JP5141555B2 - Surface light emitter and display device - Google Patents

Surface light emitter and display device Download PDF

Info

Publication number
JP5141555B2
JP5141555B2 JP2008524855A JP2008524855A JP5141555B2 JP 5141555 B2 JP5141555 B2 JP 5141555B2 JP 2008524855 A JP2008524855 A JP 2008524855A JP 2008524855 A JP2008524855 A JP 2008524855A JP 5141555 B2 JP5141555 B2 JP 5141555B2
Authority
JP
Japan
Prior art keywords
light emitting
surface light
light
emitting element
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008524855A
Other languages
Japanese (ja)
Other versions
JPWO2008007772A1 (en
Inventor
彰 佐藤
知是 中山
真奈美 杭迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2008524855A priority Critical patent/JP5141555B2/en
Publication of JPWO2008007772A1 publication Critical patent/JPWO2008007772A1/en
Application granted granted Critical
Publication of JP5141555B2 publication Critical patent/JP5141555B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Description

本発明は、正面輝度の高い面発光体及びこれをバックライトに用いた明るい表示装置に関する。   The present invention relates to a surface light emitter with high front luminance and a bright display device using the same as a backlight.

近年、情報機器の多様化等にともなって、消費電力が少なく、容積が小さい面発光素子のニーズが高まり、このような面発光素子の一つとしてエレクトロルミネッセンス素子(以下、EL素子と略す。)が注目されている。   In recent years, with the diversification of information equipment and the like, the need for a surface light-emitting element with low power consumption and a small volume has increased, and an electroluminescence element (hereinafter abbreviated as EL element) is one of such surface light-emitting elements. Is attracting attention.

そして、このようなEL素子は、使用する材料によって無機EL素子と有機EL素子とに大別される。   Such EL elements are roughly classified into inorganic EL elements and organic EL elements depending on the materials used.

ここで、無機EL素子は、一般に発光部に高電界を作用させ、電子をこの高電界中で加速して発光中心に衝突させ、これにより発光中心を励起させて発光させるようになっている。一方、有機EL素子は、電子注入電極とホール注入電極とからそれぞれ電子とホールを発光層内に注入し、このように注入された電子とホールを発光層内で結合させて、有機材料を励起状態にし、この有機材料が励起状態から基底状態に戻るときに発光するようになっており、無機EL素子に比べて、低い電圧で駆動できるという利点がある。   Here, the inorganic EL element generally causes a high electric field to act on the light emitting portion, accelerates electrons in the high electric field to collide with the light emission center, thereby exciting the light emission center to emit light. On the other hand, an organic EL element excites an organic material by injecting electrons and holes from an electron injection electrode and a hole injection electrode into the light emitting layer, respectively, and combining the injected electrons and holes in the light emitting layer. The organic material emits light when the organic material returns from the excited state to the ground state, and has an advantage that it can be driven at a lower voltage than the inorganic EL element.

面で発光するという利点を活かして薄型でフレキシブルな照明用途としての展開が期待されている。   Utilizing the advantage of emitting light on the surface, it is expected to develop as a thin and flexible lighting application.

また、有機EL素子の場合には、発光材料を選択することによって適当な色彩に発光する発光素子を得ることができ、また発光材料を適当に組み合わせることによって白色光を得ることもでき、液晶表示素子等の表示装置のバックライトとして利用することも期待されている。   In the case of an organic EL element, a light emitting element that emits light in an appropriate color can be obtained by selecting a light emitting material, and white light can be obtained by appropriately combining light emitting materials. It is also expected to be used as a backlight for display devices such as devices.

照明として用いる場合には、低消費電力が要求され、一般に50lm/W程度の明るさが望まれている。ところが、EL素子等の面発光素子を発光させた場合、高い屈折率を持つ発光層の内部で発せられた光はさまざまな方向に進行し、面発光素子の出射面等において全反射して面発光素子の内部に閉じ込められる光も多く存在する。一般に、面発光素子で発せられた光の20〜30%しか、面発光素子の外部に取り出すことができない。無機EL素子や有機EL素子ではその明るさは、輝度の高い素子でも30〜40lm/W程度であり、十分な明るさを得られないという問題があった。   When used as illumination, low power consumption is required, and generally brightness of about 50 lm / W is desired. However, when a surface light emitting element such as an EL element is caused to emit light, the light emitted inside the light emitting layer having a high refractive index travels in various directions and is totally reflected on the emission surface of the surface light emitting element. There is also a lot of light confined inside the light emitting element. Generally, only 20 to 30% of the light emitted from the surface light emitting element can be taken out of the surface light emitting element. The brightness of inorganic EL elements and organic EL elements is about 30 to 40 lm / W even with high luminance elements, and there is a problem that sufficient brightness cannot be obtained.

ここで、液晶表示素子等のバックライトとして利用する場合、一般に2000〜4000cd/m2程度の正面輝度が必要になるが、前述のように面発光素子の内部に閉じ込められる光も多く存在し、十分な正面輝度を得ることが困難であり、特に、有機EL素子の場合においては、十分な発光寿命が得られるようにするためには、1000〜1500cd/m2程度の正面輝度しか得られないという問題があった。従って、光取り出し効率として1.3倍以上、正面輝度向上倍率として1.6倍以上、さらに望ましくは正面輝度向上倍率で2倍以上となる解決策が望まれている。Here, when used as a backlight of a liquid crystal display element or the like, generally a front luminance of about 2000 to 4000 cd / m 2 is required, but there is a lot of light confined inside the surface light emitting element as described above, It is difficult to obtain a sufficient front luminance. In particular, in the case of an organic EL element, only a front luminance of about 1000 to 1500 cd / m 2 can be obtained in order to obtain a sufficient light emission lifetime. There was a problem. Therefore, there is a demand for a solution that provides a light extraction efficiency of 1.3 times or more, a front brightness improvement magnification of 1.6 times or more, and more preferably a front brightness improvement magnification of 2 times or more.

従来、有機EL素子等の面発光素子を発光させた場合において、その内部に閉じ込められる光を取り出して、その正面輝度を向上させるために、面発光素子の出射面に拡散構造を設けるようにしたもの(例えば、特許文献1参照)や、面発光素子の出射面にプリズムやレンズ状のシートを表面に凹凸が現れるようにして取り付けたものが提案されている(例えば、特許文献2、3参照)。   Conventionally, when a surface light emitting device such as an organic EL device is made to emit light, a diffusion structure is provided on the exit surface of the surface light emitting device in order to extract light confined in the surface and improve the front luminance. There have been proposed ones (for example, see Patent Documents 1 and 2) and those in which prisms or lens-like sheets are attached to the exit surface of the surface light-emitting element so that irregularities appear on the surface (for example, see Patent Documents 2 and 3). ).

しかし、上記のように面発光素子の出射面に微小な凹凸を設けるようにしたり、面発光素子の出射面に凹凸が設けられた平面部材を表面に凹凸が現れるようにして取り付けるようにした場合、表面における凹凸によって光が散乱され、依然として正面輝度を充分に向上させることができないという問題があった。   However, when a minute unevenness is provided on the exit surface of the surface light emitting element as described above, or a flat member provided with an unevenness on the exit surface of the surface light emitting element is attached so that the unevenness appears on the surface. However, there is a problem that light is scattered by the unevenness on the surface and the front luminance cannot be sufficiently improved.

また、有機EL発光デバイス等の面発光素子の正面輝度を向上する別の手段として、光が射出する側の面に、表面に凹凸の設けられた調光シートをプリズム側が出射面に向くような構成が考案されている(特許文献4参照)。   In addition, as another means for improving the front luminance of the surface light emitting element such as an organic EL light emitting device, a light control sheet provided with unevenness on the surface where light is emitted is arranged such that the prism side faces the light emitting surface. A configuration has been devised (see Patent Document 4).

特許文献4で提案されている凹凸面を面発光素子の側に向けて凸部を面発光素子の出射面に密着させる構造では、面発光素子の特性と調光シートの構造との最適化について考慮されていないために、充分な正面輝度の向上効果を得ることができなかった。従って、面発光素子と調光シートの設計によりさらなる輝度向上効果を得ることが課題であった。   In the structure in which the concavo-convex surface proposed in Patent Document 4 is directed toward the surface light emitting element and the convex portion is in close contact with the light emitting surface of the surface light emitting element, the characteristics of the surface light emitting element and the structure of the light control sheet are optimized. Since this was not taken into consideration, a sufficient front luminance improvement effect could not be obtained. Therefore, it has been a problem to obtain a further luminance improvement effect by designing the surface light emitting element and the light control sheet.

また、特にR、G、Bの3色、もしくはY、Bの2色を発光させる白色の発光素子においては、波長によって正面輝度向上や光取り出し効率向上の効果が大きく異なるため、さらなる効率の向上のために、なるべく多くの発光波長において、正面輝度や光取り出し効率が向上することが望まれていた。
特開2000−323272号公報 特開2005−63926号公報 特開2005−353431号公報 特開2006−59543号公報
In particular, white light-emitting elements that emit light of three colors of R, G, and B, or two colors of Y and B vary greatly depending on the wavelength, and the effect of improving the front luminance and improving the light extraction efficiency is greatly improved. Therefore, it has been desired that front luminance and light extraction efficiency be improved at as many emission wavelengths as possible.
JP 2000-323272 A JP 2005-63926 A JP 2005-353431 A JP 2006-59543 A

本発明は、上記課題に鑑みなされたものであり、その目的は、正面輝度の高い面発光体及びこれをバックライトに用いた明るい表示装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a surface light emitter with high front luminance and a bright display device using the surface light emitter for a backlight.

本発明の上記課題は、以下の構成により達成される。   The above object of the present invention is achieved by the following configurations.

1.透明基板を有する面発光素子と、調光シートとを少なくとも有する面発光体において、前記調光シートは複数の円錐台状凸部を隙間なく有し、該凸部の先端部が前記面発光素子の出射面に接着層に埋没して接着層を介して接しており、前記凸部が頂角θ、屈折率nを有し、前記面発光素子の透明基板内における正面方向の輝度をI0、正面から角度θ′の輝度をIθ′、透明基板の屈折率をn′、面発光素子の反射率をRとしたとき
θ′=arcsin(n/n′×sinθ) かつ、
0.7<R×(Iθ′/cosθ′)/I0
であることを特徴とする面発光体。
1. In a surface light emitter having at least a surface light emitting device having a transparent substrate and a light control sheet, the light control sheet has a plurality of frustoconical convex portions without gaps , and a tip portion of the convex portion is the surface light emitting device. Embedded in the adhesive layer and in contact with the adhesive layer through the adhesive layer, the convex portion has an apex angle θ and a refractive index n, and the luminance in the front direction in the transparent substrate of the surface light emitting element is I0, Θ ′ = arcsin (n / n ′ × sin θ), where I ′ ′ is the luminance at the angle θ ′ from the front, n ′ is the refractive index of the transparent substrate, and R is the reflectance of the surface light emitting element.
0.7 <R × (Iθ ′ / cos θ ′) / I0
A surface light emitter characterized by the above.

2.前記接着層に用いられる接着剤が粘着剤であることを特徴とする前記1に記載の面発光体。 2. 2. The surface light emitter according to 1 above, wherein the adhesive used for the adhesive layer is an adhesive .

3.前記1または2に記載の面発光体を用いることを特徴とする表示装置。   3. 3. A display device using the surface light emitter according to 1 or 2 above.

本発明によれば、正面輝度の高い面発光体及びこれをバックライトに用いた明るい表示装置を提供することができる。   According to the present invention, it is possible to provide a surface light emitter with high front luminance and a bright display device using the same as a backlight.

本発明の調光シートの一例である。It is an example of the light control sheet of this invention. 本発明の面発光体の実施形態の一例である。It is an example of embodiment of the surface light-emitting body of this invention. 本発明に係る面発光体による光の出射を示す模式図である。It is a schematic diagram which shows light emission by the surface light emitter according to the present invention. 本発明に係る調光シート、接着層、面発光素子の構成を示す模式図である。It is a schematic diagram which shows the structure of the light control sheet | seat, adhesive layer, and surface emitting element which concern on this invention. 調光シートの凸部の先端面の近傍が接着層に埋まった形で接着されている模式図である。It is the schematic diagram by which the vicinity of the front end surface of the convex part of the light control sheet is adhere | attached in the form embedded in the contact bonding layer. 先端側が収縮した円錘台状の凸部を有する調光シートの模式図である。It is a schematic diagram of the light control sheet | seat which has a frustum-shaped convex part which the front end side contracted. 透明基板内部の輝度測定の構成を示す模式図である。It is a schematic diagram which shows the structure of the brightness | luminance measurement inside a transparent substrate. U値と面発光素子の正面輝度の関係を示すグラフである。It is a graph which shows the relationship between U value and the front luminance of a surface light emitting element.

符号の説明Explanation of symbols

10A、10B 調光シート
11 透光性基板
12 凸部
13 空間部
14 出射面
20 面発光素子
21 透明基板
22 透明電極
23 有機EL層
24 対向電極
40 球面レンズ
100 接着層
10A, 10B Light control sheet 11 Translucent substrate 12 Convex part 13 Space part 14 Output surface 20 Surface light emitting element 21 Transparent substrate 22 Transparent electrode 23 Organic EL layer 24 Counter electrode 40 Spherical lens 100 Adhesive layer

以下、本発明を実施するための最良の形態について詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described in detail, but the present invention is not limited thereto.

最初に、本発明の面発光体を添付図面に基づいて具体的に説明する。なお、本発明の面発光体は、下記の実施形態に示したものに限定されず、その要旨を変更しない範囲において適宜変更して実施できるものである。   First, the surface light emitter of the present invention will be specifically described with reference to the accompanying drawings. The surface light emitter of the present invention is not limited to those shown in the following embodiments, and can be implemented with appropriate modifications within a range not changing the gist thereof.

調光シートとして、図1(a)、(b)に示すように、透光性基板11の片面に先端側が収縮した円錘台状の凸部12が縦横に連続して形成されたプリズムアレイシート10Aを用いるようにした。なお、本明細書において、凸部12の先端側が収縮するとは、プリズムアレイシート10Aから遠ざかるにつれて徐々に小さくなるように凸部12が形成されていることを意味し、図1(b)では、下すぼみの形状になっている。   As a light control sheet, as shown in FIGS. 1 (a) and 1 (b), a prism array in which frustum-shaped convex portions 12 whose front end side contracts on one side of a translucent substrate 11 are formed continuously in the vertical and horizontal directions. The sheet 10A was used. In the present specification, the fact that the front end side of the convex portion 12 contracts means that the convex portion 12 is formed so as to gradually decrease as the distance from the prism array sheet 10A increases. In FIG. It is in the shape of a lower dent.

そして、この面発光体においては、図2に示すように、透明電極22が設けられた透明基板21の面に有機EL層23と対向電極24とが設けられた有機EL素子からなる面発光素子20を用い、この面発光素子20において発光された光を出射させる透明基板21の出射面21aに、上記のプリズムアレイシート10Aにおける円錘台状になった凸部12の先端面12aを接着層で接着させるようにした。ここで、接着層としては、UV硬化型の接着剤、熱硬化型の接着剤等の硬化型の接着剤、もしくは粘着剤を用いることができるが、アクリル系の接着剤や粘着剤のように、透明性に優れた材料が望ましい。   In this surface light emitter, as shown in FIG. 2, a surface light emitting element comprising an organic EL element in which an organic EL layer 23 and a counter electrode 24 are provided on the surface of a transparent substrate 21 provided with a transparent electrode 22. 20, the tip surface 12a of the convex portion 12 in the prism array sheet 10A is attached to the emission surface 21a of the transparent substrate 21 from which the light emitted from the surface light emitting element 20 is emitted. It was made to adhere with. Here, as the adhesive layer, a UV-curable adhesive, a curable adhesive such as a thermosetting adhesive, or a pressure-sensitive adhesive can be used, but an acrylic adhesive or pressure-sensitive adhesive can be used. A material with excellent transparency is desirable.

このように面発光素子20の出射面21aに、プリズムアレイシート10Aにおける円錘台状になった凸部12の先端面12aを接着層で接着させると、プリズムアレイシート10Aの凸部12が面発光素子20の出射面21aに向けて収縮した形状になると共に、このプリズムアレイシート10Aの凸部12と面発光素子20の出射面21aとの間の空間部13は空気層となる。   As described above, when the tip surface 12a of the convex portion 12 in the prism array sheet 10A having the truncated cone shape is adhered to the emission surface 21a of the surface light emitting element 20 with the adhesive layer, the convex portion 12 of the prism array sheet 10A is surface-attached. The shape shrinks toward the emission surface 21a of the light emitting element 20, and the space 13 between the convex portion 12 of the prism array sheet 10A and the emission surface 21a of the surface light emitting element 20 becomes an air layer.

そして、このように面発光素子20の出射面21aにプリズムアレイシート10Aにおける円錘台状になった凸部12の先端面12aを接着させて、上記の面発光素子20を発光させると、図3に示すように、調光シートを設けない場合には面発光素子20の出射面21aにおいて全反射される光が、プリズムアレイシート10Aの凸部12の先端面12aが接着された部分においては、全反射されずにこのプリズムアレイシート10A内に導かれるようになる。   Then, when the tip surface 12a of the convex portion 12 in the prism array sheet 10A is bonded to the emission surface 21a of the surface light emitting element 20 in this way, the surface light emitting element 20 emits light. As shown in FIG. 3, in the case where the light control sheet is not provided, the light totally reflected on the emission surface 21a of the surface light emitting element 20 is applied to the portion where the tip surface 12a of the convex portion 12 of the prism array sheet 10A is bonded. Then, the light is guided into the prism array sheet 10A without being totally reflected.

そして、このようにプリズムアレイシート10A内に導かれた光の多くは、面発光素子20の出射面21aに向けて収縮した凸部12と空間部13との界面である凸部12の傾斜面12bにおいて反射され、この反射された光がプリズムアレイシート10Aの出射面14に導かれて出射されるようになる。また、図3に示すように、プリズムアレイシート10Aの凸部12の先端面12aが接着されていない出射面21aの部分から出射される光であっても、出射面21aから垂直方向に出射される光は、凸部12の傾斜面12bで進行方向が若干変更されるがプリズムアレイシート10Aの正面側に出射されるようになり、また出射面21aからプリズムアレイシート10Aにおける凸部12の傾斜面12bと直交するような方向に出射された光は、この傾斜面12bから凸部12内に導かれ、この凸部12の反対側の傾斜面12bで反射されてプリズムアレイシート10Aの正面側に出射されるようになる。   Then, most of the light guided into the prism array sheet 10A in this way is an inclined surface of the convex portion 12 which is an interface between the convex portion 12 and the space portion 13 contracted toward the emission surface 21a of the surface light emitting element 20. The reflected light is reflected at 12b, and the reflected light is guided to the emission surface 14 of the prism array sheet 10A and emitted. Further, as shown in FIG. 3, even light emitted from the portion of the emission surface 21a where the tip surface 12a of the convex portion 12 of the prism array sheet 10A is not bonded is emitted from the emission surface 21a in the vertical direction. Although the traveling direction of the light is slightly changed on the inclined surface 12b of the convex portion 12, it is emitted to the front side of the prism array sheet 10A, and the inclination of the convex portion 12 in the prism array sheet 10A is emitted from the emission surface 21a. The light emitted in the direction orthogonal to the surface 12b is guided into the convex portion 12 from the inclined surface 12b, reflected by the inclined surface 12b opposite to the convex portion 12, and the front side of the prism array sheet 10A. Are emitted.

ここで、上記のように調光シートを設けない場合には面発光素子20の出射面21aにおいて全反射される光が、上記の凸部12の先端面12aからこのプリズムアレイシート10Aの内部に適切に導かれるようにするためには、このプリズムアレイシート10Aの屈折率と上記の面発光素子20の出射面21aにおける屈折率との差を0.2以内にすることが好ましい。また、接着層とプリズムアレイシート10Aとの屈折率の差を0.2以内にすることが望ましい。さらに望ましくは、接着層の屈折率がプリズムアレイシート10Aの屈折率と面発光素子20の出射面21aにおける屈折率との平均値と、接着層との屈折率の差が0.1以内にすることが望ましい。   Here, when the light control sheet is not provided as described above, the light totally reflected on the emission surface 21a of the surface light emitting element 20 is introduced into the prism array sheet 10A from the front end surface 12a of the convex portion 12. In order to be guided appropriately, the difference between the refractive index of the prism array sheet 10A and the refractive index of the exit surface 21a of the surface light emitting element 20 is preferably within 0.2. Further, it is desirable that the difference in refractive index between the adhesive layer and the prism array sheet 10A is within 0.2. More preferably, the difference between the refractive index of the adhesive layer and the average value of the refractive index of the prism array sheet 10A and the refractive index of the exit surface 21a of the surface light emitting element 20 and the refractive index of the adhesive layer is within 0.1. It is desirable.

また、上記のようにプリズムアレイシート10Aに円錘台状になった凸部12を設けるにあたり、この凸部12における傾斜面12b相互が交差する頂角θが大きくなって、上記の面発光素子20の出射面21aに対する凸部12の傾斜面12bの傾斜角度αが小さくなり過ぎると、調光シートを設けない場合に面発光素子20の出射面21aにおいて全反射される光がこのプリズムアレイシート10Aの内部に導かれたとしても、この光が凸部12の傾斜面12bに当たらずに、プリズムアレイシート10Aの出射面14に導かれ、このプリズムアレイシート10Aの出射面14において全反射されて戻されるようになり、プリズムアレイシート10Aの出射面14から出射される光の強度が低下する。   Further, when the convex portion 12 having a truncated cone shape is provided on the prism array sheet 10A as described above, the apex angle θ at which the inclined surfaces 12b of the convex portion 12 intersect each other is increased, and the surface light emitting element described above is obtained. If the inclination angle α of the inclined surface 12b of the convex portion 12 with respect to the 20 emission surface 21a becomes too small, the light that is totally reflected on the emission surface 21a of the surface light emitting element 20 when the light control sheet is not provided is the prism array sheet. Even if the light is guided into the interior of 10A, this light does not strike the inclined surface 12b of the convex portion 12, but is guided to the output surface 14 of the prism array sheet 10A, and is totally reflected by the output surface 14 of the prism array sheet 10A. Accordingly, the intensity of the light emitted from the emission surface 14 of the prism array sheet 10A is reduced.

一方、凸部12における傾斜面12b相互が交差する頂角θが小さくなって、面発光素子20の出射面21aに対する凸部12の傾斜面12bの傾斜角度αが大きくなり過ぎると、上記のようにプリズムアレイシート10Aの内部に導かれた光が、この凸部12の傾斜面12bにおいて全反射されずに、この凸部12を通過して空間部13に導かれ、さらにこの空間部13を通過して再度プリズムアレイシート10Aの内部に導かれるようになり、この光が上記のようにプリズムアレイシート10Aの出射面14において全反射されて戻されるようになり、プリズムアレイシート10Aの出射面14から出射される光の強度が低下する。   On the other hand, when the apex angle θ at which the inclined surfaces 12b of the convex portion 12 intersect with each other becomes small and the inclination angle α of the inclined surface 12b of the convex portion 12 with respect to the emission surface 21a of the surface light emitting element 20 becomes too large, as described above. The light guided to the inside of the prism array sheet 10A is not totally reflected at the inclined surface 12b of the convex portion 12 but is guided to the space portion 13 through the convex portion 12, and further passes through the space portion 13. The light passes again and is guided into the prism array sheet 10A, and the light is totally reflected and returned by the light exit surface 14 of the prism array sheet 10A as described above, and the light exit surface of the prism array sheet 10A. The intensity of light emitted from 14 decreases.

このため、上記の凸部12における傾斜面12b相互が交差する頂角θは、このプリズムアレイシート10Aにおける波長550nmの光に対する屈折率をnとした場合に、
(1/n−0.35)<sinθ<(1/n+0.3)
の条件を満たすことが好ましく、さらに
1/n<sinθ<(1/n+0.25)
の条件を満たすようにすることがより好ましい。
For this reason, the apex angle θ at which the inclined surfaces 12b of the convex portion 12 intersect each other is expressed as follows when the refractive index for light having a wavelength of 550 nm in the prism array sheet 10A is n.
(1 / n−0.35) <sin θ <(1 / n + 0.3)
It is preferable to satisfy the following condition: 1 / n <sin θ <(1 / n + 0.25)
It is more preferable to satisfy the above condition.

また、上記の凸部12の光学的な高さhのとり得る範囲については、凸部12における上記の頂角θや凸部12のピッチpによっても変化するが、一般にこの凸部12の光学的な高さhが低過ぎると、面発光素子20の出射面21aにおいて、調光シートを設けない場合に全反射される光がこのプリズムアレイシート10Aの内部に導かれたとしても、この光が凸部12の傾斜面12bに当たらずに、プリズムアレイシート10Aの出射面14に導かれ、このプリズムアレイシート10Aの出射面14において全反射されて戻されるようになる。一方、この凸部12の光学的な高さhが高くなり過ぎると、この凸部12の傾斜面12bにおいて光の反射に利用されない部分が生じると共に、凸部12のピッチpが同じ場合、面発光素子20の出射面21aに接着される凸部12の先端面12aの面積が小さくなって、このプリズムアレイシート10Aの内部に導かれる光の量が少なくなる。このため、この凸部12の光学的な高さhは、凸部12のピッチpに対して、
0.28p≦h≦1.1p
の条件を満たすことが好ましい。
Further, the range that the optical height h of the convex portion 12 can take varies depending on the apex angle θ of the convex portion 12 and the pitch p of the convex portion 12, but generally the optical property of the convex portion 12 is not limited. If the typical height h is too low, even if light totally reflected when no light control sheet is provided on the emission surface 21a of the surface light emitting element 20, even if the light is guided into the prism array sheet 10A, this light Is not impinged on the inclined surface 12b of the convex portion 12, but is guided to the exit surface 14 of the prism array sheet 10A, and is totally reflected back on the exit surface 14 of the prism array sheet 10A. On the other hand, when the optical height h of the convex portion 12 becomes too high, a portion that is not used for light reflection is generated on the inclined surface 12b of the convex portion 12, and the surface of the convex portion 12 having the same pitch p is obtained. The area of the front end surface 12a of the convex portion 12 bonded to the emission surface 21a of the light emitting element 20 is reduced, and the amount of light guided to the inside of the prism array sheet 10A is reduced. For this reason, the optical height h of this convex part 12 is with respect to the pitch p of the convex part 12.
0.28p ≦ h ≦ 1.1p
It is preferable to satisfy the following condition.

プリズムアレイシート10Aを面発光素子20の出射面に接着する部分を詳細に説明する。図4に示すように、面発光素子20の出射面21aに透明な接着層100、プリズムアレイシート10Aの順に積層して、プリズムアレイシート10Aの凸部12の先端面12aと接着層100と面発光素子20の出射面21aとが互いに光学的に密着するように構成する。   A portion where the prism array sheet 10A is bonded to the emission surface of the surface light emitting element 20 will be described in detail. As shown in FIG. 4, the transparent adhesive layer 100 and the prism array sheet 10A are laminated in this order on the emission surface 21a of the surface light emitting element 20, and the tip surface 12a of the convex portion 12 of the prism array sheet 10A, the adhesive layer 100 and the surface are laminated. The light emitting element 20 is configured so as to be in optical contact with the emission surface 21a.

また、接着層に用いられる接着剤としては、熱硬化型アクリル系接着剤、UV硬化型アクリル系接着剤等の透明性の高い硬化型接着剤やアクリル系粘着剤のように透明性の高い粘着剤が好適に用いられる。また、プリズムアレイシート10Aを形成する透光性基板11がアクリル系樹脂で、透明基板20がガラス基板の時のように、熱膨張係数が大きく異なる素材の場合には、応力緩和性に富む粘着剤が望ましい。   Adhesives used for the adhesive layer include highly transparent adhesives such as thermosetting acrylic adhesives, UV curable acrylic adhesives, and other highly transparent curable adhesives, and acrylic adhesives. An agent is preferably used. In addition, when the transparent substrate 11 forming the prism array sheet 10A is made of an acrylic resin and the transparent substrate 20 is a glass substrate, the adhesive having a high stress relaxation property is used. An agent is desirable.

上記接着層の形成方法としては特に限定されず、一般的方法、例えば、グラビアコーター、マイクログラビアコーター、コンマコーター、バーコーター、スプレー塗布、インクジェット法等の方法が挙げられる。   The method for forming the adhesive layer is not particularly limited, and examples include general methods such as a gravure coater, a micro gravure coater, a comma coater, a bar coater, spray coating, and an inkjet method.

接着剤や粘着剤を用いた接着においては、図5に示すように、プリズムアレイシート10Aの凸部12の先端面12aの近傍が接着層100に埋まった形で接着される。接着層100とプリズムアレイシートの凸部12とは、ほぼ同じ屈折率となるように選ばれるため、プリズムアレイシート10Aが面発光素子の出射面21aに光学的に密着されている幅は、図5ではXに相当する幅となる。また、凸部12の高さはプリズムアレイシート10Aの凸部の高さから図5に示される埋没深さYを差し引いた値が、光学的なプリズムアレイシートの凸部の光学的な高さに相当する。   In bonding using an adhesive or a pressure-sensitive adhesive, bonding is performed in such a manner that the vicinity of the front end surface 12a of the convex portion 12 of the prism array sheet 10A is buried in the bonding layer 100 as shown in FIG. Since the adhesive layer 100 and the convex portion 12 of the prism array sheet are selected so as to have substantially the same refractive index, the width in which the prism array sheet 10A is optically adhered to the emission surface 21a of the surface light emitting element is 5 is a width corresponding to X. Further, the height of the convex portion 12 is a value obtained by subtracting the embedding depth Y shown in FIG. 5 from the height of the convex portion of the prism array sheet 10A, and the optical height of the convex portion of the optical prism array sheet. It corresponds to.

光学的に密着されている幅Xは、プリズムアレイシート10Aを面発光素子20に貼り付けた状態で、面発光素子を発光させ、顕微鏡で貼付け部分にピントを合わせて観察することで、容易に測定することができる。   The width X, which is optically adhered, can be easily obtained by observing the surface light emitting element in a state in which the prism array sheet 10A is attached to the surface light emitting element 20 and focusing on the attached portion with a microscope. Can be measured.

以上の説明では、プリズムアレイシート10Aの形状として、図1に示す円推台を例に説明したが、光取り出し効率や正面輝度を高める形状としては、四角錘台、三角錐台、六角錘台のような形状が縦横に連続して形成されたプリズムアレイシートを用いてもよい。   In the above description, the circular pedestal shown in FIG. 1 has been described as an example of the shape of the prism array sheet 10A. However, as a shape that enhances light extraction efficiency and front luminance, a square frustum, a triangular frustum, a hexagonal frustum You may use the prism array sheet | seat in which the shape like this was formed continuously vertically and horizontally.

次に、以上説明した調光シートと組み合わせて光取り出し効率や正面輝度を高めることができる面発光素子の実施形態について詳細に説明する。   Next, an embodiment of a surface light emitting device that can increase the light extraction efficiency and the front luminance in combination with the light control sheet described above will be described in detail.

本発明に記載された調光シートの正面輝度向上の仕組みは、前述したように、面発光素子の透明基板21内で全反射して進む光線を、プリズムアレイシート10Aの凸部12の先端面12a近傍から凸部12内に導き、凸部12の傾斜面12bで全反射して正面方向に導く働きによるものである。   As described above, the mechanism for improving the front luminance of the light control sheet described in the present invention is the front end surface of the convex portion 12 of the prism array sheet 10 </ b> A that transmits the light beam that is totally reflected in the transparent substrate 21 of the surface light emitting element. This is due to the action of being guided from the vicinity of 12a into the convex portion 12 and being totally reflected by the inclined surface 12b of the convex portion 12 and guided in the front direction.

ここで、さらにその働きを詳細にみると、図6に示すように、正面方向、すなわち面発光素子の法線方向に取り出される光線は、凸部12内で全反射する直前の光線と面発光素子の法線とのなす角をθ1とすると、凸部12の頂角θに対して、θ1=θとなる。また、同じ光線が凸部12内に入射する前の透明基板21内における光線と面発光素子の法線とのなす角をθ2とすると、透明基板21の屈折率をn2とすると、
n2sinθ2=nsinθ1=nsinθ
という関係が成り立つ。
Here, in more detail, as shown in FIG. 6, the light rays extracted in the front direction, that is, the normal direction of the surface light emitting element, are the same as the light rays just before being totally reflected in the convex portion 12 and the surface light emission. Assuming that the angle formed with the normal line of the element is θ1, θ1 = θ with respect to the apex angle θ of the convex portion 12. Further, if the angle formed between the light ray in the transparent substrate 21 before the same light ray enters the convex portion 12 and the normal of the surface light emitting element is θ2, and the refractive index of the transparent substrate 21 is n2,
n2sinθ2 = nsinθ1 = nsinθ
This relationship holds.

従って、面発光素子の法線方向から
θ2=arcsin(n/n2sinθ)
の方向に発光した光線が、主として正面輝度に寄与することが分かる。
Therefore, from the normal direction of the surface light emitting element, θ2 = arcsin (n / n2sinθ)
It can be seen that the light emitted in the direction of 1 contributes mainly to the front luminance.

また、角度θ2で発した光線の一部は凸部12に入射することなく、透明基板21の射出面21aで全反射されて閉じ込められ、1回もしくは複数回、対向電極24で反射した後に凸部12に入射する光路をたどる。この時、透明基板21が平行平板の時には、凸部12に入射する光線の入射角はθ2のままで変化しない。   Further, a part of the light beam emitted at the angle θ2 does not enter the convex portion 12 but is totally reflected and confined by the exit surface 21a of the transparent substrate 21, and is projected after being reflected by the counter electrode 24 one or more times. The optical path incident on the part 12 is traced. At this time, when the transparent substrate 21 is a parallel plate, the incident angle of the light incident on the convex portion 12 remains θ2 and does not change.

従って、対向電極24で反射する光路をたどる光線については、透明電極22、有機EL層23、対向電極24を通過する時の光線反射率が高いほど、ロスが少なく光を利用できることとなる。   Therefore, with respect to the light beam that follows the optical path reflected by the counter electrode 24, the higher the light beam reflectivity when passing through the transparent electrode 22, the organic EL layer 23, and the counter electrode 24, the less loss, and the light can be used.

実験により検討を進めた結果、面発光素子の反射率をR、面発光素子の正面方向の輝度をI0(cd/m2)、透明基板21の内部におけるθ2方向の輝度をIθ2(cd/m2)とした時に、
U=R×(Iθ2/cosθ2)/I0
が大きい値を取るほど、正面輝度の向上倍率が高くなることを見出した。
As a result of further examination through experiments, the reflectance of the surface light emitting element is R, the luminance in the front direction of the surface light emitting element is I0 (cd / m 2 ), and the luminance in the θ2 direction inside the transparent substrate 21 is Iθ2 (cd / m). 2 )
U = R × (Iθ2 / cos θ2) / I0
It has been found that the larger the value of, the higher the front luminance improvement magnification.

ここで、透明基板21内部の輝度の測定は、図7に示すように、透明基板の出射面上に、透明基板21とほぼ同じ屈折率の平凸の球面レンズ40を透明基板21と球面レンズ40とほぼ同じ屈折率を持つマッチングオイルを塗布して貼り付けて測定した。このとき、球面レンズ40の曲率半径は、透明基板21と球面レンズの芯厚とを合わせた厚みDと同じにした。測定には分光輝度計CS1000(コニカミノルタセンシング製)を用い、正面方向から角度を傾けながら輝度を測定した。   Here, as shown in FIG. 7, the brightness inside the transparent substrate 21 is measured by using a plano-convex spherical lens 40 having substantially the same refractive index as that of the transparent substrate 21 on the outgoing surface of the transparent substrate 21 and the spherical lens. A matching oil having substantially the same refractive index as 40 was applied and measured. At this time, the radius of curvature of the spherical lens 40 was the same as the thickness D of the transparent substrate 21 and the core thickness of the spherical lens. For the measurement, a spectral luminance meter CS1000 (manufactured by Konica Minolta Sensing) was used, and the luminance was measured while tilting the angle from the front direction.

また、反射率Rは、面発光素子の射出面側から入光して、分光反射膜厚計を用いて、分光反射率R(λ)を求めた。面発光素子の発光スペクトルP(λ)とR(λ)の積を求め、可視域(420〜680nm)でスペクトルP(λ)とP(λ)×R(λ)を積分して、その比を反射率Rと定義した。   Further, the reflectance R was obtained from the light emitting surface side of the surface light emitting element, and the spectral reflectance R (λ) was obtained using a spectral reflection film thickness meter. The product of the emission spectra P (λ) and R (λ) of the surface light emitting element is obtained, and the spectrum P (λ) and P (λ) × R (λ) are integrated in the visible region (420 to 680 nm), and the ratio Was defined as reflectance R.

以上の定義に基づき、面発光素子の構成を変えながら、Uの値を測定し、正面輝度の向上倍率を測定したところ、図8の結果が得られた。   Based on the above definition, the value of U was measured while changing the configuration of the surface light emitting element, and the improvement factor of the front luminance was measured, and the result of FIG. 8 was obtained.

Uの値が大きいほど、正面輝度の向上倍率は高くなるが、特に、値が0.7以上の時に正面輝度の向上倍率は1.6以上が得られ、充分な効果を得られることが分かった。   The larger the value of U is, the higher the front luminance improvement magnification is. However, when the value is 0.7 or more, the front luminance improvement magnification is 1.6 or more, and it can be seen that a sufficient effect can be obtained. It was.

また、さらにUの値が0.9以上の時に、正面輝度の向上倍率が2倍以上となり、より望ましい組み合わせであることが分かった。   Further, when the value of U is 0.9 or more, the improvement factor of the front luminance becomes 2 times or more, and it was found that this is a more desirable combination.

この時、所望のUの値を得るために、発光素子の分光反射率が高いことが望ましく、反射率Rが70%以上であることが望ましい。また、85%以上であることがさらに望ましい。   At this time, in order to obtain a desired U value, it is desirable that the spectral reflectance of the light emitting element is high, and the reflectance R is desirably 70% or more. Moreover, it is more desirable that it is 85% or more.

高い分光反射率を得るためには、対向電極の材料としてアルミニウムや銀等の反射率が高い材料を用いることが望ましい。また、発光層を形成する有機層の透過率が高いことが望ましい。また、ITO等の透過率の高い透明電極材料を用いることが望ましい。   In order to obtain a high spectral reflectance, it is desirable to use a material having a high reflectance such as aluminum or silver as the material of the counter electrode. Further, it is desirable that the organic layer forming the light emitting layer has a high transmittance. Further, it is desirable to use a transparent electrode material having a high transmittance such as ITO.

また、比率(Iθ2/cosθ2)/I0が高い発光素子は、有機層の膜厚やITOの膜厚を好ましい範囲に設定することで達成できる。特に、対向電極から発光位置(有機層内において電子と正孔が結合して発光する点の位置)までの距離に上記比率は依存し、発光波長λに対して、対向電極から発光位置までの距離をx1、有機層の屈折率をn1とした時に、x1×d1が凡そ1/4λに近く、さらにそれ以上の大きさに設定することで、上記比率が1以上となり、より望ましい。   A light-emitting element having a high ratio (Iθ2 / cos θ2) / I0 can be achieved by setting the film thickness of the organic layer and the film thickness of ITO within a preferable range. In particular, the ratio depends on the distance from the counter electrode to the light emission position (the position of the point where electrons and holes combine to emit light in the organic layer), and the light emission wavelength λ is from the counter electrode to the light emission position. When the distance is x1 and the refractive index of the organic layer is n1, it is more desirable that x1 × d1 is set to a value close to 1 / 4λ and further larger so that the ratio becomes 1 or more.

以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.

実施例
〔面発光体1の作製〕
本発明の面発光体の作製方法に従い、面発光素子20に凸部形状が円錐台状の調光シート10Bを粘着剤を用いて接着して面発光体を作製した。
Example [Production of surface light emitter 1]
According to the method for producing a surface light emitter of the present invention, a surface light emitter was produced by adhering a light control sheet 10B having a truncated cone shape to a surface light emitting element 20 using an adhesive.

この面発光素子20としては、前記のように透明電極22が設けられた透明基板21の面に有機EL層23と対向電極24とが設けられた有機EL素子からなる面発光素子20を用いるようにした。   As the surface light emitting element 20, the surface light emitting element 20 composed of the organic EL element in which the organic EL layer 23 and the counter electrode 24 are provided on the surface of the transparent substrate 21 provided with the transparent electrode 22 as described above is used. I made it.

(面発光素子Aの作製)
ここで、面発光素子20は、上記透明基板21として厚みが0.7mm、サイズが40mm×52mmの無アルカリガラスを用い、透明基板21の片面に透明電極22として、ITOを110nmの厚みに成膜し、フォトリソグラフィー法によって電極形状にパターニングし、35×46mmの大きさにしたものを用いた。
(Production of surface light emitting device A)
Here, the surface light emitting element 20 uses non-alkali glass having a thickness of 0.7 mm and a size of 40 mm × 52 mm as the transparent substrate 21, and ITO is formed to a thickness of 110 nm as a transparent electrode 22 on one side of the transparent substrate 21. A film was formed and patterned into an electrode shape by a photolithography method to obtain a size of 35 × 46 mm.

次いで、該透明電極22の上に、正孔注入材料としてm−MTDATAを用い、真空蒸着法によって膜厚が100nmになった正孔注入層を形成した。次いで、正孔注入層の上に、正孔輸送材料としてα−NPDを用い、真空蒸着法で膜厚が10nmになった正孔輸送層を形成した。次いで、この正孔輸送層の上に、CBPをホスト材料として用い、Ir(ppy)3をドーパント材料として6質量%含むように、緑色発光する発光材料を真空蒸着法により蒸着させて膜厚が20nmになった発光層を形成した。この発光層の上に、BAlqを真空蒸着法により10nm蒸着させて正孔阻止層を形成した。さらに、この正孔阻止層の上に、Alq3を真空蒸着法により55nm形成して電子輸送層とした。さらに、LiFを真空蒸着法により0.5nm形成して電子注入層とした。そして、この電子注入層の上にスパッタ法によって膜厚が100nmになったアルミニウムからなる対向電極24を形成した。なお、この面発光素子20の出射面21a側における透明基板21は、波長550nmの光に対する屈折率が1.517であった。Next, a hole injection layer having a film thickness of 100 nm was formed on the transparent electrode 22 by vacuum deposition using m-MTDATA as a hole injection material. Next, on the hole injection layer, α-NPD was used as a hole transport material, and a hole transport layer having a thickness of 10 nm was formed by a vacuum deposition method. Next, a luminescent material that emits green light is deposited on the hole transport layer by vacuum deposition so that CBP is used as a host material and Ir (ppy) 3 is included as a dopant material in an amount of 6% by mass. A light emitting layer having a thickness of 20 nm was formed. On this light emitting layer, BAlq was vapor-deposited with a thickness of 10 nm by a vacuum vapor deposition method to form a hole blocking layer. Further, on the hole blocking layer, Alq 3 was formed to have a thickness of 55 nm by vacuum deposition to form an electron transport layer. Furthermore, LiF was formed to 0.5 nm by a vacuum deposition method to form an electron injection layer. A counter electrode 24 made of aluminum and having a thickness of 100 nm was formed on the electron injection layer by sputtering. In addition, the refractive index with respect to the light with a wavelength of 550 nm of the transparent substrate 21 on the emission surface 21a side of the surface light emitting element 20 was 1.517.

(調光シートAの作製)
次に、透光性基板11の片面に円錐台状になった凸部12が連続して形成された調光シート10Aを用い、図4に示すように、この調光シート10Aの凸部12を上記の面発光素子20の出射面21aに対向するようにして、この調光シート10Aを面発光素子20の出射面21aに接着し、面発光体1を作製した。
(Preparation of light control sheet A)
Next, as shown in FIG. 4, using the light control sheet 10A in which convex portions 12 having a truncated cone shape are continuously formed on one surface of the light-transmitting substrate 11, the convex portions 12 of the light control sheet 10A are used. The light control sheet 10A was bonded to the emission surface 21a of the surface light emitting device 20 so that the surface light emitting device 21 was opposed to the emission surface 21a of the surface light emitting device 20, and the surface light emitter 1 was produced.

接着には積水化学製透明両面テープ ダブルタックテープ #5511を用いた。基材を除いた接着剤の厚みは25μmであった。なお、この調光シート10Aは、波長550nmの光に対する屈折率が1.50、円錘台状の凸部12の頂角θは50°であり、凸部12の高さは25μm、凸部12のピッチは30μmであった。接着幅Xは10μmであった。また、粘着剤の波長550nmの光に対する屈折率は1.48であった。   Sekisui Chemical's transparent double-sided tape double tack tape # 5511 was used for adhesion. The thickness of the adhesive excluding the substrate was 25 μm. The light control sheet 10A has a refractive index of 1.50 with respect to light having a wavelength of 550 nm, the apex angle θ of the frustum-shaped convex portion 12 is 50 °, the height of the convex portion 12 is 25 μm, and the convex portion. The pitch of 12 was 30 μm. The adhesion width X was 10 μm. Moreover, the refractive index with respect to the light of wavelength 550nm of an adhesive was 1.48.

〔面発光体2の作製〕
面発光体1と同様の調光シートAを使用して面発光体2を作製した。面発光素子として以下に示すとおり作製した。
[Production of surface light emitter 2]
A surface light emitter 2 was produced using the same light control sheet A as the surface light emitter 1. A surface light emitting device was manufactured as shown below.

(面発光素子Bの作製)
透明基板ならびにITOの成膜までは面発光素子Aと同様にして作製した。
(Production of surface light emitting element B)
The transparent substrate and the ITO film were formed in the same manner as the surface light emitting device A.

次いで、該透明電極22の上に、正孔注入材料としてm−MTDATAを用い、真空蒸着法によって膜厚が20nmになった正孔注入層を形成した。次いで、正孔注入層の上に、正孔輸送材料としてα−NPDを用い、真空蒸着法で膜厚が20nmになった正孔輸送層を形成した。次いで、この正孔輸送層の上に、CBPをホスト材料として用い、Ir(ppy)3をドーパント材料として6質量%含むように、緑色発光する発光材料を真空蒸着法により蒸着させて膜厚が30nmになった発光層を形成した。この発光層の上に、BAlqを真空蒸着法により10nm蒸着させて正孔阻止層を形成した。さらに、この正孔阻止層の上に、Alq3を真空蒸着法により40nm形成して電子輸送層とした。さらに、LiFを真空蒸着法により0.5nm形成して電子注入層とした。そして、この電子注入層の上にスパッタ法によって膜厚が100nmになったアルミニウムからなる対向電極24を形成した。なお、この面発光素子20の出射面21a側における透明基板21は、波長550nmの光に対する屈折率が1.517であった。Next, a hole injection layer having a film thickness of 20 nm was formed on the transparent electrode 22 by vacuum deposition using m-MTDATA as a hole injection material. Next, on the hole injection layer, α-NPD was used as a hole transport material, and a hole transport layer having a thickness of 20 nm was formed by a vacuum deposition method. Next, a luminescent material that emits green light is deposited on the hole transport layer by vacuum deposition so that CBP is used as a host material and Ir (ppy) 3 is included as a dopant material in an amount of 6% by mass. A light emitting layer having a thickness of 30 nm was formed. On this light emitting layer, BAlq was vapor-deposited with a thickness of 10 nm by a vacuum vapor deposition method to form a hole blocking layer. Furthermore, on this hole blocking layer, Alq 3 was formed to 40 nm by vacuum deposition to form an electron transport layer. Furthermore, LiF was formed to 0.5 nm by a vacuum deposition method to form an electron injection layer. A counter electrode 24 made of aluminum and having a thickness of 100 nm was formed on the electron injection layer by sputtering. In addition, the refractive index with respect to the light with a wavelength of 550 nm of the transparent substrate 21 on the emission surface 21a side of the surface light emitting element 20 was 1.517.

以上、作製した面発光素子Bに面発光体1と同様にして調光シートAを接着し、面発光体2を作製した。接着幅Xは10μmであった。   As described above, the surface light emitter 2 was produced by bonding the light control sheet A to the produced surface light emitter B in the same manner as the surface light emitter 1. The adhesion width X was 10 μm.

〔面発光体3の作製〕
面発光体1と同様の調光シートAを使用して面発光体を作製した。面発光素子として以下に示すとおり作製した。
[Production of surface light emitter 3]
A surface light emitter was produced using the same light control sheet A as the surface light emitter 1. A surface light emitting device was manufactured as shown below.

(面発光素子Cの作製)
透明基板ならびにITOの成膜までは面発光素子Aと同様にして作製した。
(Production of surface light emitting element C)
The transparent substrate and the ITO film were formed in the same manner as the surface light emitting device A.

次いで、該透明電極22の上に、正孔注入材料としてm−MTDATAを用い、真空蒸着法によって膜厚が110nmになった正孔注入層を形成した。次いで、正孔注入層の上に、正孔輸送材料としてα−NPDを用い、真空蒸着法で膜厚が15nmになった正孔輸送層を形成した。次いで、この正孔輸送層の上に、CBPをホスト材料として用い、Ir(ppy)3をドーパント材料として6質量%含むように、緑色発光する発光材料を真空蒸着法により蒸着させて膜厚が20nmになった発光層を形成した。この発光層の上に、BAlqを真空蒸着法により10nm蒸着させて正孔阻止層を形成した。さらに、この正孔阻止層の上に、Alq3を真空蒸着法により60nm形成して電子輸送層とした。さらに、LiFを真空蒸着法により0.5nm形成して電子注入層とした。そして、この電子注入層の上にスパッタ法によって膜厚が100nmになったアルミニウムからなる対向電極24を形成した。なお、この面発光素子20の出射面21a側における透明基板21は、波長550nmの光に対する屈折率が1.517であった。Next, a hole injection layer having a film thickness of 110 nm was formed on the transparent electrode 22 by vacuum deposition using m-MTDATA as a hole injection material. Next, on the hole injection layer, α-NPD was used as a hole transport material, and a hole transport layer having a film thickness of 15 nm was formed by a vacuum deposition method. Next, a luminescent material that emits green light is deposited on the hole transport layer by vacuum deposition so that CBP is used as a host material and Ir (ppy) 3 is included as a dopant material in an amount of 6% by mass. A light emitting layer having a thickness of 20 nm was formed. On this light emitting layer, BAlq was vapor-deposited with a thickness of 10 nm by a vacuum vapor deposition method to form a hole blocking layer. Further, on this hole blocking layer, Alq 3 was formed to a thickness of 60 nm by vacuum deposition to form an electron transport layer. Furthermore, LiF was formed to 0.5 nm by a vacuum deposition method to form an electron injection layer. A counter electrode 24 made of aluminum and having a thickness of 100 nm was formed on the electron injection layer by sputtering. In addition, the refractive index with respect to the light with a wavelength of 550 nm of the transparent substrate 21 on the emission surface 21a side of the surface light emitting element 20 was 1.517.

以上、作製した面発光素子Cに面発光体1と同様にして調光シートAを接着し、面発光体3を作製した。接着幅Xは10μmであった。   As described above, the surface light emitter 3 was produced by bonding the light control sheet A to the produced surface light emitter C in the same manner as the surface light emitter 1. The adhesion width X was 10 μm.

〔面発光体4の作製〕
面発光体1と同様の調光シートAを使用して面発光体を作製した。面発光素子として以下に示すとおり作製した。
[Production of surface light emitter 4]
A surface light emitter was produced using the same light control sheet A as the surface light emitter 1. A surface light emitting device was manufactured as shown below.

(面発光素子Dの作製)
透明基板ならびにITOの成膜までは面発光素子Aと同様にして作製した。
(Production of surface light emitting element D)
The transparent substrate and the ITO film were formed in the same manner as the surface light emitting device A.

次いで、該透明電極22の上に、正孔注入材料としてm−MTDATAを用い、真空蒸着法によって膜厚が85nmになった正孔注入層を形成した。次いで、正孔注入層の上に、正孔輸送材料としてα−NPDを用い、真空蒸着法で膜厚が10nmになった正孔輸送層を形成した。次いで、この正孔輸送層の上に、CBPをホスト材料として用い、Ir(ppy)3をドーパント材料として6質量%含むように、緑色発光する発光材料を真空蒸着法により蒸着させて膜厚が20nmになった発光層を形成した。この発光層の上に、BAlqを真空蒸着法により10nm蒸着させて正孔阻止層を形成した。さらに、この正孔阻止層の上に、Alq3を真空蒸着法により45nm形成して電子輸送層とした。さらに、LiFを真空蒸着法により0.5nm形成して電子注入層とした。そして、この電子注入層の上にスパッタ法によって膜厚が100nmになったアルミニウムからなる対向電極24を形成した。なお、この面発光素子20の出射面21a側における透明基板21は、波長550nmの光に対する屈折率が1.517であった。Next, a hole injection layer having a film thickness of 85 nm was formed on the transparent electrode 22 by vacuum deposition using m-MTDATA as a hole injection material. Next, on the hole injection layer, α-NPD was used as a hole transport material, and a hole transport layer having a thickness of 10 nm was formed by a vacuum deposition method. Next, a luminescent material that emits green light is deposited on the hole transport layer by vacuum deposition so that CBP is used as a host material and Ir (ppy) 3 is included as a dopant material in an amount of 6% by mass. A light emitting layer having a thickness of 20 nm was formed. On this light emitting layer, BAlq was vapor-deposited with a thickness of 10 nm by a vacuum vapor deposition method to form a hole blocking layer. Further, on the hole blocking layer, Alq 3 was formed to 45 nm by vacuum deposition to form an electron transport layer. Furthermore, LiF was formed to 0.5 nm by a vacuum deposition method to form an electron injection layer. A counter electrode 24 made of aluminum and having a thickness of 100 nm was formed on the electron injection layer by sputtering. In addition, the refractive index with respect to the light with a wavelength of 550 nm of the transparent substrate 21 on the emission surface 21a side of the surface light emitting element 20 was 1.517.

以上、作製した面発光素子Dに面発光体1と同様にして調光シートAを接着し、面発光体4を作製した。接着幅Xは10μmであった。
(面発光素子Eの作製)
透明基板ならびにITO成膜までは面発光素子Aと同様にして作製した。
次いで、透明電極22の上に、正孔注入材料としてm−MTDATAを用い、真空蒸着法によって膜厚が40nmになった正孔注入層を形成した。次いで、正孔輸送層としてα―NPDを膜厚10nmで形成した。次いで、この正孔輸送層の上に、化合物(1)をホスト材料として用い、BD−1をドーパント材料として3質量%含むように、青色発光する発光材料を共蒸着して膜厚が15nmの発光層1を形成した。次いで、中間層1として化合物(2)を蒸着により膜厚5nmで形成した。次いで、この中間層1の上に、化合物(1)をホスト材料として用い、Ir−9をドーパント材料として8質量%含むように、赤色発光する発光材料を共蒸着して膜厚が10nmの発光層2を形成した。次いで、中間層2として化合物(1)を蒸着により膜厚3nmで形成した。次いで、この中間層2の上に、化合物(1)をホスト材料として用い、Ir−1をドーパント材料として5質量%含むように、緑色発光する発光材料を共蒸着して膜厚が10nmの発光層3を形成した。
さらに、BAlqからなる正孔阻止層を蒸着で5nm成膜し、次いでBCP75%、Cs25%の比からなる電子輸送層を70nmの膜厚で設けた。さらに、アルミニウム100nmを蒸着して陰極を形成し、面発光素子Eを作製した。なお、この面発光素子20の出射面21a側における透明基板21は、波長550nmの光に対する屈折率が1.517であった。
As described above, the surface light emitter 4 was produced by bonding the light control sheet A to the produced surface light emitting element D in the same manner as the surface light emitter 1. The adhesion width X was 10 μm.
(Production of surface light emitting element E)
The transparent substrate and the ITO film were formed in the same manner as the surface light emitting device A.
Next, a hole injection layer having a film thickness of 40 nm was formed on the transparent electrode 22 by vacuum deposition using m-MTDATA as a hole injection material. Next, α-NPD was formed to a thickness of 10 nm as a hole transport layer. Next, a luminescent material that emits blue light is co-evaporated on the hole transport layer so that the compound (1) is used as a host material and BD-1 is included as a dopant material in an amount of 3% by mass. The light emitting layer 1 was formed. Subsequently, the compound (2) was formed as an intermediate layer 1 with a film thickness of 5 nm by vapor deposition. Next, a light-emitting material that emits red light is co-evaporated on the intermediate layer 1 so that the compound (1) is used as a host material and Ir-9 is included as a dopant material in an amount of 8% by mass. Layer 2 was formed. Subsequently, the compound (1) was formed as the intermediate layer 2 with a film thickness of 3 nm by vapor deposition. Next, a light-emitting material that emits green light is co-evaporated on the intermediate layer 2 so that the compound (1) is used as a host material and Ir-1 is included as a dopant material in an amount of 5% by mass. Layer 3 was formed.
Further, a hole blocking layer made of BAlq was formed to 5 nm by vapor deposition, and then an electron transport layer having a ratio of BCP 75% and Cs 25% was provided with a thickness of 70 nm. Furthermore, 100 nm of aluminum was vapor-deposited to form a cathode, and a surface light emitting device E was produced. In addition, the refractive index with respect to the light with a wavelength of 550 nm of the transparent substrate 21 on the emission surface 21a side of the surface light emitting element 20 was 1.517.

以上、作製した面発光素子Eに面発光体1と同様にして調光シートAを接着し、面発光体9を作製した。接着幅Xは10μmであった。
(面発光素子Fの作製)
透明基板ならびにITO成膜までは面発光素子Aと同様にして作製した。
次いで、透明電極22の上に、正孔注入材料としてm−MTDATAを用い、真空蒸着法によって膜厚が40nmになった正孔注入層を形成した。次いで、正孔輸送層としてα―NPDを膜厚10nmで形成した。次いで、この正孔輸送層の上に、化合物(1)をホスト材料として用い、BD−1をドーパント材料として3質量%含むように、青色発光する発光材料を共蒸着して膜厚が15nmの発光層1を形成した。次いで、中間層1として化合物(2)を蒸着により膜厚5nmで形成した。次いで、この中間層1の上に、化合物(1)をホスト材料として用い、Ir−9をドーパント材料として8質量%含むように、赤色発光する発光材料を共蒸着して膜厚が10nmの発光層2を形成した。次いで、中間層2として化合物(1)を蒸着により膜厚3nmで形成した。次いで、この中間層2の上に、化合物(1)をホスト材料として用い、Ir−1をドーパント材料として5質量%含むように、緑色発光する発光材料を共蒸着して膜厚が10nmの発光層3を形成した。
さらに、BAlqからなる正孔阻止層を蒸着で5nm成膜し、次いでBCP75%、Cs25%の比からなる電子輸送層を50nmの膜厚で設けた。さらに、アルミニウム100nmを蒸着して陰極を形成し、面発光素子Eを作製した。なお、この面発光素子20の出射面21a側における透明基板21は、波長550nmの光に対する屈折率が1.517であった。
As described above, the surface light emitter 9 was manufactured by bonding the light control sheet A to the manufactured surface light emitting element E in the same manner as the surface light emitter 1. The adhesion width X was 10 μm.
(Production of surface light emitting element F)
The transparent substrate and the ITO film were formed in the same manner as the surface light emitting device A.
Next, a hole injection layer having a film thickness of 40 nm was formed on the transparent electrode 22 by vacuum deposition using m-MTDATA as a hole injection material. Next, α-NPD was formed to a thickness of 10 nm as a hole transport layer. Next, a luminescent material that emits blue light is co-evaporated on the hole transport layer so that the compound (1) is used as a host material and BD-1 is included as a dopant material in an amount of 3% by mass. The light emitting layer 1 was formed. Subsequently, the compound (2) was formed as an intermediate layer 1 with a film thickness of 5 nm by vapor deposition. Next, a light-emitting material that emits red light is co-evaporated on the intermediate layer 1 so that the compound (1) is used as a host material and Ir-9 is included as a dopant material in an amount of 8% by mass. Layer 2 was formed. Subsequently, the compound (1) was formed as the intermediate layer 2 with a film thickness of 3 nm by vapor deposition. Next, a light-emitting material that emits green light is co-evaporated on the intermediate layer 2 so that the compound (1) is used as a host material and Ir-1 is included as a dopant material in an amount of 5% by mass. Layer 3 was formed.
Further, a hole blocking layer made of BAlq was formed to 5 nm by vapor deposition, and then an electron transport layer having a ratio of BCP of 75% and Cs of 25% was provided with a thickness of 50 nm. Furthermore, 100 nm of aluminum was vapor-deposited to form a cathode, and a surface light emitting device E was produced. In addition, the refractive index with respect to the light with a wavelength of 550 nm of the transparent substrate 21 on the emission surface 21a side of the surface light emitting element 20 was 1.517.

以上、作製した面発光素子Fに面発光体1と同様にして調光シートAを接着し、面発光体10を作製した。接着幅Xは10μmであった。
(面発光素子Gの作製)
透明基板ならびにITO成膜までは面発光素子Aと同様にして作製した。
次いで、透明電極22の上に、正孔注入材料としてm−MTDATAを用い、真空蒸着法によって膜厚が40nmになった正孔注入層を形成した。次いで、正孔輸送層としてα―NPDを膜厚10nmで形成した。次いで、この正孔輸送層の上に、化合物(1)をホスト材料として用い、BD−1をドーパント材料として3質量%含むように、青色発光する発光材料を共蒸着して膜厚が15nmの発光層1を形成した。次いで、中間層1として化合物(2)を蒸着により膜厚5nmで形成した。次いで、この中間層1の上に、化合物(1)をホスト材料として用い、Ir−9をドーパント材料として8質量%含むように、赤色発光する発光材料を共蒸着して膜厚が10nmの発光層2を形成した。次いで、中間層2として化合物(1)を蒸着により膜厚3nmで形成した。次いで、この中間層2の上に、化合物(1)をホスト材料として用い、Ir−1をドーパント材料として5質量%含むように、緑色発光する発光材料を共蒸着して膜厚が10nmの発光層3を形成した。
さらに、BAlqからなる正孔阻止層を蒸着で5nm成膜し、次いでBCP75%、Cs25%の比からなる電子輸送層を30nmの膜厚で設けた。さらに、アルミニウム100nmを蒸着して陰極を形成し、面発光素子Gを作製した。なお、この面発光素子20の出射面21a側における透明基板21は、波長550nmの光に対する屈折率が1.517であった。
As described above, the light control sheet A was adhered to the manufactured surface light emitting element F in the same manner as the surface light emitter 1, and the surface light emitter 10 was manufactured. The adhesion width X was 10 μm.
(Production of surface light emitting element G)
The transparent substrate and the ITO film were formed in the same manner as the surface light emitting device A.
Next, a hole injection layer having a film thickness of 40 nm was formed on the transparent electrode 22 by vacuum deposition using m-MTDATA as a hole injection material. Next, α-NPD was formed to a thickness of 10 nm as a hole transport layer. Next, a luminescent material that emits blue light is co-evaporated on the hole transport layer so that the compound (1) is used as a host material and BD-1 is included as a dopant material in an amount of 3% by mass. The light emitting layer 1 was formed. Subsequently, the compound (2) was formed as an intermediate layer 1 with a film thickness of 5 nm by vapor deposition. Next, a light-emitting material that emits red light is co-evaporated on the intermediate layer 1 so that the compound (1) is used as a host material and Ir-9 is included as a dopant material in an amount of 8% by mass. Layer 2 was formed. Subsequently, the compound (1) was formed as the intermediate layer 2 with a film thickness of 3 nm by vapor deposition. Next, a light-emitting material that emits green light is co-evaporated on the intermediate layer 2 so that the compound (1) is used as a host material and Ir-1 is included as a dopant material in an amount of 5% by mass. Layer 3 was formed.
Further, a hole blocking layer made of BAlq was formed to 5 nm by vapor deposition, and then an electron transport layer having a ratio of BCP of 75% and Cs of 25% was provided with a thickness of 30 nm. Furthermore, 100 nm of aluminum was vapor-deposited to form a cathode, and a surface light emitting element G was produced. In addition, the refractive index with respect to the light with a wavelength of 550 nm of the transparent substrate 21 on the emission surface 21a side of the surface light emitting element 20 was 1.517.

以上、作製した面発光素子Gに面発光体1と同様にして調光シートAを接着し、面発光体11を作製した。接着幅Xは10μmであった。   As described above, the surface light emitter 11 was produced by bonding the light control sheet A to the produced surface light emitting element G in the same manner as the surface light emitter 1. The adhesion width X was 10 μm.

〔面発光体5〜8、12〜14の作製〕
面発光体1〜4、9〜11と同じ面発光素子A〜D、E〜Gを用い、以下に説明する調光シートBを貼り付けて面発光体5〜8、12〜14を作製した。
[Production of surface light emitters 5 to 8 and 12 to 14]
Using the same surface light emitting elements A to D and E to G as the surface light emitters 1 to 4 and 9 to 11, surface light emitters 5 to 8 and 12 to 14 were prepared by attaching a light control sheet B described below. .

(調光シートBの作製)
次に、透光性基板11の片面に円錐台状になった凸部12が連続して形成された調光シート10Aを用い、図4に示すように、この調光シート10Aの凸部12を上記の面発光素子20の出射面21aに対向するようにして、この調光シート10Aを面発光素子20の出射面21aに接着し、面発光体5〜8、12〜14を作製した。
(Preparation of light control sheet B)
Next, as shown in FIG. 4, using the light control sheet 10A in which convex portions 12 having a truncated cone shape are continuously formed on one surface of the light-transmitting substrate 11, the convex portions 12 of the light control sheet 10A are used. The light control sheet 10A was bonded to the emission surface 21a of the surface light emitting element 20 so as to face the emission surface 21a of the surface light emitting element 20, and surface light emitters 5-8 and 12-14 were produced.

接着には積水化学製透明両面テープ ダブルタックテープ #5511を用いた。基材を除いた接着剤の厚みは25μmであった。なお、この調光シート10Aは、波長550nmの光に対する屈折率が1.50、円錘台状の凸部12の頂角θは55°であり、凸部12の高さは25μm、凸部12のピッチは30μmであった。接着幅Xは11μmであった。また、粘着剤の波長550nmの光に対する屈折率は1.48であった。   Sekisui Chemical's transparent double-sided tape double tack tape # 5511 was used for adhesion. The thickness of the adhesive excluding the substrate was 25 μm. The light control sheet 10A has a refractive index of 1.50 with respect to light having a wavelength of 550 nm, the apex angle θ of the frustum-shaped convex portion 12 is 55 °, the height of the convex portion 12 is 25 μm, and the convex portion. The pitch of 12 was 30 μm. The adhesion width X was 11 μm. Moreover, the refractive index with respect to the light of wavelength 550nm of an adhesive was 1.48.

〔面発光体の評価〕
作製した面発光体を下記の要領で評価した。
[Evaluation of surface emitter]
The produced surface light emitter was evaluated in the following manner.

(正面輝度)
分光放射輝度計CS−1000(コニカミノルタセンシング製)を用いて、正面からの発光輝度(2°視野角正面輝度)を測定した。正面輝度は、調光シートAならびにBを貼り付けない状態の面発光素子の正面輝度を1とする相対値で示す。
(Front brightness)
Using a spectral radiance meter CS-1000 (manufactured by Konica Minolta Sensing), emission luminance from the front (2 ° viewing angle front luminance) was measured. The front luminance is expressed as a relative value where the front luminance of the surface light emitting element in a state where the light control sheets A and B are not attached is 1.

(透明基板内部の輝度測定)
図7に示す構成で球面レンズをマッチングオイルで貼付けて、正面方向から輝度I0を測定した。次いで、マッチングオイルで球面レンズを貼り付けた状態で、面発光素子を50度傾けて、輝度Iθ′を測定した。
(Measurement of brightness inside transparent substrate)
With the configuration shown in FIG. 7, a spherical lens was pasted with matching oil, and the luminance I0 was measured from the front direction. Next, the luminance Iθ ′ was measured by tilting the surface light emitting element by 50 degrees with the spherical lens attached with matching oil.

(反射率Rの測定)
面発光素子の出射面側から反射分光膜厚計を用いて、分光反射率R(λ)を測定した。次に面発光素子のスペクトルP(λ)ならびにP(λ)に分光反射率R(λ)を乗じた値について可視域(波長420nmから680nm)で積分した。積分した値の比率を面発光素子の反射率Rとした。
(Measurement of reflectance R)
Spectral reflectance R (λ) was measured from the exit surface side of the surface light emitting device using a reflective spectral film thickness meter. Next, the spectrum P (λ) and the value obtained by multiplying P (λ) by the spectral reflectance R (λ) were integrated in the visible region (wavelength 420 nm to 680 nm). The ratio of the integrated value was defined as the reflectance R of the surface light emitting element.

評価の結果を表1、2に示す。   The results of evaluation are shown in Tables 1 and 2.

表1、2のUの値と正面輝度の相関について図8にグラフで示す。   The correlation between the U value in Tables 1 and 2 and the front luminance is shown in a graph in FIG.

表1、表2、図8より、Uの値が0.7を超える値の時には、正面輝度として1.6倍を超える値が得られており、充分な効果を得られることが確認できた。   From Table 1, Table 2, and FIG. 8, when the value of U exceeds 0.7, a value exceeding 1.6 times is obtained as the front luminance, and it was confirmed that a sufficient effect can be obtained. .

さらにUの値が0.9を超える時には、正面輝度として2倍を超える値が得られ、さらに望ましいことが確認できた。   Further, when the value of U exceeded 0.9, a value exceeding twice as large as the front luminance was obtained, and it was confirmed that it was more desirable.

Claims (3)

透明基板を有する面発光素子と、調光シートとを少なくとも有する面発光体において、前記調光シートは複数の円錐台状凸部を隙間なく有し、該凸部の先端部が前記面発光素子の出射面に接着層に埋没して接着層を介して接しており、前記凸部が頂角θ、屈折率nを有し、前記面発光素子の透明基板内における正面方向の輝度をI0、正面から角度θ′の輝度をIθ′、透明基板の屈折率をn′、面発光素子の反射率をRとしたとき
θ′=arcsin(n/n′×sinθ) かつ、
0.7<R×(Iθ′/cosθ′)/I0
であることを特徴とする面発光体。
In a surface light emitter having at least a surface light emitting device having a transparent substrate and a light control sheet, the light control sheet has a plurality of frustoconical convex portions without gaps , and a tip portion of the convex portion is the surface light emitting device. Embedded in the adhesive layer and in contact with the adhesive layer through the adhesive layer, the convex portion has an apex angle θ and a refractive index n, and the luminance in the front direction in the transparent substrate of the surface light emitting element is I0, Θ ′ = arcsin (n / n ′ × sin θ), where I ′ ′ is the luminance at the angle θ ′ from the front, n ′ is the refractive index of the transparent substrate, and R is the reflectance of the surface light emitting element.
0.7 <R × (Iθ ′ / cos θ ′) / I0
A surface light emitter characterized by the above.
前記接着層に用いられる接着剤が粘着剤であることを特徴とする請求の範囲第1項に記載の面発光体。The surface light emitter according to claim 1, wherein the adhesive used for the adhesive layer is a pressure-sensitive adhesive. 請求の範囲第1項または第2項に記載の面発光体を用いることを特徴とする表示装置。  A display device using the surface light emitter according to claim 1 or 2.
JP2008524855A 2006-07-13 2007-07-13 Surface light emitter and display device Expired - Fee Related JP5141555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008524855A JP5141555B2 (en) 2006-07-13 2007-07-13 Surface light emitter and display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006192629 2006-07-13
JP2006192629 2006-07-13
JP2008524855A JP5141555B2 (en) 2006-07-13 2007-07-13 Surface light emitter and display device
PCT/JP2007/063979 WO2008007772A1 (en) 2006-07-13 2007-07-13 Surface light emitting body and display

Publications (2)

Publication Number Publication Date
JPWO2008007772A1 JPWO2008007772A1 (en) 2009-12-10
JP5141555B2 true JP5141555B2 (en) 2013-02-13

Family

ID=38923328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008524855A Expired - Fee Related JP5141555B2 (en) 2006-07-13 2007-07-13 Surface light emitter and display device

Country Status (2)

Country Link
JP (1) JP5141555B2 (en)
WO (1) WO2008007772A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078578A (en) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 Organic light-emitting diode device and manufacturing method thereof
CN104078605A (en) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 Organic light-emitting diode device and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148032A (en) * 1998-11-16 2000-05-26 Kuraray Co Ltd Surface light source element
JP2002151274A (en) * 2000-11-13 2002-05-24 Sharp Corp Luminescent element
JP2003347052A (en) * 2002-05-22 2003-12-05 Matsushita Electric Ind Co Ltd Organic electroluminescent element, display device and mobile terminal using same
JP2004164912A (en) * 2002-11-11 2004-06-10 Seiko Epson Corp Display body, display panel and display device
JP2004241214A (en) * 2003-02-05 2004-08-26 Stanley Electric Co Ltd El element
JP2006278137A (en) * 2005-03-29 2006-10-12 Konica Minolta Holdings Inc Surface emitter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000148032A (en) * 1998-11-16 2000-05-26 Kuraray Co Ltd Surface light source element
JP2002151274A (en) * 2000-11-13 2002-05-24 Sharp Corp Luminescent element
JP2003347052A (en) * 2002-05-22 2003-12-05 Matsushita Electric Ind Co Ltd Organic electroluminescent element, display device and mobile terminal using same
JP2004164912A (en) * 2002-11-11 2004-06-10 Seiko Epson Corp Display body, display panel and display device
JP2004241214A (en) * 2003-02-05 2004-08-26 Stanley Electric Co Ltd El element
JP2006278137A (en) * 2005-03-29 2006-10-12 Konica Minolta Holdings Inc Surface emitter

Also Published As

Publication number Publication date
WO2008007772A1 (en) 2008-01-17
JPWO2008007772A1 (en) 2009-12-10

Similar Documents

Publication Publication Date Title
JP4614012B2 (en) Surface light source device
CN104716161B (en) Black matrix&#34;, flat-panel screens and preparation method thereof
JP5309993B2 (en) Surface light emitter and display device
KR101255626B1 (en) Optical sheet for light extracting and beam-shaping for organic light emitting diodes
JP6003892B2 (en) Planar light emitter
CN108828836A (en) Compound polaroid and liquid crystal display
JP2009146654A (en) Surface light source device, and manufacturing method thereof
JP2006351211A (en) Surface emitting light source and liquid crystal display
JP5481825B2 (en) EL element and display device
JP5141555B2 (en) Surface light emitter and display device
JP2007207471A (en) Surface emitter and display device
JP4393788B2 (en) Electroluminescence element, surface light source and display device
JP4406213B2 (en) Organic electroluminescence element, surface light source and display device
JP4692426B2 (en) Surface light emitter and display device using the same
US9887389B2 (en) Organic light emitting device
KR101762642B1 (en) Light extraction substrate for oled and oled including the same
US8115377B2 (en) Organic EL light source
JP6201311B2 (en) Surface light emitter and manufacturing method thereof
JP5304242B2 (en) Surface light emitter and display device
WO2013172211A1 (en) Planar light-emitting body
JP2008021542A (en) Surface light emitter, display device, and lighting system
JP2008020596A (en) Surface light emitter and display device
JP5870651B2 (en) LENS SHEET AND ORGANIC EL ELEMENT HAVING THE SAME
JPWO2008056511A1 (en) Surface light emitter and display device using the same
JP2008123694A (en) Surface light emitter, manufacturing method thereof, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100614

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees