JP2008159338A - Inorganic electroluminescent device - Google Patents

Inorganic electroluminescent device Download PDF

Info

Publication number
JP2008159338A
JP2008159338A JP2006345168A JP2006345168A JP2008159338A JP 2008159338 A JP2008159338 A JP 2008159338A JP 2006345168 A JP2006345168 A JP 2006345168A JP 2006345168 A JP2006345168 A JP 2006345168A JP 2008159338 A JP2008159338 A JP 2008159338A
Authority
JP
Japan
Prior art keywords
electrode
light
inorganic
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006345168A
Other languages
Japanese (ja)
Inventor
Yoshihiro Oshima
宜浩 大島
Toshitaka Kawashima
利孝 河嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006345168A priority Critical patent/JP2008159338A/en
Publication of JP2008159338A publication Critical patent/JP2008159338A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inorganic electroluminescent device capable of making improvement of luminous efficiency by raising luminance with low voltage driving. <P>SOLUTION: A light reflecting electrode 2 having a shape following the shape of the projecting and recessed surface 10A of a base material 1 and contacting with the base material 1, a first insulating layer 3 contacting with the light reflecting electrode 2, an inorganic EL (luminescent) layer 4 contacting with the insulating layer 3, and a second insulating layer 5 contacting with the inorganic EL layer 4 are laminated in this order with an almost uniform thickness kept for each of them. Especially, the top face of the inorganic EL layer 4 is formed into a projecting and recessed surface 10D having a conical projecting part 10a<SB>4</SB>, and is formed as an inclined surface with respect to a flat light emitting surface 8 from which light emitted from the transparent electrode 6 is extracted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば自発光型のディスプレイ等の表示装置等として好適な無機電界発光装置に関するものである。   The present invention relates to an inorganic electroluminescent device suitable as a display device such as a self-luminous display.

無機電界発光装置(無機ELデバイス)は、有機ELデバイスに比べて安定性が高く、作製も容易であることから、以前より時計の文字盤のバックライト等に用いられ、現在も携帯電話のボタン照明等に用いられており、実用的にも有機ELデバイスより優れている。   Inorganic electroluminescent devices (inorganic EL devices) are more stable than organic EL devices and are easy to manufacture, so they have been used for backlights of watch dials, etc. It is used for lighting and the like, and is practically superior to organic EL devices.

例えば、ZnSを母材とし、発光中心となる物質を添加した発光材料を用いた無機ELデバイスが後記の特許文献1や2に示されている。   For example, Patent Documents 1 and 2 below describe inorganic EL devices using a light-emitting material using ZnS as a base material and a substance serving as a light emission center added.

図7は、特許文献1(特開平9−129374号公報)における薄膜無機EL素子の断面を示す模式図である。この無機EL素子によれば、絶縁性基板であるガラス基板31上に、光学的に透明なZnO(酸化亜鉛)からなる第1透明電極(第1電極)36が形成され、その上面には光学的に透明なTa25(五酸化タンタル)からなる第1絶縁層35、発光中心としてTbフッ化物を添加したZnSからなる発光層(無機EL層)34、光学的に透明なTa25からなる第2絶縁層33、光学的に透明なZnOからなる第2透明電極(第2電極)32が形成されている。 FIG. 7 is a schematic view showing a cross section of a thin-film inorganic EL element in Patent Document 1 (Japanese Patent Laid-Open No. 9-129374). According to this inorganic EL element, a first transparent electrode (first electrode) 36 made of optically transparent ZnO (zinc oxide) is formed on a glass substrate 31 that is an insulating substrate, and an optical surface is formed on the upper surface thereof. First transparent insulating layer 35 made of transparent Ta 2 O 5 (tantalum pentoxide), light emitting layer (inorganic EL layer) 34 made of ZnS added with Tb fluoride as the light emission center, optically transparent Ta 2 O A second insulating layer 33 made of 5 and a second transparent electrode (second electrode) 32 made of optically transparent ZnO are formed.

図8は、特許文献2(特開2003−157972号公報)における薄膜無機EL素子の構成を模式的に示す断面図である。この無機EL素子では、ガラス基板等の透光性絶縁基板41上にインジウム錫酸化物(ITO:Indium Tin Oxide)からなる透明電極膜で透明電極パターン46が配線され、その上にSiO2、Si34、Y23及びTa25等からなる第1絶縁層45がスパッタリング法によって形成され、第1絶縁層45上に、ZnS:Mn等の材料からなる発光層(無機EL層)44が形成され、その上に第1絶縁層45と同種の材料からなる第2絶縁層43が形成され、発光層を絶縁層で挟持するいわゆる二重絶縁構造が形成される。更に、第2絶縁層43上に、金属電極膜からなる背面電極パターン42が透明電極パターン46と直交するように配置されており、両電極パターンの選択ライン間に挟まれた発光層に、絶縁層を通して交流電圧を印加することによって、選択ドットのみを発光させてドットマトリックス表示を実現している。 FIG. 8 is a cross-sectional view schematically showing the configuration of the thin-film inorganic EL element in Patent Document 2 (Japanese Patent Laid-Open No. 2003-157972). In this inorganic EL element, a transparent electrode pattern 46 is wired with a transparent electrode film made of indium tin oxide (ITO) on a translucent insulating substrate 41 such as a glass substrate, on which SiO 2 , Si A first insulating layer 45 made of 3 N 4 , Y 2 O 3, Ta 2 O 5 or the like is formed by a sputtering method, and a light emitting layer (inorganic EL layer made of a material such as ZnS: Mn) is formed on the first insulating layer 45. ) 44 is formed, and a second insulating layer 43 made of the same material as that of the first insulating layer 45 is formed thereon, thereby forming a so-called double insulating structure in which the light emitting layer is sandwiched between the insulating layers. Further, a back electrode pattern 42 made of a metal electrode film is disposed on the second insulating layer 43 so as to be orthogonal to the transparent electrode pattern 46, and the light emitting layer sandwiched between the selection lines of both electrode patterns is insulated from the light emitting layer. By applying an alternating voltage through the layers, only a selected dot is caused to emit light, thereby realizing a dot matrix display.

このような二重絶縁構造において、絶縁層43、45は、発光層44に流れる電流を制限し、EL素子の動作の安定性や発光特性の改善をもたらし、また吸湿性材質である発光層44をパッシベートすることによって素子の信頼性を付与する効果もある(これは、図7の従来例でも同様)。   In such a double insulating structure, the insulating layers 43 and 45 limit the current flowing through the light emitting layer 44, thereby improving the operation stability and light emitting characteristics of the EL element, and the light emitting layer 44 that is a hygroscopic material. There is also an effect of imparting element reliability by passivating (this is also the case with the conventional example of FIG. 7).

なお、絶縁層材料としては、絶縁破壊電圧が高く、静電容量が大きいものが求められ、この点から、絶縁破壊電圧(EB)×比誘電率(ε)の値が材料の特性を決定する指標として採用されるが、Al23、SiO2、Si34やTa25等が実用的である。 Insulating layer materials are required to have a high dielectric breakdown voltage and a large capacitance. From this point, the value of dielectric breakdown voltage (E B ) x relative dielectric constant (ε) determines the material characteristics. Al 2 O 3 , SiO 2 , Si 3 N 4 , Ta 2 O 5, etc. are practical.

特開平9−129374号公報(第4欄33〜43行目、図1)JP-A-9-129374 (column 4, lines 33-43, FIG. 1) 特開平2003−157972号公報(第2欄18〜47行目、図8)Japanese Patent Laid-Open No. 2003-157972 (second column, lines 18 to 47, FIG. 8)

無機ELデバイスは、その発光に際して高電界を必要とする(106V/cm程度が必要とされている)が、輝度が低いといった問題がある。即ち、無機ELデバイスは、電界で加速された電子のエネルギーにより母材を励起し、この励起された母材のエネルギーを発光中心である添加物質に伝達することにより発光するものであるが、この発光には電界のスレッショルド値が存在し、一般的には106V/cm程度が必要とされている。このため、発光層を薄く形成すると発光開始に必要な電圧を低く抑えることはできるが、他方では、発光層が薄くなるので、得られる輝度そのものが低くなってしまう、というトレードオフを生じる。 Inorganic EL devices require a high electric field for light emission (approximately 10 6 V / cm is required), but have a problem of low brightness. That is, an inorganic EL device emits light by exciting a base material with the energy of electrons accelerated by an electric field, and transmitting the energy of the excited base material to an additive substance that is an emission center. There is an electric field threshold value for light emission, and generally about 10 6 V / cm is required. For this reason, when the light emitting layer is formed thin, the voltage required to start light emission can be kept low. On the other hand, since the light emitting layer becomes thin, there is a trade-off that the luminance itself obtained is lowered.

本発明の目的は、上記のような実情に鑑み、輝度を高めて発光効率を向上させ、低電圧駆動と両立させることのできる無機電界発光装置を提供することにある。   In view of the above circumstances, an object of the present invention is to provide an inorganic electroluminescent device capable of improving luminance and improving luminous efficiency and being compatible with low voltage driving.

即ち、本発明は、第1の電極(例えば光反射性電極)と、絶縁層(例えば後記の第1の絶縁層及び第2の絶縁層)と、無機系の発光層(例えばZnSを母材とし、発光中心となる物質を添加した無機EL層)と、第2の電極(例えば光透過性電極)とが積層されてなる無機電界発光装置(無機ELデバイス又は素子)において、前記発光層の下層の表面が例えば断面ほぼ三角形の凹凸形状をなし、この凹凸面上に、前記凹凸形状に追随した凹凸形状に前記発光層が形成されていることを特徴とする無機電界発光装置に係るものである。   That is, the present invention relates to a first electrode (for example, a light reflective electrode), an insulating layer (for example, a first insulating layer and a second insulating layer described later), and an inorganic light emitting layer (for example, ZnS as a base material). And an inorganic electroluminescent device (inorganic EL device or element) in which a second electrode (for example, a light transmissive electrode) is stacked and an inorganic electroluminescent device in which a substance serving as a light emission center is added) The surface of the lower layer has, for example, an uneven shape having a substantially triangular cross section, and the light emitting layer is formed on the uneven surface so as to follow the uneven shape, and the light emitting layer is formed. is there.

なお、本発明において、「無機電界発光装置」とは、上記積層からなる発光素子の集合体(面光源やディスプレイ等の製品デバイス)を意味するだけでなく、その発光素子のみからなるデバイスも包含するものである。   In the present invention, the term “inorganic electroluminescent device” means not only an aggregate of light emitting elements composed of the above-mentioned laminates (a product device such as a surface light source and a display) but also a device composed only of the light emitting elements. To do.

本発明によれば、安定性が高くて作製も容易であり、発光層と電極との間に存在する絶縁層によって絶縁破壊電圧(耐電圧)の向上及び発光層への電子の供給と発光層のパッシベーションによる信頼性の向上が可能である、という無機ELデバイスの特長に加えて、発光層が下層の凹凸形状に追随した凹凸形状に形成されているので、この凹凸形状によって光取り出し面に対し発光層が傾斜した形状となり、光取り出し方向における発光層の厚さ(即ち、発光に寄与するみかけ上の実効厚さ)が発光層自体の厚さ(成膜厚さ)よりも大きくなる。この結果、発光層自体の厚さを従来と同等としたときには、発光に寄与するみかけ上の実効厚さが大きいために、同一電圧でも発光の輝度が増大し、また発光層自体の厚さをより小さくしたときには、比較的高い輝度を保持したまま発光に必要な電圧を低くすることができ、高輝度化と低電圧化とを両立させることができる。   According to the present invention, the stability is high and the fabrication is easy. The insulation layer existing between the light emitting layer and the electrode improves the breakdown voltage (withstand voltage) and supplies the light to the light emitting layer and the light emitting layer. In addition to the features of inorganic EL devices that can improve reliability by passivation, the light-emitting layer is formed in a concavo-convex shape that follows the concavo-convex shape of the lower layer. The light emitting layer has an inclined shape, and the thickness of the light emitting layer in the light extraction direction (that is, the apparent effective thickness that contributes to light emission) is larger than the thickness of the light emitting layer itself (film formation thickness). As a result, when the thickness of the light emitting layer itself is equivalent to the conventional thickness, the apparent effective thickness that contributes to light emission is large, so that the luminance of light emission increases even at the same voltage, and the thickness of the light emitting layer itself is reduced. When it is made smaller, the voltage required for light emission can be lowered while maintaining a relatively high luminance, and both high luminance and low voltage can be achieved.

本発明においては、上述した効果を確実かつ十分に発揮するには、前記凹凸面上に前記発光層がほぼ均一な厚さに形成されているのがよい。   In the present invention, in order to reliably and sufficiently exert the above-described effects, it is preferable that the light emitting layer is formed on the uneven surface with a substantially uniform thickness.

また、前記発光層の前記凹凸形状が断面ほぼ三角形の凸部と凹部との繰り返し連続形状(例えば円錐や角錐形状)からなり、前記凸部の頂角が30度以上であることが望ましい。また、前記凸部の高さは300〜800nm程度とするのがよい。   In addition, it is desirable that the concavo-convex shape of the light emitting layer has a repeated continuous shape (for example, a cone or a pyramid shape) of convex portions and concave portions having a substantially triangular cross section, and the apex angle of the convex portions is 30 degrees or more. Moreover, the height of the convex part is preferably about 300 to 800 nm.

また、各層間での光反射による効率低下を抑えるには、前記第1の電極及び前記第2の電極の一方が光反射性電極、他方が光透過性電極であり、発光光の取り出し方向において前記光反射性電極の光反射面と前記光透過性電極の光取り出し面との間に存在する各隣接層間の屈折差率Δnが0.2以下であることが望ましい。   Further, in order to suppress a reduction in efficiency due to light reflection between the respective layers, one of the first electrode and the second electrode is a light reflective electrode and the other is a light transmissive electrode. It is desirable that the refractive index difference Δn between adjacent layers existing between the light reflecting surface of the light reflective electrode and the light extraction surface of the light transmissive electrode is 0.2 or less.

また、前記凸部付近で発生しがちな不均一な電界による輝度ムラを防ぐには、前記第1の電極及び前記第2の電極の一方が光反射性電極、他方が光透過性電極であり、この光透過性電極の光取り出し面に光拡散処理が施されているのがよい。   Also, in order to prevent uneven brightness due to a non-uniform electric field that tends to occur in the vicinity of the convex portion, one of the first electrode and the second electrode is a light reflective electrode and the other is a light transmissive electrode. The light extraction surface of the light transmissive electrode is preferably subjected to light diffusion treatment.

更に、具体的には、前記第1の電極の前記凹凸面上、又はこの第1の電極に接した第1の絶縁層の前記凹凸面上に、前記第1の絶縁層に接して前記発光層が形成され、前記凹凸形状に追随した形状の前記発光層の凹凸面上に第2の絶縁層及び前記第2の電極が順次形成されている構造とするのがよい。   More specifically, the light emission is in contact with the first insulating layer on the uneven surface of the first electrode or on the uneven surface of the first insulating layer in contact with the first electrode. A layer is formed, and a structure in which the second insulating layer and the second electrode are sequentially formed on the uneven surface of the light emitting layer having a shape following the uneven shape is preferable.

以下、本発明の好ましい実施の形態に基づく無機電界発光装置を図面参照下に説明する。   Hereinafter, an inorganic electroluminescent device according to a preferred embodiment of the present invention will be described with reference to the drawings.

無機EL装置の構造例1
図1は、無機EL装置の構造例1の要部断面を示すものである。
Structure example 1 of inorganic EL device
FIG. 1 shows a cross-section of the main part of Structural Example 1 of the inorganic EL device.

この無機EL装置(又は素子)によれば、上面が断面ほぼ三角形に加工されることによって円錐状の凸部10a1と凹部10b1との繰り返し形状の凹凸面10Aをなす基材1上に、この基材1の凹凸面10Aの凹凸形状に追随した形状で、基材1に接した第1の電極(下部電極)としての光反射性電極2、この光反射性電極2に接した第1の絶縁層3、この絶縁層3に接した無機EL(発光)層4、この無機EL層4に接した第2絶縁層5がそれぞれほぼ均一な厚さで順次積層され、更に第2の電極(上部電極)としての透明電極6が絶縁層5上に積層されている。透明電極6の上面は平坦であって発光光を取り出す発光面8となっており、この発光面8は光拡散処理が施され、例えば透明ビーズからなる光拡散材による光拡散構造体7が被着されている。 According to this inorganic EL device (or element), the upper surface is processed into a substantially triangular cross section, whereby the base material 1 that forms the concave-convex surface 10A having a conical convex portion 10a 1 and concave portion 10b 1 is formed. A light reflecting electrode 2 as a first electrode (lower electrode) in contact with the substrate 1 in a shape following the uneven shape of the uneven surface 10A of the substrate 1, and a first in contact with the light reflecting electrode 2 The insulating layer 3, the inorganic EL (light emitting) layer 4 in contact with the insulating layer 3, and the second insulating layer 5 in contact with the inorganic EL layer 4 are sequentially stacked with a substantially uniform thickness, and the second electrode A transparent electrode 6 as (upper electrode) is laminated on the insulating layer 5. The upper surface of the transparent electrode 6 is flat and serves as a light emitting surface 8 through which emitted light is extracted. The light emitting surface 8 is subjected to a light diffusion treatment, and a light diffusion structure 7 made of a light diffusion material made of transparent beads, for example, is covered. It is worn.

上記した積層構造においては、基材1の凹凸面10Aがそのまま上層にも保持され、各層の凹凸形状に追随して、光反射性電極2の上面は凸部10a2及び凹部10b2による凹凸面10Bに、絶縁層3の上面は凸部10a3及び凹部10b3による凹凸面10Cに、無機EL層4の上面は凸部10a4及び凹部10b4による凹凸面10Dに、絶縁層5の上面は凸部10a5及び凹部10b5による凹凸面10Eにそれぞれ形成されている。特に、後述するように、無機EL層4が、下層の凹凸形状に追随した凹凸形状でほぼ均一な厚さに形成されていることが重要である。 In the laminated structure described above, irregular surface 10A of the substrate 1 is also held in the upper layer as it is, to follow the respective layers of the uneven shape, the upper surface of the light reflective electrode 2 is uneven surface by the convex portion 10a 2 and the recesses 10b 2 10B, the upper surface of the insulating layer 3 is an uneven surface 10C formed by the convex portions 10a 3 and the concave portions 10b 3 , the upper surface of the inorganic EL layer 4 is an uneven surface 10D formed by the convex portions 10a 4 and the concave portions 10b 4, and the upper surface of the insulating layer 5 is The protrusions 10a 5 and the recesses 10b 5 are respectively formed on the uneven surface 10E. In particular, as will be described later, it is important that the inorganic EL layer 4 is formed in an uneven shape that follows the uneven shape of the lower layer and has a substantially uniform thickness.

上記した積層構造の各層について詳しく説明すると、基材1の材質は特に限定されることはなく、ガラス、セラミックス、プラスチック板などの剛体をはじめ、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、TAC(トリアセチルセルロース)といった可撓性のフィルムであってもよい。ただし、無機EL層4に対し結晶化のための加熱を必要とする場合には、基材1としては、耐熱性が十分であって熱膨張係数の低い材料を選ぶ必要がある。   When describing each layer of the above-described laminated structure in detail, the material of the substrate 1 is not particularly limited, and includes rigid bodies such as glass, ceramics, plastic plates, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), A flexible film such as TAC (triacetyl cellulose) may be used. However, when the inorganic EL layer 4 needs to be heated for crystallization, it is necessary to select a material having sufficient heat resistance and a low thermal expansion coefficient as the substrate 1.

下部電極2は、電圧を供給するとともに光線を前方へ反射する役割をなすが、このためにはAgやAg化合物、Alといった光反射率の高い材料が望ましい。この電極2には、後述するナノインプリントなどの手法により円錐状の凸部10a2からなる凹凸構造が形成されている。電極2は、電極材料の真空蒸着やスパッタリングなどの手法によって形成することができる。 The lower electrode 2 serves to supply a voltage and reflect light rays forward. For this purpose, a material having high light reflectance such as Ag, an Ag compound, and Al is desirable. The electrode 2 has a concavo-convex structure formed of conical convex portions 10a 2 by a technique such as nanoimprint described later. The electrode 2 can be formed by a technique such as vacuum deposition or sputtering of an electrode material.

絶縁層3及び絶縁層5は、耐電圧を確保すると同時に、無機EL層4の母材に電子を供給する役割も果たす(既述の特許文献2参照)。いずれも、真空蒸着やスパッタリングにより形成することができ、材質としてNb25、TiO2、Ta25、ZrO2、ZnOなどを用いることができる。また、膜厚は100nm〜1μm程度が一般的である。 The insulating layer 3 and the insulating layer 5 have a role of supplying electrons to the base material of the inorganic EL layer 4 as well as ensuring a withstand voltage (see Patent Document 2 described above). Any of them can be formed by vacuum vapor deposition or sputtering, and Nb 2 O 5 , TiO 2 , Ta 2 O 5 , ZrO 2 , ZnO or the like can be used as a material. The film thickness is generally about 100 nm to 1 μm.

無機EL層4は、ZnS又はZnOを母材としてMnやAl、Cu、TbF3などの希土類フッ化物を発光中心として添加することができる。これらの材料は、上記の層と同様に真空蒸着やスパッタリングによって無機EL層4に成膜することができ、膜厚は500nm以上が望ましい。また、この層4における凸部の高さhは300〜800nmとするのがよい(他の層の凸部も同様)。 The inorganic EL layer 4 can contain ZnS or ZnO as a base material and rare earth fluorides such as Mn, Al, Cu, TbF 3 and the like as luminescence centers. These materials can be deposited on the inorganic EL layer 4 by vacuum deposition or sputtering in the same manner as the above layers, and the film thickness is desirably 500 nm or more. Moreover, the height h of the convex part in this layer 4 is good to set it as 300-800 nm (the convex part of another layer is also the same).

上部電極6は、発光面8を形成するため、透明である必要があり、代表的な材料としてITOがふさわしいが、SnO2やZnOなども用いることができる。この上部電極6はまた、上記した円錐状の凸部を含む凹凸形状に構成された下層のEL構造を埋める形で形成され、上面はできる限り平坦であることが望ましい。 The upper electrode 6 needs to be transparent in order to form the light emitting surface 8, and ITO is suitable as a typical material, but SnO 2 or ZnO can also be used. The upper electrode 6 is also formed so as to fill the lower EL structure configured in a concavo-convex shape including the above-mentioned conical convex portion, and the upper surface is desirably as flat as possible.

また、この上部電極6の上面には、ガラスビーズやスチレンビーズ等といった光拡散材の塗布によって光拡散構造体7が被着されている。   A light diffusing structure 7 is applied to the upper surface of the upper electrode 6 by applying a light diffusing material such as glass beads or styrene beads.

この積層構造は、図4に示すナノインプリント法を用いて製造することができる。例えば、図示省略した基板にプラスチックを塗布し、加熱してプラスチック層を軟化させた状態で、上記した凹凸面10Aと逆パターンの凹凸転写面を有するモールドを接触させて加圧することにより、プラスチック層を変形させ、プレス状態を保ちつつ冷却してプラスチック層を硬化させる。そして、プラスチック層が十分硬化した後にモールドを分離して、モールドの凹凸をプラスチック層に転写し、図4(a)に示すように、凹凸面10Aを有するプラスチック層からなる基材1を成形する。   This laminated structure can be manufactured using the nanoimprint method shown in FIG. For example, in a state where plastic is applied to a substrate (not shown) and the plastic layer is softened by heating, the mold having the concave / convex surface 10A and the mold having the concave / convex transfer surface having the reverse pattern is brought into contact with and pressed, thereby the plastic layer. The plastic layer is cured by cooling while keeping the pressed state. Then, after the plastic layer is sufficiently cured, the mold is separated, the unevenness of the mold is transferred to the plastic layer, and the substrate 1 made of the plastic layer having the uneven surface 10A is formed as shown in FIG. .

そして、この基材1の凹凸面10A上に、図4(b)に示すように、光反射率の高いAl等を真空蒸着又はスパッタリングによって均一膜厚に堆積させ、基板1の凹凸面10Aに追随した凸部10a2及び凹部10b2からなる凹凸面10Bを有する光反射性電極2を形成する。 Then, on the uneven surface 10A of the base material 1, as shown in FIG. 4B, Al or the like having a high light reflectance is deposited to a uniform film thickness by vacuum evaporation or sputtering, and the uneven surface 10A of the substrate 1 is deposited. to form a light reflective electrode 2 having an irregular surface 10B consisting of the convex portion 10a 2 and the concave portion 10b 2 follow the.

この後は、上記した各層3、4及び5、更には電極6を順次真空蒸着又はスパッタリングによって堆積させる。このとき、層3、4及び5は均一膜厚に、電極6は十分な厚さに堆積させる。更に、電極6の平坦な発光面8上にガラスビーズ等の光拡散材を塗布して光拡散構造体7を被着する。   Thereafter, the above-described layers 3, 4 and 5 and the electrode 6 are sequentially deposited by vacuum evaporation or sputtering. At this time, the layers 3, 4 and 5 are deposited to a uniform film thickness, and the electrode 6 is deposited to a sufficient thickness. Furthermore, a light diffusing material 7 such as glass beads is applied on the flat light emitting surface 8 of the electrode 6 to deposit the light diffusing structure 7.

次に、図2について、上記した構造例1による無機EL装置が、高輝度と低電圧化とを両立させることのできる理由を説明する(ただし、図2では、凸部や凹部等の符号は省略している)。   Next, with reference to FIG. 2, the reason why the inorganic EL device according to the first structural example described above can achieve both high luminance and low voltage (however, in FIG. Omitted).

上記したように、この構造によれば、発光面8に対して電極2−6間に例えば円錐状に傾いた構造が形成されており、電界Eはこの円錐面に垂直にかかる。他方、発光面8に対しての発光層(無機EL層)4の投影厚さlは、発光層4の厚さをd、円錐の頂角をθとすると、
l=d/sin(θ/2)
で表わすことができる。
As described above, according to this structure, a structure inclined in a conical shape, for example, is formed between the electrodes 2-6 with respect to the light emitting surface 8, and the electric field E is applied perpendicularly to the conical surface. On the other hand, the projected thickness l of the light emitting layer (inorganic EL layer) 4 with respect to the light emitting surface 8 is as follows: d is the thickness of the light emitting layer 4 and θ is the apex angle of the cone.
l = d / sin (θ / 2)
It can be expressed as

このため、例えば頂角が90度の場合には、見かけ上の発光層4の厚さlは、l=d/sin45°≒1.4d、即ち約1.4倍となり、これによって発光輝度も約1.4倍に向上する(このとき、発光層4の厚さdを従来のものと同等とした)。   For this reason, for example, when the apex angle is 90 degrees, the apparent thickness l of the light emitting layer 4 is l = d / sin 45 ° ≈1.4 d, that is, about 1.4 times, and thereby the emission luminance is also increased. The thickness is improved by about 1.4 times (at this time, the thickness d of the light emitting layer 4 is equal to that of the conventional one).

この場合、発光層4の厚さdを薄くしても、l=dであった従来例と比べて、輝度を高くすることができ、例えばdを4/5と小さくした場合にl≒1.4×(4/5)d=1.12dとなり、輝度が1.12倍となる。仮に、輝度を従来例と同等とする場合には、厚さdをd/1.4≒0.71dと数10%も小さくすることができる。   In this case, even if the thickness d of the light emitting layer 4 is reduced, the luminance can be increased as compared with the conventional example in which l = d. For example, when d is reduced to 4/5, l≈1. 4 × (4/5) d = 1.12d, and the luminance is 1.12 times. If the luminance is equivalent to that of the conventional example, the thickness d can be reduced by several tens of percent to d / 1.4≈0.71d.

このことから、この構造例1による無機EL装置は、輝度が向上すると共に、無機EL層の厚さを小さくしても高輝度を保持できることから、高輝度と低電圧化とを十分に両立させることができる。   From this, the inorganic EL device according to the structural example 1 has improved luminance and can maintain high luminance even when the thickness of the inorganic EL layer is reduced, so that both high luminance and low voltage can be sufficiently achieved. be able to.

この観点からみると、上記の頂角θは、無機EL層のみかけ上の厚さを大きく保持する上でできる限り小さくすることが望ましい。しかしながら、現実的な構成を考えた場合、光の取り出し側の電極材料として想定されるITO、AZOなどの透明導電膜の屈折率は1.8〜2.1程度である。一方、その下層に位置する絶縁膜の屈折率範囲は1.47〜2.3であるため、絶縁膜の屈折率として2.3の材料を選択すると、頂角が30度以上でないと全反射条件により光の取り出し効率が著しく低下する恐れがある。このため、頂角の下限は30度であることが望ましく、さらに、最大の屈折率差を想定すると、40度が望ましい。また、頂角が90度になると、本発明の効果は、[0033]に示した式に基づくと、1.4倍となり、それ以上ではさらにその効果は薄くなる。このため、効果を1.4倍以上確保するためには、90度以下とすることが望ましい。従って、以上の考察より、頂角範囲は30度以上、90度以下が望ましく、さらに最大の屈折率差を考慮すると40度以上、90度以下が適切である。   From this point of view, it is desirable that the apex angle θ is as small as possible in order to keep the apparent thickness of the inorganic EL layer large. However, when considering a realistic configuration, the refractive index of a transparent conductive film such as ITO or AZO, which is assumed as an electrode material on the light extraction side, is about 1.8 to 2.1. On the other hand, since the refractive index range of the insulating film located in the lower layer is 1.47 to 2.3, when a material of 2.3 is selected as the refractive index of the insulating film, total reflection is required unless the apex angle is 30 degrees or more. The light extraction efficiency may be significantly reduced depending on the conditions. For this reason, the lower limit of the apex angle is desirably 30 degrees, and 40 degrees is desirable assuming the maximum refractive index difference. Further, when the apex angle is 90 degrees, the effect of the present invention is 1.4 times based on the equation shown in [0033], and the effect is further reduced when the apex angle is 90 degrees or more. For this reason, in order to ensure an effect of 1.4 times or more, it is desirable to set it to 90 degrees or less. Therefore, from the above consideration, the apex angle range is desirably 30 degrees or more and 90 degrees or less, and considering the maximum refractive index difference, 40 degrees or more and 90 degrees or less are appropriate.

なお、特に無機EL層(発光層)4の凹凸形状については、図3に例示した種々の形状であってよい。同図(1)に示すように、円錐状の凸部10a4を有する凹凸面10Dとするのが望ましいが、同図(2)に示す正四角錐状、正六角錐状その他の種々の形状であってよく、或いは、凸部が島状に分布しておらず、同図(3)に示すように、断面が例えばほぼ三角形でストライプ状に延びる形状でもよい。 In particular, the uneven shape of the inorganic EL layer (light emitting layer) 4 may be various shapes illustrated in FIG. As shown in FIG. 1 (1), it is desirable that the concave / convex surface 10D has a conical convex portion 10a 4 , but the shape is a regular quadrangular pyramid, regular hexagonal pyramid or other various shapes shown in FIG. 2 (2). Alternatively, the convex portions may not be distributed in an island shape, and the cross section may be, for example, a substantially triangular shape extending in a stripe shape as shown in FIG.

この構造例1の問題点をあえて挙げるとすれば、上記した凸部が例えば円錐状であるため、積層構造を構成する各層間の屈折率にミスマッチが存在すると、その界面での反射が大きくなり、場合によっては臨界角を超えてしまい、外部に出てくることのできない光が存在してしまうことである。   If the problem of this structural example 1 is enumerated, since the above-mentioned convex part is conical, for example, if there is a mismatch in the refractive index between the layers constituting the laminated structure, reflection at the interface will increase. In some cases, the critical angle is exceeded, and there is light that cannot come out.

そこで、発光層4の母材となる例えばZnSの屈折率は2.2程度であるため、下記のように、その他の層との屈折率差Δnを0.2以下に抑えるように各層の材料を選択することによって、界面での正反射率を0.2%程度又はそれ以下に抑えることが可能となる。   Therefore, since the refractive index of, for example, ZnS, which is the base material of the light emitting layer 4, is about 2.2, the material of each layer is set so that the refractive index difference Δn with other layers is suppressed to 0.2 or less as follows. By selecting, the regular reflectance at the interface can be suppressed to about 0.2% or less.

また、例えば円錐状の凸部の頂点付近には、電界集中によりトンネル電流が多く流れる可能性が考えられる。このため、その付近での輝度ムラの発生が予想されるため、上部電極6の表面(発光面8)には、アクリルビーズやスチレンビーズ、ガラスビーズ等といった光拡散材が塗布され、輝度ムラを緩和若しくは分散する構造体7を形成するのがよい。ただし、上記の凸部の頂点を除去する処理を行えば、光拡散材の塗布は省略できることがある。   Further, for example, there is a possibility that a large amount of tunnel current flows near the apex of the conical convex portion due to electric field concentration. For this reason, since uneven brightness is expected to occur in the vicinity thereof, a light diffusing material such as acrylic beads, styrene beads, glass beads or the like is applied to the surface of the upper electrode 6 (light emitting surface 8). A structure 7 that relaxes or disperses may be formed. However, application of the light diffusing material may be omitted if the above-described processing for removing the apex of the convex portion is performed.

無機EL装置の構造例2
図5は、無機EL装置の構造例2の要部断面を示すが、上記した構造例1と比べて、光反射性電極12が上記した基材1と同等の断面形状であって基材11が平坦形状であることが異なり、他の構成部分は同一である。
Structure example 2 of inorganic EL device
FIG. 5 shows a cross section of the main part of Structural Example 2 of the inorganic EL device. Compared with Structural Example 1 described above, the light-reflecting electrode 12 has a sectional shape equivalent to that of the above-described base material 1, and the base material 11. Is a flat shape, and the other components are the same.

この構造例2では、基材11としてガラス板等のより剛性で平坦なものを使用できるが、光反射性電極12はめっき法等で形成し、その後に基材11を接着する手法を採用できる。その他の構成部分は構造例1と同一であるので、その説明は省略する。   In this structural example 2, a more rigid and flat material such as a glass plate can be used as the base material 11, but the light-reflective electrode 12 can be formed by plating or the like, and then the base material 11 can be adhered. . Since other components are the same as those in Structural Example 1, the description thereof is omitted.

無機EL装置の構造例3
図6は、無機EL装置の構造例3の要部断面を示すが、上記した構造例1と比べて、絶縁層23が上記した基材1と同等の断面形状であって光反射性電極22及び基材21が平坦形状であることが異なり、他の構成部分は同一である。
Structural example 3 of inorganic EL device
FIG. 6 shows a cross section of an essential part of Structural Example 3 of the inorganic EL device. Compared with Structural Example 1 described above, the insulating layer 23 has a sectional shape equivalent to that of the substrate 1 described above, and the light reflective electrode 22. And the base material 21 differs in a flat shape, and other components are the same.

この構造例3では、基材21としてガラス板等のより剛性で平坦なものを使用でき、光反射性電極22も平坦な膜として真空蒸着法等で形成することができ、その後に絶縁層23を上記したモールドの凹凸の転写によって形成することができる。その他の構成部分は構造例1と同一であるので、その説明は省略する。   In this structural example 3, a more rigid and flat material such as a glass plate can be used as the base material 21, and the light reflective electrode 22 can also be formed as a flat film by vacuum deposition or the like, and then the insulating layer 23. Can be formed by transferring the unevenness of the mold described above. Since other components are the same as those in Structural Example 1, the description thereof is omitted.

この構造例3においては、絶縁層23の層厚を大きくできることから、耐電圧をより大きくできるという利点があるが、静電容量の減少によって耐電圧が低下するのを抑えるために、誘電率の大きな材料で絶縁層23を形成して静電容量を大きく保持することが望ましい(既述の特許文献2参照)。   In this structural example 3, since the layer thickness of the insulating layer 23 can be increased, there is an advantage that the withstand voltage can be increased. However, in order to suppress a decrease in the withstand voltage due to a decrease in the capacitance, the dielectric constant is reduced. It is desirable to form the insulating layer 23 with a large material and keep the capacitance large (see the above-mentioned Patent Document 2).

以上、本発明を実施の形態に基づいて種々例示したが、これらの例は本発明の主旨を逸脱しない範囲で適宜変形可能であることは言うまでもない。   As described above, the present invention has been variously illustrated based on the embodiment, but it goes without saying that these examples can be appropriately modified without departing from the gist of the present invention.

例えば、上述した凹凸形状の種類やそのパターンをはじめ、層構成及びその材料、成膜又は形成方法等は種々に変更してよい。   For example, the layer configuration and the material thereof, the film formation or formation method, and the like may be variously changed, including the above-described uneven shape type and pattern.

また、上述した電極について、一方を光反射性電極、他方を光透過性電極(透明電極)とすればよく、従って発光光の取り出し方向も上述したものとは逆に基材側であってよい。或いは、両電極ともに光透過性電極として両面から光を取り出してもよい。   Moreover, about the electrode mentioned above, what is necessary is just to make one side a light reflective electrode and the other a light transmissive electrode (transparent electrode), Therefore The taking-out direction of emitted light may be a base material side contrary to what was mentioned above. . Or you may take out light from both surfaces as a light-transmissive electrode in both electrodes.

また、上述した各構造例は素子の要部について示したが、無機EL層の発光色又はその組み合せによっては、バックライトや照明、更には多数の素子を配列した単色又はカラーのディスプレイにも適用可能である。   In addition, each structural example described above shows the main part of the element. However, depending on the emission color of the inorganic EL layer or a combination thereof, it may be applied to a backlight, illumination, or a monochrome or color display in which a large number of elements are arranged. Is possible.

高輝度、低電圧の無機電界発光装置として、照明装置や表示装置等の様々な分野に適用できる。   As a high-intensity, low-voltage inorganic electroluminescent device, it can be applied to various fields such as lighting devices and display devices.

本発明に基づく無機電界発光装置の構造例1の要部断面図である。It is principal part sectional drawing of the structural example 1 of the inorganic electroluminescent apparatus based on this invention. 同、性能及び物性を説明するための要部断面図である。It is principal part sectional drawing for demonstrating a performance and a physical property similarly. 同、無機EL層の表面形状を各種示す平面図又は斜視図である。It is a top view or perspective view showing various surface shapes of an inorganic EL layer. 同、製造例を工程順に示す要部断面図である。It is principal part sectional drawing which shows a manufacture example in the order of a process equally. 本発明に基づく無機電界発光装置の構造例2の要部断面図である。It is principal part sectional drawing of the structural example 2 of the inorganic electroluminescent apparatus based on this invention. 本発明に基づく無機電界発光装置の構造例3の要部断面図である。It is principal part sectional drawing of the structural example 3 of the inorganic electroluminescent apparatus based on this invention. 従来例1の無機電界発光素子の断面図である。It is sectional drawing of the inorganic electroluminescent element of the prior art example 1. FIG. 従来例2の無機電界発光素子の断面図である。It is sectional drawing of the inorganic electroluminescent element of the prior art example 2.

符号の説明Explanation of symbols

1、11、21…基材、2、12、22…(光反射性)電極、3、23…絶縁層、
4…無機EL層、5…絶縁層、6…(透明)電極、7…光拡散構造体、8…発光面、
10A…凹凸面、10a1…凸部、10a2…凸部、10a3…凸部、10a4…凸部、
10a5…凸部、10B…凹凸面、10C…凹凸面、10D…凹凸面、10E…凹凸面、E…電界方向、L…発光方向
1, 11, 21 ... base material, 2, 12, 22 ... (light reflective) electrode, 3, 23 ... insulating layer,
4 ... inorganic EL layer, 5 ... insulating layer, 6 ... (transparent) electrode, 7 ... light diffusion structure, 8 ... light emitting surface,
10A ... Uneven surface, 10a 1 ... convex part, 10a 2 ... convex part, 10a 3 ... convex part, 10a 4 ... convex part,
10a 5 ... convex part, 10B ... uneven surface, 10C ... uneven surface, 10D ... uneven surface, 10E ... uneven surface, E ... electric field direction, L ... light emission direction

Claims (6)

第1の電極と、絶縁層と、無機系の発光層と、第2の電極とが積層されてなる無機電界発光装置において、前記発光層の下層の表面が凹凸形状をなし、この凹凸面上に、前記凹凸形状に追随した凹凸形状に前記発光層が形成されていることを特徴とする無機電界発光装置。   In the inorganic electroluminescent device in which the first electrode, the insulating layer, the inorganic light emitting layer, and the second electrode are laminated, the surface of the lower layer of the light emitting layer has an uneven shape, on the uneven surface. Further, the light emitting layer is formed in a concavo-convex shape following the concavo-convex shape. 前記凹凸面上に前記発光層がほぼ均一な厚さに形成されている、請求項1に記載した無機電界発光装置。   The inorganic electroluminescent device according to claim 1, wherein the light emitting layer is formed with a substantially uniform thickness on the uneven surface. 前記発光層の前記凹凸形状が断面ほぼ三角形の凸部と凹部との繰り返し連続形状からなり、前記凸部の頂角が30度以上、90度以下である、請求項1又は2に記載した無機電界発光装置。   3. The inorganic according to claim 1, wherein the concavo-convex shape of the light emitting layer has a continuous continuous shape of a convex portion and a concave portion having a substantially triangular cross section, and the apex angle of the convex portion is 30 degrees or more and 90 degrees or less. Electroluminescent device. 前記第1の電極及び前記第2の電極の一方が光反射性電極、他方が光透過性電極であり、発光光の取り出し方向において前記光反射性電極の光反射面と前記光透過性電極の光取り出し面との間に存在する各隣接層間の屈折率差Δnが0.2以下である、請求項1又は2に記載した無機電界発光装置。   One of the first electrode and the second electrode is a light reflective electrode and the other is a light transmissive electrode, and the light reflective surface of the light reflective electrode and the light transmissive electrode The inorganic electroluminescence device according to claim 1 or 2, wherein a refractive index difference Δn between adjacent layers existing between the light extraction surface and the light extraction surface is 0.2 or less. 前記第1の電極及び前記第2の電極の一方が光反射性電極、他方が光透過性電極であり、この光透過性電極の光取り出し面に光拡散処理が施されている、請求項1又は2に記載した無機電界発光装置。   One of the first electrode and the second electrode is a light reflective electrode, and the other is a light transmissive electrode, and a light diffusing treatment is applied to a light extraction surface of the light transmissive electrode. Or the inorganic electroluminescent apparatus described in 2. 前記第1の電極の前記凹凸面上、又はこの第1の電極に接した第1の絶縁層の前記凹凸面上に、前記第1の絶縁層に接して前記発光層が形成され、前記凹凸形状に追随した形状の前記発光層の凹凸面上に第2の絶縁層及び前記第2の電極が順次形成されている、請求項1又は2に記載した無機電界発光装置。   The light emitting layer is formed in contact with the first insulating layer on the uneven surface of the first electrode or on the uneven surface of the first insulating layer in contact with the first electrode. The inorganic electroluminescent device according to claim 1, wherein the second insulating layer and the second electrode are sequentially formed on the uneven surface of the light emitting layer having a shape following the shape.
JP2006345168A 2006-12-22 2006-12-22 Inorganic electroluminescent device Pending JP2008159338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345168A JP2008159338A (en) 2006-12-22 2006-12-22 Inorganic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345168A JP2008159338A (en) 2006-12-22 2006-12-22 Inorganic electroluminescent device

Publications (1)

Publication Number Publication Date
JP2008159338A true JP2008159338A (en) 2008-07-10

Family

ID=39660021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345168A Pending JP2008159338A (en) 2006-12-22 2006-12-22 Inorganic electroluminescent device

Country Status (1)

Country Link
JP (1) JP2008159338A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258086A (en) * 2007-04-09 2008-10-23 Dainippon Printing Co Ltd Electroluminescent element
JP2010135240A (en) * 2008-12-08 2010-06-17 Sony Corp Light-emitting device, and display
JP2012043754A (en) * 2010-08-23 2012-03-01 Fujifilm Corp Particulate layer transfer material, and organic electroluminescent element and manufacturing method thereof
US8957402B2 (en) 2012-04-27 2015-02-17 Kabushiki Kaisha Toshiba Semiconductor light emitting device and manufacturing method of the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258086A (en) * 2007-04-09 2008-10-23 Dainippon Printing Co Ltd Electroluminescent element
JP2010135240A (en) * 2008-12-08 2010-06-17 Sony Corp Light-emitting device, and display
JP2012043754A (en) * 2010-08-23 2012-03-01 Fujifilm Corp Particulate layer transfer material, and organic electroluminescent element and manufacturing method thereof
US8957402B2 (en) 2012-04-27 2015-02-17 Kabushiki Kaisha Toshiba Semiconductor light emitting device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
EP3018721B1 (en) Substrate for organic light emitting device and organic light emitting device comprising same
TWI260945B (en) Light-emitting apparatus and method for forming the same
TWI337049B (en) Light-emitting device
US8829784B2 (en) Surface light source device, lighting device, and backlight device
US20110073897A1 (en) Organic led and manufacturing method thereof
JP2012204103A (en) Organic electroluminescent element, display device and luminaire
TW200427356A (en) Light-emitting apparatus and method for forming the same
JP2009152148A (en) Organic light emitting device
JP2009259559A (en) Organic electroluminescent light-emitting device and liquid crystal display device
US9793516B2 (en) Light extraction substrate for organic light-emitting element, method for manufacturing same and organic light-emitting element including same
JP2008159338A (en) Inorganic electroluminescent device
JP5785851B2 (en) Organic light emitting device
TW575652B (en) Light-emitting device
JP6047038B2 (en) Organic EL device
US9515295B2 (en) Light extraction substrate for organic light emitting device, fabrication method therefor and organic light emitting device including same
KR100829497B1 (en) Organic light-emitting device including uneven layer and lightning apparatus having the same
US20030020397A1 (en) Enhancement of luminance and life in electroluminescent devices
US10094534B2 (en) Surface-emitting unit having dimming regions
JP6477493B2 (en) Surface emitting unit
JP2006139932A (en) Organic electroluminescent element and its manufacturing method
JP2007294438A (en) Organic el element
KR101470293B1 (en) Method of fabricating light extraction substrate for oled
US20170256746A1 (en) Light extraction substrate for organic light-emitting diode, manufacturing method therefor, and organic light-emitting diode including same
US20160164041A1 (en) Light extraction substrate for organic light-emitting device, manufacturing method therefor, and organic light-emitting device comprising same
JP5679292B2 (en) Organic EL light emitting device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090529