JP2002151687A - High breakdown-strength mos field effect transistor - Google Patents

High breakdown-strength mos field effect transistor

Info

Publication number
JP2002151687A
JP2002151687A JP2000348225A JP2000348225A JP2002151687A JP 2002151687 A JP2002151687 A JP 2002151687A JP 2000348225 A JP2000348225 A JP 2000348225A JP 2000348225 A JP2000348225 A JP 2000348225A JP 2002151687 A JP2002151687 A JP 2002151687A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
type
type semiconductor
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000348225A
Other languages
Japanese (ja)
Inventor
Tomohiro Kawano
友広 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000348225A priority Critical patent/JP2002151687A/en
Publication of JP2002151687A publication Critical patent/JP2002151687A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs

Abstract

PROBLEM TO BE SOLVED: To provide an MOSFET, manufactured easily, of high breakdown- strength with no increase in a chip area while the abrupt increase of on- resistance that follows increase of breakdown-strength is suppressed. SOLUTION: A p-type base region 17 and an n+ type drain region 22, away from each other, are formed on an n- type semiconductor region 15 separated by a silicon oxide film 12 of an n- type semiconductor substrate 11. An n+ type source region 18 is formed in the p-type base region 17. An n-type semiconductor region 13 and a p-type semiconductor region 14 are alternately formed as a stripe on the n- type semiconductor region 15 between the p-type base region 17 and the n+ type drain region 22. A source electrode 19 is formed on the n+ type source region 18 while a drain electrode 23 is formed on the n+ type drain region 22. A gate electrode 21 is formed through a gate insulating film 20 on the p-type base region 17 between the n+ type source region 18 and n-type semiconductor region 13 and p-type semiconductor region 14.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、誘電体分離構造
を用いたパワーICの高耐圧MOS電界効果トランジス
タに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high withstand voltage MOS field effect transistor of a power IC using a dielectric isolation structure.

【0002】[0002]

【従来の技術】SOI基板を用いた、誘電体分離による
パワーICの出力素子として、横形のMOS電界効果ト
ランジスタ(以下MOSFET)が使用される場合があ
る。このMOSFETでは、シリコンの破壊電界強度に
よって耐圧が制限されるため、高耐圧化するには、図3
(a)に示す構造において、n- 型ドリフト領域101
の不純物の低濃度化とn- 型ドリフト領域101の距離
を長くする必要がある。
2. Description of the Related Art In some cases, a lateral MOS field effect transistor (hereinafter referred to as a MOSFET) is used as an output element of a power IC using an SOI substrate by dielectric isolation. In this MOSFET, the breakdown voltage is limited by the breakdown electric field strength of silicon.
In the structure shown in FIG.
It is necessary to reduce the concentration of the impurities and increase the distance between the n − -type drift regions 101.

【0003】[0003]

【発明が解決しようとする課題】しかし、MOSFET
のオン抵抗は、n- 型ドリフト領域の不純物の低濃度化
とn- 型ドリフト領域の距離が長くなる関係で、以下の
式(1)に従って指数関数的に悪化する。
However, MOSFETs
Is exponentially degraded according to the following equation (1) due to the relationship between the low concentration of impurities in the n − -type drift region and the increase in the distance between the n − -type drift regions.

【0004】 Rb = K(BVds)2.6 …(1) なお、Rbはn- 型ドリフト領域の不純物濃度と距離で
決まるバルク抵抗、Kは定数、BVdsはドレイン−ソ
ース間のブレイクダウン電圧である。図3(a)中のE
cは、シリコン(Si)の破壊電界強度を示す。
Rb = K (BVds) 2.6 (1) where Rb is a bulk resistance determined by the impurity concentration and distance of the n − -type drift region, K is a constant, and BVds is a breakdown voltage between drain and source. is there. E in FIG. 3 (a)
c indicates the breakdown electric field strength of silicon (Si).

【0005】このため、MOSFETの高耐圧化はチッ
プ面積を増大させることになり、結果的に高価格化及び
ドライブエネルギの増大を招いている。
For this reason, increasing the withstand voltage of the MOSFET increases the chip area, which results in higher cost and higher drive energy.

【0006】これを解決する手段として、図3(b)に
示す断面図のように、n型ドリフト領域111を囲むよ
うにp型ピラー112を形成し、このp型ピラー112
で囲まれたn型ドリフト領域111のn型ドープ濃度を
高めることで、大幅にオン抵抗を低減するという手段が
ある。なお、p型ピラー112の外側には、n- 型半導
体領域113が形成されている。
As a means for solving this, as shown in a sectional view of FIG. 3B, a p-type pillar 112 is formed so as to surround an n-type drift region 111, and the p-type pillar 112 is formed.
There is a method of greatly reducing the on-resistance by increasing the n-type doping concentration of the n-type drift region 111 surrounded by. Note that an n − type semiconductor region 113 is formed outside the p type pillar 112.

【0007】図3(b)に示す構造のMOSFETで
は、オフ時には図3(c)に示すように、n- 型半導体
領域113の濃度と等価になり高耐圧化でき、オン時に
は図3(d)に示すように、n型ドリフト領域111の
濃度で低オン抵抗化できる。
In the MOSFET having the structure shown in FIG. 3B, when turned off, as shown in FIG. 3C, the concentration becomes equivalent to the concentration of the n − type semiconductor region 113, and the breakdown voltage can be increased. As shown in (), the on-resistance can be reduced by the concentration of the n-type drift region 111.

【0008】しかし、シリコン基板の表面から裏面に向
かって電流が流れる現在の縦形MOS構造に前記手段を
適用した場合には、薄いn型領域あるいはp型領域を縦
に重ね合わせてn型ピラーあるいはp型ピラーを形成す
る必要がある。縦に重ね合わせてn型ピラーあるいはp
型ピラーを形成するためには、数段階のエピタキシャル
成長工程を繰り返し、その都度、マスク合わせ及びp型
の不純物拡散、n型の不純物拡散を必要とする。特に、
n型及びp型の不純物濃度は精度良く合わせる必要があ
る。
However, when the above means is applied to a current vertical MOS structure in which a current flows from the front surface to the back surface of a silicon substrate, a thin n-type region or a p-type region is vertically overlapped to form an n-type pillar or It is necessary to form p-type pillars. N-type pillar or p
In order to form the mold pillar, several stages of epitaxial growth steps are repeated, and each time, mask alignment, p-type impurity diffusion, and n-type impurity diffusion are required. In particular,
It is necessary to precisely match the n-type and p-type impurity concentrations.

【0009】したがって、先の段階でエピタキシャル成
長したp型及びn型のピラーは、後の段階のエピタキシ
ャル成長によって、より長く熱工程を通ることになる。
このため、不純物拡散が進み、ピラーの下から上まで不
純物濃度を一様化するのが難しく、その上p型の不純物
拡散とn型の不純物拡散の速度も違うため、デバイスの
構造設計、及び工程管理が大変難しいものとなってい
る。
Therefore, the p-type and n-type pillars epitaxially grown in the earlier stage will pass through the thermal process longer due to the epitaxial growth in the later stage.
For this reason, impurity diffusion progresses, and it is difficult to make the impurity concentration uniform from the bottom to the top of the pillar. Further, the speeds of the p-type impurity diffusion and the n-type impurity diffusion are also different. Process management is very difficult.

【0010】そこでこの発明は、前記課題に鑑みてなさ
れたものであり、チップ面積を増大させることなく高耐
圧化でき、高耐圧化に伴うオン抵抗の急激な増大を抑え
ることができる製造が容易なMOSFETを提供するこ
とを目的とする。
Therefore, the present invention has been made in view of the above-mentioned problems, and it is possible to increase the breakdown voltage without increasing the chip area, and it is easy to manufacture which can suppress a rapid increase in on-resistance due to the increase in breakdown voltage. It is an object to provide a simple MOSFET.

【0011】[0011]

【課題を解決するための手段】前記目的を達成するため
に、この発明に係るMOS電界効果トランジスタは、第
1導電型の半導体基体と、前記半導体基体に、互いに離
間して形成された第2導電型の第1半導体領域、第1導
電型の第2半導体領域と、前記第1半導体領域に形成さ
れた第1導電型の第3半導体領域と、前記第1半導体領
域と第2半導体領域との間の前記半導体基体に、前記第
1半導体領域及び第2半導体領域に接するように形成さ
れた第1導電型の第4半導体領域と、前記第1半導体領
域と第2半導体領域との間の前記半導体基体に、前記第
1半導体領域、第2半導体領域、及び前記第4半導体領
域に接するように形成された第2導電型の第5半導体領
域と、前記半導体基体上に形成され、前記第3半導体領
域に電気的に接続された第1電流通路電極と、前記半導
体基体上に形成され、前記第2半導体領域に電気的に接
続された第2電流通路電極と、前記第4、第5の半導体
領域と前記第3半導体領域との間の前記第1半導体領域
上に、絶縁膜を介して形成されたゲート電極とを具備す
ることを特徴とする。
To achieve the above object, a MOS field-effect transistor according to the present invention comprises a semiconductor substrate of a first conductivity type and a second semiconductor substrate formed on the semiconductor substrate at a distance from each other. A first semiconductor region of the conductivity type, a second semiconductor region of the first conductivity type, a third semiconductor region of the first conductivity type formed in the first semiconductor region, the first semiconductor region and the second semiconductor region; A fourth semiconductor region of a first conductivity type formed so as to be in contact with the first semiconductor region and the second semiconductor region, between the first semiconductor region and the second semiconductor region; A second conductive type fifth semiconductor region formed in contact with the first semiconductor region, the second semiconductor region, and the fourth semiconductor region on the semiconductor substrate, and a fifth semiconductor region formed on the semiconductor substrate; Electrically connected to three semiconductor regions A first current path electrode, a second current path electrode formed on the semiconductor substrate, and electrically connected to the second semiconductor region, the fourth and fifth semiconductor regions, and the third semiconductor A gate electrode formed on the first semiconductor region between the first semiconductor region and an insulating film via an insulating film.

【0012】このように構成されたMOS電界効果トラ
ンジスタでは、第4半導体領域と第5半導体領域の不純
物が同数になるように形成されているため、このトラン
ジスタのオフ時には第4半導体領域と第5半導体領域と
が打ち消し合って、第4半導体領域、第5半導体領域、
及び半導体基体からなる領域は回路の見かけ上n- 型化
する。また、第4半導体領域と第5半導体領域の不純物
が同数で、かつ第4半導体領域の不純物ドープ濃度を高
めることにより、大幅にオン抵抗を低減できる。これに
より、MOS電界効果トランジスタのオフ時における耐
圧を高耐圧化できると共に、オン抵抗を低減できる。
In the MOS field-effect transistor thus configured, the fourth semiconductor region and the fifth semiconductor region have the same number of impurities. Therefore, when the transistor is off, the fourth semiconductor region and the fifth semiconductor region are not connected. The semiconductor regions cancel each other, and the fourth semiconductor region, the fifth semiconductor region,
And the region consisting of the semiconductor substrate becomes apparently n-type in the circuit. Further, the on-resistance can be significantly reduced by increasing the number of impurities in the fourth semiconductor region and the fifth semiconductor region and increasing the impurity doping concentration in the fourth semiconductor region. As a result, the withstand voltage of the MOS field-effect transistor when it is off can be increased, and the on-resistance can be reduced.

【0013】[0013]

【発明の実施の形態】以下、図面を参照してこの発明の
実施の形態について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0014】図1は、この発明の実施の形態のMOSF
ETの構造を示す断面図であり、図2は前記MOSFE
Tを上方からみた上面図である。
FIG. 1 shows a MOSF according to an embodiment of the present invention.
FIG. 2 is a sectional view showing the structure of the ET, and FIG.
It is the top view which looked at T from the upper part.

【0015】図1に示すように、n- 型シリコン半導体
基板11には、絶縁膜(誘電体膜)、例えばシリコン酸
化膜(SiO2)12で分離された素子領域が形成され
ている。この素子領域には、図2に示すように、n型半
導体領域13とp型半導体領域14とがストライプ状に
交互に形成されている。ストライプ状に配列されたn型
半導体領域13及びp型半導体領域14の外側には、n
- 型半導体領域15が形成されている。
As shown in FIG. 1, an element region separated by an insulating film (dielectric film), for example, a silicon oxide film (SiO 2) 12 is formed on an n − type silicon semiconductor substrate 11. In this element region, as shown in FIG. 2, n-type semiconductor regions 13 and p-type semiconductor regions 14 are alternately formed in a stripe shape. Outside the n-type semiconductor region 13 and the p-type semiconductor region 14 arranged in stripes, n
A type semiconductor region 15 is formed.

【0016】前記シリコン酸化膜12と、このシリコン
酸化膜12上に形成されたn型半導体領域13及びp型
半導体領域14とで、SOI基板を構成している。シリ
コン酸化膜12の膜厚は2μm〜4μm程度であり、シ
リコン酸化膜12上のn型半導体領域13及びp型半導
体領域14の膜厚は7μm程度である。
The silicon oxide film 12, an n-type semiconductor region 13 and a p-type semiconductor region 14 formed on the silicon oxide film 12 constitute an SOI substrate. The thickness of the silicon oxide film 12 is about 2 μm to 4 μm, and the thickness of the n-type semiconductor region 13 and the p-type semiconductor region 14 on the silicon oxide film 12 is about 7 μm.

【0017】前記n型半導体領域13及びp型半導体領
域14の長手方向の両端側には、n- 型半導体領域15
が形成されている。一方のn- 型半導体領域15上に
は、p型半導体領域(ベース領域)17が形成され、こ
のp型半導体領域17中の上層にはn+ 型半導体領域
(ソース領域)18が形成されている。
At both ends of the n-type semiconductor region 13 and the p-type semiconductor region 14 in the longitudinal direction, n-type semiconductor regions 15 are provided.
Are formed. A p-type semiconductor region (base region) 17 is formed on one n − -type semiconductor region 15, and an n + -type semiconductor region (source region) 18 is formed in an upper layer in the p-type semiconductor region 17. I have.

【0018】前記p型半導体領域(ベース領域)17上
には、n+ 型半導体領域18に電気的に接続されたソー
ス電極19が形成されている。ソース電極19には、ソ
ース端子Sが接続されている。
On the p-type semiconductor region (base region) 17, a source electrode 19 electrically connected to the n + -type semiconductor region 18 is formed. The source terminal 19 is connected to the source electrode 19.

【0019】前記n型半導体領域13及びp型半導体領
域14とn+ 型半導体領域18との間のp型半導体領域
17上には、ゲート絶縁膜20を介してゲート電極21
が形成されている。ゲート電極21には、ゲート端子G
が接続されている。
A gate electrode 21 is formed on the p-type semiconductor region 17 between the n-type semiconductor region 13 and the p-type semiconductor region 14 and the n + -type semiconductor region 18 via a gate insulating film 20.
Are formed. The gate electrode 21 has a gate terminal G
Is connected.

【0020】他方のn- 型半導体領域15中の上層に
は、n+ 型半導体領域(ドレイン領域)22が形成され
ている。さらに、n- 型半導体領域15上には、n+ 型
半導体領域22に電気的に接続されたドレイン電極23
が形成されている。ドレイン電極23には、ドレイン端
子Dが接続されている。ソース電極19とドレイン電極
23との間には、パッシベーション膜24が形成されて
いる。なお、図2はゲート電極21を省略した状態を示
している。
An n + type semiconductor region (drain region) 22 is formed in an upper layer in the other n − type semiconductor region 15. Further, a drain electrode 23 electrically connected to the n + -type semiconductor region 22 is formed on the n − -type semiconductor region 15.
Are formed. The drain terminal 23 is connected to the drain electrode 23. A passivation film 24 is formed between the source electrode 19 and the drain electrode 23. FIG. 2 shows a state where the gate electrode 21 is omitted.

【0021】ストライプ状に配列される前記n型半導体
領域13とp型半導体領域14は、活性層表面からp型
またはn型の不純物を注入し、拡散することにより形成
する。n型半導体領域13及びp型半導体領域14は、
前述したp型半導体領域(ベース領域)17とn+ 型半
導体領域(ドレイン領域)22に接触するとともに、S
OI基板の中間酸化膜(前記シリコン酸化膜12)に接
触している。さらに、前記n型半導体領域13とp型半
導体領域14の体積が同一の場合は、前記n型半導体領
域13とp型半導体領域14の不純物濃度は同一になる
ように形成する。あるいは、前記n型半導体領域13と
p型半導体領域14の不純物は同数になるように形成す
る。
The n-type semiconductor regions 13 and p-type semiconductor regions 14 arranged in stripes are formed by injecting and diffusing p-type or n-type impurities from the surface of the active layer. The n-type semiconductor region 13 and the p-type semiconductor region 14
While contacting the aforementioned p-type semiconductor region (base region) 17 and n + -type semiconductor region (drain region) 22,
It is in contact with the intermediate oxide film (the silicon oxide film 12) of the OI substrate. Further, when the n-type semiconductor region 13 and the p-type semiconductor region 14 have the same volume, the n-type semiconductor region 13 and the p-type semiconductor region 14 are formed to have the same impurity concentration. Alternatively, the impurities in the n-type semiconductor region 13 and the p-type semiconductor region 14 are formed so as to have the same number.

【0022】このように構成されたMOSFETでは、
n型半導体領域13とp型半導体領域14の不純物濃度
が同一になるように形成されているため、このMOSF
ETのオフ時にはn型半導体領域13とp型半導体領域
14とが打ち消し合って、n型半導体領域13、p型半
導体領域14、及びn- 型半導体領域15からなる領域
は、回路の見かけ上、n- 型化する。また、n型半導体
領域13とp型半導体領域14の不純物濃度が同一で、
かつn型半導体領域13のn型ドープ濃度を高めること
により、大幅にオン抵抗を低減できる。これにより、M
OSFETのオフ時の耐圧を高耐圧化できると共に、オ
ン抵抗を低減できる。
In the MOSFET configured as described above,
Since the n-type semiconductor region 13 and the p-type semiconductor region 14 are formed to have the same impurity concentration, this MOSF
When the ET is off, the n-type semiconductor region 13 and the p-type semiconductor region 14 cancel each other out, and the region including the n-type semiconductor region 13, the p-type semiconductor region 14, and the n − -type semiconductor region 15 n-type. Further, the n-type semiconductor region 13 and the p-type semiconductor region 14 have the same impurity concentration,
In addition, the on-resistance can be significantly reduced by increasing the n-type doping concentration of the n-type semiconductor region 13. This gives M
The on-state breakdown voltage of the OSFET can be increased while the on-state resistance can be reduced.

【0023】ここで仮に、n型半導体領域13よりp型
半導体領域14の不純物濃度が高い場合は、耐圧が悪く
なる。これは、オフ時にn型半導体領域13とp型半導
体領域14からなるドリフト領域がp型領域となり、p
型半導体領域(ベース領域)17とドリフト領域との間
で耐圧が保てなくなるからである。一方、p型半導体領
域14よりn型半導体領域13の不純物濃度が高い場合
は、耐圧が高くなるが、オン抵抗も高くなってしまう。
Here, if the impurity concentration of the p-type semiconductor region 14 is higher than that of the n-type semiconductor region 13, the breakdown voltage becomes worse. This is because the drift region composed of the n-type semiconductor region 13 and the p-type semiconductor region 14 becomes a p-type region when off,
This is because the breakdown voltage cannot be maintained between the type semiconductor region (base region) 17 and the drift region. On the other hand, when the impurity concentration of the n-type semiconductor region 13 is higher than that of the p-type semiconductor region 14, the withstand voltage increases, but the on-resistance also increases.

【0024】以上説明したようにこの実施の形態によれ
ば、高耐圧化を行っても指数関数的にオン抵抗が増大せ
ず、耐圧の増加に対してオン抵抗の増大がリニアな横形
MOSFETが実現できる。また、薄い活性層のSOI
基板上に、図1及び図2に示す構造の横形MOSFET
を形成するこの実施の形態では、細いp型半導体領域1
4とn型半導体領域13とのストライプは表面からの不
純物拡散で造り込むことが可能であるため、製造が容易
である。
As described above, according to this embodiment, even if the withstand voltage is increased, the on-resistance does not increase exponentially, and the increase in the withstand voltage is linear. realizable. Also, the SOI of the thin active layer
A horizontal MOSFET having the structure shown in FIGS. 1 and 2 on a substrate
In this embodiment, a thin p-type semiconductor region 1 is formed.
Since the stripes of 4 and the n-type semiconductor region 13 can be formed by impurity diffusion from the surface, the manufacture is easy.

【0025】また、この実施の形態の横形MOSFET
は、SOI基板上に形成するため、ストライプ状のp型
半導体領域14とn型半導体領域13が接するものはシ
リコン酸化膜12のみとなり、pn接合分離よりも簡単
に図1及び図2に示す構造の横形MOSFETが形成で
きる。
Further, the lateral MOSFET of this embodiment
Is formed on an SOI substrate, only the silicon oxide film 12 is in contact with the striped p-type semiconductor region 14 and the n-type semiconductor region 13, and the structure shown in FIGS. 1 and 2 is easier than the pn junction isolation. Can be formed.

【0026】[0026]

【発明の効果】以上述べたようにこの発明によれば、チ
ップ面積を増大させることなく高耐圧化でき、高耐圧化
に伴うオン抵抗の急激な増大を抑えることができる製造
が容易なMOSFETを提供することが可能である。
As described above, according to the present invention, it is possible to provide a MOSFET which can be easily manufactured which can increase the withstand voltage without increasing the chip area and can suppress a rapid increase in on-resistance due to the increase in the withstand voltage. It is possible to provide.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態のMOSFETの構造を
示す断面図である。
FIG. 1 is a sectional view showing a structure of a MOSFET according to an embodiment of the present invention.

【図2】この発明の実施の形態のMOSFETを上方か
らみた上面図である。
FIG. 2 is a top view of the MOSFET according to the embodiment of the present invention as viewed from above.

【図3】従来のMOSFETの断面を示す概略図であ
る。
FIG. 3 is a schematic view showing a cross section of a conventional MOSFET.

【符号の説明】[Explanation of symbols]

11…n- 型シリコン半導体基板 12…シリコン酸化膜(SiO2) 13…n型半導体領域 14…p型半導体領域 15…n- 型半導体領域 16…n- 型半導体領域 17…p型半導体領域(ベース領域) 18…n+ 型半導体領域(ソース領域) 19…ソース電極 20…ゲート絶縁膜 21…ゲート電極 22…n+ 型半導体領域(ドレイン領域) 23…ドレイン電極 24…パッシベーション膜 11 n-type silicon semiconductor substrate 12 silicon oxide film (SiO2) 13 n-type semiconductor region 14 p-type semiconductor region 15 n-type semiconductor region 16 n-type semiconductor region 17 p-type semiconductor region (base) Region) 18 n + type semiconductor region (source region) 19 source electrode 20 gate insulating film 21 gate electrode 22 n + type semiconductor region (drain region) 23 drain electrode 24 passivation film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基体と、 前記半導体基体に、互いに離間して形成された第2導電
型の第1半導体領域、第1導電型の第2半導体領域と、 前記第1半導体領域に形成された第1導電型の第3半導
体領域と、 前記第1半導体領域と第2半導体領域との間の前記半導
体基体に、前記第1半導体領域及び第2半導体領域に接
するように形成された第1導電型の第4半導体領域と、 前記第1半導体領域と第2半導体領域との間の前記半導
体基体に、前記第1半導体領域、第2半導体領域、及び
前記第4半導体領域に接するように形成された第2導電
型の第5半導体領域と、 前記半導体基体上に形成され、前記第3半導体領域に電
気的に接続された第1電流通路電極と、 前記半導体基体上に形成され、前記第2半導体領域に電
気的に接続された第2電流通路電極と、 前記第4、第5の半導体領域と前記第3半導体領域との
間の前記第1半導体領域上に、絶縁膜を介して形成され
たゲート電極と、 を具備することを特徴とするMOS電界効果トランジス
タ。
A first conductive type semiconductor substrate; a second conductive type first semiconductor region, a first conductive type second semiconductor region formed on the semiconductor substrate so as to be separated from each other; A third semiconductor region of a first conductivity type formed in a semiconductor region; and a semiconductor substrate between the first semiconductor region and the second semiconductor region, in contact with the first semiconductor region and the second semiconductor region. A first semiconductor region, a second semiconductor region, and a fourth semiconductor region formed on the semiconductor substrate between the first semiconductor region and the second semiconductor region; A fifth semiconductor region of the second conductivity type formed so as to be in contact with the first semiconductor device; a first current path electrode formed on the semiconductor substrate and electrically connected to the third semiconductor region; And electrically connected to the second semiconductor region. A second current path electrode connected thereto; and a gate electrode formed on the first semiconductor region between the fourth and fifth semiconductor regions and the third semiconductor region via an insulating film. A MOS field-effect transistor, comprising:
【請求項2】 前記半導体基体は、基板に形成された誘
電体膜によって分離された島領域であることを特徴とす
る請求項1に記載のMOS電界効果トランジスタ。
2. The MOS field effect transistor according to claim 1, wherein the semiconductor substrate is an island region separated by a dielectric film formed on the substrate.
【請求項3】 前記第4半導体領域と前記第5半導体領
域とは、同一の不純物濃度からなることを特徴とする請
求項1または2に記載のMOS電界効果トランジスタ。
3. The MOS field effect transistor according to claim 1, wherein said fourth semiconductor region and said fifth semiconductor region have the same impurity concentration.
【請求項4】 前記第4半導体領域と前記第5半導体領
域とは、同数の不純物を有していることを特徴とする請
求項1または2に記載のMOS電界効果トランジスタ。
4. The MOS field-effect transistor according to claim 1, wherein the fourth semiconductor region and the fifth semiconductor region have the same number of impurities.
【請求項5】 前記第4半導体領域と前記第5半導体領
域とは交互にストライプ状に配列されていることを特徴
とする請求項1乃至4のいずれかに記載のMOS電界効
果トランジスタ。
5. The MOS field effect transistor according to claim 1, wherein said fourth semiconductor region and said fifth semiconductor region are alternately arranged in a stripe shape.
【請求項6】 前記第4半導体領域及び前記第5半導体
領域は、前記誘電体膜に接していることを特徴とする請
求項2に記載のMOS電界効果トランジスタ。
6. The MOS field effect transistor according to claim 2, wherein the fourth semiconductor region and the fifth semiconductor region are in contact with the dielectric film.
【請求項7】 前記第4半導体領域は前記半導体基体よ
り不純物濃度が高く、前記第2、第3半導体領域は前記
第4半導体領域より不純物濃度が高いことを特徴とする
請求項1または2に記載のMOS電界効果トランジス
タ。
7. The semiconductor device according to claim 1, wherein the fourth semiconductor region has a higher impurity concentration than the semiconductor substrate, and the second and third semiconductor regions have a higher impurity concentration than the fourth semiconductor region. A MOS field-effect transistor as described.
【請求項8】 前記第1半導体領域はベース、前記第2
半導体領域はドレイン、前記第3半導体領域はソースで
あることを特徴とする請求項1または2に記載のMOS
電界効果トランジスタ。
8. The semiconductor device according to claim 1, wherein the first semiconductor region is a base,
3. The MOS according to claim 1, wherein the semiconductor region is a drain, and the third semiconductor region is a source.
Field effect transistor.
JP2000348225A 2000-11-15 2000-11-15 High breakdown-strength mos field effect transistor Pending JP2002151687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000348225A JP2002151687A (en) 2000-11-15 2000-11-15 High breakdown-strength mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000348225A JP2002151687A (en) 2000-11-15 2000-11-15 High breakdown-strength mos field effect transistor

Publications (1)

Publication Number Publication Date
JP2002151687A true JP2002151687A (en) 2002-05-24

Family

ID=18821843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000348225A Pending JP2002151687A (en) 2000-11-15 2000-11-15 High breakdown-strength mos field effect transistor

Country Status (1)

Country Link
JP (1) JP2002151687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440389B1 (en) 2012-10-12 2014-09-15 미쓰비시덴키 가부시키가이샤 Lateral high-voltage transistor and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101440389B1 (en) 2012-10-12 2014-09-15 미쓰비시덴키 가부시키가이샤 Lateral high-voltage transistor and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US6657262B2 (en) Monolithically integrated electronic device and fabrication process therefor
US20090085064A1 (en) Heterojunction semiconductor device and method
US11728421B2 (en) Split trench gate super junction power device
JP2001015741A (en) Field effect transistor
US20030057478A1 (en) Mos-gated power semiconductor device
JPH06120510A (en) High breakdown voltage misfet and semiconductor integrated circuit
JP2012054378A (en) Semiconductor device
JP4490094B2 (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device
US6160288A (en) Vertical type misfet having improved pressure resistance
US20180366574A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2020038986A (en) Semiconductor device
JP6237064B2 (en) Semiconductor device
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
KR102088181B1 (en) A semiconductor transistor and method for forming the semiconductor transistor
JP2016207829A (en) Insulated gate type switching element
JP3489362B2 (en) Semiconductor device and manufacturing method thereof
JP5023423B2 (en) Vertical insulated gate field effect transistor and manufacturing method thereof
TWI434388B (en) Trenched power semiconductor device and fabrication method thereof
JP2002151687A (en) High breakdown-strength mos field effect transistor
JPH1174517A (en) Semiconductor device
JPH10107269A (en) Semiconductor device controllable by field effect and its manufacture
JP3562282B2 (en) Semiconductor device
JP3446698B2 (en) Semiconductor device and manufacturing method thereof
JP3659195B2 (en) Semiconductor device and manufacturing method thereof
JP2009277956A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318