JP2003249381A - Organic electroluminescence element and its manufacturing method - Google Patents
Organic electroluminescence element and its manufacturing methodInfo
- Publication number
- JP2003249381A JP2003249381A JP2002049742A JP2002049742A JP2003249381A JP 2003249381 A JP2003249381 A JP 2003249381A JP 2002049742 A JP2002049742 A JP 2002049742A JP 2002049742 A JP2002049742 A JP 2002049742A JP 2003249381 A JP2003249381 A JP 2003249381A
- Authority
- JP
- Japan
- Prior art keywords
- light
- substrate
- organic
- organic electroluminescence
- recess
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自発光型の有機エ
レクトロルミネッセンス素子(以下、有機EL素子とも
いう。)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-luminous organic electroluminescence device (hereinafter also referred to as an organic EL device).
【0002】[0002]
【従来の技術】Appl.Phys.Lett.,5
1,913(1987)には、発光層として有機材料を
採用し、正孔輸送層と発光層兼電子輸送層を積層した2
層構造を設け、発光層兼電子輸送層にトリス(8−キノ
リノラト)アルミニウム(以下、Alqと呼ぶ。)を使
用した有機EL素子が開示されている。2. Description of the Related Art Appl. Phys. Lett. , 5
1,913 (1987), an organic material is adopted as a light emitting layer, and a hole transport layer and a light emitting layer / electron transport layer are laminated.
An organic EL device having a layer structure and using tris (8-quinolinolato) aluminum (hereinafter referred to as Alq) for a light emitting layer and an electron transporting layer is disclosed.
【0003】この有機EL素子は10V以下の駆動電圧
で緑色の発光を生じ、輝度が1000cd/m2、発光
効率が1.5ルーメン/Wである。This organic EL device emits green light at a driving voltage of 10 V or less, has a luminance of 1000 cd / m 2 and a luminous efficiency of 1.5 lumen / W.
【0004】現在広く使用されている、液晶表示装置や
PDP、LED表示素子、蛍光表示装置等に対し、有機
EL素子は原理上、明るい表示を提供でき、かつ、高精
細で、視認性がすぐれており、高い情報品位の表示を行
なうことのできる次世代の表示素子として期待されてい
る。In contrast to liquid crystal display devices, PDPs, LED display devices, fluorescent display devices and the like which are widely used at present, the organic EL device can provide a bright display in principle, and has high definition and excellent visibility. Therefore, it is expected as a next-generation display element capable of displaying high information quality.
【0005】そのため、有機EL素子を実用化するにあ
たり、明るく低消費電力であることが強く求められてい
る。その特性を実現するには、有機EL素子の発光材料
や電極の良好な組み合わせを選択し、発光効率自体を向
上することが必要である。さらに、自発発光した光の取
出し効率を向上することも重要となる。Therefore, in putting an organic EL element into practical use, it is strongly demanded that it be bright and have low power consumption. In order to realize the characteristics, it is necessary to select a good combination of the light emitting material and the electrode of the organic EL element and improve the light emitting efficiency itself. Further, it is important to improve the extraction efficiency of spontaneously emitted light.
【0006】一般的な有機EL素子の場合、単純な平面
構造の発光層から等方的に発せられた発光のうち、およ
そ80%は基板界面で反射され、さらに、基板端面から
外部に放出されるか、または有機EL素子の構成物質に
吸収される。その結果、有機EL素子の前面に放出さ
れ、観察者が視認できる光LOは20%程度であると算
定されている(図4参照)。In a general organic EL device, about 80% of the light emitted isotropically from the light emitting layer having a simple planar structure is reflected at the substrate interface and further emitted from the end face of the substrate to the outside. Or is absorbed by the constituent material of the organic EL element. As a result, the light L O emitted to the front surface of the organic EL element and visible to the observer is calculated to be about 20% (see FIG. 4).
【0007】現状の有機EL素子では、自発発光する光
の大半が失われ、表示に寄与する割合が相当低いのであ
る。そこで、有機EL素子の光取出し効率を向上するた
めに、有機EL素子の基板に光学素子を組み込む方法が
知られている。たとえば、特開平10−172756号
公報には、透明基板自体に平板マイクロレンズを組み込
む手法が示されている。In the current organic EL device, most of the spontaneously emitted light is lost, and the ratio of contribution to display is considerably low. Therefore, in order to improve the light extraction efficiency of the organic EL element, a method of incorporating an optical element into the substrate of the organic EL element is known. For example, Japanese Patent Application Laid-Open No. 10-172756 discloses a method of incorporating a flat plate microlens into a transparent substrate itself.
【0008】また、OPTICS LETTERS V
ol.22,No.6,396(1997)には、表面
をメサ型に加工したガラス基板の上面に、有機EL素子
を形成した試作例が発表されている。In addition, OPTICS LETTERS V
ol. 22, No. 6,396 (1997), a prototype example in which an organic EL element is formed on the upper surface of a glass substrate whose surface is processed into a mesa type is announced.
【0009】[0009]
【発明が解決しようとする課題】このように、従来例に
おいて、自発発光する光の取り出し効率を向上させる試
みが行なわれている。しかし、取出し効率を向上させる
ための素子構造および製造工程が複雑であり、大面積の
基板に適用できないという問題がある。As described above, in the conventional examples, attempts have been made to improve the extraction efficiency of spontaneously emitted light. However, there is a problem that the device structure for improving the extraction efficiency and the manufacturing process are complicated, and it cannot be applied to a large-area substrate.
【0010】また、有機EL素子の製造コストが基本的
に高価になり、量産に適さないという問題点がある。Further, there is a problem that the manufacturing cost of the organic EL element is basically high and it is not suitable for mass production.
【0011】[0011]
【課題を解決するための手段】すなわち、本発明の態様
1は、ほぼ平面状の透明基板を備え、その透明基板の基
板上に発光層と光反射性電極とが設けられ、観察者側か
ら見て光反射性電極に多数の凹部が設けられ、基板面に
ほぼ平行な面内における凹部の径をL、基板の厚み方向
における凹部の高さをHとすると、L=5〜100μ
m、L/H=2〜20を満足する有機エレクトロルミネ
ッセンス素子を提供する。That is, the first aspect of the present invention is provided with a substantially flat transparent substrate, and the light emitting layer and the light-reflecting electrode are provided on the substrate of the transparent substrate. Assuming that a large number of recesses are provided in the light-reflective electrode and the diameter of the recesses in a plane substantially parallel to the substrate surface is L and the height of the recesses in the thickness direction of the substrate is H, L = 5 to 100 μm.
Provided is an organic electroluminescence device satisfying m and L / H = 2 to 20.
【0012】態様2は、凹部にほぼ一対一に対応するよ
うに凸部が基板面に設けられてなる態様1に記載の有機
エレクトロルミネッセンス素子を提供する。Aspect 2 provides the organic electroluminescent element according to Aspect 1, wherein the convex portions are provided on the substrate surface so as to correspond to the concave portions substantially one-to-one.
【0013】態様3は、凸部が無色透明材料で形成され
てなる態様2に記載の有機エレクトロルミネッセンス表
示素子を提供する。Aspect 3 provides the organic electroluminescence display element according to Aspect 2, wherein the convex portions are formed of a colorless transparent material.
【0014】態様4は、凸部の構成材料の少なくとも一
部に着色材料または蛍光変換材料が用いられてなる態様
2に記載の有機エレクトロルミネッセンス表示素子を提
供する。Aspect 4 provides the organic electroluminescence display element according to Aspect 2, wherein a coloring material or a fluorescence conversion material is used for at least a part of the constituent material of the convex portion.
【0015】態様5は、透明基板の面内で凹部の平面部
に対する占有率が20〜80%である態様1、2、3ま
たは4に記載の有機エレクトロルミネッセンス素子を提
供する。Aspect 5 provides the organic electroluminescent device according to Aspect 1, 2, 3 or 4, wherein the occupancy of the plane portion of the recess is 20 to 80% in the plane of the transparent substrate.
【0016】態様6は、凹部の基板面方向における断面
が、円形、三角形、四角形、六角形また八角形のいずれ
かから選択されてなる態様1、2、3、4または5に記
載の有機エレクトロルミネッセンス素子を提供する。Aspect 6 is the organic electroluminescent device according to Aspect 1, 2, 3, 4 or 5, wherein the cross section of the recess in the substrate surface direction is selected from any of a circle, a triangle, a quadrangle, a hexagon and an octagon. A luminescent element is provided.
【0017】態様7は、ほぼ平面状の透明基板の基板上
に発光層と光反射性電極とを形成する有機エレクトロル
ミネッセンス素子の製造方法において、基板面に多数の
凸部を形成し、凸部の上に発光層と光反射性電極とを形
成し、凸部にほぼ一対一に対応して光反射性電極に多数
の凹部を形成し、基板面にほぼ平行な面内における凹部
の径をL、基板の厚み方向における凹部の高さをHとす
ると、L=5〜100μm、L/H=2〜20を満足す
ることを特徴とする有機エレクトロルミネッセンス素子
の製造方法を提供する。Aspect 7 is a method for manufacturing an organic electroluminescent device, in which a light emitting layer and a light-reflecting electrode are formed on a substrate of a substantially flat transparent substrate, wherein a large number of convex portions are formed on the substrate surface, and the convex portions are formed. A light-emitting layer and a light-reflective electrode are formed on the light-reflective electrode, and a large number of recesses are formed in the light-reflective electrode in a one-to-one correspondence with the protrusions. Provided is L, where H is the height of the concave portion in the thickness direction of the substrate, and L = 5 to 100 μm and L / H = 2 to 20 are satisfied, and a method for manufacturing an organic electroluminescence device is provided.
【0018】また、上記の有機エレクトロルミネッセン
ス素子において、凹部または凸部が面内で、104〜1
06個/cm2形成されてなることが好ましい。Further, in the above-mentioned organic electroluminescence device, the concave portion or the convex portion is 10 4 to 1 in the plane.
0 6 / cm is preferably 2 is formed comprising.
【0019】[0019]
【発明の実施の形態】本発明の基本構成は、透明基板上
の光反射性電極6に多数の凹部10Aが設けられる(図
1参照)。観察者20から見て反対側に光反射性電極6
が配置される。すなわち非観察者側に位置する光反射性
電極6に凹部10Aの集合体が多数形成される。BEST MODE FOR CARRYING OUT THE INVENTION In the basic configuration of the present invention, a large number of recesses 10A are provided in a light reflecting electrode 6 on a transparent substrate (see FIG. 1). The light-reflective electrode 6 is provided on the opposite side of the observer 20.
Are placed. That is, a large number of aggregates of the recesses 10A are formed in the light reflective electrode 6 located on the non-observer side.
【0020】この凹部10Aは、あらかじめ基板1に、
無色透明樹脂からなる凸部10Bを多数形成し、その上
に、アルカリバリヤ層3、透明電極4、発光層5、光反
射性電極6をならって成膜することで形成できる。また
は、形状を転写するようにして順に各層を形成していけ
ばよい。The recess 10A is formed on the substrate 1 in advance.
This can be formed by forming a large number of convex portions 10B made of a colorless transparent resin, and forming the alkali barrier layer 3, the transparent electrode 4, the light emitting layer 5, and the light reflective electrode 6 on the convex portions 10B. Alternatively, each layer may be sequentially formed so as to transfer the shape.
【0021】図2に、基板1の上の面内に多数の凸部が
集合して形成された凸面部10を示す。簡素な構造を採
用する場合には、図2に示すように、無色透明樹脂から
なる凸部を必要となる表示面の大きさに対応して準備
し、その上に透明導電膜、発光層を含む有機層、光反射
性を有する電極が順に積層され、観察者20側から見て
凹部10Aを有する光反射性電極6が備えられた有機E
L素子が形成される。FIG. 2 shows a convex surface portion 10 formed by assembling a large number of convex portions on the surface of the substrate 1. In the case of adopting a simple structure, as shown in FIG. 2, a convex portion made of a colorless transparent resin is prepared corresponding to the required size of the display surface, and a transparent conductive film and a light emitting layer are provided thereon. Organic E provided with an organic layer including a light-reflecting electrode and a light-reflecting electrode 6 having a recess 10A when viewed from the observer 20 side.
An L element is formed.
【0022】発光層、光反射性電極は基板面にあらかじ
め設けられた凸部にならって形成することが容易であり
好ましい。この場合には、発光層、光反射性電極はほぼ
同様の曲面形状を有することになる。The light-emitting layer and the light-reflective electrode are preferable because they can be easily formed in accordance with the convex portions provided in advance on the substrate surface. In this case, the light emitting layer and the light reflective electrode have substantially the same curved surface shape.
【0023】そして、基板1上の凸部との間に発光層を
挟持するように位置する光反射性電極6の凹部10Aが
実質的に凹面鏡として機能する(図5参照)。発光層5
で自発発光せしめられた光が非観察者側に位置する光反
射性電極6の凹部10Aで反射され、基板1を通過する
光LOの確率を高めることができる。The concave portion 10A of the light-reflective electrode 6 positioned so as to sandwich the light emitting layer between the convex portion on the substrate 1 and the convex portion substantially functions as a concave mirror (see FIG. 5). Light emitting layer 5
The light spontaneously emitted by is reflected by the concave portion 10A of the light reflective electrode 6 located on the non-observer side, and the probability of the light L O passing through the substrate 1 can be increased.
【0024】このようにして、有機EL素子からの光が
前方へ積極的に放出されるように構成し、有機EL素子
全体における光の取出し効率を高めることができる。つ
まり、観察者が視認して表示に寄与できる光LOを飛躍
的に増加せしめることができる。次に本発明の作用を説
明する。In this way, the light from the organic EL element is positively emitted forward, and the light extraction efficiency of the entire organic EL element can be improved. That is, the light L O that can be visually recognized by the observer and can contribute to the display can be dramatically increased. Next, the operation of the present invention will be described.
【0025】まず、ガラス基板の表面が平面の場合を想
定する。ガラスの屈折率を1.5、透明電極・有機層の
屈折率を1.8とする。ガラス/空気界面の全反射の臨
界角は41.8°となる。First, assume that the surface of the glass substrate is flat. The refractive index of the glass is 1.5 and the refractive index of the transparent electrode / organic layer is 1.8. The critical angle for total internal reflection at the glass / air interface is 41.8 °.
【0026】この臨界角に対応する透明電極/ガラス界
面への光の入射角は33.7°となる。発光層から全方
向に出射された光のうち、非観察者側に位置する陰極
(反射性の電極)の方向に向けて出射した光が陰極によ
って100%反射されたとしても、この角度条件を満足
する光の存在確率は約17%に過ぎない。The incident angle of light on the transparent electrode / glass interface corresponding to this critical angle is 33.7 °. Of the light emitted in all directions from the light emitting layer, even if the light emitted toward the direction of the cathode (reflective electrode) located on the non-observer side is 100% reflected by the cathode, this angle condition is satisfied. The probability of satisfaction of light is only about 17%.
【0027】次に本発明において、光反射性電極に凹部
の構造を設けることによって、光取出し効率を向上でき
ることについて説明する。凹部の中央部の近傍から出射
する光について試算を行なった。または、観察者20か
ら見て、凸部10Bの頭頂部に自発発光の中心があると
想定したものである。Next, in the present invention, it will be described that the light extraction efficiency can be improved by providing the light reflecting electrode with a concave structure. A trial calculation was performed on the light emitted from the vicinity of the center of the recess. Alternatively, it is assumed that the observer 20 sees the center of spontaneous light emission at the crown of the convex portion 10B.
【0028】図8に、H=L/2の場合を示す。基板の
材料はガラスであるとする。同図において、θ=0〜3
3.7°の範囲の出射角に入る光線はガラス基板の表面
から外部に出射される。しかし、θ=33.7°より大
きく、φ=45°の範囲の出射光は、ガラス/空気界面
で全反射され、ガラス基板内を横に伝播し、表示面側に
は出射されない。FIG. 8 shows the case where H = L / 2. The material of the substrate is glass. In the figure, θ = 0 to 3
A light ray having an emission angle in the range of 3.7 ° is emitted from the surface of the glass substrate to the outside. However, the emitted light in the range of θ = 33.7 ° and φ = 45 ° is totally reflected at the glass / air interface, propagates laterally in the glass substrate, and is not emitted to the display surface side.
【0029】よって、表示に寄与できない無効な光とな
る。θ=45°よりも角度が大きい出射光は、凹面鏡と
して機能する電極によって反射される。そして、ガラス
基板の表面に対して深い角度でガラス基板の内部に進入
するため、表示にもっぱら寄与できる光として、外部に
有効に取出される。Therefore, the light becomes ineffective light which cannot contribute to the display. Emitted light having an angle larger than θ = 45 ° is reflected by the electrode functioning as a concave mirror. Then, since it enters the inside of the glass substrate at a deep angle with respect to the surface of the glass substrate, it can be effectively extracted to the outside as light that can contribute exclusively to the display.
【0030】θ=33.7°より大きくφ=45°の範
囲の出射光(斜線部分のTL)が主に無効な光となる。
全放射方向のうち、この角度範囲(およびその180°
反対方向における角度範囲)に入る確率は、約12%で
ある。したがって、この場合、この凹部における光取出
し効率は88%となる。The emitted light (T L in the shaded area) in the range of θ = 33.7 ° and φ = 45 ° is mainly ineffective light.
This angular range (and its 180 ° of all radial directions
The probability of entering the angular range (in the opposite direction) is about 12%. Therefore, in this case, the light extraction efficiency in this recess is 88%.
【0031】図9に、凹部の形状を浅く設け、アスペク
ト比L/H=10に設定した例を示す。上記と同様の計
算手法によって、凹部の中央部近傍からの出射光につい
ては、θ=33.7°からφ=78.7°の範囲の出射
光が無効となり、光取出し効率は37%となる。FIG. 9 shows an example in which the shape of the recess is shallow and the aspect ratio L / H = 10 is set. By the same calculation method as above, with respect to the light emitted from the vicinity of the central portion of the recess, the light emitted in the range of θ = 33.7 ° to φ = 78.7 ° becomes invalid, and the light extraction efficiency becomes 37%. .
【0032】凹部の側壁部から出射する光のすべてにつ
いて、高精度で試算することは難しいが、凹部の高さが
高いほど、ガラス基板の表面に対して「深い角度」で出
射される光の割合が増えると推定できる(図8、図9参
照)。It is difficult to make a highly accurate trial calculation of all the light emitted from the side wall of the recess, but the higher the height of the recess, the more the light emitted at a “deep angle” with respect to the surface of the glass substrate. It can be estimated that the ratio increases (see FIGS. 8 and 9).
【0033】したがって、上述したように、凹部の中央
部から出射する光を主として近似試算を行なえばよい。
この手法によって、有機EL素子の全体的な表示光の出
射状態または有効使用率を知ることができる。Therefore, as described above, the light emitted from the central portion of the concave portion may be mainly subjected to the approximate trial calculation.
By this method, it is possible to know the emission state of the display light or the effective usage rate of the entire organic EL element.
【0034】画素の中で、凹部の占める割合を変化させ
たときの、一つの画素における光取出し効率の計算値を
下記の表1に示す。たとえば、直径10μmの凹部を2
0μmピッチで配置したときに、透明基板の表面内で凹
部の占める断面積の相対比率(占有率)は20%となる。
表1の右欄に、凹部を設けずに完全な平面構成をとる従
来例の場合を示す。凹部は平面内でXY方向ともにほぼ
等ピッチで配置するようにした。Table 1 below shows the calculated value of the light extraction efficiency in one pixel when the ratio of the recessed portion in the pixel is changed. For example, 2 recesses with a diameter of 10 μm
When they are arranged at a pitch of 0 μm, the relative ratio (occupancy ratio) of the cross-sectional area occupied by the recesses on the surface of the transparent substrate is 20%.
The right column of Table 1 shows the case of a conventional example in which a complete planar structure is formed without providing a recess. The recesses are arranged in the plane at substantially equal pitches in the XY directions.
【0035】このとき、凹部の高さを2μm、L=10
μm(H=L/5)とすれば、一つの画素における光取
出し効率は24%と試算される。ガラス基板の表面に凸
部を設けずに、平面のみである比較例に対して、光の取
り出し効率が約40%向上する。これは後述する実施例
の結果とほぼ一致する。At this time, the height of the recess is 2 μm and L = 10.
If μm (H = L / 5) is set, the light extraction efficiency in one pixel is calculated to be 24%. The light extraction efficiency is improved by about 40% as compared with the comparative example in which only the flat surface is provided without providing the convex portion on the surface of the glass substrate. This is almost in agreement with the results of Examples described later.
【0036】[0036]
【表1】 [Table 1]
【0037】なお、ガラス基板の場合について説明した
が、本発明はプラスチック基板のように、柔軟性を有し
曲面状に変化し得る材料の場合にも適用できる。ガラス
の場合よりも、屈折率の相対的な関係から本発明を用い
ることがより好ましい。Although the case of the glass substrate has been described, the present invention can be applied to the case of a material having flexibility and capable of changing into a curved surface such as a plastic substrate. It is more preferable to use the present invention than the case of glass because of the relative relationship of the refractive index.
【0038】また、多数の凸部が備えられた凸面部の全
体を無色透明材料で形成することが好ましい。たとえ
ば、透明基板上に透明樹脂で凸部のパターンを樹脂成型
によって形成できる。また、シリカビーズのような透明
球体を透明膜に埋め込んで形成してもよい。また、透明
基板自体をプレス成型し、有機EL素子の形成面に凸面
部を形成してもよい。Further, it is preferable that the entire convex surface portion provided with a large number of convex portions is made of a colorless transparent material. For example, a pattern of convex portions made of transparent resin can be formed on the transparent substrate by resin molding. Alternatively, transparent spheres such as silica beads may be embedded in the transparent film. Alternatively, the transparent substrate itself may be press-molded to form a convex portion on the surface on which the organic EL element is formed.
【0039】凸部の大きさは、光の干渉による色、強度
の変化の影響が小さくなるように、有機EL素子の発光
波長よりも充分大きな径であるように構成する。かつ、
有機EL素子の一つの画素の大きさより充分小さな径で
あるように構成する。The size of the convex portion is configured to be a diameter sufficiently larger than the emission wavelength of the organic EL element so that the influence of changes in color and intensity due to light interference is reduced. And,
The diameter is set to be sufficiently smaller than the size of one pixel of the organic EL element.
【0040】本発明では、光反射性電極の凹部の平面方
向における径Lを5〜100μmの範囲とすることが好
ましい。また、凹部の形状が半球に近いほど、光り取出
し効率が高くなる。しかし、上記のような凸部を形成
し、その上に凹部をならって形成する製造方法を採用し
た場合、基板の平面方向に多数の凸部を連続的に設ける
ことが必要となり、その際に、凸面部の全体を均一に整
えて形成することが難しくなる。In the present invention, it is preferable that the diameter L of the concave portion of the light reflecting electrode in the plane direction is in the range of 5 to 100 μm. Further, the closer the shape of the recess is to the hemisphere, the higher the light extraction efficiency is. However, when the manufacturing method of forming the convex portion as described above and forming the concave portion on the convex portion is adopted, it is necessary to continuously provide a large number of convex portions in the plane direction of the substrate. However, it becomes difficult to uniformly form the entire convex portion.
【0041】したがって、凸部の寸法として、径Lに対
する高さHのアスペクト比=H/Lを、2〜20となる
ように設ける。また、H/L=3〜10となることがさ
らに好ましい。径Lとは、平面方向においてほぼ径とし
て機能する寸法である、正確な円形、三角形、四角形等
の形状を有していなくてもよい。Therefore, as the dimension of the convex portion, the aspect ratio of the height H to the diameter L = H / L is set to be 2 to 20. Further, it is more preferable that H / L = 3 to 10. The diameter L does not have to have an accurate shape such as a circle, a triangle, or a quadrangle, which is a dimension that functions as a diameter in the plane direction.
【0042】一般的には、画素を構成するために、同じ
サイズの凸部を平面内に均一に並べて、凸部の集合体を
形成するように設計する。図6に略六角形の平面形状の
例を、図7に略八角形の平面形状の例を示す。In general, in order to form a pixel, convex portions of the same size are uniformly arranged in a plane so as to form an aggregate of convex portions. FIG. 6 shows an example of a substantially hexagonal plane shape, and FIG. 7 shows an example of a substantially octagonal plane shape.
【0043】凸部の上に発光層を覆い、さらに凹面鏡と
して作用するような凹部を有する光反射性電極の曲面体
を構成する。横方向に光を逃がさず、観察者側に光を集
光するように、実質的に凹面鏡として機能するような形
状に構成すればよい。A curved body of the light-reflective electrode is formed by covering the light emitting layer on the convex portion and further having a concave portion acting as a concave mirror. It may be configured to have a shape that substantially functions as a concave mirror so that the light does not escape in the lateral direction and is condensed on the observer side.
【0044】さらに、凸部の一部をカラーフィルタ材料
のような着色材料や、蛍光変換材料のような波長変換材
料、つまり有色透明体で形成してもよい。この態様にお
いては、有機EL素子の自発発光の光の色度の調整を合
わせて行なうことができる。つまり、自発発光の集光機
能と色度調整機能を同時に達成できる。図3にカラーフ
ィルタ材料を用いて形成した着色層7、オーバーコート
層8とが備えられた態様の有機EL素子の模式的断面図
を示す。Further, a part of the convex portion may be formed of a coloring material such as a color filter material or a wavelength conversion material such as a fluorescence conversion material, that is, a colored transparent body. In this aspect, the chromaticity of the spontaneous emission light of the organic EL element can be adjusted together. That is, it is possible to simultaneously achieve the function of condensing spontaneous emission and the function of adjusting chromaticity. FIG. 3 shows a schematic cross-sectional view of an organic EL element having a colored layer 7 formed using a color filter material and an overcoat layer 8.
【0045】この態様の有機EL素子を形成するには、
カラーフィルタ材料や蛍光変換材料のパターンをオーバ
ーコート膜で覆うことにより、凸部の形成を行なえばよ
い。以下、本発明の具体的な態様を例1〜3をあげて説
明する。本発明はこれらの実施例に限定されるものでは
ない。To form the organic EL device of this aspect,
The convex portions may be formed by covering the pattern of the color filter material or the fluorescence conversion material with the overcoat film. Hereinafter, specific embodiments of the present invention will be described with reference to Examples 1 to 3. The invention is not limited to these examples.
【0046】[0046]
【実施例】(例1)図1を参照し本例の説明を行なう。
ガラス基板1の上に無色透明樹脂2の層を用いて凸部1
0Bを形成した。ガラス基板1の上にクリアレジスト
(東京応化工業製CFPR)を塗布し、フォトリソグラ
フィーにより直径10μmの円形パターンを20μmピ
ッチで敷き詰めるように形成した。この円形パターンは
最終的に形成しようとする有機EL素子の画素の大きさ
よりも充分小さくなるように構成した。EXAMPLE 1 Example 1 will be described with reference to FIG.
The convex portion 1 is formed by using a layer of the colorless transparent resin 2 on the glass substrate 1.
OB was formed. A clear resist (CFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied on the glass substrate 1, and a circular pattern having a diameter of 10 μm was spread by photolithography at a pitch of 20 μm. This circular pattern was configured to be sufficiently smaller than the size of the pixel of the organic EL element to be finally formed.
【0047】膜厚は円形パターンの中心部で2μm、円
形パターンの外周部に向かってなだらかに膜厚が減少し
ていく曲面形状になるように形成した。さらに、その円
形パターンの集合体である凸面部の上にスパッタリング
により、アルカリバリア膜3としてSiO2膜(膜厚2
0nm)、透明電極膜4としてITO膜(膜厚200n
m)を連続して成膜し、さらにITO膜をパターニング
して陽極を形成した。The film thickness was 2 μm at the central part of the circular pattern, and the film was formed so as to have a curved surface shape in which the film thickness gradually decreases toward the outer peripheral part of the circular pattern. Further, a SiO 2 film (having a film thickness of 2) is formed as an alkali barrier film 3 on the convex portion, which is an aggregate of the circular patterns, by sputtering.
0 nm), an ITO film (film thickness 200 n as the transparent electrode film 4
m) was continuously formed, and the ITO film was further patterned to form an anode.
【0048】この陽極上に、真空蒸着法により、銅フタ
ロシアニン(膜厚10nm)、4,4’−ビス[N−
(1−ナフチル)−N−フェニルアミノ]ビフェニル
(以下、α−NPDと呼ぶ。)を成膜し(膜厚40n
m)、さらにAlq(膜厚50nm)、LiF(膜厚
0.5nm)をそれぞれ成膜し発光層5とした。最後に
陰極となる金属膜として100nmのAlを蒸着して有
機EL素子を形成した。このようにして、凸部10Bと
ほぼ同様の形状、配置ピッチを有する凹部10Aを有す
る光反射性電極6を形成できた。On this anode, copper phthalocyanine (film thickness 10 nm), 4,4'-bis [N-
(1-Naphthyl) -N-phenylamino] biphenyl (hereinafter referred to as α-NPD) is formed into a film (film thickness 40n.
m), and further Alq (film thickness 50 nm) and LiF (film thickness 0.5 nm) were formed into the light emitting layer 5. Finally, 100 nm of Al was vapor-deposited as a metal film serving as a cathode to form an organic EL element. In this way, the light-reflective electrode 6 having the recesses 10A having substantially the same shape and arrangement pitch as the projections 10B could be formed.
【0049】本例の有機EL素子を発光させ、発光面を
顕微鏡で観察すると、直径10μmの円形パターンが明
るく発光している様子が見られた。発光部が完全な平面
状であること以外は、同様にして形成した比較例の有機
EL素子と、電圧−輝度特性を対比したところ、本例は
50〜60%輝度が向上していることが確認された。When the organic EL device of this example was made to emit light and the light emitting surface was observed with a microscope, it was observed that a circular pattern having a diameter of 10 μm was emitting light brightly. When the voltage-luminance characteristics were compared with the organic EL element of the comparative example formed in the same manner except that the light emitting portion was completely flat, it was found that the luminance was improved by 50 to 60% in this example. confirmed.
【0050】(例2)図2、図3を参照し本例の説明を
行なう。ガラス基板上に赤色のカラーレジスト層7(新
日鐵化学社製V259)を塗布し、フォトリソグラフィ
ーにより直径10μmの円形パターンを20μmピッチ
で平面上に敷き詰めるように形成した。Example 2 This example will be described with reference to FIGS. 2 and 3. A red color resist layer 7 (V259 manufactured by Nippon Steel Chemical Co., Ltd.) was applied on a glass substrate, and a circular pattern having a diameter of 10 μm was formed by photolithography so as to be spread on a plane at a pitch of 20 μm.
【0051】基板上に形成した円形パターンの膜厚を
2.5μmとした。その上にオーバーコート膜8として
クリアレジスト(東京応化工業製CFPR)を塗布し
た。すると、多数の凸部を有するカラーレジストパター
ンの段差がある程度平坦化され、なだらかな表面形状と
なった。The film thickness of the circular pattern formed on the substrate was 2.5 μm. A clear resist (CFPR manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied thereon as an overcoat film 8. As a result, the steps of the color resist pattern having a large number of protrusions were flattened to some extent, resulting in a smooth surface shape.
【0052】さらにこの上にスパッタリングによりアル
カリバリア膜3として、20nmのSiO2膜、透明電
極膜4として膜厚200nmのITO膜を連続して成膜
し、そして、ITO膜をパターニングして陽極を形成し
た。Furthermore, a 20 nm SiO 2 film as an alkali barrier film 3 and an ITO film having a film thickness of 200 nm as a transparent electrode film 4 are continuously formed thereon by sputtering, and the ITO film is patterned to form an anode. Formed.
【0053】この陽極上に、真空蒸着法により、銅フタ
ロシアニンを膜厚10nmに成膜し、α−NPDを膜厚
40nmに成膜し、さらにルブレン2%ドープAlq
(膜厚30nm)、Alq(膜厚30nm)、LiF
(膜厚0.5nm)を成膜し発光層5とした。Copper phthalocyanine was deposited to a thickness of 10 nm and α-NPD was deposited to a thickness of 40 nm on this anode by a vacuum deposition method, and rubrene 2% -doped Alq was added.
(Film thickness 30 nm), Alq (film thickness 30 nm), LiF
A film having a thickness of 0.5 nm was formed as a light emitting layer 5.
【0054】最後に陰極となる光反射性電極6として1
00nmの膜厚にAlを蒸着して有機EL素子を形成し
た。本例の凹部20Aも、例1と同様に、あらかじめ形
成した凸部10Bと実質的に一対一に対応するものであ
った。Finally, as the light-reflecting electrode 6 serving as the cathode, 1
Al was vapor-deposited to a film thickness of 00 nm to form an organic EL device. Similarly to the first example, the concave section 20A of the present example also substantially corresponds to the previously formed convex section 10B in a one-to-one correspondence.
【0055】本例の有機EL素子に所定の電流を供給し
て発光させた。その発光面を顕微鏡で観察すると、直径
10μmの円形パターンが赤く発光しており、その周辺
の平面部分は黄色く発光している様子が見られた。肉眼
では発光色はオレンジ色に見えた。A predetermined current was supplied to the organic EL device of this example to cause it to emit light. When observing the light emitting surface with a microscope, it was observed that a circular pattern having a diameter of 10 μm emitted red light, and a flat portion around the circular pattern emitted yellow light. The luminescent color looked orange with the naked eye.
【0056】(例3)例1と同様にして、図6に示すよ
うな一つのパターンが略六角形であるパターンを有する
有機EL素子を形成した。L=10μm、H=1μm
(アスペクト比L/H=10)に設定した。すると、本
例の有機EL素子の前方への光の出射率が約70%向上
した。(Example 3) In the same manner as in Example 1, an organic EL element having a pattern in which one pattern is substantially hexagonal as shown in FIG. 6 was formed. L = 10 μm, H = 1 μm
(Aspect ratio L / H = 10) was set. Then, the emission rate of light toward the front of the organic EL device of this example was improved by about 70%.
【0057】[0057]
【発明の効果】以上説明したように、本発明によれば、
比較的簡単な構成で、前方への光の放出の割合を増し、
光取出し効率の高い有機EL素子を得ることができる。
光取出し効率が高いことによって、同じ電力消費なら
ば、より明るい表示装置を形成できる。また、同じ明る
さを表示するのであるならば、低消費電力の表示装置を
実現できる。As described above, according to the present invention,
With a relatively simple structure, increase the rate of light emission to the front,
An organic EL device having high light extraction efficiency can be obtained.
Due to the high light extraction efficiency, a brighter display device can be formed with the same power consumption. Further, if the same brightness is displayed, a display device with low power consumption can be realized.
【0058】また、本発明の有機EL素子は、従来例と
比べて、有機EL素子の形成される基板面上における表
面積が、画素面積より若干大きくなる。表示に寄与する
発光層が単位面積あたりで増加して形成されているの
で、従来例の平面形状の有機EL素子に比べて基本的に
明るさが増大する。そして、有機EL素子の駆動電圧を
低電圧化できる。大面積の表示装置に容易に適用でき
る。Further, in the organic EL element of the present invention, the surface area on the substrate surface on which the organic EL element is formed is slightly larger than the pixel area as compared with the conventional example. Since the light emitting layers that contribute to the display are formed to increase per unit area, the brightness is basically increased as compared with the conventional planar organic EL element. Then, the drive voltage of the organic EL element can be lowered. It can be easily applied to large-area display devices.
【0059】さらに、本発明の有機EL素子は、金属電
極が平面でないために、鏡面にならず、発光していない
ときの画素を見たときの映り込みが生じにくいという効
果もある。Further, the organic EL element of the present invention has the effect that since the metal electrode is not a flat surface, it does not become a mirror surface and the reflection of the pixel when it is not emitting light is less likely to occur.
【図1】本発明の有機EL素子の第1構成例における模
式的断面図。FIG. 1 is a schematic cross-sectional view of a first configuration example of an organic EL element of the present invention.
【図2】本発明の有機EL素子の第1構成例における模
式的平面図。FIG. 2 is a schematic plan view of a first configuration example of the organic EL element of the present invention.
【図3】凸部を着色材料や蛍光変換材料を用いて形成し
た例の断面図。FIG. 3 is a cross-sectional view of an example in which a convex portion is formed using a coloring material or a fluorescence conversion material.
【図4】従来例の有機EL素子における模式的光路図。FIG. 4 is a schematic optical path diagram in a conventional organic EL element.
【図5】本発明の有機EL素子の模式的光路図。FIG. 5 is a schematic optical path diagram of the organic EL element of the present invention.
【図6】本発明の有機EL素子の第2構成例における模
式的平面図。FIG. 6 is a schematic plan view of a second configuration example of the organic EL element of the present invention.
【図7】本発明の有機EL素子の第3構成例における模
式的平面図。FIG. 7 is a schematic plan view of a third configuration example of the organic EL element of the present invention.
【図8】本発明における凹部近傍の光路図。FIG. 8 is an optical path diagram in the vicinity of a recess according to the present invention.
【図9】本発明における凹部近傍の光路図。FIG. 9 is an optical path diagram in the vicinity of a recess according to the present invention.
【符号の説明】 1:基板 2:無色透明樹脂 3:アルカリバリヤ膜 4:透明電極 5:発光層 6:光反射性電極(金属電極) 7:着色材料または蛍光変換材料 8:オーバーコート膜[Explanation of symbols] 1: substrate 2: colorless transparent resin 3: Alkali barrier film 4: Transparent electrode 5: Light emitting layer 6: Light reflective electrode (metal electrode) 7: Coloring material or fluorescence conversion material 8: Overcoat film
Claims (7)
板の基板上に発光層と光反射性電極とが設けられ、観察
者側から見て光反射性電極に多数の凹部が設けられ、基
板面にほぼ平行な面内における凹部の径をL、基板の厚
み方向における凹部の高さをHとすると、L=5〜10
0μm、L/H=2〜20を満足する有機エレクトロル
ミネッセンス素子。1. A substantially flat transparent substrate, a light emitting layer and a light-reflecting electrode are provided on the transparent substrate, and a large number of recesses are provided in the light-reflecting electrode when viewed from an observer side. , L = 5 to 10 where L is the diameter of the recess in a plane substantially parallel to the substrate surface and H is the height of the recess in the thickness direction of the substrate.
An organic electroluminescence device satisfying 0 μm and L / H = 2 to 20.
に配置されてなる請求項1に記載の有機エレクトロルミ
ネッセンス素子。2. The organic electroluminescence device according to claim 1, wherein the convex portions are arranged on the substrate surface so as to correspond to the concave portions substantially one-to-one.
項2に記載の有機エレクトロルミネッセンス表示素子。3. The organic electroluminescence display device according to claim 2, wherein the convex portion is formed of a colorless transparent material.
料または蛍光変換材料が用いられてなる請求項2に記載
の有機エレクトロルミネッセンス表示素子。4. The organic electroluminescence display element according to claim 2, wherein a coloring material or a fluorescence conversion material is used for at least a part of the constituent material of the convex portion.
有率が20〜80%である請求項1、2、3または4に
記載の有機エレクトロルミネッセンス素子。5. The organic electroluminescence device according to claim 1, wherein the occupancy of the concave portion with respect to the flat surface portion in the plane of the transparent substrate is 20 to 80%.
三角形、四角形、六角形また八角形のいずれかから選択
されてなる請求項1、2、3、4または5に記載の有機
エレクトロルミネッセンス素子。6. A cross section of the recess in the substrate surface direction is circular,
The organic electroluminescence device according to claim 1, wherein the organic electroluminescence device is selected from a triangle, a quadrangle, a hexagon, and an octagon.
光反射性電極とを形成する有機エレクトロルミネッセン
ス素子の製造方法において、 基板面に多数の凸部を形成し、凸部の上に発光層と光反
射性電極とを形成し、凸部にほぼ一対一に対応して光反
射性電極に多数の凹部を形成し、基板面にほぼ平行な面
内における凹部の径をL、基板の厚み方向における凹部
の高さをHとすると、L=5〜100μm、L/H=2
〜20を満足することを特徴とする有機エレクトロルミ
ネッセンス素子の製造方法。7. A method of manufacturing an organic electroluminescence device, comprising: forming a light emitting layer and a light-reflecting electrode on a substrate of a substantially flat transparent substrate; A light-emitting layer and a light-reflective electrode are formed on the light-reflective layer, a large number of recesses are formed in the light-reflective electrode in a one-to-one correspondence with the protrusions, and the diameter of the recess is L in a plane substantially parallel to the substrate surface. When the height of the concave portion in the thickness direction of the substrate is H, L = 5 to 100 μm, L / H = 2
To 20 are satisfied, The manufacturing method of the organic electroluminescent element characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002049742A JP2003249381A (en) | 2002-02-26 | 2002-02-26 | Organic electroluminescence element and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002049742A JP2003249381A (en) | 2002-02-26 | 2002-02-26 | Organic electroluminescence element and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003249381A true JP2003249381A (en) | 2003-09-05 |
Family
ID=28662177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002049742A Pending JP2003249381A (en) | 2002-02-26 | 2002-02-26 | Organic electroluminescence element and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003249381A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004112434A1 (en) * | 2003-06-13 | 2004-12-23 | Kabushiki Kaisha Toyota Jidoshokki | El device, process for manufacturing the same, and liquid crystal display employing el device |
JP2005174717A (en) * | 2003-12-10 | 2005-06-30 | Samsung Yokohama Research Institute Co Ltd | Organic el element and its manufacturing method |
WO2006035811A1 (en) * | 2004-09-30 | 2006-04-06 | Kabushiki Kaisha Toshiba | Organic electroluminescence display device |
JP2006107743A (en) * | 2004-09-30 | 2006-04-20 | Toshiba Corp | Organic electroluminescent display device |
JP2006286238A (en) * | 2005-03-31 | 2006-10-19 | Toppan Printing Co Ltd | Flexible organic el element and its manufacturing method |
JP2007059302A (en) * | 2005-08-26 | 2007-03-08 | Denso Corp | Light emitting device |
WO2007122857A1 (en) * | 2006-03-23 | 2007-11-01 | Idemitsu Kosan Co., Ltd. | Light emitting device |
JP2008077953A (en) * | 2006-09-21 | 2008-04-03 | Hitachi Displays Ltd | Organic el display device |
JP2008112592A (en) * | 2006-10-28 | 2008-05-15 | Aitesu:Kk | Organic el element having microstructure |
WO2014050344A1 (en) * | 2012-09-27 | 2014-04-03 | 富士フイルム株式会社 | Organic electroluminescent element |
JP2014510373A (en) * | 2011-03-01 | 2014-04-24 | ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
WO2017221681A1 (en) * | 2016-06-24 | 2017-12-28 | コニカミノルタ株式会社 | Organic electroluminescent element and method for producing organic electroluminescent element |
-
2002
- 2002-02-26 JP JP2002049742A patent/JP2003249381A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004112434A1 (en) * | 2003-06-13 | 2004-12-23 | Kabushiki Kaisha Toyota Jidoshokki | El device, process for manufacturing the same, and liquid crystal display employing el device |
JP2005174717A (en) * | 2003-12-10 | 2005-06-30 | Samsung Yokohama Research Institute Co Ltd | Organic el element and its manufacturing method |
WO2006035811A1 (en) * | 2004-09-30 | 2006-04-06 | Kabushiki Kaisha Toshiba | Organic electroluminescence display device |
JP2006107743A (en) * | 2004-09-30 | 2006-04-20 | Toshiba Corp | Organic electroluminescent display device |
JP2006286238A (en) * | 2005-03-31 | 2006-10-19 | Toppan Printing Co Ltd | Flexible organic el element and its manufacturing method |
JP2007059302A (en) * | 2005-08-26 | 2007-03-08 | Denso Corp | Light emitting device |
WO2007122857A1 (en) * | 2006-03-23 | 2007-11-01 | Idemitsu Kosan Co., Ltd. | Light emitting device |
JP2008077953A (en) * | 2006-09-21 | 2008-04-03 | Hitachi Displays Ltd | Organic el display device |
JP2008112592A (en) * | 2006-10-28 | 2008-05-15 | Aitesu:Kk | Organic el element having microstructure |
JP2014510373A (en) * | 2011-03-01 | 2014-04-24 | ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー | LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF |
WO2014050344A1 (en) * | 2012-09-27 | 2014-04-03 | 富士フイルム株式会社 | Organic electroluminescent element |
WO2017221681A1 (en) * | 2016-06-24 | 2017-12-28 | コニカミノルタ株式会社 | Organic electroluminescent element and method for producing organic electroluminescent element |
JPWO2017221681A1 (en) * | 2016-06-24 | 2019-04-11 | コニカミノルタ株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT AND METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT |
JP7038049B2 (en) | 2016-06-24 | 2022-03-17 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Organic electroluminescence device and method for manufacturing organic electroluminescence device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7741771B2 (en) | Light-emitting element and display device and lighting device using same | |
TWI278253B (en) | Organic electroluminescent display panel and production method thereof | |
US8373341B2 (en) | Top-emission organic light-emitting devices with microlens arrays | |
KR102664401B1 (en) | Light emitting device and display apparatus including the light emitting device | |
EP1987539B1 (en) | A light emitting device | |
US7646146B2 (en) | OLED display with planar contrast-enhancement element | |
KR101990312B1 (en) | Organic Light Emitting Diode Display Device and Method for Manufacturing The Same | |
US20190165323A1 (en) | Electroluminescent display device | |
US7825570B2 (en) | LED device having improved contrast | |
WO2016031679A1 (en) | Organic electroluminesence apparatus, manufacutring method for same, illumination apparatus, and display apparatus | |
JP2004363049A (en) | Method of manufacturing organic electroluminescent display device and organic electroluminescent display device, and display device equipped with it | |
JP2004273416A (en) | Organic electric field luminous display device assembly | |
JP2003036969A (en) | Light emitting element, and display unit and illumination device using the same | |
JP2005050708A (en) | Substrate for optical elements and organic electroluminescence element as well as organic electroluminescence display device | |
WO2016043113A1 (en) | Organic electroluminescence device and method for manufacturing organic electroluminescence device | |
US20080042146A1 (en) | Light-emitting device having improved ambient contrast | |
JP2008108439A (en) | Electroluminescent element and electroluminescent panel | |
JPH10189251A (en) | Display device | |
JP2003249381A (en) | Organic electroluminescence element and its manufacturing method | |
KR100715500B1 (en) | Light source with micro-cavity organic light emitting diode and photoluminescent layer | |
CN108155206A (en) | Oled device | |
JP2003317931A (en) | El element and display using thereof | |
JP2000277266A (en) | Organic electroluminescent element | |
JP2003031353A (en) | Light emitting element, its manufacturing method and display panel using the same | |
JP2007095444A (en) | Organic electroluminescence display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070913 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070918 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071119 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20071119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20071120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080729 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081125 |