JP3562282B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP3562282B2
JP3562282B2 JP35257597A JP35257597A JP3562282B2 JP 3562282 B2 JP3562282 B2 JP 3562282B2 JP 35257597 A JP35257597 A JP 35257597A JP 35257597 A JP35257597 A JP 35257597A JP 3562282 B2 JP3562282 B2 JP 3562282B2
Authority
JP
Japan
Prior art keywords
conductivity
type
region
concentration
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35257597A
Other languages
Japanese (ja)
Other versions
JPH11186555A (en
Inventor
仁路 高野
正彦 鈴村
嘉城 早崎
裕二 鈴木
良史 白井
貴司 岸田
岳司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP35257597A priority Critical patent/JP3562282B2/en
Publication of JPH11186555A publication Critical patent/JPH11186555A/en
Application granted granted Critical
Publication of JP3562282B2 publication Critical patent/JP3562282B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、SOI構造型の半導体装置に関するものである。
【0002】
【従来の技術】
近年、発光素子と受光素子とを光結合し、受光素子の出力によって出力用パワー素子にスイッチング動作を行わせる光結合型半導体リレーにおいて、リレーオフ時の出力端子間容量を低減するために出力用パワー素子にSOI(Silicon On Insulator)技術を利用したSOI構造型のパワー半導体装置を使用することが注目されている。この種のパワー半導体装置の一つとして、横型二重拡散MOS電解効果トランジスタ、いわゆるLDMOSFET(Lateral Double Diffused MOSFET)がある。
【0003】
図6は、従来例に係る光結合型半導体リレーの一部を示す概略平面配置図である。受光素子である太陽電池16と2つの出力用のMOSFET17がGND端子フレーム18上に配設され、太陽電池16のカソード16a及びMOSFET17のソース電極17aがボンディングワイヤ19によりGND端子フレーム18と電気的に接続されている。これにより、太陽電池16のカソード16aとMOSFET17のソース電極17aとは、GND端子フレーム18を介して電気的に接続されている。なお、MOSFET17としては、SOI構造型のLDMOSFETが用いられる。
【0004】
また、GND端子フレーム18の両側に並設された出力端子フレーム20とMOSFET17のドレイン電極17bとがボンディングワイヤ19により電気的に接続され、太陽電池16のアノード16bとMOSFET17のゲート電極17cとがボンディングワイヤ19により電気的に接続されている。
【0005】
図7は、従来例に係る光結合型半導体リレーの概略断面図である。光結合型半導体リレーは、図7に示すように、GND端子フレーム18に対向配置された入力端子フレーム21上には、発光素子である発光ダイオード22が配設され、全体を遮光性樹脂23でモールドされて1パッケージ化されている。そして、太陽電池16と発光ダイオード22との間を光を透過する透光性樹脂24から成る導光路により光結合され、発光ダイオード22からの光を太陽電池16で受光できるようにしている。
【0006】
このように構成された光結合型半導体リレーは、発光ダイオード22を外部駆動信号で発光させ、その発光ダイオード22からの光を受光した太陽電池16は電圧を発生させ、この電圧が一定レベルに達すると、出力用のMOSFET17がスイッチングし、光結合型半導体リレーがオン、またはオフする。
【0007】
図8は、従来例に係る光結合型半導体リレーの出力端子間容量の容量成分を示す等価回路図である。出力端子間容量は、二つのSOI構造型のLDMOSFETの出力容量(Coss)の直列合成容量で形成され、出力容量(Coss)は、ドレイン・ソース間容量(Cds),ゲート・ドレイン間容量(Cgd)及びドレイン・基板間容量(Cdsub)の並列合成容量で形成される。
【0008】
図9は、従来例に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるFーF’での概略断面図である。このLDMOSFETは、単結晶シリコン等の半導体基板1の一主表面上にシリコン酸化膜等の第一の絶縁層である絶縁層2が形成され、絶縁層2上に第一導電型半導体層であるn型半導体層3が形成されてSOI(Silicon OnInsulator)基板を構成している。
【0009】
なお、SOI基板の形成方法の一例としては、絶縁層上に気相,液相,固相の各相で単結晶シリコンを成長させるSOI成長法や、基板を貼り合わせる貼り合わせSOI法や、単結晶シリコン中に酸素をイオン注入して内部に絶縁層を形成するSIMOX(Separation by Implanted Oxygen)法や、陽極酸化によってシリコンを部分的に多孔質化し酸化することによって形成する方法等がある。
【0010】
SOI基板におけるn型半導体層3内に、表面から絶縁層2に達するように高濃度第二導電型素子分離領域であるp+型素子分離領域4が形成され、n型半導体層3は、絶縁層2及びp+型素子分離領域4により絶縁分離された複数の領域に分割される。
【0011】
そして、絶縁分離されたn型半導体層3の表面に露出するように、n型半導体層3内の略中央に高濃度第一導電型ドレイン領域であるn+型ドレイン領域5が形成され、n+型ドレイン領域5との間で所定の耐圧を保持できる最短の距離だけ離間されるようにn+型ドレイン領域5を囲み、n型半導体層3の表面に露出するようにn型半導体層3内に第二導電型ウェル領域であるp型ウェル領域6が形成され、p型ウェル領域6に内包され、n型半導体層3の表面に露出するように高濃度第一導電型ソース領域であるn+型ソース領域7が形成されている。
【0012】
なお、n+型ドレイン領域5及ぴn+型ソース領域7の形成方法としては、リン(P)等のn型不純物をイオン注入及ぴアニール処理を行うことにより形成することができ、p型ウェル領域6の形成方法としては、ボロン(B)等のp型不純物をイオン注入及びアニール処理を行うことにより形成することができる。
【0013】
また、n+型ドレイン領域5とn+型ソース領域7との間に介在するp型ウェル領域6上には、薄い膜厚の第二の絶縁層であるゲート酸化膜8を介してポリシリコン等から成る絶縁ゲート9が形成され、SOI基板の絶縁ゲート9形成面側にはシリコン酸化膜等の第三の絶縁層であるパッシベーション膜10が形成されている。ここで、絶縁ゲート9は、n+型ドレイン領域5とn+型ソース領域7との間でn型半導体層3内を流れる主電流を制御するものである。
【0014】
そして、n+型ドレイン領域5と電気的に接続されるようにアルミニウム(Al)等から成るドレイン電極11が形成され、n+型ソース領域7及び絶縁ゲート9に囲まれたドレイン電極11上には、ドレインボンディングパッド11aが形成されている。ここで、ドレインボンディングパッド11aは、ボンディングワイヤと接続するため通常100μm□(1辺約100μmの正方形、以下において同じ)以上の面積を必要とする。
【0015】
また、p型ウェル領域6及びn+型ソース領域7と電気的に接続されるようにAl等から成るソース電極(図示せず)が形成され、絶縁ゲート9と電気的に接続されるようにAl等から成るゲート電極(図示せず)が形成されている。
【0016】
ここで、ドレイン・基板間容量(Cdsub)は、SOI基板の絶縁層2を挟んだドレイン電位とGND電位との電位差によって生じる容量であり、p型ウェル領域6によって囲まれた内側のn型半導体層3の絶縁層2側の面の面積(以下において、ドレイン面積という)に比例する特性である。そこで、ドレイン面積が大きくなると、出力容量(Coss)も大きくなり、結局光結合型半導体リレーの出力端子間容量も大きくなるという欠点を有する。
【0017】
また、近年では素子の小型化も望まれているが、図9(a)に示すように、ドレインボンディングパッド11aがn+型ソース領域7及び絶縁ゲート9に囲まれた内側に形成されている構造においては、SOI構造型のLDMOSFETをパッド面積以下に小さくすることができないという欠点も有する。
【0018】
この問題を解決する方法として、図10に示すように、p型ウェル領域6の内側のドレイン電極11から絶縁ゲート9及びn+型ソース領域7を跨ぐようにドレイン電極11を引き出し、ドレインボンディングパッド11aを絶縁ゲート9及びn+型ソース領域7の外側に形成すれば良く、この場合、p型ウェル領域6に囲まれた内側のドレイン面積を小さくすることができ、ドレイン・基板間容量(Cdsub)を小さくすることができる。また、SOI構造型のLDMOSFETもドレインボンディングパッド11aの面積に依存せず、小型化することができる。
【0019】
【発明が解決しようとする課題】
ところが、上述の場合、ドレイン電極11のドレインボンディングパッド11aと、ドレインボンディングパッド11a下部のp+型素子分離領域4との電位差により、パッシベーション膜10を挟んで新たな寄生容量C1が生じるという問題があった。
【0020】
本発明は、上記の点に鑑みて成されたものであり、その目的とするところは、ドレインボンディングパッドを絶縁ゲート及びソース領域の外側に形成した場合の、ドレインボンディングパッドにより形成される寄生容量を小さくし、かつ、出力容量を低減化することのできる半導体装置を提供することにある。
【0021】
【課題を解決するための手段】
請求項1記載の発明は、半導体基板と該半導体基板上に第一の絶縁層を介して形成された第一導電型半導体層とから成るSOI基板と、該第一導電型半導体層の表面に露出するように前記第一導電型半導体層内に形成された高濃度第一導電型ドレイン領域と、前記高濃度第一導電型ドレイン領域と離間して囲むとともに、前記第一導電型半導体層の表面に露出するように前記第一導電型半導体層内に形成された第二導電型ウェル領域と、該第二導電型ウェル領域に内包され、前記第一導電型半導体層の表面に露出するように前記第一導電型半導体層内に形成された高濃度第一導電型ソース領域と、前記高濃度第一導電型ドレイン領域と前記高濃度第一導電型ソース領域との間に介在する前記第二導電型ウェル領域上に第二の絶縁層を介して形成された絶縁ゲートと、前記高濃度第一導電型ソース領域を囲むとともに、前記第一導電型半導体層の表面から前記第一の絶縁層に達するように形成された高濃度第二導電型素子分離領域と、前記高濃度第一導電型ドレイン領域と電気的に接続されたドレイン電極と、該ドレイン電極に電気的に接続されたドレインボンディングパッドとを有して成る半導体装置において、前記ドレイン電極が第三の絶縁層を介して前記高濃度第二導電型素子分離領域を跨いで外側まで延設され、前記ドレインボンディングパッドが、前記高濃度第二導電型素子分離領域を跨いだ外側で前記ドレイン電極と電気的に接続されて成ることを特徴とするものである。
【0022】
請求項2記載の発明は、請求項1記載の半導体装置において、前記高濃度第二導電型素子分離領域を跨いで外側の前記第一導電型半導体層内に、該第一導電型半導体層の表面から前記第一の絶縁層に達する高濃度第二導電型不純物領域が形成され、該高濃度第二導電型不純物領域上に前記第三の絶縁層を介して前記ドレインボンディングパッドが配置され、前記高濃度第二導電型不純物領域が前記高濃度第二導電型素子分離領域と離間して成ることを特徴とするものである。
【0023】
請求項3記載の発明は、請求項1記載の半導体装置において、前記高濃度第二導電型素子分離領域を跨いで外側の前記第一導電型半導体層内に、該第一導電型半導体層の表面から前記第一の絶縁層に達する高濃度第二導電型不純物領域が形成され、該高濃度第二導電型不純物領域内に、絶縁分離されて成る第一導電型半導体領域が形成され、該第一導電型半導体領域上に、前記第三の絶縁層を介して前記ドレインボンディングパッドが配置され、前記高濃度第二導電型不純物領域が前記高濃度第二導電型素子分離領域と離間して成ることを特徴とするものである。
【0024】
請求項4記載の発明は、請求項1乃至請求項3のいずれかに記載の半導体装置において、前記ドレインボンディングパッド直下及びその近傍の前記半導体基板に、前記第一の絶縁層に達する貫通孔を形成したことを特徴とするものである。
【0025】
請求項5記載の発明は、請求項1乃至請求項4のいずれかに記載の半導体装置において、少なくとも前記ドレインボンディングパッド直下の前記第三の絶縁層が、シリコン酸化膜とシリコン窒化膜とから成る多層膜で構成されて成ることを特徴とするものである。
【0026】
【発明の実施の形態】
以下、本発明の実施形態について図面に基づき説明する。なお、以下の実施形態においては、第一導電型をn型、第二導電型をp型として説明するが、第一導電型がp型、第二導電型がn型の場合にも適用できる。
【0027】
=実施形態1=
図1は、本発明の一実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるAーA’での概略断面図であり、(c)はドレインボンディングパッド11a形成箇所の寄生容量の等価回路図である。本実施形態に係るLDMOSFETは、従来例として図10に示すLDMOSFETにおいて、ドレイン電極11をp+型素子分離領域4を跨いで引き出し、p+型素子分離領域4の外部にドレインボンディングパッド11aを形成した構成である。
【0028】
本実施形態に係るSOI構造型のLDMOSFETにおいては、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は、ドレインボンディングパッド11a直下のパッシベーション膜10による容量C1に、絶縁層2による容量C2と、p+型素子分離領域4との接合による容量C3との並列容量が直列に結合する直並列回路となるため、従来の技術に示したような容量C1のみの場合と比べると、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は小さくなる。
【0029】
具体的に示すと、ドレインボンディングパッド11aの面積を約145μm□,ドレインボンディングパッド11a直下のパッシベーション膜10の厚みを約1μm,n型半導体層3の厚みを約2μm,n型半導体層3の濃度を約7×1015cm−3,p+型素子分離領域4の濃度を約1×1018cm−3,p+型素子分離領域4のジャンクション面積を約3.4×10−5cm,絶縁層2の厚みを約2μm,ドレイン面積を約2.9×10−3cmと考えると、C1≒0.75pF,C2≒5.0pF,C3≒1.6pFであり、Cpad≒0.65pFとなるから、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は0.1pF減少(13%削減)される。
【0030】
=実施形態2=
図2は、本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるBーB’での概略断面図であり、(c)はドレインボンディングパッド11a形成箇所の寄生容量の等価回路図である。本実施形態に係るLDMOSFETは、実施形態1として図1に示すLDMOSFETにおいて、ドレインボンディングパッド11aの下部及びその近傍のn型半導体層3内に、表面から絶縁層2に到達するように高濃度第二導電型不純物領域であるp+型浮遊電位領域12が形成された構成である。ここで、p+型浮遊電位領域12とp+型素子分離領域4とは離間されて成る。
【0031】
本実施形態に係るSOI構造型のLDMOSFETにおいては、ドレインボンディングパッド11a形成箇所のパッシベーション膜10による容量C1と、絶縁層2による容量C4と、p+型素子分離領域4による容量C5と、p+型浮遊電位領域12の接合による容量C6との直並列回路となる。
【0032】
ここで、本実施形態においては、p+型浮遊電位領域12の接合容量C8にp+型素子分離領域4の接合容量C7が直列に結合することで、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は、実施形態2における寄生容量(Cpad)よりも更に小さくなる。
【0033】
具体的に示すと、ドレインボンディングパッド11aの面積を約145μm□,ドレインボンディングパッド11a直下のパッシベーション膜10の厚みを約1μm,n型半導体層3の厚みを約2μm,n型半導体層3の濃度を約7×1015cm−3,p+型素子分離領域4の濃度を約1×1018cm−3,p+型浮遊電位領域12の側壁の面積を約1.1×10−5cm,絶縁層2の厚みを約2μm,ドレイン面積を約1.4×10−2cmと考えると、C1≒0.75pF,C4≒0.55pF,C5≒1.6pF,C6≒0.34pFであり、Cpad≒0.40pFとなるから、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は0.35pF減少(47%削減)される。
【0034】
=実施形態3=
図3は、本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるCーC’での概略断面図であり、(c)はドレインボンディングパッド11a形成箇所の寄生容量の等価回路図である。本実施形態に係るLDMOSFETは、実施形態2として図2に示すLDMOSFETにおいて、p+型浮遊電位領域12内に、n型半導体層3から成る第一導電型半導体領域であるn型半導体領域13を形成し、n型半導体領域13上にパッシベーション膜10を介してドレインボンディングパッド11aが形成された構成である。ここで、p+型浮遊電位領域12とp+型素子分離領域4とは離間されて成る。
【0035】
本実施形態に係るSOI構造型のLDMOSFETにおいては、ドレインボンディングパッド11a形成箇所のパッシベーション膜10による容量C1と、絶縁層2による容量C7と、p+型浮遊電位領域12のp+型素子分離領域4側の容量C8と、p+型浮遊電位領域12のn型半導体領域13側の容量C9と、p+型素子分離領域4の容量C5との直並列回路となる。
【0036】
ここで、本実施形態においては、p+型素子分離領域4の接合容量C5に、p+型浮遊電位領域12の外側及び内側の接合容量C8,C9が直列に結合することで、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は、実施形態2における寄生容量(Cpad)よりも更に小さくなる。
【0037】
具体的に示すと、ドレインボンディングパッド11aの面積を約145μm□,ドレインボンディングパッド11a直下のパッシベーション膜10の厚みを約1μm,n型半導体層3の厚みを約2μm,n型半導体層3の濃度を約7×1015cm−3,p+型素子分離領域4の濃度を約1×1018cm−3,p+型浮遊電位領域12の側壁の面積を約1.1×10−5cm,絶縁層2の厚みを約2μm,ドレイン面積を約1.4×10−2cmと考えると、C1≒0.75pF,C7≒0.55pF,C5≒1.6pF,C8≒0.34pF,C9≒0.34pFであり、Cpad≒0.36pFとなるから、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は0.39pF減少(52%削減)される。
【0038】
=実施形態4=
図4は、本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるDーD’での概略断面図であり、(c)はドレインボンディングパッド11a形成箇所の寄生容量の等価回路図である。本実施形態に係るLDMOSFETは、実施形態1として図1に示すLDMOSFETにおいて、ドレインボンディングパッド11a下部の半導体基板1に、半導体基板1の裏面側(SOI基板のパッシベーション膜10形成面と異なる面側)から絶縁層2に達する、ドレインボンディングパッド11aの大きさと略同様の大きさの貫通孔14が形成された構成である。ここで、貫通孔14の開口面積は、ドレインボンディングパッド11aの開口面積と同等以上となっている。
【0039】
なお、貫通孔14は、TMAH(Tetra Methyl Ammonium Hydroxide)等の異方性エッチャントを用いたウェットエッチングや、プラズマを用いたドライエッチングによって形成することができる。
【0040】
本実施形態に係るSOI構造型のLDMOSFETにおいては、ドレインボンディングパッド11a直下の半導体基板1に貫通孔14が形成されているため、絶縁層2による容量が殆ど発生せず、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は、ドレインボンディングパッド11a形成箇所のパッシベーション膜10による容量C1と、p+型素子分離領域4による容量C3との直列結合となり、従来の技術に示したような容量C1のみの場合と比べると、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は小さくなる。
【0041】
具体的に示すと、ドレインボンディングパッド11aの面積を約145μm□,ドレインボンディングパッド11a直下のパッシベーション膜10の厚みを約1μm,n型半導体層3の厚みを約2μm,n型半導体層3の濃度を約7×1015cm−3,p+型素子分離領域4の濃度を約1×1018cm−3,ジャンクション面積を約3.4×10−5cmと考えると、C1≒0.75pF,C3≒1.6pFであり、Cpad≒0.51pFとなるから、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は0.24pF減少(32%削減)される。
【0042】
=実施形態5=
図5は、本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるEーE’での概略断面図であり、(c)はドレインボンディングパッド11a形成箇所の寄生容量の等価回路図である。本実施形態に係るLDMOSFETは、実施形態1として図1に示すLDMOSFETにおいて、パッシベーション膜10と、ドレイン電極11及びドレインボンディングパッド11aとの間にシリコン窒化膜15を介在させた構成である。
【0043】
なお、本実施形態においては、パッシベーション膜10と、ドレイン電極11及びドレインボンディングパッド11aとの間にシリコン窒化膜15のみを介在させるようにしたが、これに限定されるものではなく、多層膜を介在させるようにしても良い。
【0044】
本実施形態に係るSOI構造型のLDMOSFETにおいては、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は、ドレインボンディングパッド11a形成箇所のパッシベーション膜10による容量C1と、ドレインボンディングパッド11a形成箇所のシリコン窒化膜15による容量C10と、絶縁層2による容量C2と、p+型素子分離領域4による容量C3との直並列回路となる。
【0045】
本実施形態における寄生容量(Cpad)の低減を具体的に示すと、ドレインボンディングパッド11aの面積を約145μm□,ドレインボンディングパッド11a直下のパッシベーション膜10の厚みを約1μm,n型半導体層3の厚みを約2μm,n型半導体層3の濃度を約7×1015cm−3,p+型素子分離領域4の濃度を約1×1018cm−3,p+型素子分離領域4のジャンクション面積を約3.4×10−5cm,シリコン窒化膜14の厚みを約0.5μm,絶縁層2の厚みを約2μm,ドレイン面積を約1.4×10−2cmと考えると、C1≒0.75pF,C2≒0.55pF,C3≒1.6pF,C10≒2.6pFであり、Cpad≒0.46pFとなるから、ドレインボンディングパッド11a形成箇所の寄生容量(Cpad)は0.29pF減少(39%削減)される。
【0046】
なお、本実施形態において、ドレイン電極11及びドレインボンディングパッド11aと、パッシベーション膜10との間にシリコン窒化膜15を介在させるようにしたが、上述の全ての実施形態においても適用でき、シリコン窒化膜15を介在させることによりさらに寄生容量を低減することができる。
【0047】
また、実施形態4において、ドレインボンディングパッド11a直下の半導体基板1に貫通孔14を形成するようにしたが、実施形態1〜3,5においても適用でき、これにより絶縁層2による寄生容量成分をなくすことができる。
【0048】
【発明の効果】
請求項1記載の発明は、半導体基板と半導体基板上に第一の絶縁層を介して形成された第一導電型半導体層とから成るSOI基板と、第一導電型半導体層の表面に露出するように第一導電型半導体層内に形成された高濃度第一導電型ドレイン領域と、高濃度第一導電型ドレイン領域と離間して囲むとともに、第一導電型半導体層の表面に露出するように第一導電型半導体層内に形成された第二導電型ウェル領域と、第二導電型ウェル領域に内包され、第一導電型半導体層の表面に露出するように第一導電型半導体層内に形成された高濃度第一導電型ソース領域と、高濃度第一導電型ドレイン領域と高濃度第一導電型ソース領域との間に介在する第二導電型ウェル領域上に第二の絶縁層を介して形成された絶縁ゲートと、高濃度第一導電型ソース領域を囲むとともに、第一導電型半導体層の表面から第一の絶縁層に達するように形成された高濃度第二導電型素子分離領域と、高濃度第一導電型ドレイン領域と電気的に接続されたドレイン電極と、ドレイン電極に電気的に接続されたドレインボンディングパッドとを有して成る半導体装置において、ドレイン電極が第三の絶縁層を介して高濃度第二導電型素子分離領域を跨いで外側まで延設され、ドレインボンディングパッドが、高濃度第二導電型素子分離領域を跨いだ外側でドレイン電極と電気的に接続されて成るので、ドレインボンディングパッド直下の第三の絶縁層による容量に、第一の絶縁層による容量と、高濃度第二導電型素子分離領域による容量との並列回路を直列に容量結合することとなり、ドレインボンディングパッドを絶縁ゲート及びソース領域の外側に形成した場合の、ドレインボンディングパッドにより形成される寄生容量を小さくし、かつ、出力容量を低減化することのできる半導体装置を提供することができた。
【0049】
請求項2記載の発明は、請求項1記載の半導体装置において、高濃度第二導電型素子分離領域を跨いで外側の第一導電型半導体層内に、第一導電型半導体層の表面から第一の絶縁層に達する高濃度第二導電型不純物領域が形成され、高濃度第二導電型不純物領域上に第三の絶縁層を介してドレインボンディングパッドが配置され、高濃度第二導電型不純物領域が高濃度第二導電型素子分離領域と離間して成るので、高濃度第二導電型素子分離領域の接合容量に高濃度第二導電型不純物領域の接合容量が直列結合されることになり、ドレインボンディングパッドにより形成される寄生容量を小さくし、かつ、出力容量を低減化することができる。
【0050】
請求項3記載の発明は、請求項1記載の半導体装置において、高濃度第二導電型素子分離領域を跨いで外側の第一導電型半導体層内に、第一導電型半導体層の表面から第一の絶縁層に達する高濃度第二導電型不純物領域が形成され、高濃度第二導電型不純物領域内に、絶縁分離されて成る第一導電型半導体領域が形成され、第一導電型半導体領域上に、第三の絶縁層を介してドレインボンディングパッドが配置され、高濃度第二導電型不純物領域が高濃度第二導電型素子分離領域と離間して成るので、高濃度第二導電型素子分離領域の接合容量に、高濃度第二導電型不純物領域の外側及び内側の接合容量が直列に結合されることになり、ドレインボンディングパッドにより形成される寄生容量を小さくし、かつ、出力容量を低減化することができる。
【0051】
請求項4記載の発明は、請求項1乃至請求項3のいずれかに記載の半導体装置において、ドレインボンディングパッド直下及びその近傍の半導体基板に、第一の絶縁層に達する貫通孔を形成したので、第一の絶縁層による寄生容量成分が無くなり、ドレインボンディングパッドにより形成される寄生容量を小さくし、かつ、出力容量を低減化することができる。
【0052】
請求項5記載の発明は、請求項1乃至請求項4のいずれかに記載の半導体装置において、少なくともドレインボンディングパッド直下の第三の絶縁層が、シリコン酸化膜とシリコン窒化膜とから成る多層膜で構成されて成るので、シリコン酸化膜による容量と、シリコン窒化膜による容量とが直列に結合されることになり、ドレインボンディングパッドにより形成される寄生容量を小さくし、かつ、出力容量を低減化することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるAーA’での概略断面図であり、(c)はドレインボンディングパッド形成箇所の寄生容量の等価回路図である。
【図2】本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるBーB’での概略断面図であり、(c)はドレインボンディングパッド形成箇所の寄生容量の等価回路図である。
【図3】本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるCーC’での概略断面図であり、(c)はドレインボンディングパッド形成箇所の寄生容量の等価回路図である。
【図4】本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるDーD’での概略断面図であり、(c)はドレインボンディングパッド形成箇所の寄生容量の等価回路図である。
【図5】本発明の他の実施形態に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるEーE’での概略断面図であり、(c)はドレインボンディングパッド形成箇所の寄生容量の等価回路図である。
【図6】従来例に係る光結合型半導体リレーの一部を示す概略平面配置図である。
【図7】従来例に係る光結合型半導体リレーの概略断面図である。
【図8】従来例に係る光結合型半導体リレーの出力端子間容量の容量成分を示す等価回路図である。
【図9】従来例に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるFーF’での概略断面図である。
【図10】従来例に係るSOI構造型のLDMOSFETを示す概略構成図であり、(a)は上面から見た状態を示す概略平面図であり、(b)は(a)におけるGーG’での概略断面図である。
【符号の説明】
1 半導体基板
2 絶縁層
3 n型半導体層
4 p+型素子分離領域
5 n+型ドレイン領域
6 p型ウェル領域
7 n+型ソース領域
8 ゲート酸化膜
9 絶縁ゲート
10 パッシベーション膜
11 ドレイン電極
11a ドレインボンディングパッド
12 p+型浮遊電位領域
13 n型半導体領域
14 貫通孔
15 シリコン窒化膜
16 太陽電池
16a カソード
16b アノード
17 MOSFET
17a ソース電極
17b ドレイン電極
17c ゲート電極
18 GND端子フレーム
19 ボンディングワイヤ
20 出力端子フレーム
21 入力端子フレーム
22 発光ダイオード
23 遮光性樹脂
24 透光性樹脂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an SOI structure type semiconductor device.
[0002]
[Prior art]
In recent years, in optically coupled semiconductor relays in which a light emitting element and a light receiving element are optically coupled and an output power element performs a switching operation by the output of the light receiving element, the output power is reduced in order to reduce the capacitance between output terminals when the relay is off. Attention has been paid to using an SOI (Silicon On Insulator) SOI structure type power semiconductor device as an element. As one type of such a power semiconductor device, there is a lateral double-diffused MOS field-effect transistor, a so-called LDMOSFET (Lateral Double Diffused MOSFET).
[0003]
FIG. 6 is a schematic plan view showing a part of an optically coupled semiconductor relay according to a conventional example. A solar cell 16 as a light receiving element and two output MOSFETs 17 are disposed on a GND terminal frame 18. A cathode 16 a of the solar cell 16 and a source electrode 17 a of the MOSFET 17 are electrically connected to the GND terminal frame 18 by bonding wires 19. It is connected. Thus, the cathode 16a of the solar cell 16 and the source electrode 17a of the MOSFET 17 are electrically connected via the GND terminal frame 18. As the MOSFET 17, an SOI structure type LDMOSFET is used.
[0004]
Further, the output terminal frame 20 arranged in parallel on both sides of the GND terminal frame 18 and the drain electrode 17b of the MOSFET 17 are electrically connected by a bonding wire 19, and the anode 16b of the solar cell 16 and the gate electrode 17c of the MOSFET 17 are bonded. They are electrically connected by wires 19.
[0005]
FIG. 7 is a schematic sectional view of an optically coupled semiconductor relay according to a conventional example. In the optically coupled semiconductor relay, as shown in FIG. 7, a light emitting diode 22 as a light emitting element is disposed on an input terminal frame 21 opposed to a GND terminal frame 18, and the whole is made of a light shielding resin 23. It is molded and packaged. The light from the light emitting diode 22 can be received by the solar cell 16 by being optically coupled between the solar cell 16 and the light emitting diode 22 by a light guide path made of a light transmitting resin 24 that transmits light.
[0006]
The optically coupled semiconductor relay thus configured causes the light emitting diode 22 to emit light by an external drive signal, and the solar cell 16 receiving the light from the light emitting diode 22 generates a voltage, and this voltage reaches a certain level. Then, the output MOSFET 17 is switched, and the optically coupled semiconductor relay is turned on or off.
[0007]
FIG. 8 is an equivalent circuit diagram showing a capacitance component of a capacitance between output terminals of an optically coupled semiconductor relay according to a conventional example. The capacitance between the output terminals is formed by the series combined capacitance of the output capacitances (Coss) of the two SOI structure type LDMOSFETs, and the output capacitance (Coss) is the drain-source capacitance (Cds) and the gate-drain capacitance (Cgd). ) And a parallel combined capacitance of the drain-substrate capacitance (Cdsub).
[0008]
9A and 9B are schematic configuration diagrams showing a conventional SOI structure type LDMOSFET, in which FIG. 9A is a schematic plan view showing a state viewed from above, and FIG. 9B is an FF ′ in FIG. 9A. FIG. In this LDMOSFET, an insulating layer 2 as a first insulating layer such as a silicon oxide film is formed on one main surface of a semiconductor substrate 1 such as single crystal silicon, and a first conductivity type semiconductor layer is formed on the insulating layer 2. The n-type semiconductor layer 3 is formed to constitute an SOI (Silicon On Insulator) substrate.
[0009]
Note that as an example of a method for forming an SOI substrate, an SOI growth method in which single-crystal silicon is grown in each of a gas phase, a liquid phase, and a solid phase on an insulating layer, a bonded SOI method in which a substrate is bonded, a single SOI method, and the like. There are a SIMOX (Separation by Implanted Oxygen) method in which oxygen is ion-implanted into crystalline silicon to form an insulating layer therein, and a method in which silicon is partially made porous by anodic oxidation to be oxidized.
[0010]
In the n-type semiconductor layer 3 of the SOI substrate, a p + -type element isolation region 4 that is a high-concentration second conductivity-type element isolation region is formed so as to reach the insulating layer 2 from the surface. It is divided into a plurality of regions which are insulated and separated by the 2 and p + type element isolation regions 4.
[0011]
Then, an n + -type drain region 5 that is a high-concentration first conductivity type drain region is formed substantially at the center of the n-type semiconductor layer 3 so as to be exposed on the surface of the n-type semiconductor layer 3 that is insulated and separated. The n + type drain region 5 is surrounded so as to be separated from the drain region 5 by a shortest distance capable of maintaining a predetermined withstand voltage, and is formed in the n-type semiconductor layer 3 so as to be exposed on the surface of the n-type semiconductor layer 3. A p-type well region 6 that is a two-conductivity type well region is formed, is included in the p-type well region 6, and is an n + -type source that is a high-concentration first conductivity type source region so as to be exposed on the surface of the n-type semiconductor layer 3. A region 7 is formed.
[0012]
The n + -type drain region 5 and the n + -type source region 7 can be formed by ion-implanting an n-type impurity such as phosphorus (P) and performing an annealing treatment. 6 can be formed by ion implantation and annealing of a p-type impurity such as boron (B).
[0013]
On the p-type well region 6 interposed between the n + -type drain region 5 and the n + -type source region 7, polysilicon or the like is interposed via a gate oxide film 8, which is a second insulating layer having a small thickness. The insulating gate 9 is formed, and a passivation film 10 as a third insulating layer such as a silicon oxide film is formed on the surface of the SOI substrate on which the insulating gate 9 is formed. Here, the insulated gate 9 controls a main current flowing in the n-type semiconductor layer 3 between the n + -type drain region 5 and the n + -type source region 7.
[0014]
Then, a drain electrode 11 made of aluminum (Al) or the like is formed so as to be electrically connected to the n + type drain region 5. On the drain electrode 11 surrounded by the n + type source region 7 and the insulated gate 9, A drain bonding pad 11a is formed. Here, the drain bonding pad 11a usually requires an area of at least 100 μm square (a square of about 100 μm on a side, the same applies to the following) in order to connect to a bonding wire.
[0015]
A source electrode (not shown) made of Al or the like is formed so as to be electrically connected to p-type well region 6 and n + -type source region 7, and Al is formed so as to be electrically connected to insulated gate 9. A gate electrode (not shown) is formed.
[0016]
Here, the drain-substrate capacitance (Cdsub) is a capacitance generated by a potential difference between the drain potential and the GND potential across the insulating layer 2 of the SOI substrate, and is an n-type semiconductor inside the p-type well region 6. This characteristic is proportional to the area of the surface of the layer 3 on the insulating layer 2 side (hereinafter, referred to as the drain area). Therefore, when the drain area is increased, the output capacitance (Coss) is also increased, and the capacitance between the output terminals of the optically coupled semiconductor relay is eventually increased.
[0017]
In recent years, miniaturization of elements has been desired. However, as shown in FIG. 9A, a structure in which a drain bonding pad 11a is formed inside an area surrounded by an n + type source region 7 and an insulated gate 9 is formed. Has a disadvantage that the SOI structure type LDMOSFET cannot be reduced to a pad area or less.
[0018]
As a method for solving this problem, as shown in FIG. 10, the drain electrode 11 is pulled out from the drain electrode 11 inside the p-type well region 6 so as to straddle the insulating gate 9 and the n + -type source region 7, and the drain bonding pad 11a is formed. May be formed outside the insulating gate 9 and the n + -type source region 7. In this case, the drain area inside the p-type well region 6 can be reduced, and the drain-substrate capacitance (Cdsub) can be reduced. Can be smaller. Also, the SOI structure type LDMOSFET can be downsized without depending on the area of the drain bonding pad 11a.
[0019]
[Problems to be solved by the invention]
However, in the above case, there is a problem that a new parasitic capacitance C1 is generated across the passivation film 10 due to a potential difference between the drain bonding pad 11a of the drain electrode 11 and the p + type element isolation region 4 below the drain bonding pad 11a. Was.
[0020]
The present invention has been made in view of the above points, and has as its object the parasitic capacitance formed by a drain bonding pad when the drain bonding pad is formed outside an insulated gate and a source region. And a semiconductor device capable of reducing output capacitance.
[0021]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided an SOI substrate including a semiconductor substrate and a first conductivity type semiconductor layer formed on the semiconductor substrate via a first insulating layer; A high-concentration first-conductivity-type drain region formed in the first-conductivity-type semiconductor layer so as to be exposed, and surrounds the high-concentration first-conductivity-type drain region separately from the first-conductivity-type semiconductor layer. A second conductivity type well region formed in the first conductivity type semiconductor layer so as to be exposed on the surface, and included in the second conductivity type well region so as to be exposed on the surface of the first conductivity type semiconductor layer. A high-concentration first-conductivity-type source region formed in the first-conductivity-type semiconductor layer; and the second high-concentration first-conductivity-type source region interposed between the high-concentration first-conductivity-type drain region and the high-concentration first-conductivity-type source region. Formed on the two-conductivity type well region via the second insulating layer And a high-concentration second-conductivity-type element isolation formed to surround the high-concentration first-conductivity-type source region and reach the first insulation layer from the surface of the first-conductivity-type semiconductor layer. A semiconductor device comprising: a region; a drain electrode electrically connected to the high-concentration first conductivity type drain region; and a drain bonding pad electrically connected to the drain electrode. A third insulating layer extending to the outside across the high-concentration second conductivity type element isolation region, wherein the drain bonding pad extends outside the high-concentration second conductivity type element isolation region; It is characterized by being electrically connected to an electrode.
[0022]
According to a second aspect of the present invention, in the semiconductor device according to the first aspect, the first conductive type semiconductor layer is provided in the first conductive type semiconductor layer outside the high-concentration second conductive type element isolation region. A high-concentration second conductivity type impurity region that reaches the first insulating layer from the surface is formed, and the drain bonding pad is arranged on the high-concentration second conductivity type impurity region via the third insulating layer, The high-concentration second conductivity type impurity region is separated from the high-concentration second conductivity type element isolation region.
[0023]
According to a third aspect of the present invention, in the semiconductor device according to the first aspect, the first conductive type semiconductor layer is formed in the first conductive type semiconductor layer outside the high-concentration second conductive type element isolation region. A high-concentration second-conductivity-type impurity region that reaches the first insulating layer from the surface is formed, and a first-conductivity-type semiconductor region that is insulated and separated is formed in the high-concentration second-conductivity-type impurity region. On the first conductivity type semiconductor region, the drain bonding pad is arranged via the third insulating layer, and the high concentration second conductivity type impurity region is separated from the high concentration second conductivity type element isolation region. It is characterized by becoming.
[0024]
According to a fourth aspect of the present invention, in the semiconductor device according to any one of the first to third aspects, a through hole reaching the first insulating layer is formed in the semiconductor substrate immediately below the drain bonding pad and in the vicinity thereof. It is characterized by having been formed.
[0025]
According to a fifth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, at least the third insulating layer immediately below the drain bonding pad comprises a silicon oxide film and a silicon nitride film. It is characterized by being constituted by a multilayer film.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the first conductivity type will be described as n-type, and the second conductivity type will be described as p-type. However, the first conductivity type can be applied to p-type and the second conductivity type can be applied to n-type. .
[0027]
= Embodiment 1 =
1A and 1B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to an embodiment of the present invention, wherein FIG. 1A is a schematic plan view showing a state viewed from above, and FIG. It is a schematic sectional view in AA ', and (c) is an equivalent circuit diagram of the parasitic capacitance at the formation location of the drain bonding pad 11a. The LDMOSFET according to the present embodiment has a structure in which the drain electrode 11 is drawn out across the p + -type element isolation region 4 and a drain bonding pad 11 a is formed outside the p + -type element isolation region 4 in the LDMOSFET shown in FIG. 10 as a conventional example. It is.
[0028]
In the SOI structure type LDMOSFET according to the present embodiment, the parasitic capacitance (Cpad) at the formation location of the drain bonding pad 11a includes the capacitance C1 of the passivation film 10 immediately below the drain bonding pad 11a, the capacitance C2 of the insulating layer 2, and p + Since a parallel-parallel circuit in which the parallel capacitance with the capacitor C3 formed by the junction with the pattern element isolation region 4 is coupled in series is formed, compared with the case of only the capacitor C1 as described in the related art, the location where the drain bonding pad 11a is formed Has a small parasitic capacitance (Cpad).
[0029]
More specifically, the area of the drain bonding pad 11a is about 145 μm, the thickness of the passivation film 10 immediately below the drain bonding pad 11a is about 1 μm, the thickness of the n-type semiconductor layer 3 is about 2 μm, and the concentration of the n-type semiconductor layer 3. About 7 × 10 Fifteen cm -3 , P + type element isolation region 4 has a concentration of about 1 × 10 18 cm -3 , P + -type element isolation region 4 has a junction area of about 3.4 × 10 -5 cm 2 The thickness of the insulating layer 2 is about 2 μm and the drain area is about 2.9 × 10 -3 cm 2 Therefore, since C1 ≒ 0.75 pF, C2 ≒ 5.0 pF, and C3 ≒ 1.6 pF, and Cpad ≒ 0.65 pF, the parasitic capacitance (Cpad) at the location where the drain bonding pad 11a is formed is reduced by 0.1 pF. (13% reduction).
[0030]
= Embodiment 2 =
2A and 2B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to another embodiment of the present invention, wherein FIG. 2A is a schematic plan view showing a state viewed from above, and FIG. FIG. 3 is a schematic cross-sectional view taken along line BB ′ of FIG. 3, and FIG. The LDMOSFET according to the present embodiment is the same as the LDMOSFET shown in FIG. 1 according to the first embodiment, except that the high-concentration semiconductor is formed in the n-type semiconductor layer 3 below the drain bonding pad 11a and in the vicinity thereof so as to reach the insulating layer 2 from the surface. In this configuration, a p + type floating potential region 12 which is a two-conductivity type impurity region is formed. Here, the p + type floating potential region 12 and the p + type element isolation region 4 are separated from each other.
[0031]
In the SOI structure type LDMOSFET according to the present embodiment, the capacitance C1 by the passivation film 10 at the formation position of the drain bonding pad 11a, the capacitance C4 by the insulating layer 2, the capacitance C5 by the p + type element isolation region 4, and the p + type floating It becomes a series-parallel circuit with the capacitor C6 due to the junction of the potential region 12.
[0032]
Here, in the present embodiment, the junction capacitance C8 of the p + -type floating potential region 12 and the junction capacitance C7 of the p + -type element isolation region 4 are coupled in series, so that the parasitic capacitance (Cpad) at the location where the drain bonding pad 11a is formed. Is smaller than the parasitic capacitance (Cpad) in the second embodiment.
[0033]
More specifically, the area of the drain bonding pad 11a is about 145 μm, the thickness of the passivation film 10 immediately below the drain bonding pad 11a is about 1 μm, the thickness of the n-type semiconductor layer 3 is about 2 μm, and the concentration of the n-type semiconductor layer 3. About 7 × 10 Fifteen cm -3 , P + type element isolation region 4 has a concentration of about 1 × 10 18 cm -3 , P + type floating potential region 12 has an area of about 1.1 × 10 -5 cm 2 The thickness of the insulating layer 2 is about 2 μm and the drain area is about 1.4 × 10 -2 cm 2 Therefore, C1 ≒ 0.75 pF, C4 ≒ 0.55 pF, C5 ≒ 1.6 pF, C6 ≒ 0.34 pF, and Cpad ≒ 0.40 pF, so that the parasitic capacitance (CpadC) at the location where the drain bonding pad 11a is formed ) Is reduced by 0.35 pF (47% reduction).
[0034]
= Embodiment 3 =
3A and 3B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to another embodiment of the present invention, wherein FIG. 3A is a schematic plan view showing a state viewed from above, and FIG. FIG. 4 is a schematic cross-sectional view taken along line CC ′ of FIG. 5, and FIG. 4C is an equivalent circuit diagram of a parasitic capacitance at a location where a drain bonding pad 11a is formed. The LDMOSFET according to the present embodiment is different from the LDMOSFET shown in FIG. 2 as the second embodiment in that an n-type semiconductor region 13 which is a first conductivity type semiconductor region composed of an n-type semiconductor layer 3 is formed in a p + type floating potential region 12. The drain bonding pad 11a is formed on the n-type semiconductor region 13 with the passivation film 10 interposed therebetween. Here, the p + type floating potential region 12 and the p + type element isolation region 4 are separated from each other.
[0035]
In the SOI structure type LDMOSFET according to the present embodiment, the capacitance C1 of the passivation film 10 at the location where the drain bonding pad 11a is formed, the capacitance C7 of the insulating layer 2, and the p + type floating potential region 12 on the p + type element isolation region 4 side , A capacitance C9 of the p + -type floating potential region 12 on the n-type semiconductor region 13 side, and a capacitance C5 of the p + -type element isolation region 4 become a series-parallel circuit.
[0036]
Here, in the present embodiment, the junction capacitances C8 and C9 outside and inside the p + type floating potential region 12 are connected in series to the junction capacitance C5 of the p + type element isolation region 4, thereby forming the drain bonding pad 11a. The parasitic capacitance (Cpad) at the location is smaller than the parasitic capacitance (Cpad) in the second embodiment.
[0037]
More specifically, the area of the drain bonding pad 11a is about 145 μm □, the thickness of the passivation film 10 immediately below the drain bonding pad 11a is about 1 μm, the thickness of the n-type semiconductor layer 3 is about 2 μm, and the concentration of the n-type semiconductor layer 3. About 7 × 10 Fifteen cm -3 , P + type element isolation region 4 has a concentration of about 1 × 10 18 cm -3 , P + type floating potential region 12 has an area of about 1.1 × 10 -5 cm 2 The thickness of the insulating layer 2 is about 2 μm and the drain area is about 1.4 × 10 -2 cm 2 Assuming that C1 ≒ 0.75 pF, C7 ≒ 0.55 pF, C5 ≒ 1.6 pF, C8 ≒ 0.34 pF, C9 ≒ 0.34 pF, and Cpad ≒ 0.36 pF, the drain bonding pad 11a is formed. The parasitic capacitance (Cpad) at the location is reduced by 0.39 pF (52% reduction).
[0038]
= Embodiment 4 =
4A and 4B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to another embodiment of the present invention, wherein FIG. 4A is a schematic plan view showing a state viewed from above, and FIG. FIG. 3 is a schematic cross-sectional view taken along line DD ′ of FIG. 3, and FIG. 4C is an equivalent circuit diagram of a parasitic capacitance at a location where a drain bonding pad 11a is formed. The LDMOSFET according to the present embodiment is different from the LDMOSFET shown in FIG. 1 as the first embodiment in that the semiconductor substrate 1 below the drain bonding pad 11a is provided on the back side of the semiconductor substrate 1 (on the side different from the surface on which the passivation film 10 of the SOI substrate is formed). In this configuration, a through hole 14 having a size substantially the same as the size of the drain bonding pad 11a reaching the insulating layer 2 is formed. Here, the opening area of the through hole 14 is equal to or larger than the opening area of the drain bonding pad 11a.
[0039]
The through hole 14 can be formed by wet etching using an anisotropic etchant such as TMAH (Tetra Methyl Ammonium Hydroxide) or dry etching using plasma.
[0040]
In the SOI structure type LDMOSFET according to the present embodiment, since the through hole 14 is formed in the semiconductor substrate 1 immediately below the drain bonding pad 11a, almost no capacitance due to the insulating layer 2 is generated. Is a series coupling of the capacitance C1 formed by the passivation film 10 at the location where the drain bonding pad 11a is formed and the capacitance C3 formed by the p + type element isolation region 4, and only the capacitance C1 as shown in the prior art is obtained. As compared with the case, the parasitic capacitance (Cpad) at the location where the drain bonding pad 11a is formed is smaller.
[0041]
More specifically, the area of the drain bonding pad 11a is about 145 μm, the thickness of the passivation film 10 immediately below the drain bonding pad 11a is about 1 μm, the thickness of the n-type semiconductor layer 3 is about 2 μm, and the concentration of the n-type semiconductor layer 3. About 7 × 10 Fifteen cm -3 , P + type element isolation region 4 has a concentration of about 1 × 10 18 cm -3 , Junction area is about 3.4 × 10 -5 cm 2 Therefore, C1 ≒ 0.75 pF, C3 ≒ 1.6 pF and Cpad ≒ 0.51 pF, so that the parasitic capacitance (Cpad) at the place where the drain bonding pad 11a is formed is reduced by 0.24 pF (32% reduction). You.
[0042]
= Embodiment 5 =
5A and 5B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to another embodiment of the present invention, in which FIG. 5A is a schematic plan view showing a state viewed from above, and FIG. FIG. 4 is a schematic cross-sectional view taken along line EE ′ of FIG. 5, and FIG. 4C is an equivalent circuit diagram of a parasitic capacitance at a formation location of the drain bonding pad 11a. The LDMOSFET according to this embodiment has a configuration in which a silicon nitride film 15 is interposed between the passivation film 10, the drain electrode 11, and the drain bonding pad 11a in the LDMOSFET shown in FIG.
[0043]
In the present embodiment, only the silicon nitride film 15 is interposed between the passivation film 10, the drain electrode 11, and the drain bonding pad 11a. However, the present invention is not limited to this. You may make it intervene.
[0044]
In the SOI structure type LDMOSFET according to the present embodiment, the parasitic capacitance (Cpad) at the location where the drain bonding pad 11a is formed is equal to the capacitance C1 of the passivation film 10 where the drain bonding pad 11a is formed and the parasitic capacitance (Cpad) at the location where the drain bonding pad 11a is formed. A series-parallel circuit of a capacitor C10 formed by the nitride film 15, a capacitor C2 formed by the insulating layer 2, and a capacitor C3 formed by the p + type element isolation region 4.
[0045]
Specifically, the reduction of the parasitic capacitance (Cpad) in this embodiment is as follows: the area of the drain bonding pad 11a is about 145 μm, the thickness of the passivation film 10 immediately below the drain bonding pad 11a is about 1 μm, The thickness is about 2 μm and the concentration of the n-type semiconductor layer 3 is about 7 × 10 Fifteen cm -3 , P + type element isolation region 4 has a concentration of about 1 × 10 18 cm -3 , P + -type element isolation region 4 has a junction area of about 3.4 × 10 -5 cm 2 The thickness of the silicon nitride film 14 is about 0.5 μm, the thickness of the insulating layer 2 is about 2 μm, and the drain area is about 1.4 × 10 -2 cm 2 Therefore, C1 ≒ 0.75 pF, C2 ≒ 0.55 pF, C3 ≒ 1.6 pF, C10 ≒ 2.6 pF, and Cpad ≒ 0.46 pF, so that the parasitic capacitance (Cpad) at the formation location of the drain bonding pad 11 a is obtained. ) Is reduced by 0.29 pF (39% reduction).
[0046]
In this embodiment, the silicon nitride film 15 is interposed between the drain electrode 11 and the drain bonding pad 11a and the passivation film 10. However, the silicon nitride film 15 can be applied to all of the above embodiments. The parasitic capacitance can be further reduced by interposing 15.
[0047]
In the fourth embodiment, the through hole 14 is formed in the semiconductor substrate 1 immediately below the drain bonding pad 11a. However, the through hole 14 can be applied to the first to third and fifth embodiments. Can be eliminated.
[0048]
【The invention's effect】
According to the first aspect of the present invention, an SOI substrate including a semiconductor substrate and a first conductive type semiconductor layer formed on the semiconductor substrate with a first insulating layer interposed therebetween is exposed to a surface of the first conductive type semiconductor layer. As described above, the high-concentration first-conductivity-type drain region formed in the first-conductivity-type semiconductor layer and the high-concentration first-conductivity-type drain region are spaced apart from each other and are exposed on the surface of the first-conductivity-type semiconductor layer. A second conductivity type well region formed in the first conductivity type semiconductor layer, and a first conductivity type semiconductor layer included in the second conductivity type well region so as to be exposed on the surface of the first conductivity type semiconductor layer. A high-concentration first-conductivity-type source region formed on the second-conductivity-type well region interposed between the high-concentration first-conductivity-type drain region and the high-concentration first-conductivity-type source region; Gate and a high-concentration first conductivity type saw A high-concentration second-conductivity-type element isolation region formed so as to surround the region and reach the first insulating layer from the surface of the first-conductivity-type semiconductor layer, and is electrically connected to the high-concentration first-conductivity-type drain region. Device having a drain electrode and a drain bonding pad electrically connected to the drain electrode, the drain electrode straddles the high-concentration second conductivity type element isolation region via the third insulating layer. And the drain bonding pad is electrically connected to the drain electrode outside the high-concentration second conductivity type element isolation region, so that the capacitance by the third insulating layer immediately below the drain bonding pad is formed. In addition, a parallel circuit of the capacitance formed by the first insulating layer and the capacitance formed by the high-concentration second conductivity type element isolation region is capacitively coupled in series. The case of forming on the outside of the insulated gate and the source region, to reduce the parasitic capacitance formed by the drain bonding pad, and it is possible to provide a semiconductor device capable of reducing the output capacitance.
[0049]
According to a second aspect of the present invention, in the semiconductor device according to the first aspect, the first conductive type semiconductor layer extends from the surface of the first conductive type semiconductor layer in the outer first conductive type semiconductor layer across the high-concentration second conductive type element isolation region. A high-concentration second-conductivity-type impurity region reaching one insulating layer is formed, and a drain-bonding pad is disposed on the high-concentration second-conductivity-type impurity region via a third insulating layer. Since the region is separated from the high-concentration second-conductivity-type element isolation region, the junction capacitance of the high-concentration second-conductivity-type impurity region is connected in series to the junction capacitance of the high-concentration second-conductivity-type element isolation region. In addition, the parasitic capacitance formed by the drain bonding pad can be reduced, and the output capacitance can be reduced.
[0050]
According to a third aspect of the present invention, in the semiconductor device according to the first aspect, the first conductive type semiconductor layer extends from the surface of the first conductive type semiconductor layer in the outer first conductive type semiconductor layer across the high-concentration second conductive type element isolation region. A high-concentration second-conductivity-type impurity region reaching one insulating layer is formed, and a first-conductivity-type semiconductor region that is insulated and separated is formed in the high-concentration second-conductivity-type impurity region. On top, a drain bonding pad is arranged via a third insulating layer, and the high concentration second conductivity type impurity region is separated from the high concentration second conductivity type element isolation region. The junction capacitance of the isolation region is coupled in series with the junction capacitance outside and inside the high-concentration second conductivity type impurity region, thereby reducing the parasitic capacitance formed by the drain bonding pad and reducing the output capacitance. Can be reduced Kill.
[0051]
According to a fourth aspect of the present invention, in the semiconductor device according to any one of the first to third aspects, a through hole reaching the first insulating layer is formed in the semiconductor substrate immediately below the drain bonding pad and in the vicinity thereof. Since the parasitic capacitance component due to the first insulating layer is eliminated, the parasitic capacitance formed by the drain bonding pad can be reduced, and the output capacitance can be reduced.
[0052]
According to a fifth aspect of the present invention, in the semiconductor device according to any one of the first to fourth aspects, at least the third insulating layer immediately below the drain bonding pad comprises a silicon oxide film and a silicon nitride film. Therefore, the capacitance of the silicon oxide film and the capacitance of the silicon nitride film are coupled in series, thereby reducing the parasitic capacitance formed by the drain bonding pad and reducing the output capacitance. can do.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an SOI structure type LDMOSFET according to an embodiment of the present invention, wherein FIG. 1 (a) is a schematic plan view showing a state viewed from above, and FIG. It is a schematic sectional view in AA ', and (c) is an equivalent circuit diagram of the parasitic capacitance at the formation position of the drain bonding pad.
FIG. 2 is a schematic configuration diagram showing an SOI structure type LDMOSFET according to another embodiment of the present invention, where (a) is a schematic plan view showing a state viewed from above, and (b) is (a). FIG. 3 is a schematic cross-sectional view taken along line BB ′ of FIG. 3, and FIG. 3C is an equivalent circuit diagram of a parasitic capacitance at a drain bonding pad formation location.
3A and 3B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to another embodiment of the present invention, wherein FIG. 3A is a schematic plan view showing a state viewed from above, and FIG. FIG. 4 is a schematic cross-sectional view taken along line CC ′ of FIG. 5, and FIG. 4C is an equivalent circuit diagram of a parasitic capacitance at a formation position of a drain bonding pad.
4A and 4B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to another embodiment of the present invention, wherein FIG. 4A is a schematic plan view showing a state viewed from above, and FIG. FIG. 3 is a schematic cross-sectional view taken along the line DD ′ in FIG. 3, and FIG. 4C is an equivalent circuit diagram of a parasitic capacitance at a location where a drain bonding pad is formed.
FIG. 5 is a schematic configuration diagram showing an SOI structure type LDMOSFET according to another embodiment of the present invention, where (a) is a schematic plan view showing a state viewed from above, and (b) is (a). FIG. 3 is a schematic cross-sectional view taken along line EE ′ of FIG. 3, and FIG. 4C is an equivalent circuit diagram of a parasitic capacitance at a location where a drain bonding pad is formed.
FIG. 6 is a schematic plan view showing a part of an optically coupled semiconductor relay according to a conventional example.
FIG. 7 is a schematic sectional view of an optically coupled semiconductor relay according to a conventional example.
FIG. 8 is an equivalent circuit diagram showing a capacitance component of a capacitance between output terminals of an optically coupled semiconductor relay according to a conventional example.
9A and 9B are schematic configuration diagrams showing an SOI structure type LDMOSFET according to a conventional example, in which FIG. 9A is a schematic plan view showing a state viewed from the top, and FIG. 9B is FF ′ in FIG. FIG.
FIG. 10 is a schematic configuration diagram showing an SOI structure type LDMOSFET according to a conventional example, (a) is a schematic plan view showing a state viewed from above, and (b) is GG ′ in (a). FIG.
[Explanation of symbols]
1 semiconductor substrate
2 Insulating layer
3 n-type semiconductor layer
4 p + type element isolation region
5 n + type drain region
6 p-type well region
7 n + type source region
8 Gate oxide film
9 Insulated gate
10 Passivation film
11 Drain electrode
11a Drain bonding pad
12 p + type floating potential region
13 n-type semiconductor region
14 Through hole
15 Silicon nitride film
16 Solar cells
16a cathode
16b anode
17 MOSFET
17a Source electrode
17b drain electrode
17c Gate electrode
18 GND terminal frame
19 Bonding wire
20 Output terminal frame
21 Input terminal frame
22 Light emitting diode
23 Shading resin
24 translucent resin

Claims (5)

半導体基板と該半導体基板上に第一の絶縁層を介して形成された第一導電型半導体層とから成るSOI基板と、該第一導電型半導体層の表面に露出するように前記第一導電型半導体層内に形成された高濃度第一導電型ドレイン領域と、前記高濃度第一導電型ドレイン領域と離間して囲むとともに、前記第一導電型半導体層の表面に露出するように前記第一導電型半導体層内に形成された第二導電型ウェル領域と、該第二導電型ウェル領域に内包され、前記第一導電型半導体層の表面に露出するように前記第一導電型半導体層内に形成された高濃度第一導電型ソース領域と、前記高濃度第一導電型ドレイン領域と前記高濃度第一導電型ソース領域との間に介在する前記第二導電型ウェル領域上に第二の絶縁層を介して形成された絶縁ゲートと、前記高濃度第一導電型ソース領域を囲むとともに、前記第一導電型半導体層の表面から前記第一の絶縁層に達するように形成された高濃度第二導電型素子分離領域と、前記高濃度第一導電型ドレイン領域と電気的に接続されたドレイン電極と、該ドレイン電極に電気的に接続されたドレインボンディングパッドとを有して成る半導体装置において、前記ドレイン電極が第三の絶縁層を介して前記高濃度第二導電型素子分離領域を跨いで外側まで延設され、前記ドレインボンディングパッドが、前記高濃度第二導電型素子分離領域を跨いだ外側で前記ドレイン電極と電気的に接続されて成ることを特徴とする半導体装置。An SOI substrate comprising a semiconductor substrate and a first conductivity type semiconductor layer formed on the semiconductor substrate with a first insulating layer interposed therebetween; and the first conductive type semiconductor layer exposed on the surface of the first conductivity type semiconductor layer. A high-concentration first-conductivity-type drain region formed in the first-conductivity-type semiconductor layer, and surrounding the high-concentration first-conductivity-type drain region so as to be exposed on the surface of the first-conductivity-type semiconductor layer. A second conductivity type well region formed in the one conductivity type semiconductor layer, and the first conductivity type semiconductor layer included in the second conductivity type well region and exposed on the surface of the first conductivity type semiconductor layer. A high-concentration first conductivity type source region formed in the second conductivity type well region interposed between the high-concentration first conductivity type drain region and the high-concentration first conductivity type source region. An insulating gate formed through the second insulating layer, A high-concentration second-conductivity-type element isolation region formed so as to surround the high-concentration first-conductivity-type source region and to reach the first insulating layer from the surface of the first-conductivity-type semiconductor layer; In a semiconductor device having a drain electrode electrically connected to a first conductivity type drain region and a drain bonding pad electrically connected to the drain electrode, the drain electrode forms a third insulating layer. And the drain bonding pad is electrically connected to the drain electrode outside the high-concentration second conductivity type element isolation region. A semiconductor device characterized by being formed. 前記高濃度第二導電型素子分離領域を跨いで外側の前記第一導電型半導体層内に、該第一導電型半導体層の表面から前記第一の絶縁層に達する高濃度第二導電型不純物領域が形成され、該高濃度第二導電型不純物領域上に前記第三の絶縁層を介して前記ドレインボンディングパッドが配置され、前記高濃度第二導電型不純物領域が前記高濃度第二導電型素子分離領域と離間して成ることを特徴とする請求項1記載の半導体装置。The high-concentration second conductivity-type impurity reaching the first insulating layer from the surface of the first conductivity-type semiconductor layer in the outside of the first conductivity-type semiconductor layer across the high-concentration second conductivity-type element isolation region. A region is formed, and the drain bonding pad is disposed on the high concentration second conductivity type impurity region via the third insulating layer, and the high concentration second conductivity type impurity region is 2. The semiconductor device according to claim 1, wherein the semiconductor device is separated from the element isolation region. 前記高濃度第二導電型素子分離領域を跨いで外側の前記第一導電型半導体層内に、該第一導電型半導体層の表面から前記第一の絶縁層に達する高濃度第二導電型不純物領域が形成され、該高濃度第二導電型不純物領域内に、絶縁分離されて成る第一導電型半導体領域が形成され、該第一導電型半導体領域上に、前記第三の絶縁層を介して前記ドレインボンディングパッドが配置され、前記高濃度第二導電型不純物領域が前記高濃度第二導電型素子分離領域と離間して成ることを特徴とする請求項1記載の半導体装置。The high-concentration second conductivity-type impurity reaching the first insulating layer from the surface of the first conductivity-type semiconductor layer in the outside of the first conductivity-type semiconductor layer across the high-concentration second conductivity-type element isolation region. A region is formed, a first conductivity type semiconductor region that is insulated and separated is formed in the high-concentration second conductivity type impurity region, and the third conductivity layer is interposed on the first conductivity type semiconductor region. 2. The semiconductor device according to claim 1, wherein the drain bonding pad is disposed, and the high concentration second conductivity type impurity region is separated from the high concentration second conductivity type element isolation region. 前記ドレインボンディングパッド直下及びその近傍の前記半導体基板に、前記第一の絶縁層に達する貫通孔を形成したことを特徴とする請求項1乃至請求項3のいずれかに記載の半導体装置。4. The semiconductor device according to claim 1, wherein a through hole reaching the first insulating layer is formed in the semiconductor substrate immediately below the drain bonding pad and in the vicinity thereof. 5. 少なくとも前記ドレインボンディングパッド直下の前記第三の絶縁層が、シリコン酸化膜とシリコン窒化膜とから成る多層膜で構成されて成ることを特徴とする請求項1乃至請求項4のいずれかに記載の半導体装置。5. The method according to claim 1, wherein at least the third insulating layer immediately below the drain bonding pad is formed of a multilayer film including a silicon oxide film and a silicon nitride film. Semiconductor device.
JP35257597A 1997-12-22 1997-12-22 Semiconductor device Expired - Fee Related JP3562282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35257597A JP3562282B2 (en) 1997-12-22 1997-12-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35257597A JP3562282B2 (en) 1997-12-22 1997-12-22 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11186555A JPH11186555A (en) 1999-07-09
JP3562282B2 true JP3562282B2 (en) 2004-09-08

Family

ID=18424996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35257597A Expired - Fee Related JP3562282B2 (en) 1997-12-22 1997-12-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3562282B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG93847A1 (en) * 1999-10-27 2003-01-21 Inst Of Microelectronics Step ldd ldmosfet
JP2010010256A (en) 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd Semiconductor device
JP7097742B2 (en) * 2018-05-01 2022-07-08 ルネサスエレクトロニクス株式会社 Semiconductor devices and their manufacturing methods

Also Published As

Publication number Publication date
JPH11186555A (en) 1999-07-09

Similar Documents

Publication Publication Date Title
JP4712301B2 (en) Power semiconductor device
JP3291958B2 (en) Back source MOSFET
US8106446B2 (en) Trench MOSFET with deposited oxide
US8399923B2 (en) High voltage semiconductor device including field shaping layer and method of fabricating the same
US20120196414A1 (en) Power MOSFET Having a Strained Channel in a Semiconductor Heterostructure on Metal Substrate
JPH06244412A (en) High breakdown strength mis field-effect transistor
JP2010010256A (en) Semiconductor device
JP5493435B2 (en) High voltage semiconductor device and high voltage integrated circuit device
JP3562282B2 (en) Semiconductor device
JP2000260990A (en) High-voltage element and its manufacture
JPH09266310A (en) Semiconductor device
JP2943922B2 (en) Output contact element for semiconductor relay
JP3513851B2 (en) Semiconductor device
JPH10242454A (en) Semiconductor device
JP3282571B2 (en) Semiconductor device
JP3319999B2 (en) Semiconductor switch element
JP4345186B2 (en) Semiconductor device
JPH11220133A (en) Semiconductor device
JP2000091588A (en) Semiconductor device
JPH11186560A (en) Semiconductor device
JPH11186559A (en) Semiconductor device
JPH11191627A (en) Semiconductor device
JPH09205211A (en) Semiconductor device
JPH09205212A (en) Semiconductor device
JPH09260503A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees