JP2003326164A - Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier - Google Patents

Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier

Info

Publication number
JP2003326164A
JP2003326164A JP2002132486A JP2002132486A JP2003326164A JP 2003326164 A JP2003326164 A JP 2003326164A JP 2002132486 A JP2002132486 A JP 2002132486A JP 2002132486 A JP2002132486 A JP 2002132486A JP 2003326164 A JP2003326164 A JP 2003326164A
Authority
JP
Japan
Prior art keywords
catalyst
compound
exhaust gas
catalyst component
surface side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002132486A
Other languages
Japanese (ja)
Inventor
Masaki Nakamura
雅紀 中村
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002132486A priority Critical patent/JP2003326164A/en
Publication of JP2003326164A publication Critical patent/JP2003326164A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying catalyst which can adsorb, desorb and clean NOx, is excellent especially in the adsorption performance of NOx, prevent sulfur poisoning, and easily remove the sulfur poisoning, a manufacturing method therefor, and an exhaust gas purifier. <P>SOLUTION: In the exhaust gas purifying catalyst, the upper surface side of a catalyst component arranged on a porous carrier contains a higher content of a cerium compound, and the lower surface side thereof contains a higher content of a cesium compound. A mixed solution of a solution of the soluble cerium compound and a solution of the soluble cesium compound is soaked and impregnated with a catalyst layer installed in the carrier to form the catalyst component part, thereby obtaining the exhaust gas purifying catalyst. A ternary catalyst and the exhaust gas purifying catalyst are disposed in order from the upstream side of an internal combustion engine or a combustion device to compose the exhaust gas purifier. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、自動車(ガソリ
ン、ディーゼル)、ボイラーなどの内燃機関から排出さ
れる排気ガス中の炭化水素(HC)、一酸化炭素(C
O)及び窒素酸化物(NOx)を浄化する排気ガス浄化
触媒及びその製造方法に係り、特にリーン時のNOx浄
化に着目した排気ガス浄化触媒、その製造方法及び排気
ガス浄化装置に関する。
TECHNICAL FIELD The present invention relates to hydrocarbons (HC) and carbon monoxide (C) in exhaust gas emitted from internal combustion engines such as automobiles (gasoline, diesel) and boilers.
TECHNICAL FIELD The present invention relates to an exhaust gas purifying catalyst for purifying O) and nitrogen oxides (NOx) and a method for manufacturing the same, and more particularly to an exhaust gas purifying catalyst that focuses on NOx purification when lean, a method for manufacturing the same, and an exhaust gas purifying apparatus.

【0002】[0002]

【従来の技術】近年、石油資源の枯渇問題、地球温暖化
問題から、低燃費自動車の要求が高まっており、ガソリ
ン自動車に対しては希薄燃焼自動車の開発が注目されて
いる。かかる希薄燃焼自動車においては、希薄燃焼走行
時、排気ガス雰囲気が理論空燃状態に比べ酸素過剰雰囲
気(リーン)となるが、リーン域で通常の三元触媒を適
用させた場合、過剰な酸素の影響からNOx浄化作用が
不十分となるという問題があった。このため酸素が過剰
となってもNOxを浄化できる触媒の開発が望まれてい
た。
2. Description of the Related Art In recent years, the demand for fuel-efficient vehicles has been increasing due to the problem of exhaustion of petroleum resources and the problem of global warming, and the development of lean-burn vehicles has attracted attention for gasoline vehicles. In such a lean-burn vehicle, the exhaust gas atmosphere becomes an oxygen excess atmosphere (lean) compared to the theoretical air-fuel state during lean-burn driving, but when a normal three-way catalyst is applied in the lean region, excess oxygen Due to the influence, there is a problem that the NOx purification action becomes insufficient. Therefore, it has been desired to develop a catalyst that can purify NOx even if oxygen becomes excessive.

【0003】[0003]

【発明が解決しようとする課題】従来からリーン域のN
Oxを浄化する触媒は種々提案されており、例えば白金
(Pt)とランタン(La)を多孔質担体に担持した触
媒(特開平5−168860号公報)に代表されるよう
に、リーン域でNOxを吸収し、ストイキ時にNOxを
放出して浄化する触媒が提案されている。この触媒はそ
のNOx浄化の反応機構から、燃料及び潤滑油内に含ま
れる硫黄由来のSOxにより被毒を受け、性能低下を起
こす。このSOxによる被毒は一次被毒であるため、触
媒を高温にしてSOxを脱離すれば被毒は解除される。
[Problems to be Solved by the Invention]
Various catalysts for purifying Ox have been proposed. For example, as represented by a catalyst in which platinum (Pt) and lanthanum (La) are supported on a porous carrier (Japanese Unexamined Patent Publication No. 5-168860), NOx in a lean region is shown. A catalyst that absorbs NOx and releases NOx at the time of stoichiometry to purify it has been proposed. This catalyst is poisoned by sulfur-derived SOx contained in the fuel and the lubricating oil due to its NOx purification reaction mechanism, and its performance deteriorates. Since this poisoning by SOx is primary poisoning, if the catalyst is heated to a high temperature and SOx is desorbed, the poisoning is released.

【0004】しかし、SOx脱離温度は650℃〜75
0℃と非常に高温であり、一時的であるにせよ、その温
度まで触媒を昇温するにはエンジンアウトから近い位置
に触媒を配置する必要がある。一方、そのような配置で
あると通常の運転条件でも触媒入口の温度が350℃〜
500℃と高温になって、NOx吸着機能が十分に果た
されない。この問題の解決策としては、図1のグラフに
示すように、強アルカリを使用し、高温でも吸着機能を
満足させるという方法が考えられる。しかしながら、強
アルカリによって吸着機能は満たされるが、同時にNO
x脱離機能の低下を引き起こし、また、強アルカリが貴
金属の活性を低下させるため、NOx浄化機能の低下を
引き起こしてしまう。よって、高温で強アルカリを使用
したNOx触媒においてNOxの脱離、浄化を行わせる
ことが第1の課題である。
However, the SOx desorption temperature is 650 ° C to 75 ° C.
The temperature is very high at 0 ° C., and even if it is temporary, in order to raise the temperature of the catalyst to that temperature, it is necessary to dispose the catalyst at a position close to the engine out. On the other hand, with such an arrangement, the temperature at the catalyst inlet is 350 ° C to
The temperature becomes as high as 500 ° C., and the NOx adsorption function is not sufficiently fulfilled. As a solution to this problem, as shown in the graph of FIG. 1, a method of using a strong alkali and satisfying the adsorption function even at high temperature can be considered. However, although the adsorption function is satisfied by the strong alkali, at the same time NO
This causes a decrease in the x-desorption function, and a strong alkali reduces the activity of the noble metal, resulting in a decrease in the NOx purification function. Therefore, the first problem is to perform desorption and purification of NOx in a NOx catalyst that uses a strong alkali at high temperature.

【0005】また、特開2000−102728号公報
や特開2000−325791号公報では、S被毒解除
を容易にする(より低温でS脱離を行う)ため、アルカ
リ化合物よりもS脱離温度が低い、セリウム化合物をN
Ox触媒の上に配置し、このセリウム化合物に一時的に
Sを吸着させ下面側のNOx触媒の被毒を防ぎ、S被毒
解除時にはCe化合物からSを脱離させる方法が提案さ
れている。この方法は一見有効であるが、Ce化合物が
最表層に多量にあると、Ce化合物から放出される酸素
(O)とNOxを還元する還元材(炭化水素(H
C)、一酸化炭素(CO)、水素(H))とが反応し
てしまい、NOx還元が充分に行われずNOx浄化性能
が低下してしまう。また、Ce化合物は高温でのNOx
吸着機能が弱く、最表層にはアルカリ化合物が存在しな
いので、その部分のNOx吸着機能が低下してしまう。
よって、S被毒を抑制し、容易にS被毒解除を行えつ
つ、更にNOx浄化機能を低下しないようにすることが
第2の課題である。
Further, in JP-A-2000-102728 and JP-A-2000-325791, in order to facilitate the release of S poisoning (S release at a lower temperature), the S release temperature is higher than that of alkali compounds. Low cerium compound N
There is proposed a method of disposing S on the Ox catalyst, temporarily adsorbing S to the cerium compound to prevent poisoning of the NOx catalyst on the lower surface side, and desorbing S from the Ce compound when S poison is released. This method is effective at first glance, but when a large amount of Ce compound is present in the outermost layer, a reducing material (hydrocarbon (H 2 ) that reduces oxygen (O 2 ) and NOx released from the Ce compound
C), carbon monoxide (CO), and hydrogen (H 2 ) react with each other, and NOx reduction is not sufficiently performed, resulting in deterioration of NOx purification performance. Also, Ce compounds are NOx at high temperature.
Since the adsorption function is weak and no alkali compound is present in the outermost layer, the NOx adsorption function at that portion is deteriorated.
Therefore, the second problem is to suppress the S poisoning and to easily cancel the S poisoning while not further lowering the NOx purification function.

【0006】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、NOxを吸着、脱離及び浄化でき、特にNOxの吸
着性能に優れ、S被毒を抑制し、また容易にS被毒を解
除できる排気ガス浄化触媒、その製造方法及び排気ガス
浄化装置を提供することにある。
The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to adsorb, desorb and purify NOx, and in particular, it has excellent NOx adsorption performance, and S An object of the present invention is to provide an exhaust gas purifying catalyst capable of suppressing poisoning and easily removing S poisoning, a method for manufacturing the same, and an exhaust gas purifying apparatus.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究を重ねた結果、触媒成分近傍にセ
リウム化合物及びセシウム化合物を一定の配置で含有さ
せることにより、上記課題が解決できることを見出し、
本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by containing a cerium compound and a cesium compound in the vicinity of a catalyst component in a certain arrangement. Find what you can solve,
The present invention has been completed.

【0008】即ち、本発明の排気ガス浄化触媒は、多孔
質担体上に配設する触媒成分部の上面側により多くのセ
リウム化合物を含ませ、下面側により多くのセシウム化
合物を含ませたことを特徴とする。
That is, the exhaust gas purifying catalyst of the present invention contains more cerium compound on the upper surface side and more cesium compound on the lower surface side of the catalyst component portion arranged on the porous carrier. Characterize.

【0009】また、本発明の排気ガス浄化触媒の製造方
法は、担体に設けた触媒層に可溶性のセリウム化合物水
溶液と可溶性のセシウム化合物水溶液とを含む混合溶液
を浸漬含浸して上記触媒成分部を形成することを特徴と
する。
Further, in the method for producing an exhaust gas purifying catalyst according to the present invention, the catalyst layer is immersed and impregnated with a mixed solution containing a soluble cerium compound aqueous solution and a soluble cesium compound aqueous solution in a catalyst layer provided on a carrier. It is characterized by forming.

【0010】更に、本発明の排気ガス浄化装置は、内燃
機関又は燃焼装置の排気通路の上流側から、三元触媒及
び当該排気ガス浄化触媒を順次配置して成ることを特徴
とする。
Further, the exhaust gas purifying apparatus of the present invention is characterized in that the three-way catalyst and the exhaust gas purifying catalyst are sequentially arranged from the upstream side of the exhaust passage of the internal combustion engine or the combustion apparatus.

【0011】[0011]

【発明の実施の形態】以下、本発明の排気ガス浄化触媒
について詳細に説明する。なお、本明細書において
「%」は、特記しない限り質量百分率を示す。
BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas purifying catalyst of the present invention will be described in detail below. In addition, in this specification, "%" shows a mass percentage unless otherwise specified.

【0012】上述の如く、本発明の排気ガス浄化触媒
は、多孔質担体上に触媒成分部を被覆して成る。この触
媒成分部には、セリウム化合物(Ce化合物)及びセシ
ウム化合物(Cs化合物)が含まれ、このうちCe化合
物は該触媒成分部の上面側により多く含まれ、Cs化合
物は該触媒成分部の下面側により多く含まれる。このよ
うな構成とすることにより、NOx浄化触媒としての吸
着性能、脱離性能及び浄化性能、特に吸着性能が向上
し、更にS被毒の抑制とS被毒解除性能が向上する。な
お、上記触媒成分部において、「下面側」とは担体接触
面側をいい、「上面側」とはそれに対向する表面側をい
う。また、これらは、特に触媒成分部の中間を境界とし
た上側部分及び下側部分に限定されず、所望のCe量、
Cs量及び触媒成分部の厚さなどに応じて定められる相
対的なものである。具体的には、図2に示すように、触
媒成分部を2層構造としたときは、上部触媒層が触媒成
分層上面側、下部触媒層が触媒成分層下面側となる。
As described above, the exhaust gas purifying catalyst of the present invention is formed by coating the catalyst component part on the porous carrier. The catalyst component part contains a cerium compound (Ce compound) and a cesium compound (Cs compound), of which the Ce compound is contained more in the upper surface side of the catalyst component part, and the Cs compound is the lower surface of the catalyst component part. More included on the side. With such a configuration, the adsorption performance, the desorption performance, and the purification performance of the NOx purification catalyst, especially the adsorption performance is improved, and further the S poisoning suppression and the S poisoning removal performance are improved. In the above catalyst component part, the "lower surface side" means the carrier contact surface side, and the "upper surface side" means the surface side facing it. Further, these are not particularly limited to the upper part and the lower part with the middle of the catalyst component part as a boundary, and the desired Ce amount,
It is a relative value determined according to the amount of Cs and the thickness of the catalyst component. Specifically, as shown in FIG. 2, when the catalyst component part has a two-layer structure, the upper catalyst layer is the upper side of the catalyst component layer and the lower catalyst layer is the lower side of the catalyst component layer.

【0013】ここで、本排気ガス浄化触媒によるNOx
触媒の性能の向上について説明する。触媒成分部上面側
に含まれるCs化合物を下面側より少なくすることによ
り、NOx触媒としての貴金属の劣化が防止され、NO
x浄化性能が十分に発揮され得る。また、触媒成分部下
面側に含まれるCs化合物を上面側より多くすることに
より、NOx吸着機能が十分に発揮され得る。但し、触
媒成分部上面側にCs化合物を含めないとき、又は触媒
成分部上面側のCs化合物量を全Cs化合物量の1/1
1未満にするときは、NOx浄化性能が極端に低下す
る。これは、触媒成分部の上面側近傍のNOx吸着能力
が極端に低下するためであると考えられる。従って、触
媒成分部上面側にはCs化合物がある程度必要になる
が、その量はNOx浄化性能を発現する貴金属の劣化を
引き起こさない程度、具体的には全Cs化合物量の1/
11以上1/2未満であることが好適である。言い換え
れば、上記触媒成分部に含まれるCs化合物は、以下の
式 0.1≦触媒成分部上面側のCs化合物量/触媒成分部
下面側のCs化合物量<1 を満たすことが好適である。全体量としてはCsOと
して触媒容量1L当り20g以上であることが望まし
い。
Here, NOx by the exhaust gas purifying catalyst
The improvement of the performance of the catalyst will be described. By reducing the amount of Cs compound contained on the upper surface side of the catalyst component portion than on the lower surface side, deterioration of the noble metal as the NOx catalyst is prevented, and NO
x Purification performance can be sufficiently exhibited. Further, by increasing the amount of Cs compound contained on the lower surface side of the catalyst component part than on the upper surface side, the NOx adsorption function can be sufficiently exhibited. However, when the Cs compound is not included on the upper surface side of the catalyst component portion, or the Cs compound amount on the upper surface side of the catalyst component portion is 1/1 of the total Cs compound amount.
When it is less than 1, the NOx purification performance is extremely reduced. It is considered that this is because the NOx adsorption capacity near the upper surface side of the catalyst component part is extremely reduced. Therefore, a certain amount of Cs compound is required on the upper surface side of the catalyst component part, but the amount thereof is such that it does not cause deterioration of the noble metal that expresses NOx purification performance, specifically, 1 /% of the total amount of Cs compound.
It is preferably 11 or more and less than 1/2. In other words, the Cs compound contained in the catalyst component part preferably satisfies the following formula 0.1 ≦ Cs compound amount on the upper surface side of the catalyst component part / Cs compound amount on the lower surface side of the catalyst component part <1. The total amount of Cs 2 O is preferably 20 g or more per 1 L of catalyst capacity.

【0014】また、触媒成分部上面側に含まれるCe化
合物を下面側より多くすることにより、還元材が燃焼さ
れ、その熱が下面側(Cs化合物を多く含有する部分)
に伝えられるので、そこからNOxが脱離される。ま
た、触媒成分部下面側に含まれるCe化合物を上面側よ
り少なくすることにより、下面側で強く吸着しているN
Oxが脱離され易くなる。この効果は、触媒成分部下面
側にCe化合物が全く含まれないときに、NOxの脱離
性能が極端に低下することから推測できる。現時点で
は、この原因は定かではないが、Cs化合物、Ce化合
物及び貴金属の分布状態のバランスがNOxの脱離に重
要であると考えられる。但し、触媒成分部上面側に含ま
れるCe化合物量が多過ぎると、このCe化合物から放
出されるOとNOxを還元するための還元材とが反応
して、還元材を消費し過ぎるため、NOx浄化性能が低
下する。従って、具体的には、触媒成分部上面側に含ま
れるCe化合物量は、全Ce化合物量の1/2以上2/
3未満であることが好適である。言い換えれば、上記触
媒成分部に含まれるCe化合物は、以下の式 1≦触媒成分部下面側のCe化合物含有量/触媒成分部
上面側のCe化合物含有量<2 を満たすことが好適である。全Ce化合物量としては触
媒容量1Lあたり、CeOとして40g以下であるこ
とが望ましい。
Further, by increasing the amount of Ce compound contained on the upper surface side of the catalyst component portion than on the lower surface side, the reducing material is burned and the heat thereof is on the lower surface side (a portion containing a large amount of Cs compound).
NOx is desorbed from there. Further, by making the Ce compound contained on the lower surface side of the catalyst component portion smaller than that on the upper surface side, N strongly adsorbed on the lower surface side is obtained.
Ox is easily desorbed. This effect can be inferred from the fact that the NOx desorption performance is extremely deteriorated when the Ce compound is not contained at all on the lower surface side of the catalyst component part. At present, the cause of this is not clear, but it is considered that the balance of the distribution state of the Cs compound, the Ce compound and the noble metal is important for the desorption of NOx. However, if the amount of the Ce compound contained on the upper surface side of the catalyst component portion is too large, O 2 released from the Ce compound reacts with the reducing material for reducing NOx, and the reducing material is consumed too much, NOx purification performance decreases. Therefore, specifically, the amount of Ce compounds contained on the upper surface side of the catalyst component is 1/2 or more of the total amount of Ce compounds 2 /
It is preferably less than 3. In other words, the Ce compound contained in the catalyst component part preferably satisfies the following formula 1 ≦ Ce compound content on the lower surface side of the catalyst component part / Ce compound content on the upper surface side of the catalyst component part <2. The total amount of Ce compounds is preferably 40 g or less as CeO 2 per 1 L of the catalyst volume.

【0015】更に、本排気ガス浄化触媒によるS被毒の
抑制について説明する。触媒成分部の上面側に含まれる
Ce化合物を下面側より多くすることにより、触媒成分
部の主に上面側にSが吸着しS被毒が起こる。このと
き、触媒成分部の上面側に含まれるCs化合物は少ない
ため、S被毒を受けてNOx浄化性能は低下するが、触
媒成分部の下面側にはCs化合物が多く含まれるので、
S被毒を受けにくく、NOx浄化性能の低下が最小限に
抑えられる。よって、触媒全体としてS被毒の影響を受
けにくくすることができる。このため、上面側にはCe
化合物をできる限り多く配設したいが、上記の理由によ
りNOx還元材を消費してしまうため、全Ce化合物量
の2/3以上にすることは好ましくない。
Further, suppression of S poisoning by the present exhaust gas purifying catalyst will be described. By increasing the amount of the Ce compound contained in the upper surface side of the catalyst component portion than in the lower surface side, S is adsorbed mainly on the upper surface side of the catalyst component portion and S poisoning occurs. At this time, since the Cs compound contained in the upper surface side of the catalyst component portion is small, the NOx purification performance is deteriorated due to S poisoning, but since the lower surface side of the catalyst component portion contains a large amount of Cs compound,
S-poisoning is less likely to occur, and deterioration of NOx purification performance can be minimized. Therefore, it is possible to make the entire catalyst less susceptible to S poisoning. For this reason, Ce is on the upper surface side.
Although it is desired to dispose as many compounds as possible, the NOx reducing material is consumed for the above reason, so it is not preferable to set it to 2/3 or more of the total Ce compound amount.

【0016】また、触媒成分部上面側に含まれるCe化
合物に吸着したSは、Cs等の他のアルカリ金属に吸着
したSに比べて脱離し易いので、Ce化合物にSを吸着
させれば脱離が容易になる。そのため、なるべく上面側
でSを吸着させることが必要となる。これには、Ce化
合物量を多くしたり、上面側を厚くしたりすることが有
効であるが、これらの方法では上記と同様にNOx還元
材を消費してしまうため、Ce化合物量を全量の2/3
以上にすることは好ましくない。また、上面側のCe化
合物量を全量の1/2以上にすることは好ましくない。
しかし、コート量が少なすぎるとS被毒抑制の観点から
望ましくないので、全コート量の1/5以上であること
がよい。
Further, S adsorbed on the Ce compound contained on the upper surface side of the catalyst component is more easily desorbed than S adsorbed on other alkali metals such as Cs. Easy to separate. Therefore, it is necessary to adsorb S on the upper surface side as much as possible. For this purpose, it is effective to increase the Ce compound amount or to thicken the upper surface side, but since these methods consume the NOx reducing material in the same manner as described above, the Ce compound amount is less than the total amount. 2/3
The above is not preferable. Further, it is not preferable to set the amount of Ce compound on the upper surface side to ½ or more of the total amount.
However, if the coating amount is too small, it is not desirable from the viewpoint of suppressing S poisoning, so it is preferable that the coating amount is 1/5 or more of the total coating amount.

【0017】なお、図3に示すように、触媒成分部中に
含まれるCe化合物量は表面側に向かって徐々に増大す
ることが望ましく、Cs化合物量は下面側に向かって徐
々に増大することが望ましい。また、上記触媒成分部は
2以上の触媒層から構成することができる。この場合も
同様に、上面側にある触媒層ほどCe化合物の含有量が
多く、該触媒層の下面側にある触媒層ほどCs化合物の
含有量が多いことが好ましい。特に、上記触媒成分部
が、上部触媒層と下部触媒層の2層構造から成るとき
は、各層の厚さは、以下の式 0.25≦上部触媒層の厚さ/下部触媒層の厚さ≦1 を満たすことが好ましい。また、各層に含まれるCe化
合物は、以下の式 1≦下部触媒層のCe化合物含有量/上部触媒層のCe
化合物含有量≦2 を満たすことが好ましい。更に、各層に含まれるCs化
合物は、以下の式 0.1≦上部触媒層のCs化合物含有量/下部触媒層の
Cs化合物含有量<1 を満たすことが好ましい。このときは、上部触媒層がよ
り多くのCe化合物を含有するので、還元材を燃焼さ
せ、その熱を下部触媒層に伝えうる。また、下部触媒層
がより多くのCs化合物を含有するので、強く吸着して
いるNOxを脱離し易い。
As shown in FIG. 3, it is desirable that the amount of Ce compound contained in the catalyst component portion gradually increases toward the surface side, and the amount of Cs compound gradually increases toward the lower surface side. Is desirable. Further, the catalyst component part may be composed of two or more catalyst layers. Also in this case, similarly, it is preferable that the catalyst layer on the upper surface side has a larger content of the Ce compound and that the catalyst layer on the lower surface side of the catalyst layer has a larger content of the Cs compound. In particular, when the catalyst component part has a two-layer structure of an upper catalyst layer and a lower catalyst layer, the thickness of each layer is calculated by the following equation: 0.25 ≦ upper catalyst layer thickness / lower catalyst layer thickness It is preferable to satisfy ≦ 1. Further, the Ce compound contained in each layer is expressed by the following formula 1 ≦ Ce compound content of the lower catalyst layer / Ce of the upper catalyst layer.
It is preferable that the compound content ≦ 2 is satisfied. Further, the Cs compound contained in each layer preferably satisfies the following formula: 0.1 ≦ Cs compound content of upper catalyst layer / Cs compound content of lower catalyst layer <1. At this time, since the upper catalyst layer contains a larger amount of Ce compound, it is possible to burn the reducing material and transfer the heat to the lower catalyst layer. Further, since the lower catalyst layer contains more Cs compound, it is easy to desorb strongly adsorbed NOx.

【0018】また、NOx触媒を使って排気ガス中のN
Oxを低減するためには、以下の3つの機能が有効に発
揮されることが必要である。 NOx吸着機能 酸素過剰雰囲気下(リーン)で、排気ガス中のNOxを
貴金属上で酸化し、アルカリなどのNOx吸着材に取り
込む機能である。 NOx脱離機能 還元材過剰雰囲気〜理論空燃比雰囲気下(リッチ〜スト
イキ)で、吸着材に吸着したNOxを脱離し、貴金属上
で還元材と反応させる機能である。なお、触媒中からN
Oxが適度に脱離されないと、NOx吸着材はNOxで
一杯になってしまい、それ以上NOxを吸着することが
できない。 NOx浄化機能 リッチ〜ストイキで、貴金属上でNOxと還元材を反応
させる機能である。
Further, N in the exhaust gas is reduced by using a NOx catalyst.
In order to reduce Ox, it is necessary to effectively exhibit the following three functions. NOx adsorbing function This is a function to oxidize NOx in exhaust gas on a noble metal in an oxygen excess atmosphere (lean) and take it into an NOx adsorbent such as alkali. NOx desorption function A function of desorbing NOx adsorbed on the adsorbent and reacting it with the reducing agent on the noble metal under the atmosphere of reducing agent excess to the stoichiometric air-fuel ratio atmosphere (rich to stoichiometric). In addition, N
If Ox is not desorbed appropriately, the NOx adsorbent will be filled with NOx, and no more NOx can be adsorbed. NOx purification function It is a function of reacting NOx and a reducing material on a precious metal in a rich to stoichiometric manner.

【0019】これらの機能をCs化合物の存在下で発揮
させようとすると、式1、式2に示すように、リーン雰
囲気下の還元材量によって逆反応が起こり得る。 (NOx吸着反応) CsCO+NO+1/2O→CsNO+CO …(1) (NOx脱離反応) CsNO+1/6C→1/2CsCO+1/2HO+NO … (2)
If these functions are to be exhibited in the presence of a Cs compound, a reverse reaction may occur depending on the amount of reducing agent in a lean atmosphere, as shown in equations (1) and (2). (NOx adsorption reaction) CsCO 3 + NO + 1 / 2O 2 → CsNO 3 + CO 2 (1) (NOx desorption reaction) CsNO 3 + 1 / 6C 3 H 6 → 1 / 2Cs 2 CO 3 + 1 / 2H 2 O + NO (2)

【0020】即ち、式1の速度常数をK1、式2の速度
常数をK2とすると、反応雰囲気中に還元材(式2では
HCとしてプロペン)が多く存在する場合、リーンで
も、K1とK2の関係はK2>K1となり、NOx脱離
反応が優勢になる。このとき、K1>K2とするために
は、反応雰囲気中の還元材を除去すれば良い。かかる方
法として、具体的には、上記触媒成分部が、ロジウム
(Rh)と、白金(Pt)及び/又はパラジウム(P
d)とを含むことが好適である。特に、Pdが含まれる
ことが最も有効である。但し、Pdが少なすぎるとこの
効果は十分に得られにくく、またPdを増やしすぎると
脱離したNOxを浄化するための還元成分(HC、CO
及びH)が消費され、NOx浄化機能が十分に働かな
いことがある。従って、Pd量は最適範囲で存在するこ
とが好ましい。具体的には、上記触媒成分部におけるP
t含有量とPd含有量の比率Pt/Pdが1.1〜4.
2であることが好ましい。このときは、図4に示すよう
に、吸着機能を満たしつつ、浄化機能がより良好とな
る。
That is, assuming that the velocity constant of equation 1 is K1 and the velocity constant of equation 2 is K2, when a large amount of reducing agent (propene as HC in equation 2) exists in the reaction atmosphere, even if lean, K1 and K2 The relationship becomes K2> K1, and the NOx desorption reaction becomes dominant. At this time, in order to satisfy K1> K2, the reducing agent in the reaction atmosphere may be removed. As such a method, specifically, the catalyst component part may be rhodium (Rh) and platinum (Pt) and / or palladium (P).
It is preferable to include d). In particular, the inclusion of Pd is most effective. However, if the amount of Pd is too small, it is difficult to obtain this effect sufficiently, and if the amount of Pd is too large, the reducing components (HC, CO
And H 2 ) are consumed, and the NOx purification function may not work sufficiently. Therefore, it is preferable that the amount of Pd exists in the optimum range. Specifically, P in the catalyst component part
The ratio Pt / Pd between the t content and the Pd content is 1.1 to 4.
It is preferably 2. At this time, as shown in FIG. 4, the purification function becomes better while satisfying the adsorption function.

【0021】また、上記触媒成分部上面側はRh、Pt
又はPd、及びこれらの任意の組合せに係る貴金属を含
み、上記触媒成分部下面側はPt及び/又はPdを含む
ことが好ましい。なお、上述のように触媒成分部内のP
dの配置がNOxの浄化に大きく影響する。即ち、還元
材を減少させる効果の高いPdが触媒成分部上面側にあ
ると、触媒成分部の下面側まで十分に還元材が行き届く
前に還元材が消費されてしまい、NOx浄化機能が低下
する。従って、特にPdはできるだけ触媒成分部の下面
側に存在させることがよい。例えば、図5に示すよう
に、2層構造の触媒成分部では、上部触媒層に含まれる
Pd量が下部触媒層より少いほどNOx転化率が高く、
最も転化率が大きいのは上部触媒層にPdが含まれない
ときである。しかし、S被毒解除後は触媒全体にわたっ
てPdが存在するとき(上部触媒層のPd量/下部触媒
層のPd量=1)にNOx転化率が大きい。現時点で
は、この詳細な原因は明らかではないが、PdとのS化
合物は他の貴金属とのS化合物よりも分解され易いと考
えられる。以上のことを考え合わせると、上記触媒成分
部上面側のPd含有量(Pd)と上記触媒成分部下面
側のPd含有量(Pd)との比率Pd/Pdは0
〜1であることが好ましい。
Further, Rh and Pt are provided on the upper surface side of the catalyst component portion.
It is preferable that Pd and / or Pd be included, and Pt and / or Pd be included on the lower surface side of the catalyst component part. As described above, P in the catalyst component part
The arrangement of d greatly affects the purification of NOx. That is, when Pd having a high effect of reducing the reducing material is present on the upper surface side of the catalyst component portion, the reducing material is consumed before the reducing material reaches the lower surface side of the catalyst component portion sufficiently, and the NOx purification function deteriorates. . Therefore, it is particularly preferable that Pd be present on the lower surface side of the catalyst component part as much as possible. For example, as shown in FIG. 5, in the catalyst component part having a two-layer structure, the smaller the amount of Pd contained in the upper catalyst layer is, the higher the NOx conversion rate is,
The highest conversion is obtained when Pd is not contained in the upper catalyst layer. However, after removal of S poisoning, the NOx conversion rate is large when Pd is present over the entire catalyst (Pd amount in the upper catalyst layer / Pd amount in the lower catalyst layer = 1). Although the detailed cause of this is not clear at present, it is considered that the S compound with Pd is more easily decomposed than the S compound with other noble metals. Taking the above into consideration, the ratio Pd U / Pd L between the Pd content (Pd U ) on the upper surface side of the catalyst component portion and the Pd content (Pd L ) on the lower surface side of the catalyst component portion is 0.
It is preferably -1.

【0022】また、上記Rh、Pt又はPd、及びこれ
らの任意の組合せに係る貴金属の総量は、触媒1L当た
り0.7g以上5.7g未満であることが好適である。
触媒作用を発現させるには最低0.7g/Lが必要であ
り、5.7g/L以上に増やしても殆ど効果が無く、コ
スト面で不利になる。
The total amount of Rh, Pt or Pd, and the noble metal relating to any combination thereof is preferably 0.7 g or more and less than 5.7 g per 1 L of the catalyst.
A minimum of 0.7 g / L is required to develop the catalytic action, and even if the amount is increased to 5.7 g / L or more, there is almost no effect, which is disadvantageous in terms of cost.

【0023】更に、Rh量は、Pt量及びPd量とのR
h比でその適量がある。具体的には、以下の式 3≦(Pt+Pd)/Rh≦10 を満たすことが好適である。Rh量はNOxの還元に効
果が大きい反面、資源、コストの面からは上記範囲にす
ることが有効である。
Further, the Rh amount is the R with the Pt amount and the Pd amount.
There is an appropriate amount in the h ratio. Specifically, it is preferable that the following expression 3 ≦ (Pt + Pd) / Rh ≦ 10 is satisfied. While the amount of Rh has a great effect on the reduction of NOx, it is effective to set it in the above range in terms of resources and cost.

【0024】更にまた、触媒成分部の厚さも重要であ
る。即ち、触媒成分部上面側が厚すぎると還元材が触媒
成分部の下面側まで届かず脱離機能が低下することがあ
り、薄すぎるとPdの多い触媒成分部下面側が相対的に
厚くなるので、やはり還元材を消費する結果となる。従
って、上記触媒成分部上面側の厚さと触媒成分部下面側
の厚さとが以下の式触媒成分部上面側の厚さ/触媒成分
部下面側の厚さ=0.25〜1を満たすことが好まし
く、0.6〜0.7であることがより望ましい。
Furthermore, the thickness of the catalyst component part is also important. That is, when the upper surface side of the catalyst component portion is too thick, the reducing agent may not reach the lower surface side of the catalyst component portion and the desorption function may deteriorate, and when it is too thin, the lower surface side of the catalyst component portion with a large amount of Pd becomes relatively thick, After all, it results in consumption of the reducing material. Therefore, the thickness of the catalyst component upper surface side and the thickness of the catalyst component lower surface side satisfy the following formula: catalyst component upper surface side thickness / catalyst component lower surface side thickness = 0.25 to 1. Preferably, it is more preferably 0.6 to 0.7.

【0025】また、上記触媒成分部には、Cs化合物の
他にBa化合物やMg化合物を加えることができる。こ
のときは、よりS被毒が解除され易い。更に、これら化
合物は上記触媒成分部下面側より上記触媒成分部上面側
に多く含まれることが好ましい。このときは、Ce化合
物と同様にSが吸着され、更にはCe以上のNOx吸着
性能を発揮させ得るため、NOx浄化性能が大幅に向上
し易い。S被毒解除性能が向上する原因としては、B
a、MgとCsとの相互作用により、吸着したSが複合
硫酸塩として取り込まれることが考えられる。
In addition to the Cs compound, a Ba compound or a Mg compound can be added to the catalyst component part. At this time, S poisoning is more easily released. Further, these compounds are preferably contained in a larger amount on the upper surface side of the catalyst component section than on the lower surface side of the catalyst component section. At this time, S is adsorbed similarly to the Ce compound, and further NOx adsorption performance of Ce or higher can be exhibited, so that the NOx purification performance is likely to be significantly improved. The reason why the S poison removal performance is improved is B
It is considered that the adsorbed S is taken in as a complex sulfate due to the interaction between a, Mg and Cs.

【0026】更にまた、Ba化合物及びMg化合物が含
まれるときは、その一部又は全部が複合化し、次の一般
式 BaMg(CO (式中のx及びyは各元素の原子比率を表し、x=0.
5〜1.999、y=0.001〜1.5、x+y=
2.0である)で表される複合炭酸塩を形成しているこ
とが好ましい。BaMg(COは、図6に示すよ
うに、BaとMgが複合化すると、BaCOには見ら
れないXRDピークが出現し、高温での耐久性が増し、
アルカリ同士の凝集が少なくなる。このことが更にS被
毒解除を容易にすると考えられる。
Furthermore, when a Ba compound and a Mg compound are contained, a part or all of them are compounded to form the following general formula Ba x Mg y (CO 3 ) 2 (where x and y are the respective elements). Atomic ratio, x = 0.
5 to 1.999, y = 0.001 to 1.5, x + y =
It is preferable to form a complex carbonate represented by 2.0). As shown in FIG. 6, when BaMg is combined with BaMg (CO 3 ) 2 , an XRD peak that is not found in BaCO 3 appears, and durability at high temperature increases.
The aggregation of alkalis is reduced. This is considered to further facilitate the release of S poison.

【0027】なお、かかる排気ガス浄化触媒を用いた内
燃機関等における作動空燃比は、15〜50及び10.
0〜14.6であることが望ましく、この範囲であると
NOxを効率良く浄化できる。また、本発明の排気ガス
浄化触媒は、各種形状で使用でき、耐火性無機担体に担
持して用いることができる。例えば、コーディエライト
などのセラミックやフェライト系ステンレス等の金属で
構成されるハニカム構造体などの一体構造型担体に担持
して用いることができる。また、かかる排気ガス浄化触
媒は、高温にさらされる状況も鑑み、高い耐熱性を有す
ることが望ましい。従って、従来から三元触媒で用いら
れているジルコニア、ランタン、バリウム等、貴金属や
アルミナの耐熱性を向上させる材料などを適宜添加して
もよい。
The working air-fuel ratio in an internal combustion engine or the like using such an exhaust gas purifying catalyst is 15-50 and 10.
It is desirable to be 0 to 14.6, and if it is in this range, NOx can be efficiently purified. Further, the exhaust gas purifying catalyst of the present invention can be used in various shapes and can be used by supporting it on a refractory inorganic carrier. For example, it can be used by being carried on an integral structure type carrier such as a honeycomb structure made of a ceramic such as cordierite or a metal such as ferritic stainless steel. Further, it is desirable that such an exhaust gas purifying catalyst has high heat resistance in consideration of the situation of being exposed to high temperatures. Therefore, materials such as zirconia, lanthanum, and barium, which have been conventionally used for three-way catalysts, such as noble metals and alumina, which improve the heat resistance, may be appropriately added.

【0028】次に、本発明の排気ガス浄化触媒の製造方
法について詳細に説明する。上述の排気ガス浄化触媒
は、まず触媒成分を担体に被覆して触媒層とした後、該
触媒層に可溶性のCe化合物水溶液と可溶性のCs化合
物水溶液との混合溶液を浸漬含浸し、この際、Ce化合
物及びCs化合物の分布状態を調製して触媒成分部を形
成することにより得られる。このように、Ce化合物と
Cs化合物を同時に含浸するので、別々に含浸したり、
Ce化合物とCs化合物を順次含浸するより、S被毒解
除性能が更に高まる。現時点では、この効果については
明らかではないが、貴金属などの触媒成分の周りにCe
とCsが最適に分布するからと推察できる。また、かか
る同時含浸を行うときのCe化合物及びCs化合物は、
酢酸Ce及び酢酸Csの形態で用いられることがより好
ましく、次いで硝酸Ce及び硝酸Csが用いられること
が好ましい。
Next, the method for producing the exhaust gas purifying catalyst of the present invention will be described in detail. In the above exhaust gas purifying catalyst, after a catalyst component is first coated on a carrier to form a catalyst layer, the catalyst layer is dipped and impregnated with a mixed solution of a soluble Ce compound aqueous solution and a soluble Cs compound aqueous solution. It is obtained by adjusting the distribution state of the Ce compound and the Cs compound to form the catalyst component part. In this way, since the Ce compound and the Cs compound are impregnated at the same time,
S-poisoning release performance is further enhanced by sequentially impregnating the Ce compound and the Cs compound. At present, it is not clear about this effect, but Ce around the catalyst component such as precious metal
It can be inferred that Cs and Cs are optimally distributed. In addition, the Ce compound and the Cs compound when performing such simultaneous impregnation are
More preferably, it is used in the form of Ce acetate and Cs acetate, and then Ce nitrate and Cs nitrate are preferably used.

【0029】次に、本発明の排気ガス浄化装置について
詳細に説明する。かかる排気ガス浄化装置は、内燃機関
又は燃焼装置の排気通路の上流側から、三元触媒及び上
述の排気ガス浄化触媒を順次配置して成る。このような
構成とすることにより、リーン域での三元触媒の使用に
より酸素過剰となった場合でも、優れたNOx浄化性能
を発揮できる。
Next, the exhaust gas purifying apparatus of the present invention will be described in detail. Such an exhaust gas purifying device comprises a three-way catalyst and the above-mentioned exhaust gas purifying catalyst which are sequentially arranged from the upstream side of the exhaust passage of the internal combustion engine or the combustion device. With such a configuration, excellent NOx purification performance can be exhibited even when oxygen becomes excessive due to the use of the three-way catalyst in the lean region.

【0030】[0030]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが、本発明はこれら実施例に限定される
ものではない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0031】(実施例1)比上面側積が180mの活
性アルミナにジニトロジアミン白金溶液を含浸し、乾燥
後空気中400℃で1時間焼成して、粉末Aを得た。こ
の粉末のPt濃度は1.0%であった。比上面側積が1
80mの活性アルミナに硝酸Rh溶液を含浸し、乾燥
後空気中400℃で1時間焼成して、粉末Bを得た。こ
の粉末のRh濃度は1.0%であった。粉末Aを72
0.0g、粉末Bを150.0g、アルミナゾルを30
g及び水900gを磁性ボールミルに投入し、混合粉砕
してスラリ液を得た。このスラリ液をコーデェライト質
モノリス担体(1.2L、900セル)に付着させ、空
気流にてセル内の余剰のスラリを取り除いて130℃で
乾燥した後、400℃で1時間焼成し、触媒成分部30
0g/Lの触媒を得た。この触媒を酢酸セシウム、酢酸
セリウムの混合水溶液中に浸漬し、触媒中にセシウム、
セリウムを含浸した。セシウム量はCsOとして30
g/L、セリウム量はCeOとして10g/Lであっ
た。
Example 1 Powder A was obtained by impregnating activated alumina having a specific top surface side product of 180 m 2 with a dinitrodiamine platinum solution, drying and firing it in air at 400 ° C. for 1 hour. The Pt concentration of this powder was 1.0%. Specific surface side product is 1
80 m 2 of activated alumina was impregnated with a Rh nitrate solution, dried and then calcined in air at 400 ° C. for 1 hour to obtain a powder B. The Rh concentration of this powder was 1.0%. 72 powder A
0.0 g, powder B 150.0 g, alumina sol 30
g and 900 g of water were put into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite-based monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the mixture was dried at 130 ° C and then calcined at 400 ° C for 1 hour to obtain a catalyst. Ingredient part 30
0 g / L of catalyst was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate, and cesium was added to the catalyst.
Impregnated with cerium. The amount of cesium is 30 as Cs 2 O
The amount of g / L and the amount of cerium were 10 g / L as CeO 2 .

【0032】この触媒において、以下の式 触媒成分部上面側(Ce化合物が多く、Cs化合物が少
ない部分)の厚さ/触媒成分部下面側(Ce化合物が多
く、Cs化合物が少ない部分)の厚さ で表される被覆厚比は、0.6であった。また、以下の
式 触媒成分部上面側のCe化合物含有量/触媒成分部下面
側のCe化合物含有量 で表されるセリウム化合物の含有量比は、1.1であっ
た。更に、以下の式 触媒成分部上面側のCs化合物含有量/触媒成分部下面
側のCs化合物含有量 で表されるセシウム化合物の含有量比は、0.5であっ
た。
In this catalyst, the thickness of the following formula: catalyst component upper surface side (a large amount of Ce compound and less Cs compound) / catalyst component lower surface side (a higher amount of Ce compound, less Cs compound) thickness The coating thickness ratio represented by the above was 0.6. Further, the content ratio of the cerium compound represented by the following formula: Ce compound content on the upper surface side of the catalyst component portion / Ce compound content on the lower surface side of the catalyst component portion was 1.1. Further, the content ratio of the cesium compound represented by the following formula: Cs compound content on the upper surface side of the catalyst component / Cs compound content on the lower surface side of the catalyst component was 0.5.

【0033】(実施例2)比上面側積が180mの活
性アルミナに硝酸パラジウム溶液を含浸し、乾燥後空気
中400℃で1時間焼成して、粉末Cを得た。この粉末
のPd濃度は1.0%であった。粉末Aを540.0
g、粉末Bを150.0g、粉末Cを180.0g、ア
ルミナゾルを30g、水900gを磁性ボールミルに投
入し、混合粉砕してスラリ液を得た。このスラリ液をコ
ーデェライト質モノリス担体(1.2L、900セル)
に付着させ、空気流にてセル内の余剰のスラリを取り除
いて130℃で乾燥した後、400℃で1時間焼成し、
触媒成分部300g/Lの触媒を得た。この触媒を酢酸
セシウム、酢酸セリウムの混合水溶液中に浸漬し、触媒
中にセシウム、セリウムを含浸した。セシウム量はCs
Oとして30g/L、セリウム量はCeOとして1
0g/Lである。
Example 2 Powder C was obtained by impregnating activated alumina having a specific upper surface side product of 180 m 2 with a palladium nitrate solution, drying and calcining in air at 400 ° C. for 1 hour. The Pd concentration of this powder was 1.0%. Powder A 540.0
g, 150.0 g of powder B, 180.0 g of powder C, 30 g of alumina sol and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid is used as a cordierite monolith carrier (1.2 L, 900 cells)
To remove the excess slurry in the cell by air flow, dried at 130 ℃, and baked at 400 ℃ for 1 hour,
A catalyst having a catalyst component portion of 300 g / L was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. Cs amount is Cs
2 O is 30 g / L, and the amount of cerium is 1 as CeO 2.
It is 0 g / L.

【0034】この触媒において、上記被覆厚比は0.6
3、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.55であった。
In this catalyst, the coating thickness ratio is 0.6.
3, the content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.55.

【0035】(実施例3)比上面側積が180mの活
性アルミナにジニトロジアミン白金溶液を含浸し、乾燥
後空気中400℃で1時間焼成して、粉末Dを得た。こ
の粉末のPt濃度は0.8%であった。比上面側積が1
80mの活性アルミナにジニトロジアミン白金溶液を
含浸し、乾燥後空気中400℃で1時間焼成して、粉末
Eを得た。この粉末のPt濃度は0.4%であった。比
上面側積が120mの活性セリアにジニトロジアミン
白金溶液を含浸し、乾燥後空気中400℃で1時間焼成
して、粉末Fを得た。この粉末のPt濃度は1.5%で
あった。粉末Eを724.5g、粉末Fを42.3g、
活性アルミナを88.2g、アルミナゾルを45g、水
900gを磁性ボールミルに投入し、混合粉砕してスラ
リ液を得た。このスラリ液をコーデェライト質モノリス
担体(1.2L、900セル)に付着させ、空気流にて
セル内の余剰のスラリを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、触媒成分部300g/L
の触媒を得た。この触媒成分部上に、粉末Dを543.
6g、粉末Fを63.5g、粉末Bを212.4g、活
性アルミナを35.5g、アルミナゾルを45g、水9
00gを磁性ボールミルに投入し、混合粉砕して得たス
ラリ液を付着させ、空気流にてセル内の余剰のスラリを
取り除いて130℃で乾燥した後、400℃で1時間焼
成し、触媒成分部200g/Lの触媒を得た。この触媒
を酢酸セシウム、酢酸セリウムの混合水溶液中に浸漬
し、触媒中にセシウム、セリウムを含浸した。セシウム
量はCsOとして50g/L、セリウム量はCeO
として10g/Lである。また、含浸以外のCe量は2
8.2g/Lである。この触媒のEPMA像を図7に示
す。
Example 3 Powder D was obtained by impregnating activated alumina with a specific top surface side product of 180 m 2 with a dinitrodiamine platinum solution, drying and firing in air at 400 ° C. for 1 hour. The Pt concentration of this powder was 0.8%. Specific surface side product is 1
80 m 2 of activated alumina was impregnated with a dinitrodiamine platinum solution, dried and then baked in air at 400 ° C. for 1 hour to obtain a powder E. The Pt concentration of this powder was 0.4%. Activated ceria having a specific surface area of 120 m 2 was impregnated with a dinitrodiamine platinum solution, dried and then fired in air at 400 ° C. for 1 hour to obtain a powder F. The Pt concentration of this powder was 1.5%. 724.5 g of powder E, 42.3 g of powder F,
88.2 g of activated alumina, 45 g of alumina sol and 900 g of water were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite-based monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the mixture was dried at 130 ° C and then calcined at 400 ° C for 1 hour to obtain a catalyst. Component part 300g / L
The catalyst was obtained. On this catalyst component part, powder D was added 543.
6 g, powder F 63.5 g, powder B 212.4 g, activated alumina 35.5 g, alumina sol 45 g, water 9
00 g was put into a magnetic ball mill, the slurry liquid obtained by mixing and pulverizing was adhered, the excess slurry in the cell was removed by an air stream, and the mixture was dried at 130 ° C. and then calcined at 400 ° C. for 1 hour to obtain a catalyst component. Part of 200 g / L of catalyst was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is 50 g / L as Cs 2 O, and the amount of cerium is CeO 2
Is 10 g / L. The amount of Ce other than impregnation is 2
It is 8.2 g / L. An EPMA image of this catalyst is shown in FIG.

【0036】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.43であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.43.

【0037】(実施例4)実施例3で得られた触媒成分
部を、酢酸セシウム、酢酸バリウム、酢酸マグネシウ
ム、酢酸セリウムの混合水溶液中に浸漬し、触媒中にセ
シウム、バリウム、マグネシウム、セリウムを含浸し
た。セシウム量はCsOとして50g/L、バリウム
量はBaOとして10g/L、マグネシウムはMgOと
して5g/L、セリウム量はCeOとして10g/L
であった。また、含浸以外のCe量は28.2g/Lで
あった。
Example 4 The catalyst component part obtained in Example 3 was immersed in a mixed aqueous solution of cesium acetate, barium acetate, magnesium acetate and cerium acetate, and cesium, barium, magnesium and cerium were added to the catalyst. Impregnated. The amount of cesium is 50 g / L as Cs 2 O, the amount of barium is 10 g / L as BaO, the amount of magnesium is 5 g / L as MgO, and the amount of cerium is 10 g / L as CeO 2.
Met. Moreover, the amount of Ce other than the impregnation was 28.2 g / L.

【0038】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.1、上記セシ
ウム化合物の含有量比は0.33であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.1, and the content ratio of the cesium compound was 0.33.

【0039】(実施例5)上記被覆厚比を0.25とし
た以外は、実施例3と同様の操作を繰り返して、本例の
排気ガス浄化触媒を得た。
Example 5 An exhaust gas purifying catalyst of this example was obtained by repeating the same operation as in Example 3 except that the coating thickness ratio was 0.25.

【0040】(実施例6)上記被覆厚比を0.9とした
以外は、実施例3と同様の操作を繰り返して、本例の排
気ガス浄化触媒を得た。
Example 6 An exhaust gas purifying catalyst of this example was obtained by repeating the same operation as in Example 3 except that the coating thickness ratio was 0.9.

【0041】(実施例7)比上面側積が180mの活
性アルミナに硝酸パラジウム溶液を含浸し、乾燥後空気
中400℃で1時間焼成して、粉末Gを得た。この粉末
のPd濃度は0.8%であった。比上面側積が180m
の活性アルミナに硝酸パラジウム溶液を含浸し、乾燥
後空気中400℃で1時間焼成して、粉末Hを得た。こ
の粉末のPd濃度は0.4%であった。粉末Hを22
1.1g、粉末Eを503.7g、粉末Fを42.3
g、活性アルミナを87.9g、アルミナゾルを45
g、水900gを磁性ボールミルに投入し、混合粉砕し
てスラリ液を得た。このスラリ液をコーデェライト質モ
ノリス担体(1.2L、900セル)に付着させ、空気
流にてセル内の余剰のスラリを取り除いて130℃で乾
燥した後、400℃で1時間焼成し、触媒成分部300
g/Lの触媒を得た。この触媒成分部上に、粉末Gを1
65.6g、粉末Dを378g、粉末Fを63.5g、
粉末Bを212.4g、活性アルミナを35.5g、ア
ルミナゾルを45g、水900gを磁性ボールミルに投
入し、混合粉砕して得たスラリ液を付着させ、空気流に
てセル内の余剰のスラリを取り除いて130℃で乾燥し
た後、400℃で1時間焼成し、触媒成分部200g/
Lの触媒を得た。この触媒を酢酸セシウム、酢酸セリウ
ムの混合水溶液中に浸漬し、触媒中にセシウム、セリウ
ムを含浸した。セシウム量はCsOとして50g/
L、セリウム量はCeOとして10g/Lである。ま
た、含浸以外のCe量は28.2g/Lである。
Example 7 Powder G was obtained by impregnating activated alumina having a specific surface area of 180 m 2 with a palladium nitrate solution, drying and firing at 400 ° C. for 1 hour in air. The Pd concentration of this powder was 0.8%. Specific surface side product is 180m
The activated alumina of 2 was impregnated with a palladium nitrate solution, dried and then calcined in air at 400 ° C. for 1 hour to obtain a powder H. The Pd concentration of this powder was 0.4%. 22 powder H
1.1 g, powder E 503.7 g, powder F 42.3
g, activated alumina 87.9 g, alumina sol 45
g and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite-based monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the mixture was dried at 130 ° C and then calcined at 400 ° C for 1 hour to obtain a catalyst. Ingredient part 300
g / L of catalyst was obtained. On this catalyst component part, 1 powder G
65.6 g, powder D 378 g, powder F 63.5 g,
Powder B (212.4 g), activated alumina (35.5 g), alumina sol (45 g) and water (900 g) were charged into a magnetic ball mill, and the slurry liquid obtained by mixing and pulverizing was attached to remove excess slurry in the cell by air flow. After removing and drying at 130 ° C, it was calcined at 400 ° C for 1 hour to obtain a catalyst component of 200 g /
L catalyst was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is 50 g / Cs 2 O
The amount of L and cerium is 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation is 28.2 g / L.

【0042】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.45であった。また、Pt
/Pd比は3、Pd/Pd比は1、(Pt+Pd)
/Rh比は5であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.45. Also, Pt
/ Pd ratio is 3, Pd U / Pd L ratio is 1, (Pt + Pd)
The / Rh ratio was 5.

【0043】(実施例8)粉末Hを441.9g、粉末
Eを282.9g、粉末Fを42.3g、活性アルミナ
を87.9g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕してスラリ液を得た。
このスラリ液をコーデェライト質モノリス担体(1.2
L、900セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、触媒成分部300g/Lの触媒を得
た。この触媒成分部上に、粉末Dを543.6g、粉末
Fを63.5g、粉末Bを212.4g、活性アルミナ
を35.5g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕して得たスラリ液を付
着させ、空気流にてセル内の余剰のスラリを取り除いて
130℃で乾燥した後、400℃で1時間焼成し、触媒
成分部200g/Lの触媒を得た。この触媒を酢酸セシ
ウム、酢酸セリウムの混合水溶液中に浸漬し、触媒中に
セシウム、セリウムを含浸した。セシウム量はCs
として50g/L、セリウム量はCeOとして10g
/Lである。また、含浸以外のCe量は28.2g/L
である。
(Example 8) 441.9 g of powder H, 282.9 g of powder E, 42.3 g of powder F, 87.9 g of activated alumina, 45 g of alumina sol and 900 g of water were put into a magnetic ball mill and mixed. It was crushed to obtain a slurry liquid.
This slurry liquid is used as a cordierite monolith carrier (1.2
L, 900 cells), remove excess slurry in the cells by air flow and dry at 130 ° C, then 400 ° C
It was calcined for 1 hour to obtain a catalyst of 300 g / L of catalyst component. On this catalyst component part, 543.6 g of powder D, 63.5 g of powder F, 212.4 g of powder B, 35.5 g of activated alumina, 45 g of alumina sol, and 900 g of water were charged into a magnetic ball mill, and mixed and ground. The slurry thus obtained was adhered, excess slurry in the cell was removed by an air stream, and the slurry was dried at 130 ° C. and then calcined at 400 ° C. for 1 hour to obtain a catalyst component part of 200 g / L catalyst. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is Cs 2 O
Is 50 g / L, and the amount of cerium is 10 g as CeO 2.
/ L. Also, the amount of Ce other than impregnation is 28.2 g / L
Is.

【0044】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.45であった。また、Pt
/Pd比は3、Pd/Pd比は0、(Pt+Pd)
/Rh比は5であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.45. Also, Pt
/ Pd ratio is 3, Pd U / Pd L ratio is 0, (Pt + Pd)
The / Rh ratio was 5.

【0045】(実施例9)粉末Hを401.7g、粉末
Eを323.3g、粉末Fを42.3g、活性アルミナ
を87.7g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕してスラリ液を得た。
このスラリ液をコーデェライト質モノリス担体(1.2
L、900セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、触媒成分部300g/Lの触媒を得
た。この触媒成分部上に、粉末Gを301.1g、粉末
Dを242.6g、粉末Fを63.5g、粉末Bを21
2.4g、活性アルミナを35.4g、アルミナゾルを
45g、水900gを磁性ボールミルに投入し、混合粉
砕して得たスラリ液を付着させ、空気流にてセル内の余
剰のスラリを取り除いて130℃で乾燥した後、400
℃で1時間焼成し、触媒成分部200g/Lの触媒を得
た。この触媒を酢酸セシウム、酢酸セリウムの混合水溶
液中に浸漬し、触媒中にセシウム、セリウムを含浸し
た。セシウム量はCsOとして50g/L、セリウム
量はCeOとして10g/Lであった。また、含浸以
外のCe量は28.2g/Lであった。
(Example 9) 401.7 g of powder H, 323.3 g of powder E, 42.3 g of powder F, 87.7 g of activated alumina, 45 g of alumina sol and 900 g of water were charged into a magnetic ball mill and mixed. It was crushed to obtain a slurry liquid.
This slurry liquid is used as a cordierite monolith carrier (1.2
L, 900 cells), remove excess slurry in the cells by air flow and dry at 130 ° C, then 400 ° C
It was calcined for 1 hour to obtain a catalyst of 300 g / L of catalyst component. On this catalyst component part, 301.1 g of powder G, 242.6 g of powder D, 63.5 g of powder F and 21 of powder B were placed.
2.4 g of activated alumina, 35.4 g of activated alumina, 45 g of alumina sol, and 900 g of water were put into a magnetic ball mill, and the slurry liquid obtained by mixing and pulverizing was attached to the slurry, and the excess slurry in the cell was removed by an air flow. 400 after drying at ℃
The mixture was calcined at 0 ° C. for 1 hour to obtain a catalyst component part of 200 g / L. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium was 50 g / L as Cs 2 O, and the amount of cerium was 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation was 28.2 g / L.

【0046】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.45であった。また、Pt
/Pd比は1.2、Pd/Pd比は1、(Pt+P
d)/Rh比は5であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.45. Also, Pt
/ Pd ratio is 1.2, Pd U / Pd L ratio is 1, (Pt + P
The d) / Rh ratio was 5.

【0047】(実施例10)粉末Hを176.7g、粉
末Eを548.1g、粉末Fを42.3g、活性アルミ
ナを87.9g、アルミナゾルを45g、水900gを
磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液をコーデェライト質モノリス担体
(1.2L、900セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、触媒成分部300g/Lの触
媒を得た。この触媒成分部上に、粉末Gを132.3
g、粉末Dを411.3g、粉末Fを63.5g、粉末
Bを212.4g、活性アルミナを35.5g、アルミ
ナゾルを45g、水900gを磁性ボールミルに投入
し、混合粉砕して得たスラリ液を付着させ、空気流にて
セル内の余剰のスラリを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、触媒成分部200g/L
の触媒を得た。この触媒を酢酸セシウム、酢酸セリウム
の混合水溶液中に浸漬し、触媒中にセシウム、セリウム
を含浸した。セシウム量はCsOとして50g/L、
セリウム量はCeOとして10g/Lであった。ま
た、含浸以外のCe量は28.2g/Lであった。
(Example 10) 176.7 g of powder H, 548.1 g of powder E, 42.3 g of powder F, 87.9 g of activated alumina, 45 g of alumina sol and 900 g of water were charged into a magnetic ball mill and mixed. It was crushed to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the slurry was dried at 130 ° C.
The mixture was calcined at 400 ° C. for 1 hour to obtain a catalyst having a catalyst component portion of 300 g / L. On this catalyst component part, powder G is 132.3
g, powder D 411.3 g, powder F 63.5 g, powder B 212.4 g, activated alumina 35.5 g, alumina sol 45 g, and water 900 g were charged into a magnetic ball mill and mixed to obtain a slurry. The liquid is allowed to adhere, excess slurry in the cell is removed by air flow, and the cell is dried at 130 ° C. and then calcined at 400 ° C. for 1 hour to obtain a catalyst component portion of 200 g / L.
The catalyst was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is 50 g / L as Cs 2 O,
The amount of cerium was 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation was 28.2 g / L.

【0048】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.45であった。また、Pt
/Pd比は4、Pd/Pd比は1、(Pt+Pd)
/Rh比は5であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.45. Also, Pt
/ Pd ratio is 4, Pd U / Pd L ratio is 1, (Pt + Pd)
The / Rh ratio was 5.

【0049】(実施例11)粉末Hを198.8g、粉
末Eを437.9g、粉末Fを42.3g、活性アルミ
ナを176g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕してスラリ液を得た。
このスラリ液をコーデェライト質モノリス担体(1.2
L、900セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、触媒成分部300g/Lの触媒を得
た。この触媒成分部上に、粉末Gを149.1g、粉末
Dを328.4g、粉末Fを63.5g、粉末Bを31
8.2g、アルミナゾルを40.8g、水900gを磁
性ボールミルに投入し、混合粉砕して得たスラリ液を付
着させ、空気流にてセル内の余剰のスラリを取り除いて
130℃で乾燥した後、400℃で1時間焼成し、触媒
成分部200g/Lの触媒を得た。この触媒を酢酸セシ
ウム、酢酸セリウムの混合水溶液中に浸漬し、触媒中に
セシウム、セリウムを含浸した。セシウム量はCs
として50g/L、セリウム量はCeOとして10g
/Lである。また、含浸以外のCe量は28.2g/L
である。
(Example 11) 198.8 g of powder H, 437.9 g of powder E, 42.3 g of powder F, 176 g of activated alumina, 45 g of alumina sol and 900 g of water were charged into a magnetic ball mill and mixed and pulverized. The slurry liquid was obtained.
This slurry liquid is used as a cordierite monolith carrier (1.2
L, 900 cells), remove excess slurry in the cells by air flow and dry at 130 ° C, then 400 ° C
It was calcined for 1 hour to obtain a catalyst of 300 g / L of catalyst component. On this catalyst component part, 149.1 g of powder G, 328.4 g of powder D, 63.5 g of powder F and 31 of powder B were added.
8.2 g, 40.8 g of alumina sol, and 900 g of water were put into a magnetic ball mill, and a slurry liquid obtained by mixing and pulverizing was attached to remove excess slurry in the cell by an air flow and dried at 130 ° C. And calcined at 400 ° C. for 1 hour to obtain a catalyst having a catalyst component portion of 200 g / L. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is Cs 2 O
Is 50 g / L, and the amount of cerium is 10 g as CeO 2.
/ L. Also, the amount of Ce other than impregnation is 28.2 g / L
Is.

【0050】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.45であった。また、Pt
/Pd比は3、Pd/Pd比は1、(Pt+Pd)
/Rh比は3であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.45. Also, Pt
/ Pd ratio is 3, Pd U / Pd L ratio is 1, (Pt + Pd)
The / Rh ratio was 3.

【0051】(実施例12)粉末Hを241.2g、粉
末Eを564.6g、粉末Fを42.3g、活性アルミ
ナを6.9g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕してスラリ液を得た。
このスラリ液をコーデェライト質モノリス担体(1.2
L、900セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、触媒成分部300g/Lの触媒を得
た。この触媒成分部上に、粉末Gを180.9g、粉末
Dを423.5g、粉末Fを63.5g、粉末Bを11
5.7g、活性アルミナを71.4g、アルミナゾルを
45g、水900gを磁性ボールミルに投入し、混合粉
砕して得たスラリ液を付着させ、空気流にてセル内の余
剰のスラリを取り除いて130℃で乾燥した後、400
℃で1時間焼成し、触媒成分部200g/Lの触媒を得
た。この触媒を酢酸セシウム、酢酸セリウムの混合水溶
液中に浸漬し、触媒中にセシウム、セリウムを含浸し
た。セシウム量はCsOとして50g/L、セリウム
量はCeOとして10g/Lである。また、含浸以外
のCe量は28.2g/Lである。
(Example 12) 241.2 g of powder H, 564.6 g of powder E, 42.3 g of powder F, 6.9 g of activated alumina, 45 g of alumina sol and 900 g of water were put into a magnetic ball mill and mixed. It was crushed to obtain a slurry liquid.
This slurry liquid is used as a cordierite monolith carrier (1.2
L, 900 cells), remove excess slurry in the cells by air flow and dry at 130 ° C, then 400 ° C
It was calcined for 1 hour to obtain a catalyst of 300 g / L of catalyst component. On this catalyst component part, 180.9 g of powder G, 423.5 g of powder D, 63.5 g of powder F, and 11 of powder B were placed.
5.7 g, activated alumina 71.4 g, alumina sol 45 g, and water 900 g were put into a magnetic ball mill, and the slurry liquid obtained by mixing and pulverizing was attached, and excess slurry in the cell was removed by an air flow to remove 130 400 after drying at ℃
The mixture was calcined at 0 ° C. for 1 hour to obtain a catalyst component part of 200 g / L. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is 50 g / L as Cs 2 O, and the amount of cerium is 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation is 28.2 g / L.

【0052】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.45であった。また、Pt
/Pd比は3、Pd/Pd比は1、(Pt+Pd)
/Rh比は10であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.45. Also, Pt
/ Pd ratio is 3, Pd U / Pd L ratio is 1, (Pt + Pd)
The / Rh ratio was 10.

【0053】(実施例13)実施例3で得られた触媒成
分部を、酢酸セリウム水溶液中に浸漬し、触媒中にセリ
ウムを含浸した。次いで、この触媒を酢酸セシウム水溶
液中に浸漬し、触媒中にセシウムを含浸した。セシウム
量はCsOとして50g/L、セリウム量はCeO
として10g/Lである。また、含浸以外のCe量は2
8.2g/Lである。
Example 13 The catalyst component part obtained in Example 3 was immersed in an aqueous cerium acetate solution to impregnate the catalyst with cerium. Then, the catalyst was immersed in an aqueous cesium acetate solution to impregnate the catalyst with cesium. The amount of cesium is 50 g / L as Cs 2 O, and the amount of cerium is CeO 2
Is 10 g / L. The amount of Ce other than impregnation is 2
It is 8.2 g / L.

【0054】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.40であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.40.

【0055】(実施例14)比上面側積が180m
活性アルミナに硝酸セリウム溶液を含浸し、乾燥後空気
中400℃で1時間焼成して、粉末を得た。この粉末の
Ce濃度は5.6%であった。この粉末にジニトロジア
ミン白金溶液を含浸し、乾燥後空気中400℃で1時間
焼成して、粉末Iを得た。この粉末のPt濃度は0.8
%であった。比上面側積が180mの活性アルミナに
硝酸セリウム溶液を含浸し、乾燥後空気中400℃で1
時間焼成して、粉末を得た。この粉末のCe濃度は1.
3%であった。この粉末にジニトロジアミン白金溶液を
含浸し、乾燥後空気中400℃で1時間焼成して、粉末
Jを得た。この粉末のPt濃度は0.4%であった。粉
末Jを724.5g、粉末Fを42.3g、活性アルミ
ナを88.2g、アルミナゾルを45g、水900gを
磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液をコーデェライト質モノリス担体
(1.2L、900セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、触媒成分部300g/Lの触
媒を得た。この触媒成分部上に、粉末Iを543.6
g、粉末Fを63.5g、粉末Bを212.4g、活性
アルミナを35.5g、アルミナゾルを45g、水90
0gを磁性ボールミルに投入し、混合粉砕して得たスラ
リ液を付着させ、空気流にてセル内の余剰のスラリを取
り除いて130℃で乾燥した後、400℃で1時間焼成
し、触媒成分部200g/Lの触媒を得た。この触媒の
セリウム量はCeOとして38.2g/Lである。こ
の触媒を酢酸セシウム水溶液中に浸漬し、触媒中にセシ
ウムを含浸した。セシウム量はCs Oとして50g/
Lである。
(Embodiment 14) Specific upper surface side product is 180 mTwoof
Activated alumina is impregnated with cerium nitrate solution, dried and then air
The powder was obtained by baking at 400 ° C. for 1 hour. Of this powder
The Ce concentration was 5.6%. Dinitrodia in this powder
Impregnate with minplatinum solution and dry for 1 hour at 400 ℃ in air
Calcination gave powder I. The Pt concentration of this powder is 0.8
%Met. Specific surface side product is 180mTwoOf activated alumina
After impregnating with cerium nitrate solution and drying, 1 at 400 ℃ in air
It was calcined for a time to obtain a powder. The Ce concentration of this powder was 1.
It was 3%. Dinitrodiamine platinum solution to this powder
Impregnate and dry, then burn in air at 400 ° C for 1 hour to obtain powder
I got J. The Pt concentration of this powder was 0.4%. powder
724.5 g of powder J, 42.3 g of powder F, activated aluminum
88.2g of water, 45g of alumina sol, 900g of water
Put into a magnetic ball mill, mix and grind to obtain a slurry liquid.
It was This slurry liquid is used as a cordierite monolith carrier.
(1.2 L, 900 cells), and attach the cells by air flow
After removing the excess slurry inside and drying at 130 ℃,
Baking at 400 ℃ for 1 hour, touch the catalyst component part 300g / L
I got a medium. On this catalyst component part, powder I was added to 543.6.
g, powder F 63.5 g, powder B 212.4 g, activity
Alumina 35.5 g, alumina sol 45 g, water 90
Slurry obtained by putting 0 g into a magnetic ball mill and mixing and pulverizing
Liquid and attach excess liquid in the cell by air flow.
Removed and dried at 130 ° C, then baked at 400 ° C for 1 hour
Then, a catalyst having a catalyst component portion of 200 g / L was obtained. Of this catalyst
CeO is CeOTwoIs 38.2 g / L. This
Immersing the catalyst in a cesium acetate aqueous solution,
Impregnated with um. Cs amount is Cs Two50 g / O
It is L.

【0056】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.43であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.43.

【0057】(実施例15)粉末Eを60.3g、粉末
Fを42.3g、活性アルミナを752.4g、アルミ
ナゾルを45g、水900gを磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液をコー
デェライト質モノリス担体(1.2L、900セル)に
付着させ、空気流にてセル内の余剰のスラリを取り除い
て130℃で乾燥した後、400℃で1時間焼成し、触
媒成分部300g/Lの触媒を得た。この触媒成分部上
に、粉末Dを45g、粉末Fを63.5g、粉末Bを5
2.5g、活性アルミナを694g、アルミナゾルを4
5g、水900gを磁性ボールミルに投入し、混合粉砕
して得たスラリ液を付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、触媒成分部200g/Lの触媒を得
た。この触媒を酢酸セシウム、酢酸セリウムの混合水溶
液中に浸漬し、触媒中にセシウム、セリウムを含浸し
た。セシウム量はCsOとして50g/L、セリウム
量はCeOとして10g/Lである。また、含浸以外
のCe量は28.2g/Lである。
(Example 15) 60.3 g of powder E, 42.3 g of powder F, 752.4 g of activated alumina, 45 g of alumina sol and 900 g of water were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. It was This slurry liquid was attached to a cordierite-based monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the mixture was dried at 130 ° C and then calcined at 400 ° C for 1 hour to obtain a catalyst. A catalyst having a component part of 300 g / L was obtained. On this catalyst component part, 45 g of powder D, 63.5 g of powder F and 5 of powder B were added.
2.5g, activated alumina 694g, alumina sol 4
5 g of water and 900 g of water were put into a magnetic ball mill, and the slurry liquid obtained by mixing and pulverizing was adhered, and the excess slurry in the cell was removed by an air flow and dried at 130 ° C., then 400 ° C.
Calcination was carried out for 1 hour to obtain a catalyst having a catalyst component portion of 200 g / L. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is 50 g / L as Cs 2 O, and the amount of cerium is 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation is 28.2 g / L.

【0058】この触媒において、上記被覆厚比は0.6
7、上記セリウム化合物の含有量比は1.2、上記セシ
ウム化合物の含有量比は0.45であった。
In this catalyst, the coating thickness ratio is 0.6.
7. The content ratio of the cerium compound was 1.2, and the content ratio of the cesium compound was 0.45.

【0059】(実施例16)被覆厚比を0.2とした以
外は、実施例3と同様の操作を繰り返して、本例の排気
ガス浄化触媒を得た。
Example 16 An exhaust gas purifying catalyst of this example was obtained by repeating the same operation as in Example 3 except that the coating thickness ratio was 0.2.

【0060】(実施例17)被覆厚比を1.1とした以
外は、実施例3と同様の操作を繰り返して、本例の排気
ガス浄化触媒を得た。
Example 17 An exhaust gas purifying catalyst of this example was obtained by repeating the same operation as in Example 3 except that the coating thickness ratio was 1.1.

【0061】(実施例18)比上面側積が180m
活性アルミナに硝酸セリウム溶液を含浸し、乾燥後空気
中400℃で1時間焼成して、粉末を得た。この粉末の
Ce濃度は10.1%であった。この粉末にジニトロジ
アミン白金溶液を含浸し、乾燥後空気中400℃で1時
間焼成して、粉末Mを得た。この粉末のPt濃度は0.
8%であった。粉末Eを724.5g、粉末Fを35.
7g、活性アルミナを94.8g、アルミナゾルを45
g、水900gを磁性ボールミルに投入し、混合粉砕し
てスラリ液を得た。このスラリ液をコーデェライト質モ
ノリス担体(1.2L、900セル)に付着させ、空気
流にてセル内の余剰のスラリを取り除いて130℃で乾
燥した後、400℃で1時間焼成し、触媒成分部300
g/Lの触媒を得た。この触媒成分部上に、粉末Mを5
43.6g、粉末Fを63.5g、粉末Bを212.4
g、活性アルミナを35.5g、アルミナゾルを45
g、水900gを磁性ボールミルに投入し、混合粉砕し
て得たスラリ液を付着させ、空気流にてセル内の余剰の
スラリを取り除いて130℃で乾燥した後、400℃で
1時間焼成し、触媒成分部200g/Lの触媒を得た。
この触媒のセリウム量はCeOとして38.2g/L
であった。この触媒を酢酸セシウム水溶液中に浸漬し、
触媒中にセシウムを含浸した。セシウム量はCsOと
して50g/Lであった。この触媒の被覆厚比は0.6
7であり、セリウム化合物の量比は2.2、セシウム化
合物の量比は0.43である。
Example 18 Activated alumina having a specific surface area of 180 m 2 was impregnated with a cerium nitrate solution, dried and calcined in air at 400 ° C. for 1 hour to obtain a powder. The Ce concentration of this powder was 10.1%. This powder was impregnated with a dinitrodiamine platinum solution, dried and then baked in air at 400 ° C. for 1 hour to obtain a powder M. The Pt concentration of this powder is 0.
It was 8%. 724.5 g of powder E and 35.
7 g, activated alumina 94.8 g, alumina sol 45
g and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite-based monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the mixture was dried at 130 ° C and then calcined at 400 ° C for 1 hour to obtain a catalyst. Ingredient part 300
g / L of catalyst was obtained. On this catalyst component part, powder M
43.6 g, powder F 63.5 g, powder B 212.4 g
g, activated alumina 35.5 g, alumina sol 45
g, 900 g of water were charged into a magnetic ball mill, and a slurry liquid obtained by mixing and pulverizing was adhered, excess slurry in the cell was removed by an air stream, and the slurry was dried at 130 ° C., and then calcined at 400 ° C. for 1 hour. A catalyst having a catalyst component portion of 200 g / L was obtained.
The amount of cerium in this catalyst was 38.2 g / L as CeO 2.
Met. Immersing this catalyst in an aqueous solution of cesium acetate,
Cesium was impregnated in the catalyst. The amount of cesium was 50 g / L as Cs 2 O. The coating thickness ratio of this catalyst is 0.6
7, the amount ratio of the cerium compound is 2.2, and the amount ratio of the cesium compound is 0.43.

【0062】(実施例19)比上面側積が180m
活性アルミナに酢酸セシウム溶液を含浸し、乾燥後空気
中400℃で1時間焼成して、粉末を得た。この粉末の
Cs濃度は20.7%であった。この粉末にジニトロジ
アミン白金溶液を含浸し、乾燥後空気中400℃で1時
間焼成して、粉末Qを得た。この粉末のPt濃度は0.
4%であった。粉末Qを724.5g、粉末Fを42.
3g、活性アルミナを88.2g、アルミナゾルを45
g、水900gを磁性ボールミルに投入し、混合粉砕し
てスラリ液を得た。このスラリ液をコーデェライト質モ
ノリス担体(1.2L、900セル)に付着させ、空気
流にてセル内の余剰のスラリを取り除いて130℃で乾
燥した後、400℃で1時間焼成し、触媒成分部300
g/Lの触媒を得た。この触媒成分部上に、粉末Dを5
43.6g、粉末Fを63.5g、粉末Bを212.4
g、活性アルミナを35.5g、アルミナゾルを45
g、水900gを磁性ボールミルに投入し、混合粉砕し
て得たスラリ液を付着させ、空気流にてセル内の余剰の
スラリを取り除いて130℃で乾燥した後、400℃で
1時間焼成し、触媒成分部200g/Lの触媒を得た。
この触媒のセシウム量はCsOとして50g/Lであ
った。この触媒を酢酸セリウム水溶液中に浸漬し、触媒
中にセリウムを含浸した。セリウム量はCeO として
10g/Lであった。また、含浸以外のCe量は28.
2g/Lであった。この触媒の被覆厚比は0.67であ
り、セリウム化合物の量比は1.2、セシウム化合物の
量比は0.02であった。
(Example 19) Specific top surface side product is 180 mTwoof
Impregnate activated alumina with cesium acetate solution, dry and air
The powder was obtained by baking at 400 ° C. for 1 hour. Of this powder
The Cs concentration was 20.7%. Dinitrodi
Impregnated with amine platinum solution and dried at 400 ℃ in air for 1 hour
Firing was performed to obtain powder Q. The Pt concentration of this powder is 0.
It was 4%. 724.5 g of powder Q and 42.
3 g, activated alumina 88.2 g, alumina sol 45
g and 900 g of water are charged into a magnetic ball mill, mixed and ground.
The slurry liquid was obtained. This slurry liquid is used for cordierite
Attach it to a Norris carrier (1.2 L, 900 cells) and air
Remove excess slurry in the cell by flow and dry at 130 ° C.
After being dried, it is calcined at 400 ° C. for 1 hour, and the catalyst component part 300
g / L of catalyst was obtained. Onto this catalyst component part, powder D 5
43.6 g, powder F 63.5 g, powder B 212.4 g
g, activated alumina 35.5 g, alumina sol 45
g and 900 g of water are charged into a magnetic ball mill, mixed and ground.
The slurry liquid obtained from
After removing the slurry and drying at 130 ℃, at 400 ℃
The mixture was calcined for 1 hour to obtain a catalyst component portion of 200 g / L.
The amount of cesium in this catalyst is CsTwo50 g / L as O
It was. The catalyst is immersed in an aqueous cerium acetate solution to
It was impregnated with cerium. CeO is CeO TwoAs
It was 10 g / L. Moreover, the amount of Ce other than the impregnation is 28.
It was 2 g / L. The coating thickness ratio of this catalyst was 0.67.
The cerium compound amount ratio is 1.2, and the cesium compound
The quantity ratio was 0.02.

【0063】(実施例20)比上面側積が180m
活性アルミナに硝酸セリウム溶液を含浸し、乾燥後空気
中400℃で1時間焼成して、粉末を得た。この粉末の
Ce濃度は4.1%であった。この粉末にジニトロジア
ミン白金溶液を含浸し、乾燥後空気中400℃で1時間
焼成して、粉末Rを得た。この粉末のPt濃度は0.8
%であった。比上面側積が180mの活性アルミナに
硝酸セリウム溶液を含浸し、乾燥後空気中400℃で1
時間焼成して、粉末を得た。この粉末のCe濃度は2.
1%であった。この粉末にジニトロジアミン白金溶液を
含浸し、乾燥後空気中400℃で1時間焼成して、粉末
Sを得た。この粉末のPt濃度は0.4%であった。粉
末Sを724.5g、粉末Fを42.3g、活性アルミ
ナを88.2g、アルミナゾルを45g、水900gを
磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液をコーデェライト質モノリス担体
(1.2L、900セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、触媒成分部300g/Lの触
媒を得た。この触媒成分部上に、粉末Rを543.6
g、粉末Fを63.5g、粉末Bを212.4g、活性
アルミナを35.5g、アルミナゾルを45g、水90
0gを磁性ボールミルに投入し、混合粉砕して得たスラ
リ液を付着させ、空気流にてセル内の余剰のスラリを取
り除いて130℃で乾燥した後、400℃で1時間焼成
し、触媒成分部200g/Lの触媒を得た。この触媒の
セリウム量はCeOとして38.2g/Lであった。
この触媒を酢酸セシウム水溶液中に浸漬し、触媒中にセ
シウムを含浸した。セシウム量はCsOとして50g
/Lであった。この触媒の被覆厚比は0.67であり、
セリウム化合物の量比は1.0、セシウム化合物の量比
は0.43であった。
(Example 20) Activated alumina having a specific surface area of 180 m 2 was impregnated with a cerium nitrate solution, dried and then calcined in air at 400 ° C for 1 hour to obtain a powder. The Ce concentration of this powder was 4.1%. This powder was impregnated with a dinitrodiamine platinum solution, dried and then baked in air at 400 ° C. for 1 hour to obtain a powder R. The Pt concentration of this powder is 0.8
%Met. Activated alumina having a specific surface area of 180 m 2 was impregnated with a cerium nitrate solution, dried, and then dried at 400 ° C. in air for 1 hour.
It was calcined for a time to obtain a powder. The Ce concentration of this powder is 2.
It was 1%. This powder was impregnated with a dinitrodiamine platinum solution, dried and then baked in air at 400 ° C. for 1 hour to obtain a powder S. The Pt concentration of this powder was 0.4%. 724.5 g of powder S, 42.3 g of powder F, 88.2 g of activated alumina, 45 g of alumina sol and 900 g of water were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the slurry was dried at 130 ° C.
The mixture was calcined at 400 ° C. for 1 hour to obtain a catalyst having a catalyst component portion of 300 g / L. On this catalyst component part, powder R was added to 543.6.
g, powder F 63.5 g, powder B 212.4 g, activated alumina 35.5 g, alumina sol 45 g, water 90
0 g was put into a magnetic ball mill, the slurry liquid obtained by mixing and pulverizing was adhered, the excess slurry in the cell was removed by an air flow, and the mixture was dried at 130 ° C. and then calcined at 400 ° C. for 1 hour to obtain a catalyst component. Part of 200 g / L of catalyst was obtained. The cerium amount of this catalyst was 38.2 g / L as CeO 2 .
The catalyst was dipped in an aqueous solution of cesium acetate to impregnate the catalyst with cesium. The amount of cesium is 50 g as Cs 2 O
Was / L. The coating thickness ratio of this catalyst is 0.67,
The amount ratio of the cerium compound was 1.0, and the amount ratio of the cesium compound was 0.43.

【0064】(実施例21)粉末Hを110.4g、粉
末Eを614.4g、粉末Fを42.3g、活性アルミ
ナを87.9g、アルミナゾルを45g、水900gを
磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液をコーデェライト質モノリス担体
(1.2L、900セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、触媒成分部300g/Lの触
媒を得た。この触媒成分部上に、粉末Gを248.4
g、粉末Dを295.2g、粉末Fを63.5g、粉末
Bを212.4g、活性アルミナを35.5g、アルミ
ナゾルを45g、水900gを磁性ボールミルに投入
し、混合粉砕して得たスラリ液を付着させ、空気流にて
セル内の余剰のスラリを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、触媒成分部200g/L
の触媒を得た。この触媒を酢酸セシウム、酢酸セリウム
の混合水溶液中に浸漬し、触媒中にセシウム、セリウム
を含浸した。セシウム量はCsOとして50g/L、
セリウム量はCeOとして10g/Lであった。ま
た、含浸以外のCe量は28.2g/Lであった。この
触媒の被覆厚比は0.67であり、セリウム化合物の量
比は1.2、セシウム化合物の量比は0.45であっ
た。また、Pt/Pd比は3、Pd/Pd比は3、
(Pt+Pd)/Rh比は5であった。
(Example 21) 110.4 g of powder H, 614.4 g of powder E, 42.3 g of powder F, 87.9 g of activated alumina, 45 g of alumina sol and 900 g of water were charged into a magnetic ball mill and mixed. It was crushed to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the slurry was dried at 130 ° C.
The mixture was calcined at 400 ° C. for 1 hour to obtain a catalyst having a catalyst component portion of 300 g / L. On the catalyst component part, powder G is 248.4.
g, powder D 295.2 g, powder F 63.5 g, powder B 212.4 g, activated alumina 35.5 g, alumina sol 45 g, water 900 g were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry. The liquid is allowed to adhere, excess slurry in the cell is removed by air flow, and the cell is dried at 130 ° C. and then calcined at 400 ° C. for 1 hour to obtain a catalyst component portion of 200 g / L.
The catalyst was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is 50 g / L as Cs 2 O,
The amount of cerium was 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation was 28.2 g / L. The coating thickness ratio of this catalyst was 0.67, the amount ratio of the cerium compound was 1.2, and the amount ratio of the cesium compound was 0.45. Also, the Pt / Pd ratio is 3, the Pd U / Pd L ratio is 3,
The (Pt + Pd) / Rh ratio was 5.

【0065】(実施例22)粉末Hを490.8g、粉
末Eを234g、粉末Fを42.3g、活性アルミナを
87.9g、アルミナゾルを45g、水900gを磁性
ボールミルに投入し、混合粉砕してスラリ液を得た。こ
のスラリ液をコーデェライト質モノリス担体(1.2
L、900セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、触媒成分部300g/Lの触媒を得
た。この触媒成分部上に、粉末Gを368.1g、粉末
Dを175.5g、粉末Fを63.5g、粉末Bを21
2.4g、活性アルミナを35.5g、アルミナゾルを
45g、水900gを磁性ボールミルに投入し、混合粉
砕して得たスラリ液を付着させ、空気流にてセル内の余
剰のスラリを取り除いて130℃で乾燥した後、400
℃で1時間焼成し、触媒成分部200g/Lの触媒を得
た。この触媒を酢酸セシウム、酢酸セリウムの混合水溶
液中に浸漬し、触媒中にセシウム、セリウムを含浸し
た。セシウム量はCsOとして50g/L、セリウム
量はCeOとして10g/Lであった。また、含浸以
外のCe量は28.2g/Lであった。この触媒の被覆
厚比は0.67であり、セリウム化合物の量比は1.
2、セシウム化合物の量比は0.45であった。また、
Pt/Pd比は0.8、Pd/Pd比は1、(Pt
+Pd)/Rh比は5であった。
(Example 22) 490.8 g of powder H, 234 g of powder E, 42.3 g of powder F, 87.9 g of activated alumina, 45 g of alumina sol, 900 g of water were charged into a magnetic ball mill and mixed and ground. The slurry liquid was obtained. This slurry liquid is used as a cordierite monolith carrier (1.2
L, 900 cells), remove excess slurry in the cells by air flow and dry at 130 ° C, then 400 ° C
It was calcined for 1 hour to obtain a catalyst of 300 g / L of catalyst component. On this catalyst component part, 368.1 g of powder G, 175.5 g of powder D, 63.5 g of powder F, and 21 of powder B were added.
2.4 g of activated alumina, 35.5 g of activated alumina, 45 g of alumina sol, and 900 g of water were put into a magnetic ball mill, and the slurry liquid obtained by mixing and pulverizing was attached, and the excess slurry in the cell was removed by an air flow. 400 after drying at ℃
The mixture was calcined at 0 ° C. for 1 hour to obtain a catalyst component part of 200 g / L. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium was 50 g / L as Cs 2 O, and the amount of cerium was 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation was 28.2 g / L. The coating thickness ratio of this catalyst was 0.67, and the amount ratio of the cerium compound was 1.
2 and the amount ratio of the cesium compound was 0.45. Also,
The Pt / Pd ratio is 0.8, the Pd U / Pd L ratio is 1, (Pt
The + Pd) / Rh ratio was 5.

【0066】(実施例23)粉末Hを147.3g、粉
末Eを577.5g、粉末Fを42.3g、活性アルミ
ナを87.9g、アルミナゾルを45g、水900gを
磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液をコーデェライト質モノリス担体
(1.2L、900セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、触媒成分部300g/Lの触
媒を得た。この触媒成分部上に、粉末Gを110.3
g、粉末Dを433.4g、粉末Fを63.5g、粉末
Bを212.4g、活性アルミナを35.4g、アルミ
ナゾルを45g、水900gを磁性ボールミルに投入
し、混合粉砕して得たスラリ液を付着させ、空気流にて
セル内の余剰のスラリを取り除いて130℃で乾燥した
後、400℃で1時間焼成し、触媒成分部200g/L
の触媒を得た。この触媒を酢酸セシウム、酢酸セリウム
の混合水溶液中に浸漬し、触媒中にセシウム、セリウム
を含浸した。セシウム量はCsOとして50g/L、
セリウム量はCeOとして10g/Lであった。ま
た、含浸以外のCe量は28.2g/Lであった。この
触媒の被覆厚比は0.67であり、セリウム化合物の量
比は1.2、セシウム化合物の量比は0.45であっ
た。また、Pt/Pd比は5、Pd/Pd比は1、
(Pt+Pd)/Rh比は5であった。
(Example 23) 147.3 g of powder H, 577.5 g of powder E, 42.3 g of powder F, 87.9 g of activated alumina, 45 g of alumina sol and 900 g of water were put into a magnetic ball mill and mixed. It was crushed to obtain a slurry liquid. This slurry liquid was attached to a cordierite monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the slurry was dried at 130 ° C.
The mixture was calcined at 400 ° C. for 1 hour to obtain a catalyst having a catalyst component portion of 300 g / L. On this catalyst component part, powder G
g, powder D 433.4 g, powder F 63.5 g, powder B 212.4 g, activated alumina 35.4 g, alumina sol 45 g, and water 900 g were charged into a magnetic ball mill and mixed to obtain a slurry. The liquid is allowed to adhere, excess slurry in the cell is removed by air flow, and the cell is dried at 130 ° C. and then calcined at 400 ° C. for 1 hour to obtain a catalyst component portion of 200 g / L.
The catalyst was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is 50 g / L as Cs 2 O,
The amount of cerium was 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation was 28.2 g / L. The coating thickness ratio of this catalyst was 0.67, the amount ratio of the cerium compound was 1.2, and the amount ratio of the cesium compound was 0.45. Further, the Pt / Pd ratio is 5, the Pd U / Pd L ratio is 1,
The (Pt + Pd) / Rh ratio was 5.

【0067】(実施例24)粉末Hを244.8g、粉
末Eを575.7g、粉末Fを42.3g、アルミナゾ
ルを37.2g、水900gを磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液をコー
デェライト質モノリス担体(1.2L、900セル)に
付着させ、空気流にてセル内の余剰のスラリを取り除い
て130℃で乾燥した後、400℃で1時間焼成し、触
媒成分部300g/Lの触媒を得た。この触媒成分部上
に、粉末Gを183.6g、粉末Dを431.6g、粉
末Fを63.5g、粉末Bを98.1g、活性アルミナ
を78.2g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕して得たスラリ液を付
着させ、空気流にてセル内の余剰のスラリを取り除いて
130℃で乾燥した後、400℃で1時間焼成し、触媒
成分部200g/Lの触媒を得た。この触媒を酢酸セシ
ウム、酢酸セリウムの混合水溶液中に浸漬し、触媒中に
セシウム、セリウムを含浸した。セシウム量はCs
として50g/L、セリウム量はCeOとして10g
/Lであった。また、含浸以外のCe量は28.2g/
Lであった。この触媒の被覆厚比は0.67であり、セ
リウム化合物の量比は1.2、セシウム化合物の量比は
0.45であった。また、Pt/Pd比は3、Pd
Pd比は1、(Pt+Pd)/Rh比は12であっ
た。
(Example 24) 244.8 g of powder H, 575.7 g of powder E, 42.3 g of powder F, 37.2 g of alumina sol and 900 g of water were charged into a magnetic ball mill, mixed and pulverized to obtain a slurry liquid. Got This slurry liquid was attached to a cordierite-based monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the mixture was dried at 130 ° C and then calcined at 400 ° C for 1 hour to obtain a catalyst. A catalyst having a component part of 300 g / L was obtained. On this catalyst component part, 183.6 g of powder G, 431.6 g of powder D, 63.5 g of powder F, 98.1 g of powder B, 78.2 g of activated alumina, 45 g of alumina sol, and 900 g of water were magnetized. The resulting mixture was put into a ball mill, and the slurry liquid obtained by mixing and pulverizing was adhered to the slurry, and the excess slurry in the cell was removed by an air stream and dried at 130 ° C., followed by calcination at 400 ° C. for 1 hour to obtain a catalyst component portion of 200 g / L catalyst was obtained. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium is Cs 2 O
Is 50 g / L, and the amount of cerium is 10 g as CeO 2.
Was / L. The amount of Ce other than impregnation is 28.2 g /
It was L. The coating thickness ratio of this catalyst was 0.67, the amount ratio of the cerium compound was 1.2, and the amount ratio of the cesium compound was 0.45. Also, the Pt / Pd ratio is 3, Pd U /
The Pd L ratio was 1 and the (Pt + Pd) / Rh ratio was 12.

【0068】(実施例25)粉末Eを44.4g、粉末
Fを42.3g、活性アルミナを768.3g、アルミ
ナゾルを45g、水900gを磁性ボールミルに投入
し、混合粉砕してスラリ液を得た。このスラリ液をコー
デェライト質モノリス担体(1.2L、900セル)に
付着させ、空気流にてセル内の余剰のスラリを取り除い
て130℃で乾燥した後、400℃で1時間焼成し、触
媒成分部300g/Lの触媒を得た。この触媒成分部上
に、粉末Dを33.3g、粉末Fを63.5g、粉末B
を48.6g、活性アルミナを709.6g、アルミナ
ゾルを45g、水900gを磁性ボールミルに投入し、
混合粉砕して得たスラリ液を付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、触媒成分部200g/Lの触
媒を得た。この触媒を酢酸セシウム、酢酸セリウムの混
合水溶液中に浸漬し、触媒中にセシウム、セリウムを含
浸した。セシウム量はCsOとして50g/L、セリ
ウム量はCeOとして10g/Lであった。また、含
浸以外のCe量は28.2g/Lであった。この触媒の
被覆厚比は0.67であり、セリウム化合物の量比は
1.2、セシウム化合物の量比は0.43であった。
(Example 25) 44.4 g of powder E, 42.3 g of powder F, 768.3 g of activated alumina, 45 g of alumina sol and 900 g of water were charged into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. It was This slurry liquid was attached to a cordierite-based monolith carrier (1.2 L, 900 cells), excess slurry in the cells was removed by an air stream, and the mixture was dried at 130 ° C and then calcined at 400 ° C for 1 hour to obtain a catalyst. A catalyst having a component part of 300 g / L was obtained. On this catalyst component part, 33.3 g of powder D, 63.5 g of powder F, and powder B
48.6 g, activated alumina 709.6 g, alumina sol 45 g, and water 900 g into a magnetic ball mill,
After adhering the slurry liquid obtained by mixing and pulverizing, removing excess slurry in the cell with an air stream and drying at 130 ° C.,
The mixture was calcined at 400 ° C. for 1 hour to obtain a catalyst component portion of 200 g / L. This catalyst was immersed in a mixed aqueous solution of cesium acetate and cerium acetate to impregnate the catalyst with cesium and cerium. The amount of cesium was 50 g / L as Cs 2 O, and the amount of cerium was 10 g / L as CeO 2 . Moreover, the amount of Ce other than the impregnation was 28.2 g / L. The coating thickness ratio of this catalyst was 0.67, the amount ratio of the cerium compound was 1.2, and the amount ratio of the cesium compound was 0.43.

【0069】(比較例1)比上面側積が180mの活
性アルミナに硝酸セリウム溶液を含浸し、乾燥後空気中
400℃で1時間焼成して、粉末を得た。この粉末のC
e濃度は2.3%であった。この粉末にジニトロジアミ
ン白金溶液を含浸し、乾燥後空気中400℃で1時間焼
成して、粉末Kを得た。この粉末のPt濃度は0.8%
であった。比上面側積が180mの活性アルミナに硝
酸セリウム溶液を含浸し、乾燥後空気中400℃で1時
間焼成して、粉末を得た。この粉末のCe濃度は2.9
%であった。この粉末にジニトロジアミン白金溶液を含
浸し、乾燥後空気中400℃で1時間焼成して、粉末L
を得た。この粉末のPt濃度は0.4%であった。粉末
Lを724.5g、粉末Fを42.3g、活性アルミナ
を88.2g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕してスラリ液を得た。
このスラリ液をコーデェライト質モノリス担体(1.2
L、900セル)に付着させ、空気流にてセル内の余剰
のスラリを取り除いて130℃で乾燥した後、400℃
で1時間焼成し、触媒成分部300g/Lの触媒を得
た。この触媒成分部上に、粉末Kを543.6g、粉末
Fを63.5g、粉末Bを212.4g、活性アルミナ
を35.5g、アルミナゾルを45g、水900gを磁
性ボールミルに投入し、混合粉砕して得たスラリ液を付
着させ、空気流にてセル内の余剰のスラリを取り除いて
130℃で乾燥した後、400℃で1時間焼成し、触媒
成分部200g/Lの触媒を得た。この触媒のセリウム
量はCeOとして38.2g/Lであった。この触媒
を酢酸セシウム水溶液中に浸漬し、触媒中にセシウムを
含浸した。セシウム量はCsOとして50g/Lであ
った。この触媒の被覆厚比は0.67であり、セリウム
化合物の量比は0.8、セシウム化合物の量比は0.4
3であった。
Comparative Example 1 Activated alumina having a specific top surface side product of 180 m 2 was impregnated with a cerium nitrate solution, dried and then calcined in air at 400 ° C. for 1 hour to obtain a powder. C of this powder
The e concentration was 2.3%. This powder was impregnated with a dinitrodiamine platinum solution, dried and then baked in air at 400 ° C. for 1 hour to obtain a powder K. Pt concentration of this powder is 0.8%
Met. Activated alumina having a specific surface area of 180 m 2 was impregnated with a cerium nitrate solution, dried and calcined in air at 400 ° C. for 1 hour to obtain a powder. The Ce concentration of this powder is 2.9.
%Met. This powder was impregnated with a dinitrodiamine platinum solution, dried and then baked in air at 400 ° C. for 1 hour to give powder L.
Got The Pt concentration of this powder was 0.4%. 724.5 g of powder L, 42.3 g of powder F, 88.2 g of activated alumina, 45 g of alumina sol and 900 g of water were put into a magnetic ball mill, and mixed and pulverized to obtain a slurry liquid.
This slurry liquid is used as a cordierite monolith carrier (1.2
L, 900 cells), remove excess slurry in the cells by air flow and dry at 130 ° C, then 400 ° C
It was calcined for 1 hour to obtain a catalyst of 300 g / L of catalyst component. On this catalyst component part, 543.6 g of powder K, 63.5 g of powder F, 212.4 g of powder B, 35.5 g of activated alumina, 45 g of alumina sol, and 900 g of water were charged into a magnetic ball mill, and mixed and ground. The slurry thus obtained was adhered, excess slurry in the cell was removed by an air stream, and the slurry was dried at 130 ° C. and then calcined at 400 ° C. for 1 hour to obtain a catalyst component part of 200 g / L catalyst. The cerium amount of this catalyst was 38.2 g / L as CeO 2 . The catalyst was dipped in an aqueous solution of cesium acetate to impregnate the catalyst with cesium. The amount of cesium was 50 g / L as Cs 2 O. The coating thickness ratio of this catalyst was 0.67, the amount ratio of the cerium compound was 0.8, and the amount ratio of the cesium compound was 0.4.
It was 3.

【0070】(比較例2)比上面側積が180mの活
性アルミナに酢酸セシウム溶液を含浸し、乾燥後空気中
400℃で1時間焼成して、粉末を得た。この粉末のC
s濃度は24.8%であった。この粉末にジニトロジア
ミン白金溶液を含浸し、乾燥後空気中400℃で1時間
焼成して、粉末Oを得た。この粉末のPt濃度は0.8
%であった。比上面側積が180mの活性アルミナに
酢酸セシウム溶液を含浸し、乾燥後空気中400℃で1
時間焼成して、粉末を得た。この粉末のCs濃度は8.
3%であった。この粉末にジニトロジアミン白金溶液を
含浸し、乾燥後空気中400℃で1時間焼成して、粉末
Pを得た。この粉末のPt濃度は0.4%であった。粉
末Pを724.5g、粉末Fを42.3g、活性アルミ
ナを88.2g、アルミナゾルを45g、水900gを
磁性ボールミルに投入し、混合粉砕してスラリ液を得
た。このスラリ液をコーデェライト質モノリス担体
(1.2L、900セル)に付着させ、空気流にてセル
内の余剰のスラリを取り除いて130℃で乾燥した後、
400℃で1時間焼成し、触媒成分部300g/Lの触
媒を得た。この触媒成分部上に、粉末Oを543.6
g、粉末Fを63.5g、粉末Bを212.4g、活性
アルミナを35.5g、アルミナゾルを45g、水90
0gを磁性ボールミルに投入し、混合粉砕して得たスラ
リ液を付着させ、空気流にてセル内の余剰のスラリを取
り除いて130℃で乾燥した後、400℃で1時間焼成
し、触媒成分部200g/Lの触媒を得た。この触媒の
セシウム量はCsOとして50g/Lであった。この
触媒を酢酸セリウム水溶液中に浸漬し、触媒中にセリウ
ムを含浸した。セリウム量はCeO として10g/L
であった。また、含浸以外のCe量は28.2g/Lで
あった。この触媒の被覆厚比は0.67であり、セリウ
ム化合物の量比は1.2、セシウム化合物の量比は1.
3であった。
(Comparative Example 2) Specific upper surface side product is 180 mTwoLive
-Impregnated alumina with cesium acetate solution and dried in air
The powder was obtained by firing at 400 ° C. for 1 hour. C of this powder
The s concentration was 24.8%. Dinitrodia in this powder
Impregnate with minplatinum solution and dry for 1 hour at 400 ℃ in air
Calcination gave powder O. The Pt concentration of this powder is 0.8
%Met. Specific surface side product is 180mTwoOf activated alumina
Impregnate with cesium acetate solution, dry, and air at 400 ℃ for 1
It was calcined for a time to obtain a powder. The Cs concentration of this powder is 8.
It was 3%. Dinitrodiamine platinum solution to this powder
Impregnate and dry, then burn in air at 400 ° C for 1 hour to obtain powder
P was obtained. The Pt concentration of this powder was 0.4%. powder
724.5g powder P, 42.3g powder F, activated aluminum
88.2g of water, 45g of alumina sol, 900g of water
Put into a magnetic ball mill, mix and grind to obtain a slurry liquid.
It was This slurry liquid is used as a cordierite monolith carrier.
(1.2 L, 900 cells), and attach the cells by air flow
After removing the excess slurry inside and drying at 130 ℃,
Baking at 400 ℃ for 1 hour, touch the catalyst component part 300g / L
I got a medium. On this catalyst component part, powder O was added to 543.6.
g, powder F 63.5 g, powder B 212.4 g, activity
Alumina 35.5 g, alumina sol 45 g, water 90
Slurry obtained by putting 0 g into a magnetic ball mill and mixing and pulverizing
Liquid and attach excess liquid in the cell by air flow.
Removed and dried at 130 ° C, then baked at 400 ° C for 1 hour
Then, a catalyst having a catalyst component portion of 200 g / L was obtained. Of this catalyst
Cs amount is CsTwoIt was 50 g / L as O. this
Immerse the catalyst in an aqueous cerium acetate solution and
Impregnated with aluminum. CeO is CeO TwoAs 10g / L
Met. The amount of Ce other than impregnation is 28.2 g / L.
there were. The coating thickness ratio of this catalyst was 0.67.
The amount ratio of the aluminum compound is 1.2, and the amount ratio of the cesium compound is 1.
It was 3.

【0071】<評価試験> (耐久方法)排気量4400ccのエンジンの排気系に
触媒を装着し、国内レギュラーガソリン(S=10pp
m以下)を使用し、触媒入口温度を700℃とし、50
時間運転した。
<Evaluation test> (Durability method) A catalyst was attached to the exhaust system of an engine with a displacement of 4400 cc, and domestic regular gasoline (S = 10 pp
m or less), the catalyst inlet temperature is 700 ° C., and
I drove for hours.

【0072】(S被毒耐久)排気量2000ccのエン
ジンの排気系に触媒を装着し、S混入ガソリン(S=3
00ppm)を使用し、触媒入口温度を400℃とし、
5時間運転した。この時、リーン(A/F=25)走行
1分、リッチ走行(A/F=11.0)2秒という運転
を繰り返した。
(S poisoning endurance) A catalyst was attached to the exhaust system of an engine with a displacement of 2000 cc and gasoline mixed with S (S = 3
00 ppm), the catalyst inlet temperature is 400 ° C.,
I ran for 5 hours. At this time, the lean (A / F = 25) running for 1 minute and the rich running (A / F = 11.0) for 2 seconds were repeated.

【0073】(S被毒解除)排気量2000ccのエン
ジンの排気系に触媒を装着し、国内レギュラーガソリン
(S=10ppm以下)を使用し、触媒入口温度を70
0℃、A/F=14.2とし、10分間運転した。
(S poison removal) A catalyst was installed in the exhaust system of an engine with a displacement of 2000 cc, domestic regular gasoline (S = 10 ppm or less) was used, and the catalyst inlet temperature was 70
It was operated at 0 ° C. and A / F = 14.2 for 10 minutes.

【0074】(評価方法)排気量2000ccのエンジ
ンの排気系に触媒を装着して、700℃の50時間耐久
後、S被毒解除後の2点で、10−15モードを走行
し、モードの転化率を求めた。なお、モード中、定常走
行時はリーン(A/F=25)、減速時は燃料カット、
加速時は、リッチ(A/F=11.0、秒)→ストイキ
(A/F=14.3)という運転を行った。また、触媒
入口温度は400℃であった。この結果を表2に示す。
更に、同様の評価を本発明の触媒の前に三元触媒を配置
して行った。この結果を表3に示す。
(Evaluation method) A catalyst was attached to the exhaust system of an engine having a displacement of 2000 cc, and after running for 50 hours at 700 ° C., the 10-15 mode was run at two points after the release of S poisoning. The conversion rate was calculated. In the mode, lean (A / F = 25) during steady running, fuel cut during deceleration,
During acceleration, the operation was rich (A / F = 11.0, seconds) → stoichiometric (A / F = 14.3). The catalyst inlet temperature was 400 ° C. The results are shown in Table 2.
Further, the same evaluation was carried out by disposing a three-way catalyst before the catalyst of the present invention. The results are shown in Table 3.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【表2】 [Table 2]

【0077】[0077]

【表3】 [Table 3]

【0078】表1〜3より、本発明の好適範囲内である
実施例1〜25で得られた排気ガス浄化触媒は、比較例
1及び2で得られた排気ガス浄化触媒に比べて、優れた
性能を有することがわかる。特に実施例の触媒は、S被
毒前及びS被毒解除後のNOx転化性能に優れる。
From Tables 1 to 3, the exhaust gas purifying catalysts obtained in Examples 1 to 25, which are within the preferred range of the present invention, are superior to the exhaust gas purifying catalysts obtained in Comparative Examples 1 and 2. It can be seen that it has excellent performance. In particular, the catalysts of the examples are excellent in NOx conversion performance before S poisoning and after S poisoning removal.

【0079】以上、本発明を好適実施例により、詳細に
説明したが、本発明はこれら実施例に限定されるもので
はなく、本発明の要旨の範囲内において、種々の変形が
可能である。例えば、実施例の実験は全てガソリン車で
行ったが、ディーゼルエンジンでも同様の効果が得られ
る。
Although the present invention has been described in detail with reference to the preferred embodiments, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the gist of the present invention. For example, the experiments of the examples were all carried out on a gasoline vehicle, but the same effect can be obtained with a diesel engine.

【0080】[0080]

【発明の効果】以上説明してきたように、本発明によれ
ば、触媒成分近傍にセリウム化合物及びセシウム化合物
を一定の配置で含有させることとしたため、NOxを吸
着、脱離及び浄化でき、特にNOxの吸着性能に優れ、
S被毒を抑制し、また容易にS被毒を解除できる排気ガ
ス浄化触媒、その製造方法及び排気ガス浄化装置を提供
することができる。
As described above, according to the present invention, since the cerium compound and the cesium compound are contained in the vicinity of the catalyst component in a fixed arrangement, it is possible to adsorb, desorb and purify NOx, and particularly NOx. Has excellent adsorption performance of
It is possible to provide an exhaust gas purification catalyst that can suppress S poisoning and can easily remove S poisoning, a method for manufacturing the same, and an exhaust gas purification device.

【図面の簡単な説明】[Brief description of drawings]

【図1】アルカリ種とNOx吸着率との関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between alkali species and NOx adsorption rate.

【図2】コート層構造の概略を示す図である。FIG. 2 is a diagram showing an outline of a coat layer structure.

【図3】コート層構造の概略を示す図である。FIG. 3 is a diagram showing an outline of a coat layer structure.

【図4】Pt/Pd比とNOx転化率との関係を示すグ
ラフである。
FIG. 4 is a graph showing the relationship between the Pt / Pd ratio and the NOx conversion rate.

【図5】Pd/Pd比とNOx転化率との関係を示
すグラフである。
FIG. 5 is a graph showing the relationship between the Pd U / Pd L ratio and the NOx conversion rate.

【図6】炭酸バリウムのX線回折ピークを示す図であ
る。
FIG. 6 is a view showing an X-ray diffraction peak of barium carbonate.

【図7】Cs及びCeの含浸状況を示すEPMA像であ
る。
FIG. 7 is an EPMA image showing the impregnation state of Cs and Ce.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/20 F01N 3/24 C 3/24 3/28 301E 3/28 301 B01D 53/36 104A 102H Fターム(参考) 3G091 AA17 AB03 AB06 AB09 BA11 BA14 GA18 GB05W GB06W GB07W GB17X HA10 4D048 AA06 AA13 AA18 AB05 AB07 BA01X BA14X BA15X BA19X BA30X BA31X BA33X BA41X BA45X BB02 BB16 CC32 CC46 EA04 4G069 AA03 AA08 BA01A BA01B BA13B BA21C BB02A BB02B BB04A BB04B BB16A BB16B BC06A BC06B BC06C BC10A BC10B BC13A BC13B BC43A BC43B BC43C BC71A BC71B BC72A BC72B BC75A BC75B BE08C CA03 CA09 EA19 EB12Y EB15X EB15Y EC29 EE06 EE09 FA02 FB19 FC02 FC08 ─────────────────────────────────────────────────── ─── Continued Front Page (51) Int.Cl. 7 Identification Code FI Theme Coat (reference) F01N 3/20 F01N 3/24 C 3/24 3/28 301E 3/28 301 B01D 53/36 104A 102H F term (reference) 3G091 AA17 AB03 AB06 AB09 BA11 BA14 GA18 GB05W GB06W GB07W GB17X HA10 4D048 AA06 AA13 AA18 AB05 AB07 BA01X BA14X BA15X BA19X BA30X BA31X BA33X BA41X BA45X BB02 BB16 CC32 CC46 EA04 4G069 AA03 AA08 BA01A BA01B BA13B BA21C BB02A BB02B BB04A BB04B BB16A BB16B BC06A BC06B BC06C BC10A BC10B BC13A BC13B BC43A BC43B BC43C BC71A BC71B BC72A BC72B BC75A BC75B BE08C CA03 CA09 EA19 EB12Y EB15X EB15Y EC29 EE06 EE09 FA02 FB19 FC02 FC08

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 多孔質担体上に、セリウム化合物及びセ
シウム化合物を含む触媒成分部を被覆して成り、 上記セリウム化合物は該触媒成分部の上面側により多く
含まれ、上記セシウム化合物は該触媒成分部の下面側に
より多く含まれることを特徴とする排気ガス浄化触媒。
1. A porous carrier coated with a catalyst component part containing a cerium compound and a cesium compound, wherein the cerium compound is contained more on the upper surface side of the catalyst component part, and the cesium compound is contained in the catalyst component. The exhaust gas purifying catalyst is characterized in that it is contained more on the lower surface side of the portion.
【請求項2】 上記触媒成分部が2以上の触媒層から成
り、該触媒層の上面側ほど上記セリウム化合物の含有量
が多く、該触媒層の下面側ほど上記セシウム化合物の含
有量が多いことを特徴とする請求項1に記載の排気ガス
浄化触媒。
2. The catalyst component part is composed of two or more catalyst layers, wherein the upper surface side of the catalyst layer has a higher content of the cerium compound, and the lower surface side of the catalyst layer has a higher content of the cesium compound. The exhaust gas purifying catalyst according to claim 1.
【請求項3】 上記触媒成分部が、以下の式 0.25≦触媒成分部上面側の厚さ/触媒成分部下面側
の厚さ≦1 を満たすことを特徴とする請求項1又は2に記載の排気
ガス浄化触媒。
3. The catalyst component part satisfies the following formula 0.25 ≦ thickness of catalyst component part upper surface side / thickness of catalyst component part lower surface side ≦ 1. Exhaust gas purification catalyst described.
【請求項4】 上記触媒成分部に含まれるセリウム化合
物が、以下の式 1≦触媒成分部上面側のCe化合物含有量/触媒成分部
下面側のCe化合物含有量<2 を満たすことを特徴とする請求項1〜3のいずれか1つ
の項に記載の排気ガス浄化触媒。
4. The cerium compound contained in the catalyst component part satisfies the following formula 1 ≦ Ce compound content on the upper surface side of the catalyst component part / Ce compound content on the lower surface side of the catalyst component part <2. The exhaust gas purifying catalyst according to any one of claims 1 to 3.
【請求項5】 上記触媒成分部に含まれるセシウム化合
物が、以下の式 0.1≦触媒成分部上面側のCs化合物含有量/触媒成
分部下面側のCs化合物含有量<1 を満たすことを特徴とする請求項1〜4のいずれか1つ
の項に記載の排気ガス浄化触媒。
5. The cesium compound contained in the catalyst component part satisfies the following formula 0.1 ≦ Cs compound content on the upper surface side of the catalyst component part / Cs compound content on the lower surface side of the catalyst component part <1. The exhaust gas purifying catalyst according to any one of claims 1 to 4, which is characterized in that.
【請求項6】 上記触媒成分部が上部触媒層と下部触媒
層から成り、以下の式 0.25≦上部触媒層の厚さ/下部触媒層の厚さ≦1 を満たすことを特徴とする請求項1又は2に記載の排気
ガス浄化触媒。
6. The catalyst component part comprises an upper catalyst layer and a lower catalyst layer, and satisfies the following formula: 0.25 ≦ thickness of upper catalyst layer / thickness of lower catalyst layer ≦ 1. Item 3. The exhaust gas purification catalyst according to Item 1 or 2.
【請求項7】 上記上部触媒層及び下部触媒層が、以下
の式 1≦上部触媒層のCe化合物含有量/下部触媒層のCe
化合物含有量≦2 を満たすことを特徴とする請求項6に記載の排気ガス浄
化触媒。
7. The upper catalyst layer and the lower catalyst layer are represented by the following formula 1 ≦ Ce compound content of the upper catalyst layer / Ce of the lower catalyst layer:
The exhaust gas purifying catalyst according to claim 6, wherein the compound content ≤ 2 is satisfied.
【請求項8】 上記上部触媒層及び下部触媒層が、以下
の式 0.1≦上部触媒層のCs化合物含有量/下部触媒層の
Cs化合物含有量<1 を満たすことを特徴とする請求項6又は7に記載の排気
ガス浄化触媒。
8. The upper catalyst layer and the lower catalyst layer satisfy the following formula: 0.1 ≦ Cs compound content of upper catalyst layer / Cs compound content of lower catalyst layer <1. The exhaust gas purification catalyst according to 6 or 7.
【請求項9】 上記触媒成分部が、ロジウムと、白金及
び/又はパラジウムとを含むことを特徴とする請求項1
〜8のいずれか1つの項に記載の排気ガス浄化触媒。
9. The catalyst component portion contains rhodium and platinum and / or palladium.
The exhaust gas purifying catalyst according to any one of items 1 to 8.
【請求項10】 上記触媒成分部上面側がロジウム、白
金及びパラジウムから成る群より選ばれた少なくとも1
種の貴金属を含み、上記触媒成分部下面側が白金及び/
又はパラジウムを含むことを特徴とする請求項1〜9の
いずれか1つの項に記載の排気ガス浄化触媒。
10. The catalyst component upper surface side is at least one selected from the group consisting of rhodium, platinum and palladium.
Containing noble metal of the kind, the lower surface side of the catalyst component is platinum and / or
Alternatively, the exhaust gas purifying catalyst according to any one of claims 1 to 9, which contains palladium.
【請求項11】 上記触媒成分部における白金含有量と
パラジウム含有量の比率Pt/Pdが1.1〜4.2で
あり、且つ上記触媒成分部上面側のパラジウム含有量
(Pd)と上記触媒成分部下面側のパラジウム含有量
(Pd)との比率Pd/Pdが0〜1であること
を特徴とする請求項10に記載の排気ガス浄化触媒。
11. The ratio Pt / Pd between the platinum content and the palladium content in the catalyst component part is 1.1 to 4.2, and the palladium content (Pd U ) on the upper surface side of the catalyst component part and the above. palladium content of the catalyst component portion lower surface (Pd L) and the exhaust gas purifying catalyst according to claim 10 the ratio Pd U / Pd L is equal to or 0-1 of.
【請求項12】 上記貴金属の総量が、触媒1L当たり
0.7g以上5.7g未満であることを特徴とする請求
項9〜11のいずれか1つの項に記載の排気ガス浄化触
媒。
12. The exhaust gas purifying catalyst according to claim 9, wherein the total amount of the noble metal is 0.7 g or more and less than 5.7 g per 1 L of the catalyst.
【請求項13】 白金含有量及びパラジウム含有量とロ
ジウム含有量との比率が、以下の式 3≦(Pt+Pd)/Rh≦10 を満たすことを特徴とする請求項9〜12のいずれか1
つの項に記載の排気ガス浄化触媒。
13. The platinum content and the ratio of the palladium content to the rhodium content satisfy the following expression 3 ≦ (Pt + Pd) / Rh ≦ 10.
Exhaust gas purifying catalyst according to one section.
【請求項14】 上記触媒成分部がBa化合物及び/又
はMg化合物を含み、これらは上記触媒成分部下面側よ
り上記触媒成分部上面側に多く含まれることを特徴とす
る請求項1〜13のいずれか1つの項に記載の排気ガス
浄化触媒。
14. The catalyst component part according to claim 1, wherein the catalyst component part contains a Ba compound and / or a Mg compound, and the amount of these is larger on the upper surface side of the catalyst component part than on the lower surface side of the catalyst component part. The exhaust gas purifying catalyst according to any one of the items.
【請求項15】 上記Ba化合物及びMg化合物の一部
又は全部が複合化し、次の一般式 BaMg(CO (式中のx及びyは各元素の原子比率を表し、x=0.
5〜1.999、y=0.001〜1.5、x+y=
2.0である)で表される複合炭酸塩を形成しているこ
とを特徴とする請求項14に記載の排気ガス浄化触媒。
15. The Ba compound and the Mg compound are partly or wholly compounded to form a compound having the following general formula Ba x Mg y (CO 3 ) 2 (where x and y represent the atomic ratio of each element, and x = 0.
5 to 1.999, y = 0.001 to 1.5, x + y =
The exhaust gas purifying catalyst according to claim 14, which forms a complex carbonate represented by (2.0).
【請求項16】 請求項1〜15のいずれか1つの項に
記載の排気ガス浄化触媒を製造する方法であって、 担体に触媒成分を被覆して触媒層を設け、この触媒層に
可溶性のセリウム化合物水溶液と可溶性のセシウム化合
物水溶液とを含む混合溶液を浸漬含浸し、この際にセリ
ウム化合物及びセシウム化合物の分布状態を調製して触
媒成分部を形成することを特徴とする排気ガス浄化触媒
の製造方法。
16. A method for producing the exhaust gas purifying catalyst according to claim 1, wherein a carrier is coated with a catalyst component to form a catalyst layer, and the catalyst layer is soluble in the catalyst layer. A mixed solution containing a cerium compound aqueous solution and a soluble cesium compound aqueous solution is dipped and impregnated, and at this time, a distribution state of the cerium compound and the cesium compound is adjusted to form a catalyst component part of an exhaust gas purifying catalyst. Production method.
【請求項17】 上記セリウム化合物水溶液が酢酸セリ
ウム水溶液であり、上記セシウム化合物水溶液が酢酸セ
シウム水溶液であることを特徴とする請求項16に記載
の排気ガス浄化触媒の製造方法。
17. The method for producing an exhaust gas purifying catalyst according to claim 16, wherein the cerium compound aqueous solution is a cerium acetate aqueous solution, and the cesium compound aqueous solution is a cesium acetate aqueous solution.
【請求項18】 請求項1〜15のいずれか1つの項に
記載の排気ガス浄化触媒を用いた排気ガス浄化装置であ
って、 内燃機関又は燃焼装置の排気通路の上流側から、三元触
媒及び当該排気ガス浄化触媒を順次配置して成ることを
特徴とする排気ガス浄化装置。
18. An exhaust gas purification apparatus using the exhaust gas purification catalyst according to any one of claims 1 to 15, wherein the three-way catalyst is provided from an upstream side of an exhaust passage of an internal combustion engine or a combustion apparatus. And an exhaust gas purifying device, wherein the exhaust gas purifying catalyst is sequentially arranged.
JP2002132486A 2002-05-08 2002-05-08 Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier Pending JP2003326164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002132486A JP2003326164A (en) 2002-05-08 2002-05-08 Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002132486A JP2003326164A (en) 2002-05-08 2002-05-08 Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier

Publications (1)

Publication Number Publication Date
JP2003326164A true JP2003326164A (en) 2003-11-18

Family

ID=29696061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002132486A Pending JP2003326164A (en) 2002-05-08 2002-05-08 Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier

Country Status (1)

Country Link
JP (1) JP2003326164A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038552A1 (en) * 2006-09-26 2008-04-03 Cataler Corporation Exhaust gas purifying catalyst
JP2009178675A (en) * 2008-01-31 2009-08-13 Toyota Central R&D Labs Inc Catalyst for cleaning exhaust gas
JP2010046656A (en) * 2008-07-22 2010-03-04 Toyota Central R&D Labs Inc Catalyst for purifying exhaust gas and exhaust gas purification method using the catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038552A1 (en) * 2006-09-26 2008-04-03 Cataler Corporation Exhaust gas purifying catalyst
JP2008080196A (en) * 2006-09-26 2008-04-10 Cataler Corp Catalyst for cleaning exhaust gas
US7842643B2 (en) 2006-09-26 2010-11-30 Cataler Corporation Exhaust gas purifying catalyst
JP2009178675A (en) * 2008-01-31 2009-08-13 Toyota Central R&D Labs Inc Catalyst for cleaning exhaust gas
JP2010046656A (en) * 2008-07-22 2010-03-04 Toyota Central R&D Labs Inc Catalyst for purifying exhaust gas and exhaust gas purification method using the catalyst

Similar Documents

Publication Publication Date Title
JP5826285B2 (en) NOx absorption catalyst
JP4019357B2 (en) Method for producing exhaust gas purification catalyst powder and method for producing exhaust gas purification catalyst
JP2010029752A (en) Catalyst device for purifying exhaust gas and exhaust gas purifying method
EP1420872B1 (en) Process for rejuvenating a spent catalyst
JP2003326170A (en) Exhaust gas purification catalyst, manufacturing method therefor, and exhaust gas purification method
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP3704701B2 (en) Exhaust gas purification catalyst
JP2002143683A (en) Catalyst for purification of exhaust gas and method for manufacturing the same
JP5490342B2 (en) Catalytic trap with potassium component and method of use thereof
JP2003245523A (en) Exhaust gas cleaning system
US20020076373A1 (en) Use of lithium in NOx adsorbers for improved low temperature performance
JP2004275814A (en) Exhaust gas purifying catalyst, its manufacturing method and exhaust gas purifying apparatus
JP2003290629A (en) Cleaning system for exhaust gas
JPH1157477A (en) Exhaust gas cleaning catalyst and method of using the same
JP3965793B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2003326164A (en) Exhaust gas purifying catalyst, its manufacturing method, and exhaust gas purifier
JP3622893B2 (en) NOx absorbent and exhaust gas purification catalyst using the same
JP2002168117A (en) Exhaust emission control system
JP2004230241A (en) Exhaust gas cleaning catalyst and manufacturing method therefor
JP4019351B2 (en) NOx purification catalyst and NOx purification system
JP2003135970A (en) Exhaust gas cleaning catalyst
JP3871110B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2003200061A (en) Exhaust gas purifying catalyst and exhaust gas purifying device
JP2008029970A (en) Gas purifying catalyst