of 500 to 800 ° C. to form a powder. The powder is mixed with the aqueous solution of the above-mentioned 1A to 3A group compound, and the slurry is obtained by grinding. On a refractory inorganic carrier.

【0010】また、本発明の更に他の排気ガス浄化触媒
の製造方法は、上記排気ガス浄化触媒を製造する方法で
あって、上記触媒貴金属及び上記1A〜3A族化合物を
担持した上記結晶子径の小さなアルミナと、上記結晶子
径の大きなアルミナとを水溶液中で混合し乾燥して、5
00〜800℃の温度で焼成して粉末とし、この粉末を
水溶液中で粉砕して得られたスラリを耐火性無機担体に
担持することを特徴とする。
[0010] In still another aspect of the present invention, there is provided a method for producing an exhaust gas purifying catalyst, the method comprising producing the exhaust gas purifying catalyst, wherein the crystallite diameter supporting the catalytic noble metal and the 1A to 3A group compound is supported. Alumina having a small particle size and alumina having a large crystallite diameter are mixed in an aqueous solution and dried.
It is characterized in that it is fired at a temperature of from 00 to 800 ° C. to form a powder, and a slurry obtained by pulverizing the powder in an aqueous solution is supported on a refractory inorganic carrier.

【0011】[0011]

【発明の実施の形態】以下、本発明の排気ガス浄化触媒
について詳細に説明する。なお、本明細書において
「%」は、特記しない限り質量百分率を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The exhaust gas purifying catalyst of the present invention will be described below in detail. In this specification, “%” indicates mass percentage unless otherwise specified.

【0012】上述の如く、本発明の排気ガス浄化触媒
は、1A〜3A族化合物、結晶子径によって分類される
2種以上のアルミナ及び触媒貴金属、を含有して成る。
As described above, the exhaust gas purifying catalyst of the present invention comprises a 1A to 3A group compound, two or more kinds of alumina classified by crystallite diameter, and a catalytic noble metal.

【0013】ここで、上記1A〜3A族化合物は、アル
カリ金属、アルカリ土類金属又は希土類、及びこれらの
任意の組合せに係る元素を含む化合物である。これら元
素を含有することにより、NOx吸着性能を高める。ま
た、上記アルカリ金属としては、ナトリウム(Na)、
カリウム(K)、ルビジウム(Rb)及びセシウム(C
s)など、上記アルカリ土類金属としては、マグネシウ
ム(Mg)、カルシウム(Ca)、ストロンチウム(S
r)及びバリウム(Ba)など、上記希土類としては、
ランタン(La)、プラセオジム(Pr)及びネオジム
(Nd)などを用いることが望ましい。このときはNO
xをN まで還元し易くなるので有効である。更に、上
記1A〜3A族化合物は炭酸塩、酸化物及び水酸化物な
どであることが望ましい。
Here, the above-mentioned 1A-3A group compound is
Potassium metal, alkaline earth metal or rare earth, and these
It is a compound containing elements in any combination. These sources
By containing element, NOx adsorption performance is enhanced. Ma
Further, as the alkali metal, sodium (Na),
Potassium (K), rubidium (Rb) and cesium (C
s) and the like, as the alkaline earth metal, magnesium sulfide
(Mg), calcium (Ca), strontium (S
r) and barium (Ba), such rare earths include:
Lantern (La), Praseodymium (Pr) and Neodymium
It is desirable to use (Nd) or the like. In this case, NO
x to N 2This is effective because it can be easily reduced to Furthermore, on
The Group 1A to 3A compounds include carbonates, oxides and hydroxides.
It is desirable.

【0014】更に、上記1A〜3A族化合物の酸化物換
算重量は、触媒容量1L当り1〜50gであることが好
ましい。このときは特に浄化効果を向上し得るので有効
である。一方、1g未満ではアルカリ金属などを含む化
合物の作用が十分に得られないことがあり、また、50
gを超えて添加しても有意な増量効果が得られにくく、
触媒貴金属の熱劣化を進めるだけである。
Further, the oxide equivalent weight of the above-mentioned 1A-3A group compound is preferably 1-50 g per liter of catalyst capacity. In this case, it is particularly effective because the purification effect can be improved. On the other hand, if it is less than 1 g, the action of the compound containing an alkali metal or the like may not be sufficiently obtained, and
g, it is difficult to obtain a significant effect of increasing the amount,
It only promotes thermal degradation of the catalytic noble metal.

【0015】本発明の排気ガス浄化触媒は、上記結晶子
径によって分類される(表面積の異なる)2種以上のア
ルミナを含む。ここで「結晶子」とは、単一の結晶形が
同一の方向性を持つ集合体をいい、結晶子径はXRDピ
ークの半値幅とθを使い、次のシェラーの式(1)によ
り求められるものである(図2及び図3参照)。
The exhaust gas purifying catalyst of the present invention contains two or more kinds of aluminas (having different surface areas) classified by the crystallite diameter. Here, “crystallite” refers to an aggregate in which a single crystal form has the same directionality, and the crystallite diameter is obtained by the following Scherrer's formula (1) using the half-width of the XRD peak and θ. (See FIGS. 2 and 3).

【0016】 (結晶子径)=λ/((半値幅×3.14/180)×COSθ)…(1)(Crystallite diameter) = λ / ((half width × 3.14 / 180) × COSθ) (1)

【0017】ここで、触媒に含まれるアルミナの結晶子
径が同一であると、SOx脱離性能とNOx吸収性能の
両立が困難となる。換言すれば、結晶子径が小さなアル
ミナ(表面積が大きなアルミナ)のみでは、NOxの吸
収性能は優れるがSOxの脱離性能が不十分であり、一
方、結晶子径が大きなアルミナ(表面積の小さなアルミ
ナ)のみでは、SOxの脱離性能は優れるがNOxの吸
収性能が不十分である。本発明者らは、結晶子径によっ
て分類される2種以上のアルミナを使用することによ
り、上記特性の両方を排気ガス浄化触媒に付与できるこ
とを見出した。また、更に研究を進めた結果、結晶子径
の小さなアルミナのみに白金(Pt)、ロジウム(R
h)及びパラジウム(Pd)などの触媒貴金属を担持す
れば上記特性が発揮されることがわかった。この詳細は
必ずしも明らかではないが、現時点では図1に示すよう
に、結晶子径の大きなアルミナ2の周囲に結晶子径の小
さなアルミナ1が付着し、触媒貴金属3の分散性を保っ
ていると推察される。
Here, if the crystallite diameter of alumina contained in the catalyst is the same, it is difficult to achieve both SOx desorption performance and NOx absorption performance. In other words, only alumina with a small crystallite diameter (alumina with a large surface area) has excellent NOx absorption performance but insufficient SOx desorption performance, while alumina with a large crystallite diameter (alumina with a small surface area) ) Alone has excellent SOx desorption performance but insufficient NOx absorption performance. The present inventors have found that both of the above characteristics can be imparted to an exhaust gas purification catalyst by using two or more types of alumina classified by crystallite diameter. Further, as a result of further research, platinum (Pt) and rhodium (R
h) and catalyst noble metals such as palladium (Pd) were found to exhibit the above characteristics. Although the details are not necessarily clear, at this time, as shown in FIG. 1, alumina 1 having a small crystallite diameter adheres around alumina 2 having a large crystallite diameter, and the dispersibility of the catalytic noble metal 3 is maintained. Inferred.

【0018】また、上記「結晶子径によって分類される
2種以上のアルミナ」とは、結晶子径の小さなアルミナ
と結晶子径の大きなアルミナとを含むことを意味し、こ
れらにおけるアルミナ結晶子径の差は1〜45nmであ
ることが好ましい。例えば、含まれるアルミナが2種の
ときは互いが、3種以上のときは結晶子径が最大のアル
ミナと最小のアルミナとが、上記アルミナ結晶子径の差
を有していればよい。なお、かかる結晶子径の小さなア
ルミナと結晶子径の大きなアルミナとの含有比は1〜
1:5〜1程度であることが望ましい。
The term "two or more types of alumina classified by crystallite diameter" means that alumina having a small crystallite diameter and alumina having a large crystallite diameter are included. Is preferably 1 to 45 nm. For example, when two kinds of alumina are contained, it is sufficient that the alumina having the largest crystallite diameter and the alumina having the smallest crystallite diameter have the above-mentioned difference in the alumina crystallite diameter when three or more kinds are contained. The content ratio of the alumina having a small crystallite diameter to the alumina having a large crystallite diameter is 1 to
It is desirable that the ratio be about 1: 5 to 1.

【0019】更に、上記2種以上のアルミナとしては、
結晶子径が15nm以下のアルミナと結晶子径が15n
mより大きく50nm以下のアルミナを含むことが好ま
しい。結晶子径の小さなアルミナの結晶子径が15nm
より大きいとNOxの吸収性能が十分に発現できず、ま
た、結晶子径の大きなアルミナの結晶子径が50nmを
超えると、SOx脱離性能は良いが、NOxの吸収性能
が不十分となることがある。
Further, the above two or more types of alumina include:
Alumina having a crystallite diameter of 15 nm or less and a crystallite diameter of 15 n
It is preferable to include alumina having a size larger than m and equal to or smaller than 50 nm. Alumina with a small crystallite diameter has a crystallite diameter of 15 nm
If it is larger than this, the absorption performance of NOx cannot be sufficiently exhibited. If the crystallite diameter of alumina having a large crystallite diameter exceeds 50 nm, the SOx desorption performance is good, but the absorption performance of NOx becomes insufficient. There is.

【0020】更にまた、上記2種以上のアルミナの種類
としては、ベーマイト、γ−アルミナが例示でき、特に
ベーマイトを用いることが触媒性能が高くなるため望ま
しい。
Further, examples of the above-mentioned two or more types of alumina include boehmite and γ-alumina, and it is particularly preferable to use boehmite because the catalytic performance is enhanced.

【0021】本発明の排気ガス浄化触媒に含有する上記
触媒貴金属としては、白金、ロジウム又はパラジウム、
及びこれらの任意の組合せに係る触媒貴金属を用いる。
かかる触媒貴金属は、上記結晶子径の小さなアルミナに
担持されていることが好ましい。言い換えれば、結晶子
径の小さなアルミナにのみ担持されていれば十分なNO
xの吸収・脱離ができる。また、上記結晶子径の小さな
アルミナは、更に上記1A〜3A族化合物を担持して成
ることが好ましい。上記触媒貴金属や上記1A〜3A族
化合物の分散度が向上することにより、シンタリングが
起こりづらくなり、また、少ない使用量(担持量)でN
Oxを効率良く吸収・脱離できるので有効である。
The catalyst noble metal contained in the exhaust gas purifying catalyst of the present invention includes platinum, rhodium or palladium,
And a catalytic noble metal according to any combination of these.
Such a catalytic noble metal is preferably supported on the alumina having a small crystallite diameter. In other words, sufficient NO is supported only on alumina having a small crystallite diameter.
x can be absorbed and desorbed. Further, it is preferable that the alumina having a small crystallite diameter further supports the above-mentioned 1A to 3A group compound. By improving the degree of dispersion of the catalytic noble metal and the 1A to 3A group compounds, sintering is less likely to occur, and a small amount (support amount) of N
This is effective because Ox can be efficiently absorbed and desorbed.

【0022】また、上記結晶子径の小さなアルミナに
は、酸化セリウム(CeO)を担持することができ、
このときはアルミナに付着するSOxの脱離をより促進
できる。これは、Pt/CeOなどによる水素の生成
と関係があると推察される。
Cerium oxide (CeO 2 ) can be supported on the alumina having a small crystallite diameter.
At this time, desorption of SOx attached to the alumina can be further promoted. This is presumed to be related to the generation of hydrogen by Pt / CeO 2 or the like.

【0023】本発明の排気ガス浄化触媒は、空燃比A/
Fが酸素過剰であるとき(リーン時)にNOxを吸着
し、理論空燃比であるとき(リッチ時)又は燃料過剰で
あるとき(ストイキ時)に吸着したNOxを還元する。
なお、かかる排気ガス浄化触媒を用いた内燃機関等にお
ける作動空燃比は、20〜50及び10.0〜14.6
であることが望ましく、この範囲であるとNOxを効率
良く浄化できる。
The exhaust gas purifying catalyst of the present invention has an air / fuel ratio A /
NO is adsorbed when F is in excess of oxygen (lean), and is reduced when it is at the stoichiometric air-fuel ratio (rich) or when the fuel is excessive (stoichiometric).
The working air-fuel ratio in an internal combustion engine or the like using such an exhaust gas purifying catalyst is 20 to 50 and 10.0 to 14.6.
It is preferable that NOx is within this range, so that NOx can be efficiently purified.

【0024】また、本発明の排気ガス浄化触媒は、各種
形状で使用でき、耐火性無機担体に担持して用いること
ができる。例えば、コーディエライトなどのセラミック
やフェライト系ステンレス等の金属で構成されるハニカ
ム構造体などの一体構造型担体に担持して用いるのが望
ましい。
The exhaust gas purifying catalyst of the present invention can be used in various shapes, and can be used by being supported on a refractory inorganic carrier. For example, it is desirable to use it by supporting it on a monolithic carrier such as a honeycomb structure made of ceramic such as cordierite or a metal such as ferrite stainless steel.

【0025】更に、かかる排気ガス浄化触媒は、高温に
さらされる状況も鑑み、高い耐熱性を有することが望ま
しい。従って、従来から三元触媒で用いられているジル
コニアやアルミナの耐熱性を向上させる材料などを適宜
添加してもよい。
Further, it is desirable that such an exhaust gas purifying catalyst has high heat resistance in view of a situation where it is exposed to a high temperature. Therefore, a material for improving the heat resistance of zirconia or alumina conventionally used in a three-way catalyst may be appropriately added.

【0026】次に、本発明の排気ガス浄化触媒の製造方
法について詳細に説明する。排気ガス浄化触媒の第1の
製造方法は、上記2種以上のアルミナを水溶液中で混合
し乾燥して、500〜800℃の温度で焼成して粉末と
し、この粉末と上記触媒貴金属とを上記1A〜3A族化
合物を含む水溶液に混合し、粉砕して得られたスラリを
耐火性無機担体に担持することを特徴とする。即ち、こ
の製造方法では、上記結晶子径によって分類される2種
以上のアルミナ同士を相互に密着させたアルミナ粉末を
形成し、このアルミナ粉末に上記触媒貴金属及び上記1
A〜3A族化合物を担持させて、排気ガス浄化触媒が得
られる。
Next, the method for producing the exhaust gas purifying catalyst of the present invention will be described in detail. A first method for producing an exhaust gas purifying catalyst comprises mixing two or more types of alumina in an aqueous solution, drying the mixture, and calcining the mixture at a temperature of 500 to 800 ° C. to obtain a powder. A slurry obtained by mixing with an aqueous solution containing a group 1A to 3A compound and pulverizing the slurry is supported on a refractory inorganic carrier. That is, in this manufacturing method, an alumina powder in which two or more types of alumina classified by the crystallite diameter are adhered to each other is formed, and the catalyst noble metal and the 1
An exhaust gas purifying catalyst can be obtained by carrying the Group A to Group 3A compounds.

【0027】また、排気ガス浄化触媒の第2の製造方法
は、上記触媒貴金属を担持した上記結晶子径の小さなア
ルミナと、結晶子径の大きなアルミナとを水溶液中で混
合し乾燥して、500〜800℃の温度で焼成して粉末
とし、この粉末を上記1A〜3A族化合物の水溶液に混
合し、粉砕して得られたスラリを耐火性無機担体に担持
することを特徴とする。即ち、この製造方法では、上記
結晶子径の小さなアルミナに上記触媒貴金属を担持さ
せ、この結晶子径の小さなアルミナと結晶子径の大きな
アルミナとを相互に密着させてアルミナ粉末とし、この
アルミナ粉末に上記1A〜3A族化合物を担持して、排
気ガス浄化触媒が得られる。
In a second method for producing an exhaust gas purifying catalyst, the alumina having a small crystallite diameter supporting the catalyst noble metal and the alumina having a large crystallite diameter are mixed in an aqueous solution and dried. It is characterized in that it is calcined at a temperature of up to 800 ° C. to form a powder, and this powder is mixed with an aqueous solution of the above-mentioned group 1A to 3A compound, and the resulting slurry is supported on a refractory inorganic carrier. That is, in this manufacturing method, the catalyst noble metal is supported on the alumina having a small crystallite diameter, and the alumina having a small crystallite diameter and the alumina having a large crystallite diameter are brought into close contact with each other to form an alumina powder. The exhaust gas purifying catalyst is obtained by carrying the above-mentioned 1A to 3A group compound on the substrate.

【0028】更に、排気ガス浄化触媒の第3の製造方法
は、上記触媒貴金属及び上記1A〜3A族化合物を担持
した上記結晶子径の小さなアルミナと、上記結晶子径の
大きなアルミナとを水溶液中で混合し乾燥して、500
〜800℃の温度で焼成して粉末とし、この粉末を水溶
液中で粉砕して得られたスラリを耐火性無機担体に担持
することを特徴とする。即ち、この製造方法では、上記
結晶子径の小さなアルミナに上記触媒貴金属及び上記1
A〜3A族化合物を担持して、これを結晶子径の大きな
アルミナと相互に密着させたアルミナ粉末として、排気
ガス浄化触媒が得られる。
Further, a third method for producing an exhaust gas purifying catalyst is characterized in that the above-mentioned alumina having a small crystallite diameter and the alumina having a large crystallite diameter carrying the catalyst noble metal and the above-mentioned Group 1A to 3A compound are dissolved in an aqueous solution. Mix and dry at 500
It is characterized in that it is fired at a temperature of up to 800 ° C. to form a powder, and a slurry obtained by pulverizing this powder in an aqueous solution is supported on a refractory inorganic carrier. That is, in this manufacturing method, the catalyst noble metal and the 1
An exhaust gas purifying catalyst can be obtained as an alumina powder which carries a group A to group 3A compound and adheres it to alumina having a large crystallite diameter.

【0029】上述のように、本発明の排気ガス浄化触媒
を製造では、上記2種以上のアルミナ同士の結合(密
着)が起こり、図1に示すような構造をなし易いと推察
される。なお、上記焼成温度が500℃未満では、かか
る結合が起こりづらく、また800℃を超えるとアルミ
ナ表面積の低下が進行してしまう。また、上記第2及び
第3の製造方法では、上記触媒貴金属や上記1A〜3A
族化合物の分散度がより向上するとともに使用量も節約
できるので有効である。
As described above, in the production of the exhaust gas purifying catalyst of the present invention, it is presumed that bonding (adhesion) of the above two or more types of alumina occurs and the structure shown in FIG. 1 is easily formed. If the sintering temperature is lower than 500 ° C., such bonding is unlikely to occur. If the firing temperature is higher than 800 ° C., the decrease in the surface area of alumina proceeds. In the second and third production methods, the catalyst noble metal and the 1A to 3A
This is effective because the degree of dispersion of the group compound can be further improved and the amount used can be saved.

【0030】[0030]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0031】(実施例1)結晶子径5nmのベーマイト
と結晶子径40nmのベーマイトを1:1の割合で水中
で混合した。これを130℃で乾燥した後、600℃で
1時間焼成し、粉末Aを得た。この粉末Aにジニトロジ
アンミンPt水溶液、硝酸Rh水溶液を含浸し、乾燥後
空気中400℃で1時間焼成して、Pt、Rh担持アル
ミナ粉末(粉末B)を得た。この粉末のPt濃度は1.
0%であった。Rh濃度は1.0%であった。粉末B、
アルミナ、酢酸Ba溶液、水を磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液をコー
ディライト質モノリス担体(1.7L、400セル)に
付着させ、空気流にてセル内の余剰のスラリを取り除い
て130℃で乾燥した後、400℃で1時間焼成し、コ
ート層200g/Lを担持した排気ガス浄化触媒を得
た。この触媒には、Pt=2.0g/L、Rh=0.5
g/L、Ba=酸化物換算で30g/Lが担持されてい
た。
(Example 1) Boehmite having a crystallite diameter of 5 nm and boehmite having a crystallite diameter of 40 nm were mixed in water at a ratio of 1: 1. After drying at 130 ° C., it was baked at 600 ° C. for 1 hour to obtain powder A. This powder A was impregnated with an aqueous solution of dinitrodiammine Pt and an aqueous solution of Rh nitrate, dried and calcined at 400 ° C. for 1 hour in air to obtain an alumina powder carrying Pt and Rh (powder B). The Pt concentration of this powder was 1.
It was 0%. The Rh concentration was 1.0%. Powder B,
Alumina, Ba acetate solution and water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was adhered to a cordierite-based monolithic carrier (1.7 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. An exhaust gas purification catalyst carrying 200 g / L of the layer was obtained. This catalyst has Pt = 2.0 g / L, Rh = 0.5
g / L, Ba = 30 g / L in terms of oxides were supported.

【0032】(実施例2)結晶子径5nmのベーマイト
にジニトロジアンミンPt水溶液、硝酸Rh水溶液を含
浸し、乾燥後空気中400℃で1時間焼成して、Pt、
Rh担持アルミナ粉末(粉末A)を得た。この粉末のP
t濃度は1.0%であった。Rh濃度は1.0%であっ
た。粉末Aと結晶子径40nmのベーマイトを1:1の
割合で水中で混合した。これを130℃で乾燥した後、
600℃で1時間焼成し、粉末Bを得た。粉末B、アル
ミナ、酢酸Ba溶液、水を磁性ボールミルに投入し、混
合粉砕してスラリ液を得た。このスラリ液をコーディラ
イト質モノリス担体(1.7L、400セル)に付着さ
せ、空気流にてセル内の余剰のスラリを取り除いて13
0℃で乾燥した後、400℃で1時間焼成し、コート層
200g/Lを担持した排気ガス浄化触媒を得た。この
触媒には、Pt=2.0g/L、Rh=0.5g/L、
Ba=酸化物換算で30g/Lが担持されていた。
Example 2 Boehmite having a crystallite size of 5 nm was impregnated with an aqueous solution of dinitrodiammine Pt and an aqueous solution of Rh nitrate, dried and calcined at 400 ° C. for 1 hour in air to obtain Pt,
A Rh-supported alumina powder (powder A) was obtained. P of this powder
The t concentration was 1.0%. The Rh concentration was 1.0%. Powder A and boehmite having a crystallite diameter of 40 nm were mixed in water at a ratio of 1: 1. After drying this at 130 ° C,
The powder was fired at 600 ° C. for 1 hour to obtain powder B. Powder B, alumina, Ba acetate solution and water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was attached to a cordierite-based monolithic carrier (1.7 L, 400 cells), and the excess slurry in the cells was removed by an air flow to remove the slurry.
After drying at 0 ° C., it was baked at 400 ° C. for 1 hour to obtain an exhaust gas purifying catalyst supporting a coat layer of 200 g / L. This catalyst has Pt = 2.0 g / L, Rh = 0.5 g / L,
Ba = 30 g / L in terms of oxide was carried.

【0033】(実施例3)結晶子径5nmのベーマイト
にジニトロジアンミンPt水溶液、硝酸Rh水溶液を含
浸し、乾燥後空気中400℃で1時間焼成して、Pt、
Rh担持アルミナ粉末(粉末A)を得た。この粉末のP
t濃度は1.0%であった。Rh濃度は1.0%であっ
た。粉末Aに酢酸Ba溶液を含浸し、乾燥後空気中40
0℃で1時間焼成して、Pt、Rh及びBa担持アルミ
ナ粉末(粉末B)を得た。粉末Bと結晶子径40nmの
ベーマイトを1:1の割合で水中で混合した。これを1
30℃で乾燥した後、600℃で1時間焼成し、粉末C
を得た。粉末C、アルミナ、水を磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液をコー
ディライト質モノリス担体(1.7L、400セル)に
付着させ、空気流にてセル内の余剰のスラリを取り除い
て130℃で乾燥した後、400℃で1時間焼成し、コ
ート層200g/Lを担持した排気ガス浄化触媒を得
た。この触媒には、Pt=2.0g/L、Rh=0.5
g/L、Ba=酸化物換算で30g/Lが担持されてい
た。
Example 3 Boehmite having a crystallite diameter of 5 nm was impregnated with an aqueous solution of dinitrodiammine Pt and an aqueous solution of Rh nitrate, dried and calcined at 400 ° C. for 1 hour in air to obtain Pt,
A Rh-supported alumina powder (powder A) was obtained. P of this powder
The t concentration was 1.0%. The Rh concentration was 1.0%. Powder A is impregnated with Ba acetate solution, dried and dried in air.
It was calcined at 0 ° C. for 1 hour to obtain an alumina powder carrying Pt, Rh and Ba (powder B). Powder B and boehmite having a crystallite diameter of 40 nm were mixed in water at a ratio of 1: 1. This one
After drying at 30 ° C, baking for 1 hour at 600 ° C, powder C
I got Powder C, alumina and water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was adhered to a cordierite-based monolithic carrier (1.7 L, 400 cells), excess slurry in the cells was removed by air flow, dried at 130 ° C., baked at 400 ° C. for 1 hour, and coated. An exhaust gas purification catalyst carrying 200 g / L of the layer was obtained. This catalyst has Pt = 2.0 g / L, Rh = 0.5
g / L, Ba = 30 g / L in terms of oxides were supported.

【0034】(実施例4)結晶子径5nmのベーマイト
に硝酸Ce水溶液を含浸し、乾燥後空気中400℃で1
時間焼成して、Ce担持アルミナ粉末(粉末A)を得
た。この粉末のCe濃度は3.0%であった。粉末Aと
結晶子径40nmのベーマイトを1:1の割合で水中で
混合した。これを130℃で乾燥した後、600℃で1
時間焼成し、粉末Bを得た。ジニトロジアンミンPt水
溶液、硝酸Rh水溶液を粉末Bに含浸し、乾燥後空気中
400℃で1時間焼成して、Pt、Rh担持アルミナ粉
末(粉末C)を得た。 この粉末のPt濃度は1.0%
であった。Rh濃度は1.0%であった。粉末C、アル
ミナ、酢酸Ba溶液、水を磁性ボールミルに投入し、混
合粉砕してスラリ液を得た。このスラリ液をコーディラ
イト質モノリス担体(1.7L、400セル)に付着さ
せ、空気流にてセル内の余剰のスラリを取り除いて13
0℃で乾燥した後、400℃で1時間焼成し、コート層
200g/Lを担持した排気ガス浄化触媒を得た。この
触媒には、Pt=2.0g/L、Rh=0.5g/L、
Ba=酸化物換算で30g/Lが担持されていた。
Example 4 A boehmite having a crystallite diameter of 5 nm was impregnated with an aqueous solution of Ce nitrate, dried and then dried at 400 ° C. in air.
After calcining for an hour, Ce-supported alumina powder (powder A) was obtained. The Ce concentration of this powder was 3.0%. Powder A and boehmite having a crystallite diameter of 40 nm were mixed in water at a ratio of 1: 1. After drying at 130 ° C.,
After sintering for a time, powder B was obtained. Powder B was impregnated with an aqueous solution of dinitrodiammine Pt and an aqueous solution of Rh nitrate, dried and calcined at 400 ° C. for 1 hour in the air to obtain Pt, Rh-supported alumina powder (powder C). The Pt concentration of this powder is 1.0%
Met. The Rh concentration was 1.0%. Powder C, alumina, Ba acetate solution and water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry solution was attached to a cordierite-based monolithic carrier (1.7 L, 400 cells), and the excess slurry in the cells was removed by an air flow to remove the slurry.
After drying at 0 ° C., it was baked at 400 ° C. for 1 hour to obtain an exhaust gas purifying catalyst supporting a coat layer of 200 g / L. This catalyst has Pt = 2.0 g / L, Rh = 0.5 g / L,
Ba = 30 g / L in terms of oxide was carried.

【0035】(比較例1)結晶子径40nmのベーマイ
トの代わりに結晶子径5nmのベーマイトを用いたこ
と、即ちアルミナ全ての結晶子径を5nmにしたこと以
外は、実施例1と同様の操作を繰返して本例の排気ガス
浄化触媒を得た。
Comparative Example 1 The same operation as in Example 1 was performed except that boehmite having a crystallite diameter of 5 nm was used instead of boehmite having a crystallite diameter of 40 nm, that is, the crystallite diameter of all alumina was changed to 5 nm. Was repeated to obtain an exhaust gas purifying catalyst of this example.

【0036】(比較例2)結晶子径5nmのベーマイト
の代わりに結晶子径40nmのベーマイトを用いたこ
と、即ちアルミナ全ての結晶子径を40nmにしたこと
以外は、実施例1と同様の操作を繰返して本例の排気ガ
ス浄化触媒を得た。
Comparative Example 2 The same operation as in Example 1 was carried out except that boehmite having a crystallite diameter of 40 nm was used instead of boehmite having a crystallite diameter of 5 nm, that is, the crystallite diameter of all alumina was changed to 40 nm. Was repeated to obtain an exhaust gas purifying catalyst of this example.

【0037】(比較例3)結晶子径5nmのベーマイト
の代わりに20nmのベーマイトを用いた以外は、実施
例1と同様の操作を繰返して本例の排気ガス浄化触媒を
得た。
Comparative Example 3 The same operation as in Example 1 was repeated, except that boehmite having a crystallite diameter of 5 nm was used instead of boehmite having a crystallite diameter of 5 nm, to obtain an exhaust gas purifying catalyst of this example.

【0038】(実施例5)結晶子径40nmのベーマイ
トの代わりに60nmのベーマイトを用いた以外は、実
施例1と同様の操作を繰返して本例の排気ガス浄化触媒
を得た。
Example 5 The same operation as in Example 1 was repeated, except that boehmite having a crystallite diameter of 40 nm was used instead of boehmite having a crystallite diameter of 40 nm, to obtain an exhaust gas purifying catalyst of this example.

【0039】(実施例6)触媒中のBaの酸化物換算重
量を60g/Lとした以外は、実施例1と同様の操作を
繰返して本例の排気ガス浄化触媒を得た。
Example 6 An exhaust gas purifying catalyst of this example was obtained by repeating the same operation as in Example 1 except that the weight in terms of oxide of Ba in the catalyst was changed to 60 g / L.

【0040】<評価試験>以下の耐久方法及び硫黄脱離
処理方法を行い、上記実施例及び比較例で得られた排気
ガス浄化触媒による耐久後及びS脱離処理後のHC、C
O及びNOxの転化率を測定した。また、回復率を、次
式(2) 回復率=(脱離処理後のNOx転化率)/(耐久後のNOx転化率)…(2) を用いて求めた。
<Evaluation Test> The following durability method and sulfur desorption treatment method were performed, and HC and C after durability and S desorption treatment with the exhaust gas purifying catalysts obtained in the above Examples and Comparative Examples.
The conversions of O and NOx were measured. The recovery rate was determined using the following equation (2): recovery rate = (NOx conversion rate after desorption treatment) / (NOx conversion rate after endurance) (2)

【0041】(耐久方法)排気量4400ccのエンジ
ンの排気系に上記実施例及び比較例で得られた排気ガス
浄化触媒を装着し、国内レギュラーガソリンを使用し、
触媒入口温度を650℃とし、50時間運転した。その
後、S被毒処理(S濃度300ppmガソリンを使用
し、触媒入口温度を350℃とし、5hr運転)を行っ
た後、S脱離処理(国内レギュラーガソリンを使用し、
触媒入口温度を650℃とし、30分運転)を行った。
(Durability method) The exhaust gas purifying catalysts obtained in the above Examples and Comparative Examples were mounted on the exhaust system of an engine having a displacement of 4400 cc, and domestic regular gasoline was used.
The catalyst inlet temperature was set to 650 ° C., and the operation was performed for 50 hours. Then, after performing S poisoning treatment (using S concentration of 300 ppm gasoline, catalyst inlet temperature at 350 ° C. and operating for 5 hours), S desorption treatment (using domestic regular gasoline,
The catalyst inlet temperature was set to 650 ° C., and the operation was performed for 30 minutes.

【0042】(硫黄脱離処理方法)排気量2000cc
のエンジンの排気系に上記実施例及び比較例で得られた
排気ガス浄化触媒を装着して、リーン(A/F=20)
10sec→リッチ(A/F=11.0)2sec→ス
トイキ(A/F=14.7)5secの運転を行い、こ
の区間における排気浄化率を求めた。入口温度は350
℃とした。
(Sulfur desorption method) Displacement 2000cc
The exhaust gas purifying catalysts obtained in the above Examples and Comparative Examples were mounted on the exhaust system of the engine of Example 1, and lean (A / F = 20)
The operation was performed for 10 sec → rich (A / F = 11.0) 2 sec → stoichiometric (A / F = 14.7) 5 sec, and the exhaust gas purification rate in this section was determined. Inlet temperature 350
° C.

【0043】[0043]

【表1】 [Table 1]

【0044】表1より、本発明の好適範囲内である実施
例1〜6で得られた排気ガス浄化触媒は、比較例1〜3
で得られた排気ガス浄化触媒に比べて、優れた性能を有
することがわかる。即ち、例えば、実施例1と比較例1
を比べると、耐久後のNOx性能は比較例1の方が良い
が、実施例1の方がS脱離処理後の性能低下が小さく、
回復率が良い。これは、結晶子径の大きなアルミナのS
脱離効果が大きいためと推定できる。また、実施例1と
比較例2を比べると、実施例1の方が回復率とNOx転
化性能のバランスが良いことがわかる。更に、実施例1
と比較例3を比べると、回復率に差はないが、実施例1
の方がNOx転化性能が非常に良く、車載したときトー
タルの浄化率が向上する。これは、比較例3では結晶子
径の小さなアルミナの大きさが20nmと大きすぎるた
めだと推定できる。更にまた、実施例1と実施例5を比
べると、回復率に差はないが、実施例1のNOx転化性
能が優れる。これは、実施例5では結晶子径の大きなア
ルミナの大きさが20nmと大きすぎるためだと推定で
きる。また、実施例1と実施例6を比べると、耐久後の
NOx性能は実施例6の方が良いが、S脱離処理後の性
能低下が大きいため、実施例1の方が回復率が良い。こ
れは、Ba量が好ましい範囲であるためだと推定でき
る。このように、実施例に示した触媒であれば、燃料中
にSが存在しても、それによる劣化(S被毒)を受けに
くく、触媒活性が低下しにくいという効果が得られる。
As shown in Table 1, the exhaust gas purifying catalysts obtained in Examples 1 to 6 which are within the preferred range of the present invention are Comparative Examples 1 to 3.
It can be seen that the catalyst has excellent performance as compared with the exhaust gas purification catalyst obtained in (1). That is, for example, Example 1 and Comparative Example 1
In comparison, the NOx performance after durability was better in Comparative Example 1, but in Example 1, the decrease in performance after the S desorption treatment was smaller,
Good recovery rate. This is because of the large S
It can be estimated that the desorption effect is large. Further, comparing Example 1 and Comparative Example 2, it is understood that Example 1 has a better balance between the recovery rate and the NOx conversion performance. Further, Example 1
Compared with Comparative Example 3, there is no difference in the recovery rate, but Example 1
The NOx conversion performance is much better, and the total purification rate is improved when mounted on a vehicle. This can be presumed to be because in Comparative Example 3, the size of alumina having a small crystallite diameter was too large at 20 nm. Furthermore, when comparing Example 1 and Example 5, there is no difference in the recovery rate, but the NOx conversion performance of Example 1 is excellent. This can be presumed to be because in Example 5, the size of alumina having a large crystallite diameter was too large at 20 nm. Further, when comparing Example 1 with Example 6, the NOx performance after durability is better in Example 6, but the recovery rate is higher in Example 1 because the performance decline after S desorption is large. . It can be estimated that this is because the amount of Ba is in a preferable range. As described above, with the catalyst shown in the embodiment, even if S is present in the fuel, it is possible to obtain the effect that the catalyst is less susceptible to deterioration (S poisoning) and the catalyst activity is hardly reduced.

【0045】[0045]

【発明の効果】以上説明してきたように、本発明によれ
ば、1A〜3A族化合物、結晶子径によって分類される
2種以上のアルミナ及び触媒貴金属を含有する排気ガス
浄化触媒を用い、SOx脱離性能とNOx吸収性能を両
立させることとしたため、従来より貴金属担持量が少な
くても、触媒に付着した硫黄の脱離処理が容易で、特に
酸素過剰領域でのNOx浄化効率が良好な排気ガス浄化
触媒を提供することができる。
As described above, according to the present invention, an SOx catalyst using an exhaust gas purifying catalyst containing a Group 1A to 3A compound, two or more kinds of alumina classified by crystallite diameter and a catalytic noble metal is used. Since the desorption performance and the NOx absorption performance are both compatible, even if the amount of noble metal carried is smaller than before, the desorption treatment of the sulfur adhering to the catalyst is easy, and the exhaust gas with good NOx purification efficiency especially in the oxygen excess region. A gas purification catalyst can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】排気ガス浄化触媒(アルミナと触媒貴金属)の
構造を示す概略図である。
FIG. 1 is a schematic view showing the structure of an exhaust gas purifying catalyst (alumina and catalytic noble metal).

【図2】粒子径及び結晶子径の概略を示す図である。FIG. 2 is a diagram schematically showing a particle diameter and a crystallite diameter.

【図3】X線回折ピークを示す図である。FIG. 3 is a view showing an X-ray diffraction peak.

【符号の説明】[Explanation of symbols]

1 結晶子径の小さなアルミナ 2 結晶子径の大きなアルミナ 3 触媒貴金属 1 Alumina with small crystallite diameter 2 Alumina with large crystallite diameter 3 Catalyst noble metal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/28 301 B01D 53/36 104A Fターム(参考) 3G091 AA12 AA17 AA18 AB06 AB09 BA11 BA14 BA15 BA19 BA39 CB02 DA01 DA02 DB10 FB10 FB11 FB12 GA06 GB01X GB02W GB02Y GB03W GB03Y GB04W GB04Y GB05W GB06W GB07W GB10X GB16X GB17X HA18 4D048 AA06 AA13 AA18 BA10X BA10Y BA14Y BA15Y BA19Y BA30X BA30Y BA31Y BA33X BA33Y 4G069 AA03 AA08 BA01A BA01B BA13A BA13B BC01A BC08A BC13B BC38A BC71A BC71B BC72A BC75A BC75B CA03 CA09 CA13 DA06 FA02 FA03 FB15 FB30 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F01N 3/28 301 B01D 53/36 104A F-term (Reference) 3G091 AA12 AA17 AA18 AB06 AB09 BA11 BA14 BA15 BA19 BA39 CB02 DA01 DA02 DB10 FB10 FB11 FB12 GA06 GB01X GB02W GB02Y GB03W GB03Y GB04W GB04Y GB05W GB06W GB07W GB10X GB16X GB17X HA18 4D048 AA06 AA13 AA18 BA10X BA10Y BA14Y BA15Y BA19Y BA30X BA30A BAAA BCABAA BC12 BC BC75B CA03 CA09 CA13 DA06 FA02 FA03 FB15 FB30

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ金属、アルカリ土類金属及び希
土類から成る群より選ばれた少なくとも1種の元素を含
む1A〜3A族化合物と、結晶子径によって分類される
2種以上のアルミナと、白金、ロジウム及びパラジウム
から成る群より選ばれた少なくとも1種の触媒貴金属
と、を含有し、 リーン時にNOxを吸着し、リッチ時又はストイキ時に
吸着したNOxを還元することを特徴とする排気ガス浄
化触媒。
1. A group 1A-3A compound containing at least one element selected from the group consisting of alkali metals, alkaline earth metals and rare earths, two or more kinds of alumina classified by crystallite diameter, and platinum. And at least one catalytic noble metal selected from the group consisting of rhodium and palladium, and adsorbs NOx during lean operation and reduces NOx adsorbed during rich or stoichiometric operation. .
【請求項2】 上記2種以上のアルミナにおけるアルミ
ナ結晶子径の差が1〜45nmであり、このうちの結晶
子径の小さなアルミナが上記触媒貴金属を担持して成る
ことを特徴とする請求項1記載の排気ガス浄化触媒。
2. The method according to claim 1, wherein a difference between alumina crystallite diameters of the two or more aluminas is 1 to 45 nm, and alumina having a small crystallite diameter supports the catalyst noble metal. 2. The exhaust gas purification catalyst according to 1.
【請求項3】 上記結晶子径の小さなアルミナが、更に
上記1A〜3A族化合物を担持して成ることを特徴とす
る請求項2記載の排気ガス浄化触媒。
3. The exhaust gas purifying catalyst according to claim 2, wherein the alumina having a small crystallite diameter further supports the group 1A to 3A compound.
【請求項4】 結晶子径が15nm以下のアルミナと結
晶子径が15nmより大きく50nm以下のアルミナを
含むことを特徴とする請求項1〜3のいずれか1つの項
に記載の排気ガス浄化触媒。
4. The exhaust gas purifying catalyst according to claim 1, comprising alumina having a crystallite diameter of 15 nm or less and alumina having a crystallite diameter of more than 15 nm and 50 nm or less. .
【請求項5】 上記1A〜3A族化合物の酸化物換算重
量が、触媒容量1L当り1〜50gであることを特徴と
する請求項1〜4のいずれか1つの項に記載の排気ガス
浄化触媒。
5. The exhaust gas purifying catalyst according to claim 1, wherein the weight of the group 1A to 3A compound in terms of oxide is 1 to 50 g per liter of the catalyst capacity. .
【請求項6】 上記結晶子径の小さなアルミナが、酸化
セリウムを担持して成ることを特徴とする請求項2〜5
のいずれか1つの項に記載の排気ガス浄化触媒。
6. A method according to claim 2, wherein said alumina having a small crystallite diameter supports cerium oxide.
The exhaust gas purifying catalyst according to any one of the above items.
【請求項7】 請求項1〜6のいずれか1つの項に記載
の排気ガス浄化触媒を製造する方法であって、 上記2種以上のアルミナを水溶液中で混合し乾燥して、
500〜800℃の温度で焼成して粉末とし、 この粉末と上記触媒貴金属とを上記1A〜3A族化合物
を含む水溶液に混合し、粉砕して得られたスラリを耐火
性無機担体に担持することを特徴とする排気ガス浄化触
媒の製造方法。
7. A method for producing an exhaust gas purifying catalyst according to any one of claims 1 to 6, wherein the two or more aluminas are mixed in an aqueous solution and dried.
Baking at a temperature of 500 to 800 ° C. to form a powder, mixing the powder and the catalyst noble metal with an aqueous solution containing the 1A to 3A group compound, and supporting a slurry obtained by grinding on a refractory inorganic carrier. A method for producing an exhaust gas purifying catalyst, comprising:
【請求項8】 請求項2記載の排気ガス浄化触媒を製造
する方法であって、 上記触媒貴金属を担持した上記結晶子径の小さなアルミ
ナと、結晶子径の大きなアルミナとを水溶液中で混合し
乾燥して、500〜800℃の温度で焼成して粉末と
し、 この粉末を上記1A〜3A族化合物の水溶液に混合し、
粉砕して得られたスラリを耐火性無機担体に担持するこ
とを特徴とする排気ガス浄化触媒の製造方法。
8. The method for producing an exhaust gas purifying catalyst according to claim 2, wherein the alumina having a small crystallite diameter supporting the catalytic noble metal and the alumina having a large crystallite diameter are mixed in an aqueous solution. The powder is dried and calcined at a temperature of 500 to 800 ° C. to obtain a powder.
A method for producing an exhaust gas purifying catalyst, comprising supporting a slurry obtained by pulverization on a refractory inorganic carrier.
【請求項9】 請求項3記載の排気ガス浄化触媒を製造
する方法であって、 上記触媒貴金属及び上記1A〜3A族化合物を担持した
上記結晶子径の小さなアルミナと、上記結晶子径の大き
なアルミナとを水溶液中で混合し乾燥して、500〜8
00℃の温度で焼成して粉末とし、 この粉末を水溶液中で粉砕して得られたスラリを耐火性
無機担体に担持することを特徴とする排気ガス浄化触媒
の製造方法。
9. The method for producing an exhaust gas purifying catalyst according to claim 3, wherein the alumina having a small crystallite diameter supports the catalyst noble metal and the 1A to 3A group compound, and the alumina having a large crystallite diameter. Alumina is mixed in an aqueous solution and dried, and 500 to 8
A method for producing an exhaust gas purifying catalyst, comprising sintering at a temperature of 00 ° C. to form a powder, and supporting a slurry obtained by crushing the powder in an aqueous solution on a refractory inorganic carrier.
JP2000363906A 2000-11-29 2000-11-29 Exhaust gas cleaning catalyst and method for preparing the same Pending JP2002166170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363906A JP2002166170A (en) 2000-11-29 2000-11-29 Exhaust gas cleaning catalyst and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363906A JP2002166170A (en) 2000-11-29 2000-11-29 Exhaust gas cleaning catalyst and method for preparing the same

Publications (1)

Publication Number Publication Date
JP2002166170A true JP2002166170A (en) 2002-06-11

Family

ID=18834939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363906A Pending JP2002166170A (en) 2000-11-29 2000-11-29 Exhaust gas cleaning catalyst and method for preparing the same

Country Status (1)

Country Link
JP (1) JP2002166170A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123205A1 (en) * 2006-04-21 2007-11-01 Cataler Corporation Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123205A1 (en) * 2006-04-21 2007-11-01 Cataler Corporation Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification
JP2007289812A (en) * 2006-04-21 2007-11-08 Cataler Corp Exhaust gas cleaning catalyst, regenerating method of the same, and exhaust gas cleaning catalyst system
US8071498B2 (en) 2006-04-21 2011-12-06 Cataler Corporation Exhaust gas purifying catalyst, method for recovering exhaust gas purifying catalyst, and catalyst system for exhaust gas purification

Similar Documents

Publication Publication Date Title
JP4092441B2 (en) Exhaust gas purification catalyst
JP2003320252A (en) Exhaust gas treatment catalyst and production of the same
WO2018198424A1 (en) Exhaust gas purification catalyst
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP4923412B2 (en) Exhaust gas purification catalyst
JP2001079402A (en) Exhaust gas cleaning catalyst and its production
JP4573993B2 (en) Exhaust gas purification catalyst and method for producing the same
JP3704701B2 (en) Exhaust gas purification catalyst
JP4412299B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2003020227A (en) Fine mixed oxide powder, production method thereor and catalyst
JP2003245523A (en) Exhaust gas cleaning system
JPH10165819A (en) Catalyst for cleaning of exhaust gas and its use method
JP2007330879A (en) Catalyst for cleaning exhaust gas
JPH08281116A (en) Catalyst for purifying exhaust gas
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP2004230241A (en) Exhaust gas cleaning catalyst and manufacturing method therefor
JP3871110B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2002166170A (en) Exhaust gas cleaning catalyst and method for preparing the same
JP4019351B2 (en) NOx purification catalyst and NOx purification system
JP3885376B2 (en) Exhaust gas purification catalyst and method of using the same
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JPH1099687A (en) Catalyst for cleaning exhaust gas
JP2000325787A (en) Manufacture of exhaust gas cleaning catalyst
JP2000042370A (en) Catalyst device for purifying exhaust gas and its using method
JP2003326164A (en) Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier