JP2002151850A - Buildup insulation material and buildup multilayer printed wiring board - Google Patents

Buildup insulation material and buildup multilayer printed wiring board

Info

Publication number
JP2002151850A
JP2002151850A JP2000343938A JP2000343938A JP2002151850A JP 2002151850 A JP2002151850 A JP 2002151850A JP 2000343938 A JP2000343938 A JP 2000343938A JP 2000343938 A JP2000343938 A JP 2000343938A JP 2002151850 A JP2002151850 A JP 2002151850A
Authority
JP
Japan
Prior art keywords
weight
build
buildup
printed wiring
multilayer printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000343938A
Other languages
Japanese (ja)
Other versions
JP3806593B2 (en
Inventor
Shingetsu Yamada
紳月 山田
Koichiro Taniguchi
浩一郎 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2000343938A priority Critical patent/JP3806593B2/en
Publication of JP2002151850A publication Critical patent/JP2002151850A/en
Application granted granted Critical
Publication of JP3806593B2 publication Critical patent/JP3806593B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve problems such as warpage, interface peel off at mounting and the complexity of manufacturing processes concerning insulation materials of buildup multilayer printed wiring boards, problems of storage stability of thermosetting resistances for buildup multilayers, and glass cloth-containing type migration and to produce a buildup insulation material and a buildup multilayer printed wiring board which exerts little load on the environment. SOLUTION: An insulation material of an insulation layer, laminated on a core board of a buildup multilayer printed wiring board, is a buildup insulation material composed of a mixture of 20-50 weight parts of flaky inorganic filler, having a means grain size of 15 μm or less and a means aspect ratio (mean grain size/means thickness) of 30 or more, with 100 weight parts of a thermoplastic resin composed of polyaryl ketone resin, having a crystal melting peak temperature of 260 deg.C or more 70-25 wt.% and an amorphous polyimide ether resin 30-75 wt.%. On the core board insulation layers made of the insulation material and conductor layers are laminated alternately and the conductor layers are interconnected with vias to form a buildup multilayer printed wiring board.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ビルドアップ用
絶縁材料およびこれを用いたビルドアップ多層プリント
配線基板に関する。
The present invention relates to a build-up insulating material and a build-up multilayer printed wiring board using the same.

【0002】[0002]

【従来の技術】電子機器の小型化および多機能化は、年
々加速度的に進行している。それを支える主要技術が、
半導体パッケージであり、電子部品を実装したプリント
配線板であるといえる。そして、このような技術の進展
に伴って多層配線基板も緊急に軽薄短小化および多機能
化する必要に迫られており、なかでも多層配線板の革新
的な製造方法であるビルドアップ多層プリント配線板が
注目されている。
2. Description of the Related Art The miniaturization and multi-functionality of electronic devices are accelerating year by year. The key technologies that support it are
It is a semiconductor package and can be said to be a printed wiring board on which electronic components are mounted. With the development of such technology, there is an urgent need for multilayer wiring boards to be made lighter, thinner, shorter and more multifunctional, and in particular, build-up multilayer printed wiring, which is an innovative method for manufacturing multilayer wiring boards. The board is drawing attention.

【0003】ビルドアップ配線基板は、基本的にはコア
材とビルドアップ層からなり、その製造方法は、シーケ
ンシャルビルドアップ法とビアシートラミネート法に大
別される。
[0003] The build-up wiring board is basically composed of a core material and a build-up layer, and its manufacturing method is roughly classified into a sequential build-up method and a via sheet laminating method.

【0004】シーケンシャルビルドアップ法は、コア基
板上に絶縁層を塗布し、ビア下孔形成、ビア形成、導体
形成、回路形成を逐次行なう方法であり、ビアシートラ
ミネート法は、ビアを含むビルドアップ層を別途作製し
てからコア基板と積層する方法である。下孔形成は感光
性樹脂を使用するフォトビアと、非感光性樹脂を使用す
るレーザービアに分けられる。
[0004] The sequential build-up method is a method in which an insulating layer is applied on a core substrate and a via hole is formed, a via is formed, a conductor is formed, and a circuit is formed successively. This is a method in which a layer is separately formed and then laminated with a core substrate. The formation of the pilot hole is divided into a photo via using a photosensitive resin and a laser via using a non-photosensitive resin.

【0005】フォトビアは、半導体チップの密度まで要
素技術が既にあり、開発コストを低減できる方法であ
り、一方、レーザービアは、材料の選択に幅をもたせる
ことができる方法である。
[0005] The photo via is a method capable of reducing the development cost because the element technology already exists up to the density of the semiconductor chip, while the laser via is a method capable of giving a wide range of material selection.

【0006】ビア形成は、下孔にそって銅めっきするコ
ンフォーマルビア、下孔に導電性材料を充填して形成す
るフィルドビア、導電性材料で突起を形成するスタッド
ビアがある。コンフォーマルビアは、回路導体と同時に
ビアホール導体を形成するのでコスト的に有利である。
フィルドビアは、ビア上面が平らになるのでビアとビア
を直接重ねることが出来る。絶縁層形成には、液体樹脂
コーティングとフィルムラミネートがあり、液体樹脂コ
ーティングは、絶縁層を薄く出来、塗布後に下層回路の
凹凸をある程度吸収するため多層化が容易で高密度化を
狙いやすい。フィルムラミネートは、フィルム状の絶縁
層を用いるので絶縁層の形成が容易である。
[0006] The via formation includes a conformal via in which copper is plated along the prepared hole, a filled via formed by filling the prepared hole with a conductive material, and a stud via which forms a projection using a conductive material. Conformal vias are advantageous in cost because they form via-hole conductors simultaneously with circuit conductors.
In the case of filled vias, the upper surface of the via becomes flat, so that the via can be directly overlapped with the via. The formation of the insulating layer includes a liquid resin coating and a film laminating. The liquid resin coating can make the insulating layer thinner and absorbs the unevenness of the lower layer circuit after application to a certain extent, so that it is easy to form a multilayer and easily aim at high density. Since the film lamination uses a film-like insulating layer, the formation of the insulating layer is easy.

【0007】回路形成は、通常の銅箔+サブトラクティ
ブエッチング法、導体層を薄くすることが出来るパネル
銅メッキ+サブトラクティブエッチング法、ファインピ
ッチラインを形成しやすいアディティブ銅めっき法に分
けられている。
Circuit formation is divided into ordinary copper foil + subtractive etching, panel copper plating capable of thinning the conductor layer + subtractive etching, and additive copper plating which is easy to form fine pitch lines. .

【0008】ビルドアップ層の絶縁材料としては、感光
性エポキシ樹脂、熱硬化性エポキシ樹脂、熱硬化性ガラ
スエポキシ樹脂が周知な材料である。
As the insulating material of the build-up layer, a photosensitive epoxy resin, a thermosetting epoxy resin, and a thermosetting glass epoxy resin are well-known materials.

【0009】[0009]

【発明が解決しようとする課題】しかし、感光性の絶縁
層を形成する場合は、工程が煩雑であることに加え、ガ
ラスクロスを有さない樹脂層で形成するため、基板の反
りが起きやすくなり、また絶縁樹脂層の吸水による実装
時の界面剥離が問題となる。
However, in the case of forming a photosensitive insulating layer, the process is complicated and the substrate is likely to be warped because it is formed of a resin layer having no glass cloth. In addition, interface peeling during mounting due to water absorption of the insulating resin layer poses a problem.

【0010】基板の反りを抑制するためには、絶縁層樹
脂の硬化収縮を低減化したり、製造工程で両面の絶縁層
塗布と硬化を同時に行なったり、両面対称層のパターン
密度(残銅率)をできるだけ整合性を取らせる対策が施
こされる。
[0010] In order to suppress the warpage of the substrate, the curing shrinkage of the insulating layer resin is reduced, the coating and curing of the insulating layers on both sides are performed simultaneously in the manufacturing process, and the pattern density (remaining copper ratio) of the symmetrical layer on both sides. Measures are taken to ensure consistency as much as possible.

【0011】熱硬化性の絶縁層を用いる場合には、半硬
化状態のプリプレグを用いるため、保存安定性に細心の
注意が必要である。さらに、ガラスクロス含有タイプで
は、マイグレーションによる絶縁性の低下のため高密度
化対応ができないといった問題点がある。
When a thermosetting insulating layer is used, a prepreg in a semi-cured state is used, so that careful attention must be paid to storage stability. Further, the glass cloth-containing type has a problem that it is impossible to cope with high density due to a decrease in insulation due to migration.

【0012】また、難燃性を確保するために、臭素化エ
ポキシが使われる場合が多く、環境に対する負荷の面か
らノンハロゲンタイプの樹脂の採用が望ましい。
In order to ensure flame retardancy, brominated epoxy is often used, and it is desirable to use a non-halogen type resin from the viewpoint of environmental load.

【0013】そこで、この発明の課題は、上記した問題
点を解決して、ビルドアップ多層用感光性絶縁材料の反
り、実装時の界面剥離、製造工程の煩雑さの問題、ま
た、ビルドアップ多層用熱硬化性材料の保存安定性の問
題、ガラスクロス含有タイプの抱えるマイグレーション
の問題を改善するとともに、ノンハロゲン、リサイクル
性といった環境に対する負荷が少ないビルドアップ用絶
縁材料およびこれを用いて上記したような欠点のないビ
ルドアップ多層プリント配線基板を提供することであ
る。
Accordingly, an object of the present invention is to solve the above-mentioned problems and to solve the problems of warpage of the photosensitive insulating material for a build-up multilayer, separation of an interface at the time of mounting, complexity of a manufacturing process, and problems of a build-up multilayer. In addition to improving the storage stability of thermosetting materials and the problem of migration of glass-cloth-containing types, non-halogen, build-up insulating materials with low environmental load such as recyclability and the above-mentioned An object of the present invention is to provide a build-up multilayer printed wiring board free from defects.

【0014】[0014]

【課題を解決するための手段】上記の課題を解決するた
めに、この発明ではコア基板上に絶縁層と導体層とが交
互に積層され、各導体層間がバイアホールにて接続され
たビルドアップ多層プリント配線基板の前記コア基板上
に積層される絶縁層の材料であるビルドアップ用絶縁材
料において、この絶縁材料が、結晶融解ピーク温度が2
60℃以上であるポリアリールケトン樹脂70〜25重
量%と非晶性ポリエーテルイミド樹脂30〜75重量%
とからなる熱可塑性樹脂組成物100重量部に対して、
無機充填材を20重量部以上50重量部以下で混合した
絶縁材料であることを特徴とするビルドアップ用絶縁材
料としたのである。
In order to solve the above-mentioned problems, according to the present invention, an insulating layer and a conductor layer are alternately laminated on a core substrate, and a build-up in which each conductor layer is connected by a via hole. In a build-up insulating material which is a material of an insulating layer laminated on the core substrate of the multilayer printed wiring board, the insulating material has a crystal melting peak temperature of 2
70 to 25% by weight of a polyaryl ketone resin having a temperature of 60 ° C. or more and 30 to 75% by weight of an amorphous polyetherimide resin
With respect to 100 parts by weight of a thermoplastic resin composition comprising
This is an insulating material for build-up, which is an insulating material in which an inorganic filler is mixed in an amount of 20 parts by weight or more and 50 parts by weight or less.

【0015】上記のビルドアップ用絶縁材料において、
無機充填材として鱗片状無機充填材を採用することが好
ましい。また、鱗片状無機充填材としては、平均粒径1
5μm以下、平均アスペクト比(平均粒径/平均厚み)
が30以上の鱗片状無機充填材を用いることが好まし
い。
In the above-mentioned insulating material for build-up,
It is preferable to employ a flaky inorganic filler as the inorganic filler. In addition, the scaly inorganic filler has an average particle size of 1
5 μm or less, average aspect ratio (average particle size / average thickness)
It is preferable to use a flaky inorganic filler having a particle size of 30 or more.

【0016】また、上記の課題を解決するために、コア
基板上に絶縁層と導体層とが交互に積層され、各導体層
間がバイアホールにて接続されたビルドアップ多層プリ
ント配線基板において、前記コア基板上に積層される絶
縁層を形成する絶縁材料が、結晶融解ピーク温度が26
0℃以上であるポリアリールケトン樹脂70〜25重量
%と非晶性ポリエーテルイミド樹脂30〜75重量%と
からなる熱可塑性樹脂組成物100重量部に対し、無機
充填材を20重量部以上50重量部以下で混合した絶縁
材料であることを特徴とするビルドアップ多層プリント
配線基板としたのである。
According to another aspect of the present invention, there is provided a build-up multilayer printed wiring board in which insulating layers and conductive layers are alternately stacked on a core substrate, and the conductive layers are connected by via holes. The insulating material forming the insulating layer laminated on the core substrate has a crystal melting peak temperature of 26.
20 to 50 parts by weight of an inorganic filler is added to 100 parts by weight of a thermoplastic resin composition comprising 70 to 25% by weight of a polyarylketone resin having a temperature of 0 ° C. or more and 30 to 75% by weight of an amorphous polyetherimide resin. The build-up multilayer printed wiring board is characterized by being an insulating material mixed in parts by weight or less.

【0017】後述の実施例などの結果からも明らかなよ
うに、以上の手段により、従来のビルドアップ多層プリ
ント配線基板用絶縁材料および基板の抱える問題点を解
決できる。
As will be apparent from the results of the examples and the like described later, the above-mentioned means can solve the problems of the conventional insulating material for a build-up multilayer printed wiring board and the substrate.

【0018】[0018]

【発明の実施の形態】この発明のビルドアップ多層プリ
ント配線基板用絶縁材料に適用できる樹脂組成物は、結
晶性ポリアリールケトン樹脂70〜25重量%と非晶性
ポリエーテルイミド樹脂30〜75重量%とからなる樹
脂組成物100重量部に対して無機充填材を20重量部
以上50重量部以下で混合した樹脂組成物であり、その
使用時の通常の形態はフィルムである。
BEST MODE FOR CARRYING OUT THE INVENTION A resin composition applicable to an insulating material for a build-up multilayer printed wiring board according to the present invention comprises 70 to 25% by weight of a crystalline polyarylketone resin and 30 to 75% by weight of an amorphous polyetherimide resin. % Of the resin composition, and 20 to 50 parts by weight of an inorganic filler mixed with 100 parts by weight of the resin composition. The usual form when used is a film.

【0019】ここで、結晶性ポリアリールケトン樹脂
は、その構造単位に芳香核結合、エーテル結合およびケ
トン結合を含む熱可塑性樹脂であり、その代表例として
は、ポリエーテルケトン、ポリエーテルエーテルケト
ン、ポリエーテルケトンケトン等がある。ポリエーテル
エーテルケトンは、VICTREX社製の商品名「PE
EK151G」「PEEK381G」「PEEK450
G」などとして市販されているものを使用できる。
Here, the crystalline polyaryl ketone resin is a thermoplastic resin having an aromatic nucleus bond, an ether bond and a ketone bond in its structural unit, and typical examples thereof include polyether ketone, polyether ether ketone, And polyether ketone ketone. Polyetheretherketone is available from VICTREX under the trade name "PE
EK151G, PEEK381G, PEEK450
A commercially available product such as "G" can be used.

【0020】また、この発明に用いる非晶性ポリエーテ
ルイミド樹脂は、その構造単位に芳香核結合、エーテル
結合およびイミド結合を含む非晶性熱可塑性樹脂であ
り、その種類を特に制限せずに使用できる。このような
ポリエーテルイミドは、ゼネラルエレクトリック社製の
商品名「Ultem CRS5001」「Ultem1
000」等として市販されているものを採用できる。
The amorphous polyetherimide resin used in the present invention is an amorphous thermoplastic resin having an aromatic nucleus bond, an ether bond and an imide bond in its structural unit, and the type thereof is not particularly limited. Can be used. Such polyetherimides are available under the trade names “Ultem CRS5001” and “Ultem1” manufactured by General Electric.
000 "or the like.

【0021】上記樹脂組成物において、結晶性ポリアリ
ールケトン樹脂が70重量%を越える場合や、非晶性ポ
リエーテルイミド樹脂が30重量%未満の場合は、組成
物全体の結晶性が高くなって結晶化速度が速くなり、銅
箔との熱融着による接着の際にビール強度の低下や、吸
湿耐熱性試験においてコア基板との間で層間の剥離が発
生するので好ましくない。また、結晶性ポリアリールケ
トン樹脂が25重量%未満の場合や非晶性ポリエーテル
イミド樹脂が75重量%を越える場合は、組成物全体と
しての結晶性自体が低くなり、たとえ結晶融解ピーク温
度が260℃以上であってもはんだ耐熱性が低下し、吸
湿耐熱性試験においては基板に変形が生じて好ましくな
い。
In the above resin composition, when the crystalline polyarylketone resin exceeds 70% by weight or when the amorphous polyetherimide resin is less than 30% by weight, the crystallinity of the whole composition becomes high. It is not preferable because the crystallization rate is increased, the beer strength is reduced during bonding with the copper foil by heat fusion, and delamination between the core substrate and the moisture absorption heat resistance test occurs. When the content of the crystalline polyarylketone resin is less than 25% by weight or the content of the amorphous polyetherimide resin exceeds 75% by weight, the crystallinity itself of the composition as a whole becomes low, and even if the crystal melting peak temperature is lowered. Even at a temperature of 260 ° C. or more, the solder heat resistance is lowered, and the substrate is undesirably deformed in the moisture absorption heat resistance test.

【0022】以上のような理由により、この発明におい
ては、上記ポリアリールケトン樹脂70〜25重量%と
非晶性ポリエーテルイミド樹脂30〜75重量%とから
なる混合組成物が適当である。
For the above reasons, in the present invention, a mixed composition comprising 70 to 25% by weight of the above-mentioned polyarylketone resin and 30 to 75% by weight of the amorphous polyetherimide resin is suitable.

【0023】また、上述した樹脂組成物に対して充填さ
れる鱗片状の無機充填材は、その種類を特に制限せず周
知の鱗片状無機充填材を採用できる。そのような鱗片状
無機充填材としては、例えばタルク、マイカ、雲母、ガ
ラスフレーク、窒化ホウ素(BN)、板状炭酸カルシウ
ム(炭カル)、板状水酸化アルミニウム、板状シリカ、
板状チタン酸カリウムなどが挙げられる。
The scaly inorganic filler to be filled in the above-mentioned resin composition is not particularly limited, and a well-known scaly inorganic filler can be employed. Such flaky inorganic fillers include, for example, talc, mica, mica, glass flake, boron nitride (BN), plate-like calcium carbonate (carbon char), plate-like aluminum hydroxide, plate-like silica,
Plate-like potassium titanate and the like can be mentioned.

【0024】これらは1種類を単独で用いたり、または
2種類以上を組み合わせて用いることもできる。特に、
平均粒径が15μm以下、アスペクト比(粒径/厚み)
が30以上の無機充填材が好ましい、なぜなら、平面方
向と厚み方向の線膨張係数比を低く押えることができる
ため、後述するビルドアップ試験基板の反りや、吸湿耐
熱性試験後の基板全体の反り、または冷熱衝撃サイクル
試験でのクラック発生までのサイクル数を長くでき、ビ
ルドアップ絶縁層に要求される薄膜化に対応できるから
である。
These can be used alone or in combination of two or more. In particular,
Average particle size is 15μm or less, aspect ratio (particle size / thickness)
Is preferable because the ratio of the coefficient of linear expansion between the planar direction and the thickness direction can be kept low, and therefore, the warpage of the build-up test substrate described later and the warpage of the entire substrate after the moisture absorption heat resistance test. This is because the number of cycles up to the occurrence of cracks in the thermal shock cycle test can be increased, and the thinning required for the build-up insulating layer can be handled.

【0025】また、上述した無機充填材の配合量は、樹
脂組成物100重量部に対して20〜50重量部であ
る。なぜなら、50重量部を超えると、無機充填材の分
散不良の問題が発生し、線膨張係数がばらつきやすくな
る。また、無機充填材の配合量が20重量部未満では、
所期したように線膨張係数を低下させて寸法安定性を向
上させる効果が小さく、部品搭載工程であるリフロー工
程やフロー工程において、線膨張係数差起因の内部応力
が発生し、基板のそりやねじれが発生するからである。
The amount of the inorganic filler is 20 to 50 parts by weight based on 100 parts by weight of the resin composition. If it exceeds 50 parts by weight, a problem of poor dispersion of the inorganic filler occurs, and the coefficient of linear expansion tends to vary. If the amount of the inorganic filler is less than 20 parts by weight,
As expected, the effect of lowering the coefficient of linear expansion to improve dimensional stability is small, and in the reflow step or the flow step, which is a component mounting step, internal stress due to the difference in the coefficient of linear expansion occurs, causing warpage of the board and the like. This is because twisting occurs.

【0026】また、鱗片状の無機充填材の他にも、球状
シリカや、テトラポット状の硫化亜鉛(ZnS)、ウイ
スカ状のチタン酸カリウム、有機繊維であるアラミド不
織布なども上述した鱗片状フィラーと併用してもよい。
In addition to the scaly inorganic filler, spherical silica, tetrapod-like zinc sulfide (ZnS), whisker-like potassium titanate, and aramid nonwoven fabric which is an organic fiber are also the above-mentioned scaly fillers. You may use together.

【0027】この発明における樹脂組成物には、この発
明の効果を損なわない程度に他の樹脂や無機充填材以外
の各種添加剤を添加しても良く、例えば、そのような例
として熱安定剤、紫外線吸収剤、光安定剤、核剤、着色
剤、滑剤、難燃剤等を適宜配合してもかまわない。
The resin composition according to the present invention may contain various additives other than other resins and inorganic fillers to such an extent that the effects of the present invention are not impaired. , An ultraviolet absorber, a light stabilizer, a nucleating agent, a coloring agent, a lubricant, a flame retardant and the like may be appropriately blended.

【0028】また、無機充填材を含めた各種添加剤の混
合方法は、周知の方法を採用すればよく、例えば(a)各
種添加剤をポリアリールケトン樹脂及び/または非晶性
ポリエーテルイミド樹脂などの適当なベース樹脂に高濃
度(代表的な含有量としては10〜60重量%程度)に
混合したマスターバッチを別途作製しておき、これを使
用する樹脂に濃度を調整して混合し、ニーダーや押出機
等を用いて機械的にブレンドする方法、(b)使用する
樹脂に直接各種添加剤をニーダーや押出機等を用いて機
械的にブレンドする方法などが挙げられる。
As a method of mixing various additives including an inorganic filler, well-known methods may be employed. For example, (a) various additives may be mixed with a polyarylketone resin and / or an amorphous polyetherimide resin. A masterbatch mixed with a suitable base resin such as a high concentration (typically about 10 to 60% by weight) is separately prepared, and the concentration is adjusted and mixed with the resin to be used. Examples thereof include a method of mechanically blending using a kneader or an extruder, and a method of (b) mechanically blending various additives directly into a resin to be used using a kneader or an extruder.

【0029】上記混合方法のうち、(a)のように、マ
スターバッチを作製して混合する方法が分散性や作業性
の点から好ましい。さらに、フィルムの表面にはハンド
リング性の改良等のために、エンボス加工やコロナ処理
等を適宜に施しても良い。
Among the above mixing methods, a method of preparing and mixing a master batch as shown in (a) is preferable from the viewpoint of dispersibility and workability. Further, the surface of the film may be appropriately subjected to embossing, corona treatment, or the like, for the purpose of improving handling properties and the like.

【0030】この発明のビルドアップ多層配線基板用コ
ア基板を構成する組成物は、通常、フィルムまたはシー
ト状の素材として提供される。フィルムの成形方法とし
ては、周知の方法、例えばTダイを用いる押出キャスト
法やカレンダー法等を採用することができ、特にシート
の製膜性や安定生産性等の面から、Tダイを用いる押出
キャスト法を採用することが好ましい。Tダイを用いる
押出キャスト法での成形温度は、組成物の流動特性や製
膜性等によって適宜に調整するが、おおよそ融点以上で
ありかつ430℃以下である。また、このフィルムの厚
みは、通常25〜800μmである。
The composition constituting the core substrate for a build-up multilayer wiring board of the present invention is usually provided as a film or sheet material. As a film forming method, a well-known method, for example, an extrusion casting method using a T-die, a calendar method, or the like can be adopted. In particular, from the viewpoint of sheet forming properties and stable productivity, extrusion using a T-die is possible. It is preferable to adopt a casting method. The molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics, film-forming properties, and the like of the composition, but is generally about the melting point or more and 430 ° C. or less. The thickness of this film is usually 25 to 800 μm.

【0031】次に、この発明の実施形態の絶縁材料を用
いてビルドアップ多層配線基板を作製する方法を以下に
例示する。
Next, a method of manufacturing a build-up multilayer wiring board using the insulating material according to the embodiment of the present invention will be described below.

【0032】[作製方法1]実施形態の絶縁フィルムの
片面に接着層を介することなく銅箔を積層して片面銅張
積層フィルムとし、これをロールラミネート法もしくは
熱プレス法でコア基板に積層し、その後、銅箔をエッチ
ングしてビア開口部を形成し、次いでレーザー加工で下
孔を形成する。ビアと回路形成は銅めっきとサブトラク
ティブエッチングによって形成する。
[Production Method 1] A copper foil is laminated on one side of the insulating film of the embodiment without an adhesive layer therebetween to form a one-sided copper-clad laminated film, which is laminated on a core substrate by a roll laminating method or a hot pressing method. Thereafter, the copper foil is etched to form a via opening, and then a pilot hole is formed by laser processing. Vias and circuit formation are formed by copper plating and subtractive etching.

【0033】[作製方法2]実施形態の絶縁フィルムの
片面に接着層を介することなく銅箔を積層して片面銅張
積層フィルムとし、その樹脂面側にレーザー加工で下孔
を形成し、下孔に印刷法により導電性ペーストを充填し
てビアシートを形成し、このビアシートをコア基板に対
してロールラミネート法もしくは熱プレス法にて積層す
る。
[Preparation Method 2] A copper foil is laminated on one side of the insulating film of the embodiment without an adhesive layer therebetween to form a one-sided copper-clad laminated film, and a pilot hole is formed on the resin side by laser processing. A hole is filled with a conductive paste by a printing method to form a via sheet, and the via sheet is laminated on a core substrate by a roll laminating method or a hot pressing method.

【0034】[作製方法3]実施形態の絶縁フィルム
を、ロールラミネート法もしくは熱プレス法にて、コア
基板に積層した後、レーザーによりビアホール下孔形成
を行ない、フルアディティブ法により回路を形成する。
[Manufacturing Method 3] After laminating the insulating film of the embodiment on a core substrate by a roll laminating method or a hot pressing method, a via hole is formed by a laser and a circuit is formed by a full additive method.

【0035】[作製方法4]実施形態の絶縁フィルムに
レーザー加工またはドリル加工によって下孔を開けた
後、片面に銅箔を積層し、下孔に印刷法により導電性ペ
ーストを充填してビアシートを形成し、コア基板に、ロ
ールラミネート法もしくは熱プレス法にてビアシートを
積層する。
[Preparation Method 4] After preparing a hole in the insulating film of the embodiment by laser processing or drilling, a copper foil is laminated on one side and a conductive paste is filled into the prepared hole by a printing method to form a via sheet. Then, the via sheet is laminated on the core substrate by a roll laminating method or a hot pressing method.

【0036】[作製方法5]実施形態の絶縁フィルムに
レーザー加工で下孔を開け、導電性ペーストを充填して
銅箔と積層した後、サブトラクティブエッチングにより
導体回路を形成し、そのビアシートをベースにして別の
ビアシートと積層する。
[Preparation Method 5] A hole is formed in the insulating film of the embodiment by laser processing, filled with a conductive paste and laminated with a copper foil, and then a conductive circuit is formed by subtractive etching. And laminated with another via sheet.

【0037】[作製方法6]実施形態の絶縁フィルムの
片面に、導電ペーストでバンプを印刷で形成した銅箔を
積層しビアシートを形成し、それをコア基板にロールラ
ミネート法もしくは熱プレス法にて積層する。
[Manufacturing Method 6] A copper foil having bumps formed by printing with a conductive paste is laminated on one surface of the insulating film of the embodiment to form a via sheet, and the via sheet is formed on a core substrate by a roll laminating method or a hot pressing method. Laminate.

【0038】[0038]

【実施例および比較例】[実施例1]18μm厚みの銅
箔を片面に配した250mm×250mm×厚み0.7mmの
ガラスエポキシ片面銅張積層板を用い、JIS C64
81に準拠してスルーホール信頼性評価パターン形成を
行った。このパターン形成した積層板を有機酸系のエッ
チング液で2μmのソフトエッチングを行ない、銅表面
上を粗面化した。この粗面化した銅表面上に、表1に示
すようにポリエーテルエーテルケトン樹脂[ビクトレッ
クス社製、PEEK450G、Tg:147℃、Tm:
334℃](以下、単にPEEKと略記する。)30重
量部と、ポリエーテルイミド樹脂[ゼネラルエレクトリ
ック社製、Ultem1000、Tg:216℃](以
下、単にPEIと略記する。)70重量部および無機充
填材(市販のマイカ、平均粒径:10μm、アスペクト
比:40)50重量部とからなる厚さ50μmの押出し
フィルムを、250℃30minの条件で熱プレスして、
片面ビルドアップ試験基板を得た。得られた基板を用い
て、下記の試験1〜6を行ない、評価した熱特性や信頼
性試験などの評価結果を表1に示した。 (1)ガラス転移温度(Tg) 熱応力歪み測定装置(セイコーインスツルメント社製:
TMA/SS6100)を用い、昇温過程の熱膨張量の温度依存
性を求め、ガラス転移点の前後の曲線に接線を引き、こ
の接線の交点からTgを求めた。 (2)線膨張係数(αx、αy) 熱応力歪み測定装置(セイコーインスツルメント社製:
TMA/SS6100)により線膨張係数を求めた。ここで、フ
ィルムの押出機からの流れ方向をX方向、その直交方向
をY方向とし、X方向、Y方向の線膨張係数の測定は、
フィルムを短冊状として試験片(長さ10mm、断面積
1mm2)を作製し、引張り荷重0.1gで固定し、室温
から5℃/分の割合で昇温させ、熱膨張量の温度依存性
を求めた。 (3)基板の反り量 基板の反り量は、JIS C6481に準拠して求め
た。反り量2mm未満を良品とした。 (4)吸湿耐熱性 プレッシャークッカー試験機を用い、121℃×100
%×48hrの条件で吸湿処理を行ない、その後260℃
のはんだに20秒間浸漬することにより、変形、反り、
界面剥離等の発生を目視で評価し判定した。 (5)冷熱衝撃サイクル試験 −65℃×5分と150℃×5分の冷熱サイクルをサン
プルにかけ、樹脂クラックが発生するサイクル数を測定
することにより行なった。 (6)落下衝撃試験 0.7mの高さからコンクリート製の床に試験基板を落
下させ、基板の割れの有無を目視で評価して判定した。
N=10で試験を実施し、1枚でも割れが発生した場合
は不良とした。
EXAMPLES AND COMPARATIVE EXAMPLES [Example 1] A glass epoxy single-sided copper-clad laminate of 250 mm x 250 mm x 0.7 mm in which a copper foil having a thickness of 18 µm was arranged on one side was used.
81, a through-hole reliability evaluation pattern was formed. The laminated board on which the pattern was formed was subjected to soft etching of 2 μm with an organic acid-based etchant to roughen the copper surface. On the roughened copper surface, as shown in Table 1, a polyetheretherketone resin [PEEK450G, manufactured by Victrex, Tg: 147 ° C., Tm:
334 ° C.] (hereinafter abbreviated simply as PEEK), 30 parts by weight, polyetherimide resin [manufactured by General Electric Co., Ultem 1000, Tg: 216 ° C.] (hereinafter abbreviated as PEI) 70 parts by weight and inorganic. A 50 μm thick extruded film composed of 50 parts by weight of a filler (commercial mica, average particle size: 10 μm, aspect ratio: 40) was hot-pressed at 250 ° C. for 30 minutes.
A single-sided build-up test board was obtained. Using the obtained substrate, the following tests 1 to 6 were performed, and the evaluation results such as the evaluated thermal characteristics and reliability tests are shown in Table 1. (1) Glass transition temperature (Tg) Thermal stress strain measuring device (manufactured by Seiko Instruments Inc .:
Using TMA / SS6100), the temperature dependence of the amount of thermal expansion during the heating process was determined, a tangent was drawn on a curve before and after the glass transition point, and Tg was determined from the intersection of the tangents. (2) Coefficient of linear expansion (α x , α y ) Thermal stress strain measuring device (manufactured by Seiko Instruments Inc .:
TMA / SS6100) to determine the linear expansion coefficient. Here, the flow direction of the film from the extruder is defined as the X direction, and the direction orthogonal thereto is defined as the Y direction.
A test piece (length: 10 mm, cross-sectional area: 1 mm 2 ) was prepared using the film as a strip, fixed at a tensile load of 0.1 g, and heated from room temperature at a rate of 5 ° C./min. I asked. (3) Amount of substrate warpage The amount of substrate warpage was determined in accordance with JIS C6481. A warpage of less than 2 mm was defined as a non-defective product. (4) Moisture absorption heat resistance 121 ° C. × 100 using a pressure cooker tester
% X 48 hours, and then 260 ° C
By immersing in solder for 20 seconds, deformation, warping,
The occurrence of interfacial peeling and the like was visually evaluated and determined. (5) Thermal shock cycle test The sample was subjected to a thermal cycle of −65 ° C. × 5 minutes and 150 ° C. × 5 minutes, and the number of cycles at which resin cracks occurred was measured. (6) Drop impact test A test substrate was dropped on a concrete floor from a height of 0.7 m, and the presence or absence of cracks in the substrate was visually evaluated for judgment.
The test was carried out at N = 10, and when even one crack was found to be defective.

【0039】[0039]

【表1】 [Table 1]

【0040】[実施例2]表1に示すように、実施例1
において無機充填材の充填量を25重量部に変更したこ
と以外は、実施例1と同様にして目的とする片面ビルド
アップ試験基板を得た。得られた基板を用いて試験1〜
6を行ない、評価した熱特性や信頼性試験などの結果を
表1中に併記した。
[Embodiment 2] As shown in Table 1, Embodiment 1
In Example 1, a target single-sided build-up test substrate was obtained in the same manner as in Example 1 except that the filling amount of the inorganic filler was changed to 25 parts by weight. Test 1 using the obtained substrate
6 was performed, and the results of the evaluated thermal characteristics and reliability tests are also shown in Table 1.

【0041】[実施例3]表1に示すように、実施例1
においてPEEKとPEIの混合重量比を60/40重
量部に変更したこと以外は、実施例1と同様にして目的
とする片面ビルドアップ試験基板を得た。得られた基板
を用いて試験1〜6を行ない、評価した熱特性や信頼性
試験などの結果を表1中に併記した。
Example 3 As shown in Table 1, Example 1
In Example 1, a target single-sided build-up test substrate was obtained in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI was changed to 60/40 parts by weight. Tests 1 to 6 were performed using the obtained substrate, and the results of the evaluated thermal characteristics and reliability tests were also shown in Table 1.

【0042】[比較例1]表1に示すように、実施例1
においてPEEKとPEIの混合重量比を20/80重
量部に変更したこと以外は、実施例1と同様にして目的
とする片面ビルドアップ試験基板を得た。得られた基板
を用いて試験1〜6を行ない、評価した熱特性や信頼性
試験などの結果を表1中に併記した。
Comparative Example 1 As shown in Table 1, Example 1
In Example 1, except that the mixing weight ratio of PEEK and PEI was changed to 20/80 parts by weight, a target single-sided build-up test substrate was obtained in the same manner as in Example 1. Tests 1 to 6 were performed using the obtained substrate, and the results of the evaluated thermal characteristics and reliability tests were also shown in Table 1.

【0043】[比較例2]表1に示すように、実施例1
において用いた無機充填材に代えて、平均アスペクト比
が20の無機充填材を用いたこと以外は、実施例1と同
様にして目的とする片面ビルドアップ試験基板を得た。
得られた基板を用いて試験1〜6を行ない、評価した熱
特性や信頼性試験などの結果を表1中に併記した。
Comparative Example 2 As shown in Table 1, Example 1
A target single-sided build-up test substrate was obtained in the same manner as in Example 1, except that an inorganic filler having an average aspect ratio of 20 was used instead of the inorganic filler used in the above.
Tests 1 to 6 were performed using the obtained substrate, and the results of the evaluated thermal characteristics and reliability tests were also shown in Table 1.

【0044】[比較例3]表1に示すように、実施例1
において用いた無機充填材に代えて、平均粒径が20ミ
クロン、アスペクト比が35の無機充填材を用いたこと
以外は、実施例1と同様にして目的とする片面ビルドア
ップ試験基板を得た。得られた基板を用いて試験1〜6
を行ない、評価した熱特性や信頼性試験などの結果を表
1中に併記した。
Comparative Example 3 As shown in Table 1, Example 1
A target single-sided build-up test substrate was obtained in the same manner as in Example 1, except that the inorganic filler having an average particle size of 20 μm and an aspect ratio of 35 was used instead of the inorganic filler used in Example 1. . Tests 1 to 6 using the obtained substrate
The results of the evaluated thermal characteristics and reliability tests are also shown in Table 1.

【0045】[比較例4]表1に示すように、実施例1
において無機充填材の配合量を15重量部にしたこと以
外は、実施例1と同様にして目的とする片面ビルドアッ
プ試験基板を得た。得られた基板を用いて試験1〜6を
行ない、評価した熱特性や信頼性試験などの結果を表1
中に併記した。
Comparative Example 4 As shown in Table 1, Example 1
In Example 1, a target single-sided build-up test substrate was obtained in the same manner as in Example 1 except that the amount of the inorganic filler was changed to 15 parts by weight. Tests 1 to 6 were performed using the obtained substrate, and the results of the evaluated thermal characteristics and reliability tests were shown in Table 1.
Also described in the inside.

【0046】[比較例5]表1に示すように、実施例1
において無機充填材の充填量を70重量部にしたこと以
外は、実施例1と同様にして目的とする片面ビルドアッ
プ試験基板を得た。得られた基板を用いて試験1〜6を
行ない、評価した熱特性や信頼性試験などの結果を表1
中に併記した。
Comparative Example 5 As shown in Table 1, Example 1
In Example 1, a target single-sided build-up test substrate was obtained in the same manner as in Example 1 except that the amount of the inorganic filler was changed to 70 parts by weight. Tests 1 to 6 were performed using the obtained substrate, and the results of the evaluated thermal characteristics and reliability tests were shown in Table 1.
Also described in the inside.

【0047】[比較例6]表1に示すように、実施例1
においてPEEKとPEIの混合重量比を80/20重
量部に変更したこと以外は、実施例1と同様にして目的
とする片面ビルドアップ試験基板を得た。得られた基板
を用いて試験1〜6を行ない、評価した熱特性や信頼性
試験などの結果を表1中に併記した。
Comparative Example 6 As shown in Table 1, Example 1
In Example 1, a target single-sided build-up test substrate was obtained in the same manner as in Example 1 except that the mixing weight ratio of PEEK and PEI was changed to 80/20 parts by weight. Tests 1 to 6 were performed using the obtained substrate, and the results of the evaluated thermal characteristics and reliability tests were also shown in Table 1.

【0048】[0048]

【発明の効果】ビルドアップ用絶縁材料に係る発明は、
以上説明したように、所定の結晶融解ピーク温度を有す
るポリアリールケトン樹脂と非晶性ポリエーテルイミド
樹脂を所定量混合した熱可塑性樹脂組成物に、所定物性
の無機充填材であって、好ましくは平均粒径15ミクロ
ン以下、平均アスペクト比30以上の鱗片状無機充填材
を所定量混合したので、従来のビルドアップ用絶縁材料
における問題点であった保存安定性、ガラスクロス含有
タイプの抱えるマイグレーションの問題を改善し、ノン
ハロゲン、リサイクル性といった環境に対する負荷の少
ないビルドアップ用絶縁材料であるという利点がある。
According to the invention relating to the insulating material for build-up,
As described above, a thermoplastic resin composition obtained by mixing a predetermined amount of a polyaryl ketone resin having a predetermined crystal melting peak temperature and an amorphous polyetherimide resin is an inorganic filler having predetermined physical properties, preferably Since a predetermined amount of a flaky inorganic filler having an average particle size of 15 μm or less and an average aspect ratio of 30 or more was mixed, storage stability, which was a problem in conventional insulating materials for build-up, migration of glass cloth containing type was problematic. This has the advantage of improving the problem and being a non-halogen, recyclable and low-environmental load build-up insulating material.

【0049】また、ビルドアップ多層プリント配線基板
に係る発明は、上記の利点のあるビルドアップ用絶縁材
料を用いたことにより、従来の絶縁材料を用いたビルド
アップ多層配線基板における反り、実装時の界面剥離、
製造工程の煩雑さなどの諸問題を解決できる。
Further, the invention relating to the build-up multilayer printed circuit board uses the above-mentioned advantageous insulating material for build-up, so that the warp in the conventional build-up multilayer circuit board using the insulating material, Interface delamination,
Various problems such as complexity of the manufacturing process can be solved.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 71/00 C08L 71/00 Z 79/08 79/08 B Fターム(参考) 4J002 CH09W CM04X CM05X FA016 FD016 GQ01 GQ05 5E346 AA03 AA04 AA12 AA15 AA32 AA43 CC08 CC32 DD13 DD32 EE13 FF01 FF18 FF27 GG02 GG15 GG28 HH11 HH13 HH31──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C08L 71/00 C08L 71/00 Z 79/08 79/08 B F term (Reference) 4J002 CH09W CM04X CM05X FA016 FD016 GQ01 GQ05 5E346 AA03 AA04 AA12 AA15 AA32 AA43 CC08 CC32 DD13 DD32 EE13 FF01 FF18 FF27 GG02 GG15 GG28 HH11 HH13 HH31

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 コア基板上に絶縁層と導体層とが交互に
積層され、各導体層間がバイアホールにて接続されたビ
ルドアップ多層プリント配線基板の前記コア基板上に積
層される絶縁層の材料であるビルドアップ用絶縁材料に
おいて、 この絶縁材料が、結晶融解ピーク温度が260℃以上で
あるポリアリールケトン樹脂70〜25重量%と非晶性
ポリエーテルイミド樹脂30〜75重量%とからなる熱
可塑性樹脂組成物100重量部に対して、無機充填材を
20重量部以上50重量部以下で混合した絶縁材料であ
ることを特徴とするビルドアップ用絶縁材料。
1. An insulating layer laminated on the core substrate of a build-up multilayer printed wiring board in which insulating layers and conductive layers are alternately laminated on a core substrate, and each conductive layer is connected by a via hole. In a build-up insulating material, the insulating material is composed of 70 to 25% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher and 30 to 75% by weight of an amorphous polyetherimide resin. An insulating material for build-up, wherein the insulating material is a mixture of 20 parts by weight or more and 50 parts by weight or less of an inorganic filler with respect to 100 parts by weight of a thermoplastic resin composition.
【請求項2】 無機充填材が鱗片状である請求項1記載
のビルドアップ用絶縁材料。
2. The build-up insulating material according to claim 1, wherein the inorganic filler is in the form of scale.
【請求項3】 鱗片状の無機充填材が、平均粒径15μ
m以下、平均アスペクト比(平均粒径/平均厚み)が3
0以上であるビルドアップ用絶縁材料。
3. The scaly inorganic filler has an average particle size of 15 μm.
m or less, average aspect ratio (average particle diameter / average thickness) is 3
Insulating material for build-up that is 0 or more.
【請求項4】 コア基板上に絶縁層と導体層とが交互に
積層され、各導体層間がバイアホールにて接続されたビ
ルドアップ多層プリント配線基板において、前記コア基
板上に積層される絶縁層を形成する絶縁材料が、結晶融
解ピーク温度が260℃以上であるポリアリールケトン
樹脂70〜25重量%と非晶性ポリエーテルイミド樹脂
30〜75重量%とからなる熱可塑性樹脂組成物100
重量部に対し、無機充填材を20重量部以上50重量部
以下で混合した絶縁材料であることを特徴とするビルド
アップ多層プリント配線基板。
4. In a build-up multilayer printed wiring board in which insulating layers and conductive layers are alternately laminated on a core substrate, and the respective conductive layers are connected by via holes, the insulating layers laminated on the core substrate A thermoplastic resin composition 100 in which the insulating material forming the resin composition comprises 70 to 25% by weight of a polyarylketone resin having a crystal melting peak temperature of 260 ° C. or higher and 30 to 75% by weight of an amorphous polyetherimide resin.
A build-up multilayer printed wiring board comprising an insulating material in which an inorganic filler is mixed in an amount of 20 parts by weight or more and 50 parts by weight or less with respect to parts by weight.
JP2000343938A 2000-11-10 2000-11-10 Build-up insulation material and build-up multilayer printed wiring board Expired - Fee Related JP3806593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000343938A JP3806593B2 (en) 2000-11-10 2000-11-10 Build-up insulation material and build-up multilayer printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000343938A JP3806593B2 (en) 2000-11-10 2000-11-10 Build-up insulation material and build-up multilayer printed wiring board

Publications (2)

Publication Number Publication Date
JP2002151850A true JP2002151850A (en) 2002-05-24
JP3806593B2 JP3806593B2 (en) 2006-08-09

Family

ID=18818220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000343938A Expired - Fee Related JP3806593B2 (en) 2000-11-10 2000-11-10 Build-up insulation material and build-up multilayer printed wiring board

Country Status (1)

Country Link
JP (1) JP3806593B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123852A (en) * 2002-10-01 2004-04-22 Sumitomo Bakelite Co Ltd Aromatic resin composition and film and sheet
JP2004182832A (en) * 2002-12-02 2004-07-02 Sumitomo Bakelite Co Ltd Aromatic resin composition, heat-resistant sheet and sheet for reinforcing flexible circuit board
WO2005032227A1 (en) * 2003-09-29 2005-04-07 Ibiden Co., Ltd. Interlayer insulating layer for printed wiring board, printed wiring board and method for manufacturing same
JP2006019451A (en) * 2004-06-30 2006-01-19 Ibiden Co Ltd Printed-circuit board and interlayer insulating layer therefor
JP2006100463A (en) * 2004-09-29 2006-04-13 Ibiden Co Ltd Interlayer insulating layer for printed wiring board, printed wiring board and manufacturing method thereof
JP2006341596A (en) * 2005-05-12 2006-12-21 Mitsubishi Plastics Ind Ltd Heat resistant resin plate
JP2008235833A (en) * 2007-03-23 2008-10-02 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring board

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123852A (en) * 2002-10-01 2004-04-22 Sumitomo Bakelite Co Ltd Aromatic resin composition and film and sheet
JP2004182832A (en) * 2002-12-02 2004-07-02 Sumitomo Bakelite Co Ltd Aromatic resin composition, heat-resistant sheet and sheet for reinforcing flexible circuit board
WO2005032227A1 (en) * 2003-09-29 2005-04-07 Ibiden Co., Ltd. Interlayer insulating layer for printed wiring board, printed wiring board and method for manufacturing same
US8021748B2 (en) 2003-09-29 2011-09-20 Ibiden Co., Ltd. Interlayer insulating layer for printed wiring board, printed wiring board and method for manufacturing same
JP2006019451A (en) * 2004-06-30 2006-01-19 Ibiden Co Ltd Printed-circuit board and interlayer insulating layer therefor
JP2006100463A (en) * 2004-09-29 2006-04-13 Ibiden Co Ltd Interlayer insulating layer for printed wiring board, printed wiring board and manufacturing method thereof
JP2006341596A (en) * 2005-05-12 2006-12-21 Mitsubishi Plastics Ind Ltd Heat resistant resin plate
JP2008235833A (en) * 2007-03-23 2008-10-02 Mitsubishi Plastics Ind Ltd Interlayer connection bonding sheet for multilayer wiring board

Also Published As

Publication number Publication date
JP3806593B2 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
KR101014517B1 (en) Manufacturing process for a prepreg with a carrier, prepreg with a carrier, manufacturing process for a thin double-sided plate, thin double-sided plate and manufacturing process for a multilayer-printed circuit board
JP2003229663A (en) Multilayered wiring board, method of manufacturing the same and semiconductor device mounting substrate
JP4934334B2 (en) Double-sided copper-clad board
WO2004064467A1 (en) Multilayer wiring board, method for producing the same, and method for producing fiber reinforced resin board
KR20090075810A (en) Resin composition, insulating sheet with base, prepreg, multilayer printed wiring board and semiconductor device
CN101664733B (en) Method for making prepreg used for thick copper multilayer printed circuit board and prepreg
JP4129166B2 (en) Electrolytic copper foil, film with electrolytic copper foil, multilayer wiring board, and manufacturing method thereof
JP2008038066A (en) Prepreg, substrate and semiconductor device
JP2000200976A (en) Multilayer printed wiring substrate and its manufacture
JP3806593B2 (en) Build-up insulation material and build-up multilayer printed wiring board
JP2004277671A (en) Prepreg and printed circuit board using the same
JP3955188B2 (en) Heat-resistant film for substrate and printed wiring board using the same
JP4806279B2 (en) Insulating substrate containing glass cloth
JP3819701B2 (en) Core substrate for build-up multilayer printed wiring boards
JP4840303B2 (en) Insulated resin sheet with glass fiber woven fabric, laminated board, multilayer printed wiring board, and semiconductor device
JP2005209489A (en) Insulation sheet
CN202965394U (en) Resin-coated copper foil for printed circuit board
JP2004349366A (en) Multilayer wiring board and its manufacturing method
JP4965102B2 (en) Conductive paste composition for via hole filling
JPH08216340A (en) Highly rigid copper-clad laminated plate and manufacture thereof
CN103847195A (en) Resin coated copper foil for printed circuit board and manufacturing method thereof
JP2001152108A (en) Insulating adhesive film multi-layer printed-wiring board using the same and its manufacturing method
JPH10335834A (en) Multilayered wiring board
JP2005072454A (en) Wiring board and its manufacturing method
JPH09232757A (en) Manufacture of multilayered circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Effective date: 20051209

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060515

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120519

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130519

LAPS Cancellation because of no payment of annual fees