JP2002158009A - Nonaqueous electrolyte secondary cell positive electrode activator, and nonaqueous secondary cell using the same - Google Patents

Nonaqueous electrolyte secondary cell positive electrode activator, and nonaqueous secondary cell using the same

Info

Publication number
JP2002158009A
JP2002158009A JP2000351107A JP2000351107A JP2002158009A JP 2002158009 A JP2002158009 A JP 2002158009A JP 2000351107 A JP2000351107 A JP 2000351107A JP 2000351107 A JP2000351107 A JP 2000351107A JP 2002158009 A JP2002158009 A JP 2002158009A
Authority
JP
Japan
Prior art keywords
particles
positive electrode
active material
secondary cell
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000351107A
Other languages
Japanese (ja)
Inventor
Riyuuichi Kuzuo
竜一 葛尾
Masanori Soma
正典 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000351107A priority Critical patent/JP2002158009A/en
Publication of JP2002158009A publication Critical patent/JP2002158009A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a nonaqueous electrolyte secondary cell with high capacity, excellent cycle property and load property, and to provide a lithium manganate positive electrode activator with cubic spinel structure, and the secondary cell using the same. SOLUTION: The positive electrode activator is a powder including secondary grain which is an aggregation of many primary grains. The secondary cell uses the positive electrode activator powder of which, an initial charging capacity of one grain in average value of arbitrary five or more grains, is 2.0 nAh.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解質二次
電池用正極活物質(以下、活物質という)、およびそれ
を用いた非水系電解質二次電池(以下、二次電池とい
う)に関する。
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter, referred to as an active material) and a non-aqueous electrolyte secondary battery using the same (hereinafter, referred to as a secondary battery).

【0002】[0002]

【従来の技術】近年、携帯電話やノートパソコンの普及
に伴い、小型・軽量でかつ高エネルギー密度を有する二
次電池の開発が強く望まれている。このようなものとし
てリチウム金属、リチウム合金、カーボンを負極として
用いるリチウムイオン二次電池があり、その研究開発が
盛んに行われている。
2. Description of the Related Art In recent years, with the spread of portable telephones and notebook personal computers, there has been a strong demand for the development of secondary batteries that are small and lightweight and have a high energy density. As such a device, there is a lithium ion secondary battery using a lithium metal, a lithium alloy, or carbon as a negative electrode, and research and development thereof are being actively conducted.

【0003】合成が比較的容易なコバルト酸リチウム
(LiCoO2)を活物質として用いたリチウムイオン
二次電池は、4V級の高い電圧が得られるため、高エネ
ルギー密度を有する電池として実用化されている。しか
し、用いるコバルト酸リチウムが高価なため、より低コ
スト・高性能で代替可能な活物質の開発が望まれてい
る。
A lithium ion secondary battery using lithium cobalt oxide (LiCoO 2 ), which is relatively easy to synthesize, as an active material can obtain a high voltage of 4V class, and has been put to practical use as a battery having a high energy density. I have. However, since lithium cobaltate to be used is expensive, it is desired to develop an alternative active material with lower cost and higher performance.

【0004】立方晶スピネル構造を有する(以下、スピ
ネル型という)マンガン酸リチウム(LiMn24
は、コバルト酸リチウムに比較して安価なこと、充電状
態での安全性に優れることなどから、次世代の活物質と
して期待されている。
Lithium manganate (LiMn 2 O 4 ) having a cubic spinel structure (hereinafter referred to as spinel type)
Is expected as a next-generation active material because it is less expensive than lithium cobalt oxide and is superior in safety in a charged state.

【0005】しかし、スピネル型マンガン酸リチウムに
は、(1)電池の高容量化が困難である、(2)充放電
サイクルに伴う容量劣化が大きい(サイクル特性が悪
い)という問題点がある。
However, the spinel-type lithium manganese oxide has the following problems: (1) it is difficult to increase the capacity of the battery; and (2) the capacity is significantly deteriorated due to charge / discharge cycles (the cycle characteristics are poor).

【0006】(1)高容量化 電池の高容量化は活物質の充填密度を向上させることに
より達成できるが、この充填密度を向上させるために、
一般的には、活物質の粒子径を大きくする方法が用いら
れている。しかし、この方法では、負荷特性が著しく悪
化してしまう。つまり、高容量化と高負荷特性とは二律
相反していた。
(1) Higher capacity Higher capacity of a battery can be achieved by improving the packing density of the active material.
Generally, a method of increasing the particle diameter of the active material is used. However, in this method, the load characteristics are significantly deteriorated. That is, high capacity and high load characteristics were in conflict with each other.

【0007】(2)サイクル特性 従来、結晶構造に欠陥がなくX線回折の分析において異
相の含まれないスピネル型マンガン酸リチウムを合成す
るだけでは、サイクル特性を改善するのに不十分である
と考えられている。このことから、マンガン酸リチウム
中のMnサイトの一部をCr、Co、Niなどの元素で
置換して結晶構造の強化を図る方法が提案されている。
しかし、この方法で充分なサイクル特性を得るためには
置換量を多くする必要があるが、置換量を多くすると充
放電容量が大きく低減してしまう。
(2) Cycle Characteristics Conventionally, it is not sufficient to improve cycle characteristics only by synthesizing spinel-type lithium manganate having no defect in the crystal structure and containing no foreign phase in X-ray diffraction analysis. It is considered. For this reason, a method has been proposed in which part of the Mn site in lithium manganate is replaced with an element such as Cr, Co, or Ni to strengthen the crystal structure.
However, in order to obtain sufficient cycle characteristics by this method, it is necessary to increase the replacement amount. However, if the replacement amount is increased, the charge / discharge capacity is greatly reduced.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、高容
量で、サイクル特性および負荷特性が優れた二次電池を
得ることができるスピネル型マンガン酸リチウム活物
質、およびそれを用いた該二次電池を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a spinel-type lithium manganate active material capable of obtaining a secondary battery having a high capacity and excellent cycle characteristics and load characteristics, and a secondary battery using the same. Another object is to provide a battery.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記課題を
解決するため鋭意研究を行った結果、次の事項を見出
し、本発明を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies to solve the above-mentioned problems, and as a result, has found the following items, and has completed the present invention.

【0010】(1)一次粒子が多数集合した二次粒子を
用いると、一次粒子および二次粒子の影響により、
(a)高容量化、および(b)同程度の粒子径のスピネ
ル型マンガン酸リチウム一次粒子を用いた従来の二次電
池(以下、従来の二次電池という)より優れた負荷特性
を達成し得る。
(1) When secondary particles in which a large number of primary particles are aggregated are used, due to the influence of the primary particles and the secondary particles,
(A) Higher capacity and (b) load characteristics superior to conventional secondary batteries (hereinafter referred to as conventional secondary batteries) using spinel-type lithium manganate primary particles having a similar particle diameter are achieved. obtain.

【0011】(2)二次粒子1個の初回充電容量とサイ
クル特性との間に強い関係がある。
(2) There is a strong relationship between the initial charge capacity of one secondary particle and the cycle characteristics.

【0012】(3)二次粒子1個の初回充電容量は、二
次粒子の粒子径および二次粒子内の焼結組織の有無によ
り影響を受ける。
(3) The initial charge capacity of one secondary particle is affected by the particle diameter of the secondary particle and the presence or absence of a sintered structure in the secondary particle.

【0013】すなわち、本発明の活物質(第1発明)
は、一次粒子が多数集合したスピネル型マンガン酸リチ
ウムの二次粒子を含む粉末であり、粉末粒子1個の初回
充電容量が任意の5個以上の平均値(以下、初回充電容
量平均値という)で2.0nAh未満である。第1発明
において、二次粒子は、個数で90%以上含まれること
が好ましく、99%以上含まれることがより好ましい。
また、粉末粒子は、球状および楕円球状のうちの少なく
とも1つであることが好ましい。さらに、粉末の平均粒
子径が1〜30μmであったり、二次粒子が焼結組織か
らなる焼結部(以下、焼結部という)、および一次粒子
が接合している接合部(以下、接合部という)を有した
りすると、初回充電容量平均値が2.0nAh未満とな
りやすくて好ましい。
That is, the active material of the present invention (first invention)
Is a powder containing secondary particles of spinel-type lithium manganate in which a large number of primary particles are aggregated, and the initial charge capacity of one powder particle is an average value of five or more arbitrary values (hereinafter, referred to as an initial charge capacity average value). Is less than 2.0 nAh. In the first invention, the secondary particles are preferably contained by 90% or more in number, more preferably 99% or more.
Further, the powder particles are preferably at least one of a spherical shape and an elliptical spherical shape. Furthermore, the powder has an average particle diameter of 1 to 30 μm, or a sintered part in which the secondary particles have a sintered structure (hereinafter, referred to as a sintered part), and a joint in which the primary particles are joined (hereinafter, jointed) ) Is preferable because the initial charge capacity average value tends to be less than 2.0 nAh.

【0014】本発明の二次電池(第2発明)は、上記第
1発明の活物質を用いたものである。
A secondary battery (second invention) of the present invention uses the active material of the first invention.

【0015】[0015]

【発明の実施の形態】本発明の活物質(第1発明)は、
一次粒子が多数集合したスピネル型マンガン酸リチウム
の二次粒子を含む粉末である。このため、高容量で、従
来の二次電池より負荷特性が優れた二次電池を得ること
ができる。高容量の二次電池を得ることができるのは、
粉末粒子の大きい粒子径の影響によりマンガン酸リチウ
ムの充填密度が高くなることによると考えられる。ま
た、負荷特性が従来の二次電池より優れるのは、粉末中
に含まれる二次粒子を構成する一次粒子の影響により、
該二次粒子と同程度の粒子径をもつ一次粒子の比表面積
より該二次粒子の比表面積が大きくなることによると考
えられる。
BEST MODE FOR CARRYING OUT THE INVENTION The active material of the present invention (first invention)
It is a powder containing secondary particles of spinel-type lithium manganate in which many primary particles are aggregated. For this reason, a secondary battery having a high capacity and excellent load characteristics than conventional secondary batteries can be obtained. High capacity secondary batteries can be obtained because
It is considered that the packing density of lithium manganate increases due to the influence of the large particle size of the powder particles. Also, the load characteristics are better than the conventional secondary battery, due to the influence of the primary particles constituting the secondary particles contained in the powder,
It is considered that the specific surface area of the secondary particles is larger than the specific surface area of the primary particles having the same particle diameter as the secondary particles.

【0016】また、第1発明は、初回充電容量平均値が
2.0nAh未満である。これにより、サイクル特性が
優れた二次電池を得ることができる。初回充電容量平均
値を得る個数が5個未満であると、初回充電容量の推定
精度が悪い。また、初回充電容量平均値が2.0nAh
以上では、サイクル特性が悪化して容量劣化が起きる。
これは、充放電に伴う結晶格子の膨張収縮によって一次
粒子間の接合部に歪みが生じたり亀裂が入るなどして、
電子伝導性が悪化するためと考えられる。
In the first invention, the average initial charge capacity is less than 2.0 nAh. Thereby, a secondary battery having excellent cycle characteristics can be obtained. If the number of obtaining the initial charge capacity average value is less than 5, the estimation accuracy of the initial charge capacity is poor. In addition, the initial charge capacity average value is 2.0 nAh
Above, the cycle characteristics are deteriorated and the capacity is deteriorated.
This is because, due to expansion and contraction of the crystal lattice due to charge and discharge, the junction between the primary particles is distorted or cracked, etc.
It is considered that electron conductivity deteriorated.

【0017】なお、初回充電容量、サイクル特性、負荷
特性など、活物質の充放電特性を測定・評価する際は通
常、活物質、導電剤および結着剤を混合・成形した複合
電極を正極として用いる。この場合は、活物質と導電剤
との混合比などの電極作製方法により、充放電特性が左
右される問題があった。しかし、内田らの報告(電気化
学、Vol.65、954(1997))によると、マイクロリード電
極を活物質粒子に接触させて電気化学特性を測定すると
いう、単一粒子の電気化学測定法を用いることにより、
導電剤などの影響を除外した粒子自体の充放電特性を測
定・評価することができる。そこで、本発明活物質にお
ける粉末粒子1個の充放電特性の測定は、上記単一粒子
の電気化学測定法により行う(後述)。
When measuring and evaluating the charge and discharge characteristics of an active material such as initial charge capacity, cycle characteristics and load characteristics, a composite electrode obtained by mixing and molding an active material, a conductive agent and a binder is usually used as a positive electrode. Used. In this case, there is a problem that the charge and discharge characteristics are affected by the electrode manufacturing method such as the mixing ratio between the active material and the conductive agent. However, according to a report by Uchida et al. (Electrochemistry, Vol. 65, 954 (1997)), a single-particle electrochemical measurement method in which a micro-lead electrode is brought into contact with active material particles to measure electrochemical characteristics is proposed. By using
It is possible to measure and evaluate the charge / discharge characteristics of the particles themselves excluding the influence of the conductive agent and the like. Therefore, the measurement of the charge / discharge characteristics of one powder particle in the active material of the present invention is performed by the single particle electrochemical measurement method (described later).

【0018】活物質粉末中の二次粒子の割合は、個数で
好ましくは90%以上、より好ましくは99%以上であ
る。90%未満では、上記二次粒子の粒子径・比表面積
の作用・効果が充分に得られない。
The ratio of the secondary particles in the active material powder is preferably 90% or more, more preferably 99% or more in number. If it is less than 90%, the function and effect of the particle diameter and specific surface area of the secondary particles cannot be sufficiently obtained.

【0019】また、粉末粒子は、球状および楕円球状の
うちの少なくとも1つであることが、充填密度向上、ひ
いては高容量化の観点から好ましい。
It is preferable that the powder particles have at least one of a spherical shape and an elliptical spherical shape from the viewpoints of improving the packing density and increasing the capacity.

【0020】さらに、粉末は、平均粒子径が1〜30μ
mであることが好ましい。粉末の平均粒子径が1μm未
満では、二次粒子を含ませた効果が少ない、すなわち高
負荷放電時の放電容量が低下する。また、電極作製時に
用いる合剤スラリーの塗布性が悪化する。一方、30μ
mを超えると、初回充電容量平均値を2.0nAh未満
にすることが困難であるとともに、電極作製時に用いる
合剤スラリーの塗布性が悪化する。
Further, the powder has an average particle diameter of 1 to 30 μm.
m is preferable. When the average particle diameter of the powder is less than 1 μm, the effect of including the secondary particles is small, that is, the discharge capacity at the time of high load discharge is reduced. In addition, the applicability of the mixture slurry used at the time of manufacturing the electrode is deteriorated. On the other hand, 30μ
When m exceeds m, it is difficult to make the initial charge capacity average value less than 2.0 nAh, and at the same time, the applicability of the mixture slurry used at the time of manufacturing the electrode deteriorates.

【0021】そして、二次粒子は、焼結部および接合部
を有することが好ましい。これにより、高容量でサイク
ル特性が優れた二次電池を得ることができる。それは、
(1)充放電による歪みが焼結部に生じにくいために、
容量劣化が起きにくい、(2)一次粒子間の電子伝導性
を向上させるために、導電剤の量を減らして充填密度を
高くすることができるからと考えられる。
Preferably, the secondary particles have a sintered part and a joint part. Thereby, a secondary battery having a high capacity and excellent cycle characteristics can be obtained. that is,
(1) Since distortion due to charge and discharge is unlikely to occur in the sintered part,
It is considered that capacity deterioration is unlikely to occur, and (2) the packing density can be increased by reducing the amount of the conductive agent in order to improve the electron conductivity between the primary particles.

【0022】次に、本発明の活物質の製造方法について
説明する。
Next, a method for producing the active material of the present invention will be described.

【0023】一次粒子が多数集合した二次粒子を含むマ
ンガン源粉末とリチウム源粉末とを混合し、得られた混
合物を熱処理することにより、本発明のスピネル型マン
ガン酸リチウム活物質が得られる。
The spinel-type lithium manganate active material of the present invention can be obtained by mixing a manganese source powder containing secondary particles in which a large number of primary particles are aggregated with a lithium source powder and subjecting the resulting mixture to heat treatment.

【0024】上記マンガン源としては、酸化マンガン、
炭酸マンガン、水酸化マンガン、塩化マンガン、硝酸マ
ンガン、硫酸マンガンなどを、リチウム源としては、炭
酸リチウム、水酸化リチウム、水酸化リチウム一水化
物、硝酸リチウムなどを用いることができる。
As the manganese source, manganese oxide,
Manganese carbonate, manganese hydroxide, manganese chloride, manganese nitrate, manganese sulfate and the like can be used. As a lithium source, lithium carbonate, lithium hydroxide, lithium hydroxide monohydrate, lithium nitrate and the like can be used.

【0025】混合物の熱処理は、酸化雰囲気中700〜
850℃で4〜24時間行うことが望ましい。熱処理温
度が700℃未満では、一次粒子の焼結がほとんど起こ
らない。一方、熱処理温度が850℃を超えると、特に
平均粒子径が30μmを超え、一次粒子がほとんど焼結
してしまう。
The heat treatment of the mixture is performed in an oxidizing atmosphere at 700 to
It is desirable to carry out at 850 ° C. for 4 to 24 hours. When the heat treatment temperature is lower than 700 ° C., sintering of the primary particles hardly occurs. On the other hand, when the heat treatment temperature exceeds 850 ° C., the average particle diameter particularly exceeds 30 μm, and the primary particles are almost sintered.

【0026】[0026]

【実施例】[実施例]一次粒子が多数集合して球状およ
び楕円球状を形成し平均粒子径が20μmの二次粒子か
らなる二酸化マンガン粉末および水酸化リチウム粉末
を、LiとMnとの原子比が1:2になるように精秤
し、混合した。なお、上記二酸化マンガン粉末は市販品
(SEDEMA社の化学合成二酸化マンガン)を調整し
たものであり、上記水酸化リチウム粉末は市販品であ
る。その後、酸素気流中800℃で20時間焼成し、室
温まで徐冷した。
EXAMPLES [Examples] A manganese dioxide powder and a lithium hydroxide powder composed of secondary particles having a mean particle diameter of 20 μm formed by assembling a large number of primary particles into a spherical shape and an elliptical spherical shape, were prepared by changing the atomic ratio between Li and Mn. Was precisely weighed so as to be 1: 2 and mixed. The manganese dioxide powder was prepared from a commercially available product (chemically synthesized manganese dioxide manufactured by SEDEMA), and the lithium hydroxide powder was a commercially available product. Then, it was calcined at 800 ° C. for 20 hours in an oxygen stream and gradually cooled to room temperature.

【0027】得られた焼成物について、(1)金属顕微
鏡観察、(2)組成分析、(3)粉末X線回折、(4)
SEM観察、並びに(5)初回充電容量・サイクル特性
測定を行った。
With respect to the obtained fired product, (1) metallographic observation, (2) composition analysis, (3) powder X-ray diffraction, (4)
SEM observation and (5) initial charge capacity / cycle characteristic measurement were performed.

【0028】(1)金属顕微鏡観察 平均粒子径は20μmであった。(1) Observation with a metallographic microscope The average particle size was 20 μm.

【0029】(2)組成分析 誘導結合プラズマ原子分光分析器(ICP)を用いた組
成分析を行った。そして、仕込み組成と一致するLi:
Mn=1:2なる結果が得られた。
(2) Composition Analysis Composition analysis was performed using an inductively coupled plasma atomic spectrometer (ICP). And Li that matches the charge composition:
The result of Mn = 1: 2 was obtained.

【0030】(3)粉末X線回折 CuのKα線を用いた粉末X線回折による同定を行っ
た。その結果、スピネル型の物質のみが確認された。
(3) Powder X-ray Diffraction The powder was identified by powder X-ray diffraction using Kα radiation of Cu. As a result, only a spinel-type substance was confirmed.

【0031】(4)SEM観察 得られた焼成物から任意に5個の粒子を選び、これら粒
子の各々についてSEM観察を行った。その結果、上記
粒子は全数、(a)粒子径0.1〜3μmの一次粒子が
多数集合した(接合部を有する)球状および楕円球状の
二次粒子であること、および(b)焼結部を有している
ことを確認できた。
(4) SEM observation Five particles were arbitrarily selected from the obtained fired product, and SEM observation was performed on each of these particles. As a result, the total number of the particles is (a) spherical and elliptical spherical secondary particles (having a joint portion) in which a large number of primary particles having a particle diameter of 0.1 to 3 μm are aggregated; Was confirmed.

【0032】(5)初回充電容量・サイクル特性測定 (a)単一粒子の定電流充放電特性を測定する装置を用
いた。この装置の概略図を図2に示す(以下、符合は図
2と同じ)。
(5) Measurement of initial charge capacity / cycle characteristics (a) An apparatus for measuring constant current charge / discharge characteristics of a single particle was used. A schematic diagram of this device is shown in FIG. 2 (hereinafter, reference numerals are the same as in FIG. 2).

【0033】(b)測定前の予備操作を次の(イ)〜
(ト)のように行った。
(B) Preliminary operations before measurement are described in the following (A) to
(G) I went like.

【0034】(イ)活物質の対極となるリチウム金属1
を測定セル2に置いた。
(A) Lithium metal 1 as a counter electrode of the active material
Was placed in the measurement cell 2.

【0035】(ロ)リチウム金属1を置いた下室2aと
置かない上室2bとに測定セル2をガラスフィルター3
で仕切った。
(B) The measurement cell 2 is provided with a glass filter 3 in the lower chamber 2a where the lithium metal 1 is placed and in the upper chamber 2b where it is not placed.
Partitioned.

【0036】(ハ)ガラスフィルター3上(上室2b
内)に、活物質粒子を分散させたガラスセパレーター4
を置いた。
(C) On the glass filter 3 (upper chamber 2b)
Inside), a glass separator 4 in which active material particles are dispersed
Was placed.

【0037】(ニ)測定セル2を顕微鏡5の観察台(図
示せず)に設置した。
(D) The measuring cell 2 was set on an observation table (not shown) of the microscope 5.

【0038】(ホ)1モル/リットルのLiClO4
支持塩とするエチレンカーボネート(EC)とジメチル
カーボネート(DMC)の等量混合溶液を非水電解液6
として測定セル2に満たした。
(E) Equivalent mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) using 1 mol / l of LiClO 4 as a supporting salt
Was filled in the measurement cell 2.

【0039】(ヘ)微小電流ポテンショガルバノスタッ
ト7を介してリチウム金属1とマイクロマニュピレータ
ー8とを結線した。
(F) The lithium metal 1 and the micromanipulator 8 were connected via the microcurrent potentiometer galvanostat 7.

【0040】(ト)顕微鏡5に装着したCCDカメラの
活物質粒子観察像の中から粒子9を任意に1個選び出
し、マイクロマニュピレーター8を操作して白金−ロジ
ウム合金製のマイクロリード電極10(直径25μm)
を粒子9に押し当てて電気的な接触をとった。
(G) One particle 9 is arbitrarily selected from the active material particle observation image of the CCD camera mounted on the microscope 5, and the micromanipulator 8 is operated to form a micro-lead electrode 10 (diameter) made of a platinum-rhodium alloy. 25 μm)
Was pressed against particles 9 to make electrical contact.

【0041】(c)得られた焼成物から任意に選んだ5
個の粒子9の各々について、初回充電容量およびサイク
ル特性を次のようにして測定した。
(C) 5 arbitrarily selected from the obtained fired product
The initial charge capacity and cycle characteristics of each of the particles 9 were measured as follows.

【0042】すなわち、マイクロリード電極10の電位
が4.3Vvs.Li+/Li(以下、単にVと記す)
に達するまで20nAで(20nA、4.3Vカットオ
フで)定電流充電し、満充電にするためにさらに2n
A、4.3Vカットオフで定電流充電した後、20n
A、3.0Vカットオフで定電流放電する充放電サイク
ルを、繰り返して50回行った。そして、初回充電容量
およびn(=1、2、10、20、30、40、50)
サイクル目の放電容量を測定し、nサイクル目の容量維
持率を下記(I)式によって算出した。
That is, the potential of the micro lead electrode 10 is set to 4.3 Vvs. Li + / Li (hereinafter simply referred to as V)
At a constant current of 20 nA (20 nA, 4.3 V cut-off) until it reaches
A, after charging at a constant current with a 4.3V cutoff, 20n
A: A charge / discharge cycle of discharging at a constant current with a 3.0 V cutoff was repeated 50 times. Then, the initial charge capacity and n (= 1, 2, 10, 20, 30, 40, 50)
The discharge capacity at the cycle was measured, and the capacity retention at the nth cycle was calculated by the following formula (I).

【0043】nサイクル目の容量維持率(%)=(nサイクル
目の放電容量(nAh))/(1サイクル目の 放電容量(nAh))×100 (I) この結果、初回充電容量平均値は1.0nAhで、2n
Ah未満であった。また、粒子9の内の4個(A、B、
C、Dとする)について得られた結果を表1に、nサイ
クル目の容量維持率(%、平均値)とサイクル数nとの
関係を図1に示した。図1から分かるように、50サイ
クル目の容量維持率はいずれも、98%以上と高かっ
た。
Capacity retention rate at the nth cycle (%) = (discharge capacity at the nth cycle (nAh)) / (discharge capacity at the first cycle (nAh)) × 100 (I) Is 1.0 nAh and 2 n
Ah. Further, four of the particles 9 (A, B,
Table 1 shows the results obtained for C and D), and FIG. 1 shows the relationship between the capacity retention ratio (%, average value) at the nth cycle and the number of cycles n. As can be seen from FIG. 1, the capacity retention rates at the 50th cycle were all as high as 98% or more.

【0044】[比較例]一次粒子が多数集合して球状お
よび楕円球状を形成し平均粒子径が35μmの二次粒子
からなる二酸化マンガン粉末(市販品(SEDEMA社
の化学合成二酸化マンガン))をマンガン源粉末として
使用した以外は、上記実施例と同様にして焼成物を得
た。
COMPARATIVE EXAMPLE Manganese dioxide powder (commercial product (synthetic manganese dioxide manufactured by SEDEMA)) consisting of secondary particles having a large number of primary particles forming spherical and elliptical spheres and having an average particle diameter of 35 μm was converted to manganese. Except having used as a source powder, it carried out similarly to the said Example, and obtained the baked product.

【0045】得られた焼成物について、(1)金属顕微
鏡観察、(2)組成分析、(3)粉末X線回折、(4)
SEM観察、および(5)初回充電容量・サイクル特性
測定を上記実施例と同様にして行った。
With respect to the obtained fired product, (1) metallographic observation, (2) composition analysis, (3) powder X-ray diffraction, (4)
SEM observation and (5) initial charge capacity / cycle characteristic measurement were performed in the same manner as in the above example.

【0046】(1)金属顕微鏡観察 平均粒子径は35μmであった。(1) Observation with a metallographic microscope The average particle size was 35 μm.

【0047】(2)組成分析 仕込み組成と一致するLi:Mn=1:2なる結果が得
られた。
(2) Composition Analysis A result of Li: Mn = 1: 2, which coincides with the charged composition, was obtained.

【0048】(3)粉末X線回折 スピネル型の物質のみが確認された。(3) Powder X-ray diffraction Only spinel type substances were confirmed.

【0049】(4)SEM観察 選んだ5個の粒子は全数、(a)粒子径0.1〜3μm
の一次粒子が多数集合した(接合部を有する)球状およ
び楕円球状の二次粒子であること、および(b)焼結部
を有していることを確認できた。
(4) SEM observation The total number of the selected five particles was (a) the particle diameter was 0.1 to 3 μm.
It was confirmed that the primary particles were spherical and elliptical secondary particles in which a large number of primary particles were aggregated (having a joint portion), and that (b) a sintered portion was present.

【0050】(5)初回充電容量・サイクル特性測定 初回充電容量平均値は3.5nAhで、2nAh以上で
あった。また、粒子9の内の3個(a、b、cとする)
について得られた結果を表1に、nサイクル目の容量維
持率(%、平均値)とサイクル数nとの関係を図1に示
した。図1から分かるように、50サイクル目の容量維
持率はいずれも、93%以下と低かった。
(5) Initial Charge Capacity / Cycle Characteristics Measurement The average initial charge capacity was 3.5 nAh, which was 2 nAh or more. Further, three of the particles 9 (a, b, and c)
Are shown in Table 1, and the relationship between the capacity retention ratio (%, average value) at the nth cycle and the number of cycles n is shown in FIG. As can be seen from FIG. 1, the capacity retention rates at the 50th cycle were as low as 93% or less.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【発明の効果】本発明の活物質によれば、高容量で、サ
イクル特性および負荷特性が優れた二次電池を得ること
ができる。また、本発明の二次電池によれば、上記本発
明の活物質を用いるので、高容量、および優れたサイク
ル特性・負荷特性を得ることができる。
According to the active material of the present invention, a secondary battery having a high capacity and excellent cycle characteristics and load characteristics can be obtained. Further, according to the secondary battery of the present invention, since the active material of the present invention is used, a high capacity and excellent cycle characteristics and load characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】nサイクル目の容量維持率(%)とサイクル数
nとの関係を示す、実施例および比較例の粒子で得られ
たグラフである。
FIG. 1 is a graph showing the relationship between the capacity retention ratio (%) at the n-th cycle and the number of cycles n, obtained from the particles of Examples and Comparative Examples.

【図2】単一粒子の定電流充放電特性を測定する装置の
概略図である。
FIG. 2 is a schematic view of an apparatus for measuring a constant current charge / discharge characteristic of a single particle.

【符号の説明】 1 リチウム金属 2 測定セル 2a 測定セル下室 2b 測定セル上室 3 ガラスフィルター 4 ガラスセパレーター 5 顕微鏡 6 非水電解液 7 微小電流ポテンショガルバノスタット 8 マイクロマニュピレーター 9 1個の粒子 10 マイクロリード電極[Description of Signs] 1 Lithium metal 2 Measurement cell 2a Measurement cell lower chamber 2b Measurement cell upper chamber 3 Glass filter 4 Glass separator 5 Microscope 6 Non-aqueous electrolyte 7 Microcurrent potentiogalvanostat 8 Micromanipulator 9 1 particle 10 Micro Lead electrode

フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ02 HJ05 HJ19 5H050 AA07 AA08 BA17 CA09 CB07 CB12 FA17 FA19 HA01 HA05 HA19 Continued on front page F term (reference) 5H029 AJ03 AJ05 AK03 AL06 AL12 AM03 AM04 AM05 AM07 DJ16 DJ17 HJ02 HJ05 HJ19 5H050 AA07 AA08 BA17 CA09 CB07 CB12 FA17 FA19 HA01 HA05 HA19

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一次粒子が多数集合した立方晶スピネル
構造を有するマンガン酸リチウムの二次粒子を含む粉末
であり、粉末粒子1個の初回充電容量が任意の5個以上
の平均値で2.0nAh未満である非水系電解質二次電
池用正極活物質。
1. A powder containing secondary particles of lithium manganate having a cubic spinel structure in which a large number of primary particles are aggregated, wherein the initial charge capacity of one powder particle is an average value of five or more particles. A positive electrode active material for a non-aqueous electrolyte secondary battery, which is less than 0 nAh.
【請求項2】 二次粒子は、個数で90%以上含まれる
請求項1に記載の非水系電解質二次電池用正極活物質。
2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the secondary particles are contained by 90% or more in number.
【請求項3】 粉末粒子は、球状および楕円球状のうち
の少なくとも1つである請求項1に記載の非水系電解質
二次電池用正極活物質。
3. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the powder particles are at least one of a spherical shape and an elliptical spherical shape.
【請求項4】 平均粒子径が1〜30μmである請求項
1、2または3に記載の非水系電解質二次電池用正極活
物質。
4. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the average particle diameter is 1 to 30 μm.
【請求項5】 二次粒子は、焼結部および接合部を有す
る請求項1または2に記載の非水系電解質二次電池用正
極活物質。
5. The positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the secondary particles have a sintered part and a joint part.
【請求項6】 請求項1〜5のいずれかに記載の非水系
電解質二次電池用正極活物質を用いた非水系電解質二次
電池。
6. A non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 1.
JP2000351107A 2000-11-17 2000-11-17 Nonaqueous electrolyte secondary cell positive electrode activator, and nonaqueous secondary cell using the same Pending JP2002158009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351107A JP2002158009A (en) 2000-11-17 2000-11-17 Nonaqueous electrolyte secondary cell positive electrode activator, and nonaqueous secondary cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351107A JP2002158009A (en) 2000-11-17 2000-11-17 Nonaqueous electrolyte secondary cell positive electrode activator, and nonaqueous secondary cell using the same

Publications (1)

Publication Number Publication Date
JP2002158009A true JP2002158009A (en) 2002-05-31

Family

ID=18824222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351107A Pending JP2002158009A (en) 2000-11-17 2000-11-17 Nonaqueous electrolyte secondary cell positive electrode activator, and nonaqueous secondary cell using the same

Country Status (1)

Country Link
JP (1) JP2002158009A (en)

Similar Documents

Publication Publication Date Title
CN110800149B (en) Solid electrolyte for lithium secondary battery and sulfide-based compound for the solid electrolyte
KR101447453B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode and secondary battery
EP3599222B1 (en) Metal oxide and method for preparing the same
JP3142522B2 (en) Lithium secondary battery
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2018530140A (en) Nickel-based positive electroactive material
JPH09129230A (en) Nonaqueous electrolytic battery and manufacture of positive active material
JP2018503238A (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
JP2016115658A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2002279985A (en) Positive electrode active material for non-aqueous lithium secondary battery and the non-aqueous lithium secondary battery using the active material
JP2003151546A (en) Positive electrode active substance for lithium ion secondary battery and its manufacturing method
JPH0922693A (en) Nonaqueous electrolyte battery, positive active material thereof, and manufacture of positive plate
JP2010086922A (en) Lithium complex compound particle powder and method of manufacturing the same, and nonaqueous electrolyte secondary battery
JP2000113889A (en) Lithium secondary battery
JP2008156163A (en) Spinel type lithium manganese oxide and method for manufacturing the same
JP4296274B2 (en) Lithium manganate positive electrode active material and all-solid lithium secondary battery
CN109796052B (en) Cathode material, preparation method thereof and lithium ion battery
JP7159697B2 (en) Method for producing positive electrode active material for lithium ion secondary battery, and method for producing lithium ion secondary battery
US20210305568A1 (en) Cathode active material for lithium ion secondary battery and lithium ion secondary battery
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
JP2020004506A (en) Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
CN103477474B (en) Lithium ion secondary battery cathode active material and manufacture method thereof
JP4800589B2 (en) Solid electrolyte-containing electrode for lithium secondary battery
JP2001297761A (en) Positive electrode activator for nonaqueous electrolyte secondary cell
JP2002042811A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040727