JP2002151274A - Luminescent element - Google Patents

Luminescent element

Info

Publication number
JP2002151274A
JP2002151274A JP2000345010A JP2000345010A JP2002151274A JP 2002151274 A JP2002151274 A JP 2002151274A JP 2000345010 A JP2000345010 A JP 2000345010A JP 2000345010 A JP2000345010 A JP 2000345010A JP 2002151274 A JP2002151274 A JP 2002151274A
Authority
JP
Japan
Prior art keywords
mesa
light
electrode
transparent
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000345010A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ito
信行 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000345010A priority Critical patent/JP2002151274A/en
Publication of JP2002151274A publication Critical patent/JP2002151274A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electroluminescent element with improved emission efficiency. SOLUTION: With an electroluminescent element equipped with electrodes and a luminescent layer, at least one of the electrodes is a transparent electrode, which a mesa-shaped fine structural body having a plurality of mesa-shaped transparent bodies is arranged opposite to the side the transparent electrodes face the luminescent layer, with the shorter side of the mesa-shaped fine structural body toward it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】本発明は、エレクトロルミネッセ
ンス(EL)素子のような自発光型の発光装置に関す
る。
[0001] 1. Field of the Invention [0002] The present invention relates to a self-luminous type light emitting device such as an electroluminescence (EL) element.

【0002】[0002]

【従来の技術】電子表示装置は光線の利用方法により大
きく分けて2種類ある。1つは装置を形成する制御素子
自身は発光することはなく、外光を透過、遮断するいわ
ゆるシャッターとして動作し表示装置を構成する受光型
表示装置である。他の1つは、装置自身が発光して輝度
として使用者に認識させる自発光型表示装置である。
2. Description of the Related Art Electronic display devices are roughly classified into two types depending on how light is used. One is a light-receiving type display device which forms a display device by operating as a so-called shutter which transmits and blocks external light without the control element itself forming the device emitting light. The other is a self-luminous display device in which the device itself emits light and allows the user to recognize it as luminance.

【0003】受光型表示装置としては液晶表示装置(L
CD)が良く知られており現在広く普及している。自発
光型表示装置としては現在最も普及している冷陰極管
(CRT)をはじめとして有機EL(エレクトロルミネ
ッセンス)、無機EL、プラズマディスプレイパネル
(PDP)、ライトエミッティングダイオード表示装置
(LED)、蛍光表示管表示装置(VFD)、フィール
ドエミッションディスプレイ(FED)などがあり、一
部は実用化が始まり、他のものも活発に開発が行われて
いる。LCDに代表される受光型表示装置は、光源を必
要とするため一般にバックライトが必要であり、表示情
報の様態に拘わらず常にバックライトが点灯し、全表示
状態とほぼ変わらない電力を消費することになる。
As a light receiving type display device, a liquid crystal display device (L
CD) is well known and is now widespread. As self-luminous display devices, organic EL (electroluminescence), inorganic EL, plasma display panel (PDP), light emitting diode display device (LED), fluorescent light, etc. There are a display tube display (VFD), a field emission display (FED), and the like. Some of them have been put into practical use, and others are being actively developed. A light-receiving display device represented by an LCD generally requires a backlight because it requires a light source, and the backlight is always turned on regardless of the state of display information, and consumes almost the same power as in the entire display state. Will be.

【0004】これに対して、自発光型表示装置は、表示
情報に応じて点灯する必要のある箇所だけが電力を消費
するだけなので、受光型表示装置に比較して電力消費が
少ないという利点が原理的にある。
On the other hand, a self-luminous display device consumes power only in a portion that needs to be lit according to display information, and thus has the advantage of lower power consumption than a light-receiving display device. In principle.

【0005】また、受光型表示装置の代表であるLCD
は、液晶の複屈折による偏光制御を利用しているため、
観察する方向によって大きく表示状態が変わるいわゆる
視野角依存性が強いが、自発光表示装置ではこの問題が
ほとんど無い。さらに、LCDは有機弾性物質である液
晶の誘電異方性に由来する分子配向変化を利用するた
め、原理的に電気信号に対する応答時間が1ms以上で
ある。
An LCD which is a representative of a light receiving type display device
Uses polarization control by birefringence of liquid crystal,
Although the so-called viewing angle dependency, in which the display state changes greatly depending on the viewing direction, is strong, the self-luminous display device hardly has this problem. Further, since the LCD utilizes a change in molecular orientation caused by the dielectric anisotropy of the liquid crystal, which is an organic elastic substance, the response time to an electric signal is 1 ms or more in principle.

【0006】これに対して、自発光表示として開発が進
められている上記の技術では電子/正孔といったいわゆ
るキャリア遷移、電子放出、プラズマ放電などを利用し
ているため、応答時間はns桁であり液晶とは比較にな
らないほど高速であり、LCDの応答の遅さに由来する
動画残像の問題が無い。
On the other hand, in the above-mentioned technology which is being developed as a self-luminous display, a so-called carrier transition such as electrons / holes, electron emission, plasma discharge, and the like are used. The liquid crystal display is so fast that it is incomparable to liquid crystal, and there is no problem of moving image afterimage caused by the slow response of the LCD.

【0007】[0007]

【発明が解決しようとする課題】このように多くの利点
を持った自発光表示装置であるが、現在、完全に実用化
されているのはCRTのみであり、今後ますます需要が
伸びると考えられる平面表示装置としては未だにLCD
が主流である。この大きな原因としてその発光効率の低
さがある。LCDは、常にバックライトを点灯させなけ
ればならないが、バックライトはいわば単なる照明であ
り、その発光効率、輝度、寿命など、どの特性において
も完成された技術であり、長時間安定に効率良く光り続
けるということにおいては実用上ほぼ問題がない。
Although a self-luminous display device has many advantages as described above, only a CRT is currently being fully put into practical use, and it is expected that the demand will further increase in the future. LCD is still used as a flat display device
Is the mainstream. One of the major reasons is the low luminous efficiency. LCDs must always be lit with a backlight, but the backlight is simply illumination, and is a technology that has been completed in all its characteristics such as luminous efficiency, brightness, and lifespan. There is practically no problem in continuing.

【0008】これに対して、前述の自発光型表示装置で
は、長時間安定に効率良く光り続けるという基本的な特
性が実用的なレベルに達していないのが実状である。安
定的に発光効率を向上させるために、全ての技術におい
て発光材料の開発が行われているが、フルカラーディス
プレイにおいてはR、G、Bの3原色ともこの問題を解
決する必要があるため、解決は容易ではない。
On the other hand, in the above-mentioned self-luminous display device, the basic characteristic that light is emitted stably and efficiently for a long time has not reached a practical level. In order to stably improve the luminous efficiency, light-emitting materials are being developed in all technologies. However, in a full-color display, it is necessary to solve this problem for all three primary colors of R, G and B. Is not easy.

【0009】このため、発光材料に依存しないで発光効
率を向上する技術が必要となる。特にEL装置において
は、発光物質からの発光が、装置を構成する基板や大気
との界面で全反射され、発光の多くが装置外部に到達す
ることなく失活する問題が大きい。
Therefore, a technique for improving the luminous efficiency without depending on the luminescent material is required. In particular, in an EL device, there is a large problem that light emitted from a light-emitting substance is totally reflected at a substrate or an interface with the atmosphere which constitutes the device, and most of the light emitted is deactivated without reaching the outside of the device.

【0010】図10は従来のEL装置1の構成図であ
る。図10において、透明電極5を形成した透明基板2
上に発光層3、対向電極4を積層して形成し、電極5、
4間に電界を印加することで発光層3を発光させ、透明
電極5及び透明基板2を通して光8を取出す。対向電極
4は両面発光の必要が無ければ、発光8の輝度を向上さ
せるために通常は反射性の金属電極が使用されることが
多い。有機EL、無機ELを問わず発光層3は一般的に
耐湿性が低く、大気に触れたままでは発光寿命が非常に
短いため封止体6と接着剤7で大気から隔離する必要が
ある。
FIG. 10 is a configuration diagram of a conventional EL device 1. In FIG. 10, a transparent substrate 2 on which a transparent electrode 5 is formed is shown.
A light-emitting layer 3 and a counter electrode 4 are laminated on the electrode 5 to form an electrode 5,
The light emitting layer 3 emits light by applying an electric field between the electrodes 4, and the light 8 is extracted through the transparent electrode 5 and the transparent substrate 2. If the opposite electrode 4 does not need to emit light on both sides, a reflective metal electrode is usually used in many cases in order to improve the brightness of the light emission 8. Regardless of the organic EL or the inorganic EL, the light emitting layer 3 generally has low moisture resistance, and has a very short light emission life when exposed to the air. Therefore, it is necessary to isolate the light emitting layer 3 from the air with the sealing body 6 and the adhesive 7.

【0011】図11に図10に示した従来のEL装置1
の発光光線経路の説明図を示す。図11で、図10と同
一の符号は、図10と同一のものをそれぞれ示す。従来
のEL装置の発光光線は図11に示す如く各膜中を伝播
する。一般に発光層3の材料の屈折率は1.6前後であ
り、透明電極5として代表的なITOは屈折率1.8程
度、基板2のガラスは約1.5である。この関係から発
光層3から発光した光線8は、透明電極5との界面では
全反射を起こすことはなく逆に侵入角度を鋭角にする。
しかし、透明電極5と透明基板2のガラスの界面では一
部が全反射により透明電極5内に閉じ込められ透明電極
5内を伝播しながら失活する。更に一部の光線は基板2
のガラスと大気の界面で同様に全反射により失活する。
図10の従来のEL装置1では、これらの全反射による
内部失活は全発光束量の80%近くもあり、ほとんどの
発光が有効に利用されていない。
FIG. 11 shows the conventional EL device 1 shown in FIG.
FIG. 3 is an explanatory view of a light-emitting ray path of FIG. 11, the same reference numerals as those in FIG. 10 denote the same components as those in FIG. Light emitted from a conventional EL device propagates through each film as shown in FIG. Generally, the refractive index of the material of the light emitting layer 3 is about 1.6, the typical refractive index of ITO as the transparent electrode 5 is about 1.8, and the glass of the substrate 2 is about 1.5. From this relationship, the light ray 8 emitted from the light emitting layer 3 does not cause total reflection at the interface with the transparent electrode 5 and, on the contrary, sets the penetration angle to an acute angle.
However, a part of the interface between the transparent electrode 5 and the glass of the transparent substrate 2 is confined in the transparent electrode 5 by total reflection, and is deactivated while propagating in the transparent electrode 5. Further, some of the light beams
Deactivated at the interface between the glass and the atmosphere by total reflection.
In the conventional EL device 1 shown in FIG. 10, the internal deactivation due to these total reflections is close to 80% of the total luminous flux, and most of the luminescence is not used effectively.

【0012】従来、この全反射の問題を解決する方法と
して、[OPTICS LETTERS/Vol.2
2、No.6/March 15、1997、p396
−398]にG.Gu等によってメサ(台形)形状の基
板を利用することが提案されている。彼らはガラス基板
に高さ2.2mm、底辺の長さ3mm、斜面の角度34
°の正方形状底面のメサ構造体を作り、その上面に0.
5mm径の有機EL素子を作製してその効果を調べてい
る。
Conventionally, as a method of solving this problem of total reflection, [OPTICS LETTERS / Vol. 2
2, No. 6 / March 15, 1997, p396
-398]. It has been proposed by Gu et al. To use a mesa (trapezoidal) shaped substrate. They mounted on a glass substrate a height of 2.2 mm, a base length of 3 mm, and a slope angle of 34 mm.
A mesa structure having a square bottom surface with a degree of 0 ° is formed on the top surface.
An organic EL device having a diameter of 5 mm is manufactured and its effect is examined.

【0013】図9に、メサ構造体を利用した場合の発光
光線の伝搬経路の説明図を示す。図9において、9はメ
サ構造体を示す。また、図9において3は、発光層、5
は透明電極、8は光線をそれぞれ示す。発光層3から発
生した光線8は一部は透明電極5とメサ構造体9との界
面で全反射により失活するが、メサ構造体9と大気との
界面で全反射した光線はそのほとんどがメサ構造体9内
を伝播した後に、今度はその斜面での全反射により角度
を変えて大気中に放出される。メサ構造体9を形成する
材質の減衰係数などを考慮して、その高さ、幅、斜面の
角度を適当に作製してやることで内部失活する光線を従
来構造よりも大幅に減少させ発光効率を向上することが
できる。G.Gu等はまたTiO2などの透明電極5よ
りも高屈折率の材質でメサ構造体9を作ることで、透明
電極5とメサ構造体9との界面での全反射も防止し、ガ
ラスでメサ構造体9を作る場合よりも更に発光効率を向
上できるとしている。
FIG. 9 is an explanatory diagram of the propagation path of the emitted light beam when the mesa structure is used. In FIG. 9, reference numeral 9 denotes a mesa structure. Further, in FIG. 9, 3 is a light emitting layer, 5
Denotes a transparent electrode, and 8 denotes a light beam. A part of the light rays 8 generated from the light emitting layer 3 is inactivated by total reflection at the interface between the transparent electrode 5 and the mesa structure 9, but most of the light rays totally reflected at the interface between the mesa structure 9 and the atmosphere are formed. After propagating in the mesa structure 9, the light is emitted into the atmosphere at an angle changed by total reflection on the slope. By taking into account the attenuation coefficient of the material forming the mesa structure 9, the height, width, and angle of the slope are made appropriately, thereby significantly reducing the internally deactivated light rays and reducing the luminous efficiency as compared with the conventional structure. Can be improved. G. FIG. Gu and the like also form the mesa structure 9 with a material having a higher refractive index than the transparent electrode 5 such as TiO2, thereby preventing total reflection at the interface between the transparent electrode 5 and the mesa structure 9, and forming a mesa structure with glass. It is stated that the luminous efficiency can be further improved than when the body 9 is made.

【0014】しかし、G.Gu等が報告している素子の
大きさから、表示装置を構成する1画素に1つの割合で
メサ構造体を設けていることは明かである。このように
大きなメサ構造体ではメサ構造体内部を伝播して斜面に
たどり付く前に光線が減衰してしまい十分な効果は得ら
れない。また、基板上にメサ構造体を作り後から発光素
子を作製するのでは基板上に駆動回路や電極を形成する
ことが困難になる。特に複雑で微細な駆動回路を必要と
するアクティブマトリクス駆動表示装置を作製すること
はできない。
However, G. From the size of the element reported by Gu et al., It is clear that one mesa structure is provided for one pixel constituting the display device. In such a large mesa structure, the light beam is attenuated before propagating inside the mesa structure and reaching the slope, so that a sufficient effect cannot be obtained. Further, if a light emitting element is manufactured after a mesa structure is formed on a substrate, it becomes difficult to form a drive circuit and an electrode on the substrate. In particular, an active matrix drive display device requiring a complicated and fine drive circuit cannot be manufactured.

【0015】更に、G.Gu等の様にメサ構造体の上面
だけに電極及び発光層を形成するためにはマスク蒸着な
どの方法を使わなければならず大型、高精細な表示装置
を作るのは困難である。逆に基板形状を無視して従来と
同様に全面に電極、発光層を形成しても、メサ構造体の
突起によるむらなどの影響が発生して均一な表示装置を
作ることは難しい。
Further, G. In order to form an electrode and a light emitting layer only on the upper surface of the mesa structure such as Gu or the like, a method such as mask evaporation must be used, and it is difficult to produce a large and high-definition display device. Conversely, even if an electrode and a light emitting layer are formed on the entire surface in the same manner as in the related art ignoring the substrate shape, it is difficult to produce a uniform display device due to the influence of unevenness due to protrusions of the mesa structure.

【0016】いずれにしてもG.Gu等の報告は基礎実
験としては効果が有るが、実際に工業化するには多くの
問題を残している。また、特開平10−189243に
はメサ構造体ではないが、同様に従来全反射によって失
活していた光線を有効に取出そうとするテーパー状素子
が報告されている。しかし、該特開平10―18924
3号の構造は、該特願平10―189243号公報の図
6に有るようにテーパー部の谷を光線が飛び越える必要
がありかなり複雑な原理に基づいており、該公報で説明
されている通りの効果を得るのは困難である。また、電
極、発光層ともにテーパー部に形成するためにテーパー
部全体をカバーしきれないと欠陥となってしまう。G.
Gu等の方法と併せて基板に何らかの平坦でない形状を
設けて電極、発光層を形成する方法は、実際の効果と信
頼性に大きな問題があると言わざるを得ない。
In any case, G. Although the report of Gu et al. Is effective as a basic experiment, it has many problems in actual industrialization. Also, Japanese Patent Application Laid-Open No. Hei 10-189243 reports a tapered element which is not a mesa structure, but which effectively extracts a light beam which has been deactivated by total internal reflection. However, Japanese Patent Application Laid-Open No. 10-18924 discloses
The structure of No. 3 is based on a rather complicated principle that a light ray needs to jump over a valley of a tapered portion as shown in FIG. 6 of Japanese Patent Application No. 10-189243. It is difficult to obtain the effect. Further, since both the electrode and the light emitting layer are formed in the tapered portion, a defect occurs if the entire tapered portion cannot be covered. G. FIG.
The method of forming an electrode and a light emitting layer by providing an uneven shape on a substrate together with the method of Gu or the like has to be said to have a serious problem in actual effect and reliability.

【0017】このように発光材料依存性が無く、原理的
に自発光型表示装置の発光効率を向上させる有効なテー
パー構造であるが、実際には十分な効果、信頼性を得る
方法はこれまで無かった。
As described above, the tapered structure has no dependency on the light emitting material and is effective in principle to improve the luminous efficiency of the self-luminous display device. There was no.

【0018】[0018]

【課題を解決するための手段】上記の問題を解決するた
めに本願では、表示装置を構成する画素における透明電
極の発光層と反対の側に複数の透明メサ形状微細構造体
をその短辺側を透明電極に近い方として配置する。G.
Gu等の様に1画素1構造体ではなく、1画素に微細構
造体を複数配置することで1つのメサ構造体を小さくす
ることができ内部伝播による減衰の問題を解決すること
ができる。
In order to solve the above-mentioned problems, in the present application, a plurality of transparent mesa-shaped fine structures are arranged on a short side of a pixel constituting a display device on a side opposite to a light emitting layer of a transparent electrode. Are arranged closer to the transparent electrode. G. FIG.
By arranging a plurality of fine structures in one pixel instead of one structure such as Gu, etc., one mesa structure can be made smaller and the problem of attenuation due to internal propagation can be solved.

【0019】さらに、透明電極を発光層に対して基板と
は反対側に形成する構造として、透明電極が光線の通過
する最終経路とする。素子を大気から遮断する封止体に
多数の透明メサ形状微細構造体を形成し、これらと透明
電極とを接触させるようにして封止をすることで、基板
に特別な加工を施すことなく電極、発光層といった発光
部は従来通り平坦に形成し、封止体に加工をするだけで
発光効率を大幅に向上させることができる。
Further, a structure in which the transparent electrode is formed on the opposite side of the light emitting layer from the substrate is used as a final path through which the transparent electrode passes light rays. A number of transparent mesa-shaped microstructures are formed in a sealed body that shields the element from the atmosphere, and these are sealed in such a way that they come into contact with the transparent electrodes, so that the electrodes can be processed without any special processing on the substrate. The light emitting portion such as the light emitting layer is formed flat as before, and the luminous efficiency can be greatly improved only by processing the sealing body.

【0020】[0020]

【発明の実施の形態】本発明の一実施の態様を図に基づ
いて説明する。図1は本発明の第一の実施の態様の構成
図を示す。図1で、電界発光装置10は、基板2に電極
4、発光層3、透明電極5の順に形成して作製する。前
記電極4は透明でも透明でなくてもよいが、前記透明電
極5は透明でこれを通して発光を外部に取出す構造とす
る。最後に信頼性のために封止体6を設置するが、封止
体6は発光を取出すために当然透明である。例えばガラ
スやプラスチック、透明樹脂等を用いることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration diagram of the first embodiment of the present invention. In FIG. 1, an electroluminescent device 10 is manufactured by forming an electrode 4, a light emitting layer 3, and a transparent electrode 5 on a substrate 2 in this order. The electrode 4 may be transparent or non-transparent, but the transparent electrode 5 is transparent and has a structure through which light is emitted to the outside. Finally, the sealing body 6 is provided for reliability. The sealing body 6 is naturally transparent for extracting light emission. For example, glass, plastic, transparent resin, or the like can be used.

【0021】図2に上記第一の実施の形態の前記発光層
3、透明電極5及び封止体6を拡大した拡大図を示す。
封止体6の表面には、本発明の特徴の一つである透明な
メサ形状微細構造体11を多数形成しておく。これはエ
ッチングやレーザー加工により比較的容易に行うことが
できる。透明電極5とメサ形状微細構造体11が接する
ように封止体6により封止することで、電界発光装置1
0は従来のままで図9の原理により発光効率を向上させ
ることができる。本願の発明のメサ構造体(即ち、メサ
形状微細構造体11)はG.Gu等と異なり各メサ構造
体が微細に多数構成されるため減衰の影響を無視するこ
とができる。
FIG. 2 is an enlarged view of the light emitting layer 3, the transparent electrode 5, and the sealing body 6 according to the first embodiment.
On the surface of the sealing body 6, a number of transparent mesa-shaped fine structures 11, which are one of the features of the present invention, are formed. This can be performed relatively easily by etching or laser processing. The electroluminescent device 1 is sealed by the sealing body 6 so that the transparent electrode 5 and the mesa-shaped fine structure 11 are in contact with each other.
0 can improve the luminous efficiency according to the principle of FIG. The mesa structure of the present invention (that is, the mesa-shaped fine structure 11) is described in G.A. Unlike Gu or the like, each mesa structure is finely composed in large numbers, so that the influence of attenuation can be ignored.

【0022】図3は本発明の第二の実施の態様の構成図
を示す。この第二の実施の形態は、図1の第一の実施の
形態に比較して、メサ形状微細構造体11の斜面(テー
パー部)に反射体12をそれぞれ設けた点を特徴とす
る。ここで、図3で図1と同一の符号は、それぞれ図1
と同一のものを示す。この様にメサ形状微細構造体11
の斜面に反射体12を設けることで更に効率が向上す
る。即ち、図4に詳細に示すように反射体12により全
ての光線をメサ形状微細構造体11から大気中に放出す
ることができる。
FIG. 3 shows a block diagram of a second embodiment of the present invention. The second embodiment is characterized in that the reflectors 12 are provided on the slopes (tapered portions) of the mesa-shaped microstructure 11, respectively, as compared with the first embodiment of FIG. Here, the same reference numerals in FIG. 3 as those in FIG.
Indicates the same as Thus, the mesa-shaped fine structure 11
The efficiency is further improved by providing the reflector 12 on the inclined surface of. That is, as shown in detail in FIG. 4, all the light beams can be emitted from the mesa-shaped fine structure 11 to the atmosphere by the reflector 12.

【0023】図5は本発明の第三の実施の態様の構成図
を示す。この第三の実施の形態は、図1の第一の実施の
形態に比較して、透明電極5とメサ形状微細構造体11
の間をマッチングオイル13などの物質により光学的に
密着させた点に特徴がある。ここで、図5で図1と同一
の符号は、それぞれ図1と同一のものを示す。第三実施
の形態の様に、透明電極5とメサ形状微細構造体11の
間をマッチングオイル13などの物質により光学的に密
着させればより効果的に装置の発光効率を向上できる。
FIG. 5 shows a configuration diagram of a third embodiment of the present invention. The third embodiment is different from the first embodiment of FIG. 1 in that the transparent electrode 5 and the mesa-shaped fine structure 11 are different from each other.
The feature is that the space between them is optically brought into close contact with a substance such as the matching oil 13. Here, in FIG. 5, the same reference numerals as those in FIG. 1 indicate the same components as those in FIG. As in the third embodiment, the luminous efficiency of the device can be more effectively improved by optically bringing the transparent electrode 5 and the mesa-shaped fine structure 11 into close contact with each other with a substance such as the matching oil 13.

【0024】図6は本発明の第四の実施の態様の構成図
を示す。この第四の実施の形態は、図1の第一の実施の
形態に比較して、メサ形状微細構造体11を配置する部
分だけに電界が印加されるように対向する電極を形成し
た点に特徴がある。ここで、図6で図1と同一の符号
は、それぞれ図1と同一のものを示す。この第四の実施
の形態の様に、メサ形状微細構造体11を配置する部分
だけに電界が印加されるように対向する電極5を形成し
たので、メサ形状微細構造体11のない部分は電力消費
されずより発光効率が向上する。
FIG. 6 shows a configuration diagram of the fourth embodiment of the present invention. The fourth embodiment is different from the first embodiment of FIG. 1 in that electrodes facing each other are formed so that an electric field is applied only to a portion where the mesa-shaped microstructure 11 is arranged. There are features. Here, in FIG. 6, the same reference numerals as those in FIG. 1 indicate the same components as those in FIG. As in the fourth embodiment, the opposing electrode 5 is formed so that an electric field is applied only to the portion where the mesa-shaped fine structure 11 is arranged. The luminous efficiency is further improved without being consumed.

【0025】これら第一乃至第四の実施の形態の、多数
のメサ形状微細構造体11は図7の様にして作ることが
できる。図7は、メサ形状微細構造体11の作成工程の
説明図を示す。封止体6上にレジスト14と所定の形状
のフォトマスク15による露光、現像でパターン化され
たレジストを形成する。封止体6をエッチングして(ガ
ラスならばフッ酸などにより)メサ形状微細構造体11
を作製する。通常レジストを用いたエッチングではテー
パー断面になるため、エッチング条件(エッチャント、
時間、温度、エッチャントの流れなど)を制御すること
でメサ形状(幅Du、Db、高さh、角度Θ)を容易に
コントロールすることができる。反射体12はシリコン
や金属などをレジスト剥離する前に蒸着やメッキなどに
より形成すればよい。レジストを剥離すると、メサ形状
微細構造体11が完成する。この他にもエッチングの代
わりにレーザー加工を利用することもできる。図7では
分かり易い様にメサ形状微細構造体11を離散して図示
しているが、効果を最大に得るためには図2、3、5の
様に密に形成する方が良い。
A large number of mesa-shaped microstructures 11 according to the first to fourth embodiments can be formed as shown in FIG. FIG. 7 is an explanatory diagram of a step of forming the mesa-shaped fine structure 11. A resist patterned by exposure and development with a resist 14 and a photomask 15 having a predetermined shape is formed on the sealing body 6. The sealing body 6 is etched (for glass, using hydrofluoric acid or the like) to form a mesa-shaped fine structure 11.
Is prepared. Since etching using a resist usually results in a tapered cross section, the etching conditions (etchant,
The mesa shape (width Du, Db, height h, angle Θ) can be easily controlled by controlling time, temperature, etchant flow, and the like. The reflector 12 may be formed by vapor deposition, plating, or the like before removing resist such as silicon or metal. When the resist is removed, the mesa-shaped fine structure 11 is completed. In addition, laser processing can be used instead of etching. In FIG. 7, the mesa-shaped fine structure 11 is shown discretely for easy understanding, but it is better to form the mesa-shaped fine structure 11 densely as shown in FIGS.

【0026】更に、メサ形状微細構造体11としては図
8に示す様な円形の底面を持ったものでも、多角形の底
面を持ったものでも良い。ここで、特開平11−329
726号公報には発光素子からの発光を蛍光体に吸収さ
せて発光させる有機EL素子において蛍光体側面に反射
膜を設けている。しかし、蛍光体による散乱光を反射膜
により前方に集めているだけで、発光効率にとって大き
な問題である全反射を抑制しているわけではない。した
がって発光効率向上の効果では本願に及ぶべくもない。
また、明らかにG.Gu等と同様に1画素1構造であ
り、反射膜による効果よりも蛍光体中を伝播する光りの
減衰の方が大きくなってしまう。
Further, the mesa-shaped fine structure 11 may have a circular bottom as shown in FIG. 8 or may have a polygonal bottom. Here, JP-A-11-329
In Japanese Patent No. 726, a reflection film is provided on a side surface of a phosphor in an organic EL device in which light emitted from a light emitting element is absorbed by a phosphor to emit light. However, merely collecting the scattered light from the phosphor forward by the reflection film does not suppress the total reflection, which is a major problem for the luminous efficiency. Therefore, the effect of improving the luminous efficiency does not reach the present application.
In addition, G. As in the case of Gu or the like, it has one pixel and one structure, and the attenuation of light propagating in the phosphor becomes larger than the effect of the reflection film.

【0027】[0027]

【実施例】実施例に基づき、さらに本願発明を詳しく説
明する。
EXAMPLES The present invention will be described in more detail with reference to Examples.

【0028】[0028]

【実施例1】本発明の実施例として、図1に示す電界発
光装置10を以下の様に作製した。基板2上に反射電極
4(即ち、電極4)としてMg/Al、発光層3として
発光有機材料Alq3と正孔輸送層α−NPDを積層した
もの、透明電極5としてITOを積層した。正孔輸送層
α−NPDとITOが接する積層順とした。これらの作製
は全て大気を遮断した状態で行った。発光層の厚みはA
lq3(2000Å)とα−NPD(1000Å)とし
た。一方、封止体6として図2に示す様な微細なテーパ
ー形状のメサ形状微細構造体11を多数形成した透明体
を用意した。ガラスあるいは透明プラスチック、透明樹
脂を図7の方法に従ってパターニングしテーパー形状を
形成した。テーパー形状は底辺が1辺20μmの正方形
あるいは直径20μmの円形で、高さが17μmとし
た。上記の封止体6をテーパー形状の短辺側が透明電極5
に接するように覆いかぶせシール剤7で基板2に固定し
て電界発光装置を作製した。反射電極4を負極性、透明
電極5を正極性として7Vの直流電界を印加したとこ
ろ、電流密度0.2mA/mm2で輝度500cd/m2の発
光を確認することができた。
Example 1 As an example of the present invention, an electroluminescent device 10 shown in FIG. 1 was manufactured as follows. Mg / Al as the reflective electrode 4 (that is, the electrode 4), a luminescent organic material Alq3 and the hole transport layer α-NPD as the luminescent layer 3, and ITO as the transparent electrode 5 were laminated on the substrate 2. The lamination order was such that the hole transport layer α-NPD and ITO were in contact. All of these fabrications were performed with the atmosphere shut off. The thickness of the light emitting layer is A
1q3 (2000 °) and α-NPD (1000 °). On the other hand, a transparent body having a large number of fine tapered mesa-shaped fine structures 11 as shown in FIG. Glass, transparent plastic, and transparent resin were patterned according to the method shown in FIG. 7 to form a tapered shape. The tapered shape was a square with a base of 20 μm on a side or a circle with a diameter of 20 μm and a height of 17 μm. The above-mentioned sealing body 6 has a transparent electrode 5 on the short side of the tapered shape.
And fixed to the substrate 2 with a sealing agent 7 so as to be in contact with the substrate, thereby producing an electroluminescent device. When a 7 V DC electric field was applied with the reflective electrode 4 having a negative polarity and the transparent electrode 5 having a positive polarity, light emission with a luminance of 500 cd / m 2 at a current density of 0.2 mA / mm 2 could be confirmed.

【0029】[0029]

【比較例1−1】比較例として該実施例1の封止体6に
テーパー形状を設けない通常の電界発光装置を同様に作
製した。反射電極を負極性、透明電極を正極性として7
Vの直流電界を印加したところ、電流密度0.2mA/
mm2で輝度は120cd/m2の発光しか確認することが
できなかった。
Comparative Example 1-1 As a comparative example, a normal electroluminescent device in which the sealing body 6 of Example 1 was not provided with a tapered shape was similarly manufactured. 7 with the reflective electrode as negative polarity and the transparent electrode as positive polarity
When a DC electric field of V was applied, the current density was 0.2 mA /
In mm 2 , only a light emission of 120 cd / m 2 was confirmed.

【0030】[0030]

【比較例1−2】比較例として図10の従来電界発光装
置を同様に作製した。反射電極4を負極性、透明電極5
を正極性として7Vの直流電界を印加したところ、電流
密度0.2mA/mm2で輝度は120cd/m2の発光しか
確認することができなかった。本願の発明により、同一
の電力で4倍以上も高輝度の表示装置を作製することが
できた。この際には、発光材料、電極材料等は一切変更
しておらず、本来発光材料が持つ発光能力を表示装置と
して必要な外部に取出す効率を向上させただけであり、
寿命などの信頼性は全く低下することがない。
Comparative Example 1-2 As a comparative example, the conventional electroluminescent device of FIG. 10 was manufactured in the same manner. The reflective electrode 4 has a negative polarity, and the transparent electrode 5
When a direct current electric field of 7 V was applied with a positive polarity, light emission of only 120 cd / m 2 at a current density of 0.2 mA / mm 2 could be confirmed. According to the invention of the present application, it is possible to manufacture a display device with a luminance of four times or more with the same power. At this time, the light-emitting material, the electrode material, etc. were not changed at all, only the efficiency of taking out the light-emitting ability originally possessed by the light-emitting material to the outside required as a display device was improved,
The reliability such as the service life does not decrease at all.

【0031】[0031]

【実施例2】本発明の第二実施例として、図1に示す電
界発光装置10を以下の様に作製した。基板2上に反射
電極4(即ち、電極4)としてMg/Al、発光層3と
して発光有機材料Alq3と正孔輸送層α−NPDを積層
したもの、透明電極5としてITOを積層した。正孔輸
送層α−NPDとITOが接する積層順とした。これらの
作製は全て大気を遮断した状態で行った。発光層の厚み
はAlq3(2000Å)とα−NPD(1000Å)と
した。一方、封止体6として図3に示す様なその斜面に
反射体12を形成した微細なテーパー形状のメサ形状微
細構造体11を多数形成した透明体を用意した。ガラス
あるいは透明プラスチック、透明樹脂を図7の方法に従
ってパターニング、反射体を形成してテーパー形状を形
成した。テーパー形状は底辺が1辺20μmの正方形あ
るいは直径20μmの円形で、高さが17μmとした。
上記の封止体6をテーパー形状の短辺側が透明電極5に
接するように覆いかぶせシール剤7で基板2に固定して
電界発光装置を作製した。反射電極4を負極性、透明電
極5を正極性として7Vの直流電界を印加したところ、
電流密度0.2mA/mm2で輝度600cd/m2の発光を
確認することができた。
Embodiment 2 As a second embodiment of the present invention, an electroluminescent device 10 shown in FIG. 1 was manufactured as follows. Mg / Al as the reflective electrode 4 (that is, the electrode 4), a luminescent organic material Alq3 and the hole transport layer α-NPD as the luminescent layer 3, and ITO as the transparent electrode 5 were laminated on the substrate 2. The lamination order was such that the hole transport layer α-NPD and ITO were in contact. All of these fabrications were performed with the atmosphere shut off. The thickness of the light emitting layer was Alq3 (2000 °) and α-NPD (1000 °). On the other hand, as the sealing body 6, a transparent body having a large number of finely tapered mesa-shaped microstructures 11 having a reflector 12 formed on the slope as shown in FIG. 3 was prepared. Glass, transparent plastic, and transparent resin were patterned according to the method shown in FIG. 7 to form a reflector to form a tapered shape. The tapered shape was a square with a base of 20 μm on a side or a circle with a diameter of 20 μm and a height of 17 μm.
The above-mentioned sealing body 6 was covered so that the short side of the tapered shape was in contact with the transparent electrode 5 and was fixed to the substrate 2 with the sealing agent 7 to produce an electroluminescent device. When a 7 V DC electric field was applied with the reflective electrode 4 having a negative polarity and the transparent electrode 5 having a positive polarity,
It was possible to confirm the emission luminance 600 cd / m 2 at a current density of 0.2 mA / mm 2.

【0032】[0032]

【比較例2−1】比較例として実施例1の封止体6にテ
ーパー形状を設けない通常の電界発光素子を同様に作製
した。反射電極4を負極性、透明電極5を正極性として
7Vの直流電界を印加したところ、電流密度0.2mA
/mm2で輝度は120cd/m2の発光しか確認することが
できなかった。
Comparative Example 2-1 As a comparative example, a normal electroluminescent device in which the sealing body 6 of Example 1 was not provided with a tapered shape was similarly manufactured. When a 7 V DC electric field was applied with the reflective electrode 4 having a negative polarity and the transparent electrode 5 having a positive polarity, the current density was 0.2 mA.
At a luminance of / mm 2 , only a light emission of 120 cd / m 2 could be confirmed.

【0033】[0033]

【比較例2−2】比較例として図10の従来の電界発光
装置を同様に作製した。反射電極4を負極性、透明電極
5を正極性として7Vの直流電界を印加したところ、電
流密度0.2mA/mm2で輝度は120cd/m2の発光し
か確認することができなかった。本願の発明により、同
一の電力で5倍以上も高輝度の表示装置を作製すること
ができた。この際には、発光材料、電極材料等は一切変
更しておらず、本来発光材料が持つ発光能力を表示装置
として必要な外部に取出す効率を向上させただけであ
り、寿命などの信頼性は全く低下することがない。以
上、本発明の実施例について説明したが、本発明はこれ
に限定されるものではない。
Comparative Example 2-2 As a comparative example, the conventional electroluminescent device of FIG. 10 was manufactured in the same manner. When a DC electric field of 7 V was applied with the reflective electrode 4 having a negative polarity and the transparent electrode 5 having a positive polarity, light emission of only 120 cd / m 2 at a current density of 0.2 mA / mm 2 could be confirmed. According to the invention of the present application, it is possible to manufacture a display device with five times or more luminance with the same power. At this time, the light emitting material, electrode material, etc. were not changed at all, only the efficiency of taking out the light emitting ability originally possessed by the light emitting material to the outside required as a display device was improved, and the reliability such as the lifetime was improved. There is no drop at all. As mentioned above, although the Example of this invention was described, this invention is not limited to this.

【0034】[0034]

【発明の効果】本発明をもちいることにより、自発光型
表示装置の発光効率を大幅に向上させることができる。
しかも、製造工程も繁雑にならず、製造効率も良く、更
に基板上に複雑な駆動や電極を形成する場合には障害に
なず、アクティブマトリクス駆動表示装置も作成するこ
とができえう。更に、発光材料、電極材料等は変更する
必要がなく、本来発光材料が持つ発光能力を表示装置と
して必要な外部に取出す効率を向上させただけであり、
寿命などの信頼性は全く低下することがない等の優れた
効果を有する。
According to the present invention, the luminous efficiency of the self-luminous display device can be greatly improved.
In addition, the manufacturing process is not complicated, the manufacturing efficiency is high, and an active matrix drive display device can be produced without any trouble when complicated driving and electrodes are formed on the substrate. Furthermore, there is no need to change the light-emitting material, electrode material, etc., only to improve the efficiency of taking out the light-emitting ability originally possessed by the light-emitting material to the outside required as a display device,
It has an excellent effect that the reliability such as the life is not reduced at all.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の第一の実施の態様の要部構成
図。
FIG. 1 is a configuration diagram of a main part of a first embodiment of the present invention.

【図2】図2は、第一の実施の形態の発光層、透明電
極、封止体の拡大図。
FIG. 2 is an enlarged view of a light emitting layer, a transparent electrode, and a sealing body according to the first embodiment.

【図3】図3は本発明の第二の実施の形態の要部構成
図。
FIG. 3 is a main part configuration diagram of a second embodiment of the present invention.

【図4】図4は、第二の実施の形態の発光光線の経路の
説明図。
FIG. 4 is an explanatory diagram of the path of the emitted light beam according to the second embodiment.

【図5】図5は、本発明の第三の実施の形態の要部構成
図。
FIG. 5 is a main part configuration diagram of a third embodiment of the present invention.

【図6】図6は、本発明の第四の実施の態様の要部構成
図。
FIG. 6 is a main part configuration diagram of a fourth embodiment of the present invention.

【図7】図7は、本発明の自発光型表示装置の作製工程
の説明図。
FIG. 7 is an explanatory diagram of a manufacturing process of a self-luminous display device of the present invention.

【図8】図8は、本発明のテーパー形状の説明図。FIG. 8 is an explanatory view of a tapered shape of the present invention.

【図9】図9は、メサ構造中の発光光線の経路の説明
図。
FIG. 9 is an explanatory diagram of the path of the emitted light beam in the mesa structure.

【図10】図10は、従来の電界発光装置の構成を示す
図。
FIG. 10 is a diagram showing a configuration of a conventional electroluminescent device.

【図11】図11は、従来の電界発光装置の発光光線の
経路の説明図。
FIG. 11 is an explanatory view of a path of light emitted from a conventional electroluminescent device.

【符号の説明】[Explanation of symbols]

1、10:電界発光装置、3:発光層、4:電極、5:
透明電極、6:封止体、7:シール剤、8:発光光線、
9:メサ構造、11:メサ形状微細構造体、12:反射
体、13:屈折率マッチング物質、14:レジスト、1
5:フォトマスク
1, 10: electroluminescent device, 3: light emitting layer, 4: electrode, 5:
Transparent electrode, 6: sealing body, 7: sealant, 8: emission light beam,
9: mesa structure, 11: mesa-shaped fine structure, 12: reflector, 13: refractive index matching substance, 14: resist, 1
5: Photomask

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電極と発光層を備えた電界発光素子にお
いて、 該電極の少なくとも1つが透明電極であり、 透明体から成る複数のメサ形状を有するメサ形状微細構
造体を、該透明電極の該発光層に面する反対の側に、該
メサ形状微細構造体の短辺側を近い方として配置した、
ことを特徴とする電界発光装置。
1. An electroluminescent device comprising an electrode and a light emitting layer, wherein at least one of the electrodes is a transparent electrode, and a mesa-shaped fine structure having a plurality of mesa shapes made of a transparent body is formed on the transparent electrode. On the opposite side facing the light-emitting layer, the short side of the mesa-shaped microstructure was arranged closer.
An electroluminescent device, comprising:
【請求項2】 前記発光層を大気中で安定に動作させる
ための封止体と前記メサ形状微細構造体とを一体化した
ことを特徴とする請求項1に記載の電界発光装置。
2. The electroluminescent device according to claim 1, wherein a sealing body for stably operating the light emitting layer in the air and the mesa-shaped fine structure are integrated.
【請求項3】 前記メサ形状微細構造体のテーパー部に
反射体を設けたことを特徴とする請求項1又は2記載の
電界発光装置。
3. The electroluminescent device according to claim 1, wherein a reflector is provided at a tapered portion of the mesa-shaped fine structure.
【請求項4】前記複数のメサ形状微細構造体が配置され
る部分にのみ電極を形成することを特徴とする請求項1
乃至3のいずれかに記載の電界発光装置。
4. An electrode is formed only in a portion where the plurality of mesa-shaped microstructures are arranged.
4. The electroluminescent device according to any one of claims 1 to 3.
JP2000345010A 2000-11-13 2000-11-13 Luminescent element Pending JP2002151274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000345010A JP2002151274A (en) 2000-11-13 2000-11-13 Luminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000345010A JP2002151274A (en) 2000-11-13 2000-11-13 Luminescent element

Publications (1)

Publication Number Publication Date
JP2002151274A true JP2002151274A (en) 2002-05-24

Family

ID=18819118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000345010A Pending JP2002151274A (en) 2000-11-13 2000-11-13 Luminescent element

Country Status (1)

Country Link
JP (1) JP2002151274A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040020220A (en) * 2002-08-30 2004-03-09 이엘코리아 주식회사 AC EL device and fabrication method thereof
JP2004259606A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Display body and display device
WO2004010406A3 (en) * 2002-07-23 2004-12-02 Koninkl Philips Electronics Nv Electroluminescent display, electronic device comprising such a display and method of manufacturing an electroluminescent display
JP2005038837A (en) * 2003-06-30 2005-02-10 Semiconductor Energy Lab Co Ltd Light emitting device
JP2005093190A (en) * 2003-09-17 2005-04-07 Stanley Electric Co Ltd El lighting device
JP2007502515A (en) * 2003-08-14 2007-02-08 トムソン ライセンシング Electroluminescence panel with light extraction element
JP2007180001A (en) * 2005-03-29 2007-07-12 Konica Minolta Holdings Inc Surface light emitter and display apparatus
WO2007138908A1 (en) * 2006-05-31 2007-12-06 Konica Minolta Holdings, Inc. Surface illuminant, and display device
WO2007138909A1 (en) * 2006-05-31 2007-12-06 Konica Minolta Holdings, Inc. Surface area light emitting body, method of producing surface area light emitting body, and display device
WO2008007772A1 (en) * 2006-07-13 2008-01-17 Konica Minolta Holdings, Inc. Surface light emitting body and display
US7492092B2 (en) 2002-12-17 2009-02-17 Seiko Epson Corporation Self-emitting element, display panel, display apparatus, and method of manufacturing self-emitting element
JP2011249350A (en) * 2005-03-29 2011-12-08 Konica Minolta Holdings Inc Surface light emitter
EP1830422A3 (en) * 2006-03-03 2012-03-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
JP2013182775A (en) * 2012-03-01 2013-09-12 Dainippon Printing Co Ltd Organo electroluminescent panel
JP2019519814A (en) * 2016-06-03 2019-07-11 コーニング インコーポレイテッド Light extraction device and method for OLED display and OLED display using them

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010406A3 (en) * 2002-07-23 2004-12-02 Koninkl Philips Electronics Nv Electroluminescent display, electronic device comprising such a display and method of manufacturing an electroluminescent display
KR20040020220A (en) * 2002-08-30 2004-03-09 이엘코리아 주식회사 AC EL device and fabrication method thereof
US7821202B2 (en) 2002-12-17 2010-10-26 Seiko Epson Corporation Self-emitting element, display panel, display apparatus, and method of manufacturing self-emitting element
US7492092B2 (en) 2002-12-17 2009-02-17 Seiko Epson Corporation Self-emitting element, display panel, display apparatus, and method of manufacturing self-emitting element
JP2004259606A (en) * 2003-02-26 2004-09-16 Seiko Epson Corp Display body and display device
JP4522760B2 (en) * 2003-06-30 2010-08-11 株式会社半導体エネルギー研究所 Light emitting device and method for manufacturing light emitting device
JP2005038837A (en) * 2003-06-30 2005-02-10 Semiconductor Energy Lab Co Ltd Light emitting device
JP2007502515A (en) * 2003-08-14 2007-02-08 トムソン ライセンシング Electroluminescence panel with light extraction element
EP1654773B1 (en) * 2003-08-14 2019-10-09 InterDigital CE Patent Holdings Electroluminescent panel provided with light extraction elements
JP4773349B2 (en) * 2003-08-14 2011-09-14 トムソン ライセンシング Electroluminescence panel with light extraction element
JP2005093190A (en) * 2003-09-17 2005-04-07 Stanley Electric Co Ltd El lighting device
JP2007180001A (en) * 2005-03-29 2007-07-12 Konica Minolta Holdings Inc Surface light emitter and display apparatus
JP2011249350A (en) * 2005-03-29 2011-12-08 Konica Minolta Holdings Inc Surface light emitter
EP1830422A3 (en) * 2006-03-03 2012-03-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
US8927307B2 (en) 2006-03-03 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and electronic device
WO2007138909A1 (en) * 2006-05-31 2007-12-06 Konica Minolta Holdings, Inc. Surface area light emitting body, method of producing surface area light emitting body, and display device
JP5304242B2 (en) * 2006-05-31 2013-10-02 コニカミノルタ株式会社 Surface light emitter and display device
JP5309993B2 (en) * 2006-05-31 2013-10-09 コニカミノルタ株式会社 Surface light emitter and display device
WO2007138908A1 (en) * 2006-05-31 2007-12-06 Konica Minolta Holdings, Inc. Surface illuminant, and display device
WO2008007772A1 (en) * 2006-07-13 2008-01-17 Konica Minolta Holdings, Inc. Surface light emitting body and display
JP5141555B2 (en) * 2006-07-13 2013-02-13 コニカミノルタホールディングス株式会社 Surface light emitter and display device
JP2013182775A (en) * 2012-03-01 2013-09-12 Dainippon Printing Co Ltd Organo electroluminescent panel
JP2019519814A (en) * 2016-06-03 2019-07-11 コーニング インコーポレイテッド Light extraction device and method for OLED display and OLED display using them
JP7229777B2 (en) 2016-06-03 2023-02-28 コーニング インコーポレイテッド Light extraction devices and methods for OLED displays and OLED displays using them

Similar Documents

Publication Publication Date Title
US7144752B2 (en) Method of manufacturing organic electroluminescent display device and organic electroluminescent display device, and display device equipped with organic electroluminescent display device
JP2002151274A (en) Luminescent element
JP4463392B2 (en) Method for manufacturing EL display device
JP4496235B2 (en) Flat light emitting lamp device and manufacturing method thereof
JP2007234578A (en) Surface emitter, display device, and light control member
KR101107172B1 (en) Organic light emitting diode display
KR101271521B1 (en) Organic electro-luminescence device
JP2006012585A (en) Organic el display panel and its manufacturing method
US6997768B2 (en) Flat luminescence lamp and method for manufacturing the same
JP2002156633A (en) Liquid crystal display device with illumination, and method for manufacturing surface light emitting element light source
JP2002043054A (en) Light-emitting element and method of manufacturing the same
US20030102801A1 (en) Lighting device with a reflecting layer and liquid crystal display device
US20160172632A1 (en) Light extraction substrate for organic light-emitting element, method for manufacturing same and organic light-emitting element including same
JP2002158095A (en) Self-luminous display element equipped with diffraction structure
JP2005276581A (en) Planar light emitting device
JP2003249381A (en) Organic electroluminescence element and its manufacturing method
KR101002279B1 (en) Panel for field emission type backlight device and method for manufacturing the same
US7567029B2 (en) Organic electro-luminescence display device and fabricating method thereof
KR20110134174A (en) Organic light emitting diode
JP2008159338A (en) Inorganic electroluminescent device
JP4968703B2 (en) Organic light emitting device
WO2021035960A1 (en) Electroluminescent device and display device
JP2008171820A (en) Anode panel of field emission type backlight unit, and field emission type backlight unit equipped with this
KR101470294B1 (en) Metallic oxide thin film substrate and oled including the same
KR100770579B1 (en) Organic electro luminescence device