JP2002150548A - Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium - Google Patents
Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording mediumInfo
- Publication number
- JP2002150548A JP2002150548A JP2000341637A JP2000341637A JP2002150548A JP 2002150548 A JP2002150548 A JP 2002150548A JP 2000341637 A JP2000341637 A JP 2000341637A JP 2000341637 A JP2000341637 A JP 2000341637A JP 2002150548 A JP2002150548 A JP 2002150548A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- glass substrate
- recording medium
- information recording
- glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Surface Treatment Of Glass (AREA)
- Glass Compositions (AREA)
- Manufacturing Of Magnetic Record Carriers (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、磁気ディスク、光磁気
ディスク、光ディスク等の情報記録媒体に用いられる情
報記録媒体用ガラス基板の製造方法、及び情報記録媒体
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a glass substrate for an information recording medium used for an information recording medium such as a magnetic disk, a magneto-optical disk, and an optical disk, and a method of manufacturing the information recording medium.
【0002】[0002]
【従来の技術】情報記録媒体として代表的なものとして
は、磁気ディスクがある。今まで、磁気ディスク用の基
板材料としては、主としてアルミニウム合金が使用され
ていた。最近、ノートパソコン用ハードディスクドライ
ブの小型化や磁気記録の高密度化にともなって磁気ヘッ
ドの浮上量が顕著に減少してきている。これに伴い、磁
気ディスク基板の表面平滑性について、きわめて高い精
度が要求されてきている。2. Description of the Related Art As a typical information recording medium, there is a magnetic disk. Until now, aluminum alloys have been mainly used as substrate materials for magnetic disks. Recently, the flying height of a magnetic head has been remarkably reduced with the miniaturization of hard disk drives for notebook personal computers and the densification of magnetic recording. Accordingly, extremely high accuracy has been required for the surface smoothness of the magnetic disk substrate.
【0003】しかし、上記要請に対して、アルミニウム
合金の場合には、必ずしも十分な硬度を有するとは言え
ず、高精度の研磨剤及び工作機器を使用して研磨加工を
行っても、この研磨面が塑性変形するおそれがあり、あ
る程度以上高精度の平坦面を製造することは困難であ
る。たとえアルミニウム合金の表面にニッケル−リンめ
っきを施しても、平均表面粗さRaで5オングストロー
ム以下にすることは極めて困難である。さらに、ハード
ディスクドライブの小型化・薄型化が進展するにつれ
て、磁気ディスク用基板の厚みを小さくすることも強く
要求されている。しかし、このような要請に対しても、
アルミニウム合金は、強度、剛性が十分でないので、ハ
ードディスクドライブの仕様から要求される所定の強度
を保持しつつ、ディスクを薄くすることは困難である。[0003] However, in response to the above demand, aluminum alloys are not necessarily sufficiently hard, and even if polishing is performed using a high-precision abrasive and machine tools, this polishing is not possible. The surface may be plastically deformed, and it is difficult to manufacture a flat surface with a high degree of accuracy. Even if nickel-phosphorus plating is applied to the surface of an aluminum alloy, it is extremely difficult to make the average surface roughness Ra 5 angstrom or less. Further, as hard disk drives have become smaller and thinner, there is a strong demand for reducing the thickness of the magnetic disk substrate. However, in response to such a request,
Since the aluminum alloy has insufficient strength and rigidity, it is difficult to make the disk thin while maintaining a predetermined strength required by the specifications of the hard disk drive.
【0004】そこで、高強度、高剛性、高耐衝撃性、高
表面平滑性を必要とされる磁気ディスク用基板として、
ガラス基板が登場した。磁気ディスク用ガラス基板とし
ては、基板表面をイオン交換法などで強化した化学強化
ガラス基板や、結晶化処理を施した結晶化ガラス基板な
どが知られている。中でも、高強度、高剛性、高耐衝撃
性を有する結晶化ガラス基板が近年注目されている。Therefore, as a substrate for a magnetic disk that requires high strength, high rigidity, high impact resistance, and high surface smoothness,
Glass substrates have appeared. As a glass substrate for a magnetic disk, a chemically strengthened glass substrate whose substrate surface is strengthened by an ion exchange method or the like, a crystallized glass substrate subjected to a crystallization treatment, and the like are known. Among them, a crystallized glass substrate having high strength, high rigidity, and high impact resistance has attracted attention in recent years.
【0005】結晶化ガラス基板の表面は、結晶部と非晶
質部とからなるため、基板表面を精密研磨しても結晶部
の結晶粒子の平均粒径が大きかったため、高表面平滑性
が得られないということがあったが、近年、結晶粒子の
平均粒径の微細化を目的とした、高表面平滑性が得られ
る結晶化ガラス基板が提案されている(例えば、特願2
000−216159号明細書等参照)。高表面平滑性
を得るためには、上述の結晶粒子の平均粒径の微細化と
ともに、精密研磨方法も重要な要素である。従来の結晶
化ガラス基板の研磨方法としては、例えば、特公平4−
4656号公報に記載のものや、特許第2736869
号明細書記載のものなどがある。Since the surface of a crystallized glass substrate is composed of a crystal part and an amorphous part, even if the substrate surface is precisely polished, the average particle size of the crystal particles in the crystal part is large, so that high surface smoothness can be obtained. However, in recent years, there has been proposed a crystallized glass substrate capable of obtaining high surface smoothness for the purpose of reducing the average particle size of the crystal particles (for example, Japanese Patent Application No. 2000-139,197).
000-216159, etc.). In order to obtain high surface smoothness, the precision polishing method is also an important element in addition to the refinement of the average particle diameter of the crystal particles described above. As a conventional method for polishing a crystallized glass substrate, for example,
No. 4656, and Japanese Patent No. 2736869.
And those described in the specification.
【0006】特公平4−4656号公報に記載の結晶化
ガラス基板の研磨方法は、比表面積130m2/g以
下、粒径320オングストローム以下の球形無水アルミ
ナ微粉末を純水中に懸濁させた液を研磨液として用い、
ラップ荷重0.1〜2kg/cm2で精密研磨すること
で、表面粗度80オングストローム以下、かつ無歪の表
面層を形成した磁気ディスク用ガラス基板の製造方法が
記載されている。In the method of polishing a crystallized glass substrate described in Japanese Patent Publication No. 4-4656, a spherical anhydrous alumina fine powder having a specific surface area of 130 m 2 / g or less and a particle size of 320 angstrom or less is suspended in pure water. Using the liquid as a polishing liquid,
A method for manufacturing a glass substrate for a magnetic disk in which a surface layer having a surface roughness of 80 Å or less and no distortion is formed by precision polishing with a lap load of 0.1 to 2 kg / cm 2 is described.
【0007】また、特許第2736869号明細書に記
載の結晶化ガラス基板の研磨方法は、結晶相が二珪酸リ
チウム(Li2O・2SiO2)とα−クォーツ(α−S
iO 2)で、α−クォーツの成長結晶粒子が凝集して、
0.3〜3.0μmの球状粒子構造を持つ結晶化ガラス
基板を、球状粒子の粒子径よりも小さな砥粒径の研磨剤
で研磨することが記載されている。具体的には、平均粒
子径が3μm以下の球状粒子が散らしてなる結晶相を有
する結晶化ガラスを、球状粒子の粒子径と同等以上の酸
化セリウムで研磨した後、球状粒子の粒子径よりも小さ
な砥粒径のコロイダルシリカで研磨することが記載さ
れ、平均表面粗さ18オングストロームの平滑面を得る
ことが記載されている。[0007] Japanese Patent No. 2,736,869 describes this.
The method of polishing a crystallized glass substrate described in
Titanium (LiTwoO.2SiOTwo) And α-quartz (α-S
iO Two), Α-quartz grown crystal particles aggregate,
Crystallized glass having a spherical particle structure of 0.3 to 3.0 μm
Polish the substrate with an abrasive with an abrasive particle size smaller than the particle size of the spherical particles.
Is described. Specifically, the average grain
It has a crystalline phase in which spherical particles with a diameter of 3 μm or less are dispersed.
The crystallized glass to be converted to an acid having a particle size equal to or greater than that of the spherical particles.
After polishing with cerium bromide, smaller than the particle size of the spherical particles
To be polished with colloidal silica
To obtain a smooth surface with an average surface roughness of 18 Å
It is described.
【0008】[0008]
【発明が解決しようとする課題】上述の通り、従来の結
晶化ガラス基板の研磨方法では、酸化アルミニウム、酸
化セリウム、コロイダルシリカなどを用いている。しか
し、一般に非晶質ガラス(アモルファスガラス:例え
ば、化学強化ガラス)の精密研磨に用いられる酸化セリ
ウムを、結晶化ガラスの研磨に適用しても、結晶部と非
晶質部との間で研磨速度の差が大きく、研磨面に微細突
起や凹部が生成し、高い平滑性が得られないことがわか
った。As described above, in the conventional method for polishing a crystallized glass substrate, aluminum oxide, cerium oxide, colloidal silica or the like is used. However, even when cerium oxide, which is generally used for precision polishing of amorphous glass (amorphous glass: for example, chemically strengthened glass), is applied to polishing of crystallized glass, polishing is performed between the crystal part and the amorphous part. It was found that the difference in speed was large, and fine protrusions and concave portions were formed on the polished surface, and high smoothness could not be obtained.
【0009】一方、酸化アルミニウムを用いる場合は、
砥粒が硬く、メカニカルな研磨作用が強く、研磨面にマ
イクロスクラッチが発生してしまう。また、コロイダル
シリカを用いた場合は、上記のような問題は生じなく、
平均表面粗さRaで1nm未満の表面欠陥のない研磨面
が得られるが、コロイダルシリカは、研磨速度が非常に
遅く、加工効率が著しく悪い。また、研磨液中のケミカ
ル作用で研磨パッドの目詰まりが生じやすく、砥粒が数
nm〜数百nmと小さいため、研磨パッドに捕捉され
ず、被加工物との間で滑りが生じてくることがわかっ
た。即ち、研磨時間が経過するにつれ、研磨速度が遅く
なってくるという問題があった。本発明は、上述の背景
の下でなされたものであり、表面欠陥の発生をおさえつ
つ高い表面平滑性を保ち、かつ、迅速な研磨ができる情
報記録媒体用ガラス基板の製造方法及び情報記録媒体の
製造方法を提供することを目的とする。On the other hand, when aluminum oxide is used,
The abrasive grains are hard, have a strong mechanical polishing action, and cause micro scratches on the polished surface. In addition, when colloidal silica is used, the above problem does not occur,
Although a polished surface having an average surface roughness Ra of less than 1 nm without a surface defect can be obtained, colloidal silica has a very low polishing rate and extremely poor processing efficiency. In addition, clogging of the polishing pad is apt to occur due to the chemical action in the polishing liquid, and the abrasive grains are as small as several nm to several hundred nm, so that they are not caught by the polishing pad and slip with the workpiece. I understand. That is, there has been a problem that the polishing rate becomes slow as the polishing time elapses. The present invention has been made under the above-mentioned background, and a method of manufacturing a glass substrate for an information recording medium and an information recording medium capable of maintaining high surface smoothness while suppressing occurrence of surface defects and capable of quick polishing. It is an object of the present invention to provide a method for producing the same.
【0010】[0010]
【課題を解決するための手段】上述の課題を解決するた
めの手段として、第1の手段は、ガラス基板の表面と研
磨部材との間に研磨液を介在させ、ガラス基板と研磨部
材とを相対運動させて研磨加工する情報記録媒体用ガラ
ス基板の製造方法において、前記ガラス基板は、少なく
とも基板表面にガラス相とセラミックス相とを有する結
晶化ガラスであって、前記研磨液は、ガラス相(非晶質
相)に対してメカノケミカル(機械化学的)な研磨作用
を有する第1研磨剤と、セラミックス相(結晶相)に対
して主にメカニカル(機械的)な研磨作用を有する第2
研磨剤とを混合したものであることを特徴とする情報記
録媒体用ガラス基板の製造方法である。第2の手段は、
前記ガラス相(非晶質相)に対してメカノケミカル(機
械化学的)な研磨作用を有する第1研磨剤としては、酸
化セリウム、酸化ジルコニウム、酸化鉄、酸化マンガン
の中から選ばれる少なくとも1種であって、前記セラミ
ックス相(結晶相)に対して主にメカニカル(機械的)
な研磨作用を有する第2研磨剤としては、コロイダルシ
リカ、酸化チタンの中から選ばれる少なくとも一種であ
ることを特徴とする第1の手段にかかる情報記録媒体用
ガラス基板の製造方法である。第3の手段は、前記研磨
液中に占める前記セラミックス相(結晶相)に対して主
にメカニカル(機械的)な研磨作用を有する第2研磨剤
の含有量を、3〜30wt%とすることを特徴とする第
1又は第2の手段にかかる情報記録媒体用ガラス基板の
製造方法である。第4の手段は、前記研磨液中に占める
前記ガラス相(非晶質相)に対してメカノケミカル(機
械化学的)な研磨作用を有する第1研磨剤の含有量を、
1〜20wt%とすることを特徴とする第3の手段にか
かる情報記録媒体用ガラス基板の製造方法である。第5
の手段は、キャリアによって保持されたガラス基板を、
研磨布を張った上下定盤に挟持させ、研磨液を供給して
上下定盤をそれぞれ回転させることにより、ガラス基板
の表面を研磨加工する研磨工程を有する情報記録媒体用
ガラス基板の製造方法において、前記研磨液は、酸化セ
リウムと酸化ジルコニウムのいずれか一方又は両方と、
コロイダルシリカとを混合したものであることを特徴と
する情報記録媒体用ガラス基板の製造方法である。第6
の手段は、前記研磨液中にしめるコロイダルシリカの含
有量を、3〜30wt%とすることを特徴とする第5の
手段にかかる情報記録媒体用ガラス基板の製造方法であ
る。第7の手段は、前記研磨液中にしめる酸化セリウム
及び/又は酸化ジルコニウムの含有量を、1〜20wt
%とすることを特徴とする第6の手段にかかる情報記録
媒体用ガラス基板の製造方法である。第8の手段は、前
記酸化セリウム、酸化ジルコニウムの平均粒径が、0.
1〜3μm、コロイダルシリカの平均粒径が0.01〜
0.2μmであることを特徴とする第5〜第7のいずれ
かの手段にかかる情報記録媒体用ガラス基板の製造方法
である。第9の手段は、前記基板は、結晶化ガラス基板
であることを特徴とする第5〜第8のいずれかの手段に
かかる情報記録媒体用ガラス基板の製造方法である。第
10の手段は、前記結晶化ガラスは、主結晶がエンスタ
タイト及び/又はその固溶体であることを特徴とする第
1又は第9の手段にかかる情報記録媒体用ガラス基板の
製造方法である。第11の手段は、前記結晶化ガラスの
結晶粒子の平均粒子径は、100nm以下であることを
特徴とする第1又は第9の手段にかかる情報記録媒体用
ガラス基板の製造方法である。第12の手段は、第1〜
第11のいずれかの手段にかかる情報記録媒体用ガラス
基板の製造方法によって製造された情報記録媒体用ガラ
ス基板上に、少なくとも記録層を形成することを特徴と
する情報記録媒体の製造方法である。第13の手段は、
前記記録層は、磁性層であることを特徴とする第12の
手段にかかる情報記録媒体の製造方法である。Means for Solving the Problems As means for solving the above problems, a first means is to interpose a polishing liquid between the surface of a glass substrate and a polishing member, and to connect the glass substrate and the polishing member to each other. In the method for manufacturing a glass substrate for an information recording medium, which is polished by relative movement, the glass substrate is crystallized glass having at least a glass phase and a ceramic phase on a substrate surface, and the polishing liquid is a glass phase ( A first abrasive having a mechanochemical (mechanochemical) polishing action on the amorphous phase) and a second abrasive having a mainly mechanical (mechanical) polishing action on the ceramics phase (crystal phase).
A method for manufacturing a glass substrate for an information recording medium, characterized by being mixed with an abrasive. The second means is
As the first abrasive having a mechanochemical (mechanochemical) polishing action on the glass phase (amorphous phase), at least one selected from cerium oxide, zirconium oxide, iron oxide and manganese oxide And mainly mechanically (mechanically) with respect to the ceramic phase (crystal phase).
The second abrasive having an effective polishing action is at least one selected from colloidal silica and titanium oxide. The method according to the first means, wherein the glass substrate for an information recording medium is manufactured. The third means is that the content of the second abrasive having a mainly mechanical (mechanical) polishing action on the ceramic phase (crystal phase) in the polishing liquid is 3 to 30 wt%. A method of manufacturing a glass substrate for an information recording medium according to the first or second means. The fourth means is to adjust the content of the first abrasive having a mechanochemical (mechanical) polishing action on the glass phase (amorphous phase) in the polishing liquid,
A method of manufacturing a glass substrate for an information recording medium according to a third means, characterized in that the content is 1 to 20 wt%. Fifth
Means, a glass substrate held by a carrier,
A method of manufacturing a glass substrate for an information recording medium, comprising a polishing step of polishing a surface of a glass substrate by sandwiching the upper and lower platens covered with a polishing cloth and supplying a polishing liquid to rotate the respective upper and lower platens. The polishing liquid, with one or both of cerium oxide and zirconium oxide,
A method for producing a glass substrate for an information recording medium, wherein the glass substrate is a mixture of colloidal silica. Sixth
The means is a method for producing a glass substrate for an information recording medium according to the fifth means, wherein the content of colloidal silica contained in the polishing liquid is 3 to 30 wt%. The seventh means is that the content of cerium oxide and / or zirconium oxide in the polishing liquid is 1 to 20 wt.
% Of the glass substrate for an information recording medium according to the sixth means. Eighth means is that the cerium oxide and zirconium oxide have an average particle size of 0.1.
1 to 3 μm, the average particle size of colloidal silica is 0.01 to
A method of manufacturing a glass substrate for an information recording medium according to any one of the fifth to seventh means, wherein the thickness is 0.2 μm. Ninth means is the method for manufacturing a glass substrate for an information recording medium according to any one of the fifth to eighth means, wherein the substrate is a crystallized glass substrate. A tenth means is the method for producing a glass substrate for an information recording medium according to the first or ninth means, wherein the main crystal of the crystallized glass is enstatite and / or a solid solution thereof. An eleventh means is the method for producing a glass substrate for an information recording medium according to the first or ninth means, wherein the average particle diameter of the crystal particles of the crystallized glass is 100 nm or less. The twelfth means is the first to
An information recording medium manufacturing method characterized by forming at least a recording layer on an information recording medium glass substrate manufactured by the method for manufacturing an information recording medium glass substrate according to any of the eleventh means. . The thirteenth means is
The method according to the twelfth aspect, wherein the recording layer is a magnetic layer.
【0011】上述の第1の手段にかかる情報記録媒体用
ガラス基板の製造方法は、ガラス基板がガラス相とセラ
ミックス相とを有する結晶化ガラス基板の場合、ガラス
相に対してメカノケミカルな研磨作用を有する第1研磨
剤と、セラミックス相に対してメカニカルな研磨作用を
有する第2研磨剤を混合したものを使用することによっ
て、研磨速度が速く、さらに高い表面平滑性を有するガ
ラス基板が得ることを可能にしている。この点は、本発
明者らが様々な研磨剤について、試行錯誤による実験を
繰り返した結果、はじめて解明されたものである。すな
わち、この実験結果の過程において、第1研磨剤の種類
を変えたり、第1研磨剤として、複数の種類を組み合わ
せたり、あるいは、第1研磨剤による研磨の後、第2研
磨剤による研磨を行う等の試みも条件を種々変えて徹底
的になされた。しかし、いずれも、研磨精度と研磨時間
との双方を実用的視点から十分に満たす結果は得られな
かった。そこで、最後に、第1研磨剤と第2研磨剤とを
混合して研磨する試みが念のためになされた。この試み
は、それまで得られていた第1研磨剤単独による研磨作
用と第2研磨剤単独による研磨作用との組み合わせとし
て、ある程度予測され、その予測によればあまり期待で
きないものであった。ところが、予測に反し、実験が進
むにつれ、上記単独の研磨剤の作用を単に組み合わせた
だけの作用としては説明がつかない際立った作用の得ら
れることが分かってきた。特に、これまで全く困難であ
った結晶化ガラス基板においても、研磨精度を所定の精
度以内におさめつつ研磨時間を画期的に短くできること
がわかった。本発明は、このような解明事実に基づいて
なされたものである。[0011] In the method of manufacturing a glass substrate for an information recording medium according to the first means, when the glass substrate is a crystallized glass substrate having a glass phase and a ceramic phase, a mechanochemical polishing action is performed on the glass phase. By using a mixture of the first abrasive having the above and the second abrasive having a mechanical polishing action on the ceramic phase, it is possible to obtain a glass substrate having a high polishing rate and a higher surface smoothness. Is possible. This point has been elucidated for the first time as a result of the inventors repeating experiments by trial and error for various abrasives. That is, in the course of the experimental results, the type of the first abrasive is changed, a plurality of types are combined as the first abrasive, or the polishing with the second abrasive is performed after the polishing with the first abrasive. Attempts to do so have been made thoroughly under various conditions. However, in both cases, no results were obtained that sufficiently satisfied both the polishing accuracy and the polishing time from a practical viewpoint. Thus, finally, an attempt was made to mix and polish the first abrasive and the second abrasive, just in case. This attempt was predicted to some extent as a combination of the polishing action of the first abrasive alone and the polishing action of the second abrasive alone, which had been obtained up to that point, and was not so expected according to the prediction. However, contrary to the prediction, it has been found that as the experiment progresses, a remarkable action which cannot be explained as an action obtained by simply combining the actions of the above-mentioned single abrasives can be obtained. In particular, it has been found that the polishing time can be remarkably shortened while the polishing accuracy is kept within a predetermined accuracy even for a crystallized glass substrate which has been quite difficult to date. The present invention has been made based on such clarified facts.
【0012】この場合、研磨方法としては、キャリアに
よって保持された複数のガラス基板を、研磨布を張った
上下定盤に挟持させ、上下定盤を回転させることでガラ
ス基板の両面を研磨加工する両面研磨方法、ガラス基板
の表面にナイロン等からなるブラシ毛を回転させて基板
の端面等を研磨する研磨方法、ガラス基板を回転させな
がら研磨テープを押し当てて基板表面を研磨する研磨方
法などに利用することができる。In this case, as a polishing method, a plurality of glass substrates held by a carrier are sandwiched between upper and lower platens covered with a polishing cloth, and both surfaces of the glass substrate are polished by rotating the upper and lower platens. A double-side polishing method, a polishing method in which a brush hair made of nylon or the like is rotated on the surface of a glass substrate to polish the end surface of the substrate, and a polishing method in which a polishing tape is pressed while rotating the glass substrate to polish the substrate surface. Can be used.
【0013】本発明で使用するガラス基板の硝種、組成
比については特に制限はない。例えば、アルミノシリケ
ートガラス、ソーダライムガラス、ソーダアルミノ珪酸
ガラス、アルミノボロシリケートガラス、ボロシリケー
トガラス、石英ガラス、結晶化ガラスなどが挙げられ
る。尚、ガラス基板の機械的特性を向上させるために、
低温型イオン交換法により化学強化した化学強化ガラス
基板や、熱処理を施して表面を結晶化させた結晶化ガラ
ス基板にも適用できる。特に本発明は、ガラス相とセラ
ミックス相とを有する結晶化ガラス基板に有用であるThe glass type and composition ratio of the glass substrate used in the present invention are not particularly limited. For example, aluminosilicate glass, soda lime glass, sodaaluminosilicate glass, aluminoborosilicate glass, borosilicate glass, quartz glass, crystallized glass, and the like can be given. In order to improve the mechanical properties of the glass substrate,
The present invention can be applied to a chemically strengthened glass substrate chemically strengthened by a low-temperature ion exchange method, and a crystallized glass substrate whose surface is crystallized by heat treatment. In particular, the present invention is useful for a crystallized glass substrate having a glass phase and a ceramic phase.
【0014】また、第2の手段のようにガラス相に対し
てメカノケミカルな研磨作用を有する研磨剤としては、
酸化セリウム、酸化ジルコニウム、酸化鉄、酸化マンガ
ンの中から選ばれる少なくとも1種の研磨剤とし、セラ
ミックス相に対してメカニカルな研磨作用を有する研磨
剤としては、コロイダルシリカ、酸化チタンの中から選
ばれる少なくとも1種の研磨剤を使用することができ
る。尚、コロイダルシリカは、広義のシリカ研磨剤の中
に含まれるものであるが、ヒュームドシリカや、シリカ
(粉体状)のものを代用することもできる。Further, as the polishing agent having a mechanochemical polishing action on the glass phase as in the second means,
As at least one abrasive selected from cerium oxide, zirconium oxide, iron oxide, and manganese oxide, as the abrasive having a mechanical polishing action on the ceramic phase, selected from colloidal silica and titanium oxide At least one abrasive can be used. Although colloidal silica is included in a silica abrasive in a broad sense, fumed silica or silica (powder) can be used instead.
【0015】尚、第3の手段のように、研磨液中に占め
る、セラミックス相に対してメカニカルな研磨作用を有
する研磨剤の含有量を、3〜30wt%とすることによ
り、研磨速度が速く、表面欠陥が少ない高表面平滑性の
ガラス基板が得られるので好ましい。3wt%未満の場
合、ガラス基板表面にピット(凹状欠陥)と呼ばれる表
面欠陥が発生するので好ましくなく、30wt%を超え
ると研磨後の洗浄性が悪化し、また、研磨布(研磨パッ
ド)の目詰まりが発生し、研磨速度が低下するので好ま
しくない。The polishing rate is increased by setting the content of the polishing agent having a mechanical polishing action on the ceramic phase in the polishing liquid as 3% to 30% by weight as in the third means. It is preferable because a glass substrate having high surface smoothness with few surface defects can be obtained. When the content is less than 3 wt%, surface defects called pits (concave defects) occur on the surface of the glass substrate, which is not preferable. Clogging occurs and the polishing rate decreases, which is not preferable.
【0016】また、第4の手段のように、研磨液中に占
める、ガラス相に対してメカノケミカルな研磨作用を有
する研磨剤の含有量を、1〜20wt%とすることによ
り、研磨速度が速く、表面欠陥が少ない高表面平滑性の
ガラス基板が得られるので好ましい。1wt%未満の場
合、研磨速度が低下するので好ましくなく、20wt%
を超えると研磨後の洗浄性が悪化し、また、製造コスト
が高くなるので好ましくない。Further, as in the fourth means, by setting the content of the polishing agent having a mechanochemical polishing action on the glass phase in the polishing liquid to 1 to 20 wt%, the polishing rate can be reduced. It is preferable because a glass substrate having high surface smoothness can be obtained quickly and with few surface defects. If the amount is less than 1 wt%, the polishing rate decreases, which is not preferable.
Exceeding this is not preferred because the cleaning property after polishing deteriorates and the production cost increases.
【0017】上述の手段において、好ましい態様として
は、第5の手段のように、研磨液を酸化セリウムと酸化
ジルコニウムの何れか一方又は両方と、コロイダルシリ
カを混合したものとすることにより、研磨速度が速く、
さらに高表面平滑性のガラス基板が得られる。この場
合、研磨液中に占めるコロイダルシリカの含有量は、3
〜30wt%とすることが好ましい。上限値と下限値の
理由は、上記第3の手段に記載した通りである。また、
研磨液中に占める酸化セリウム及び/又は酸化ジルコニ
ウムの含有量は、1〜20wt%とすることが好まし
い。上限値と下限値の理由は、上記第4の手段に記載し
た通りである。また、第8の手段のように、酸化セリウ
ム、酸化ジルコニウムの平均粒径は、0.1〜3μm、
コロイダルシリカの平均粒径が0.01〜0.2μmと
することが好ましい。In a preferred embodiment of the above-mentioned means, as in the fifth means, the polishing liquid is prepared by mixing one or both of cerium oxide and zirconium oxide with colloidal silica, thereby reducing the polishing rate. Is fast,
Further, a glass substrate having high surface smoothness can be obtained. In this case, the content of colloidal silica in the polishing liquid is 3
It is preferable to set it to 30 wt%. The reason for the upper limit value and the lower limit value is as described in the third means. Also,
It is preferable that the content of cerium oxide and / or zirconium oxide in the polishing liquid is 1 to 20% by weight. The reason for the upper limit value and the lower limit value is as described in the fourth means. Further, as in the eighth means, the average particle diameter of cerium oxide and zirconium oxide is 0.1 to 3 μm,
The average particle size of the colloidal silica is preferably 0.01 to 0.2 μm.
【0018】研磨工程は、1回又は複数段階に分けて行
うこともできる。複数段階に分けて行う場合、通常、研
削工程後に行われる、ガラス基板表面の加工変質層、傷
を除去すること、ガラス基板の端部形状を制御すること
を目的として行われる研磨工程と、ガラス基板表面を平
滑にし、表面欠陥を除去することを目的として行われる
最終研磨工程とを行う。The polishing step can be performed once or in a plurality of steps. When performed in a plurality of stages, usually performed after the grinding step, the process-affected layer on the surface of the glass substrate, removing scratches, a polishing step performed for the purpose of controlling the end shape of the glass substrate, and a glass And a final polishing step performed for the purpose of smoothing the substrate surface and removing surface defects.
【0019】前者の工程では、比較的硬い発泡ウレタン
などからなる研磨パッド(硬質ポリシャ)を使用し、後
者の工程では、比較的柔らかい人工皮革スウェードなど
からなる研磨パッド(軟質ポリシャ)を使用する。一次
研磨の主目的は研削で残ったキズ等の表面欠陥を除去す
ることで、研磨レートに主眼を置く。最終研磨では表面
粗さのコントロールと、硬質なパッドを用いたために1
次研磨で残った微少な表面欠陥を完全に除去することを
目的としており、加工速度を犠牲にしても軟質なパッド
を使用する。In the former step, a polishing pad (hard polisher) made of relatively hard urethane foam is used, and in the latter step, a polishing pad (soft polisher) made of relatively soft artificial leather suede is used. The primary purpose of the primary polishing is to remove surface defects such as scratches left by grinding, so that the primary focus is on the polishing rate. In final polishing, control of surface roughness and use of hard pad
The purpose is to completely remove the small surface defects remaining in the next polishing, and use a soft pad even if the processing speed is sacrificed.
【0020】複数段階に分けて研磨工程を行う場合、前
者の研磨工程においては、上記第3の手段及び第6の手
段の研磨剤(コロイダルシリカ等)の含有量の好ましい
範囲は10〜30wt%である。上記第4の手段及び第
7の手段の研磨剤(酸化セリウム、酸化ジルコニウム
等)の含有量の好ましい範囲は、1〜20wt%であ
る。上記第8の手段の研磨剤の粒径は、コロイダルシリ
カ等の粒径は、0.01〜0.2μm、酸化セリウム、
酸化ジルコニウム等の粒径は、1.5〜3μmである。In the case where the polishing step is performed in a plurality of steps, in the former polishing step, the preferable range of the content of the abrasive (colloidal silica or the like) in the third means and the sixth means is 10 to 30 wt%. It is. The preferable range of the content of the abrasive (cerium oxide, zirconium oxide, etc.) in the fourth means and the seventh means is 1 to 20% by weight. The particle size of the abrasive in the eighth means is such that colloidal silica or the like has a particle size of 0.01 to 0.2 μm, cerium oxide,
The particle size of zirconium oxide or the like is 1.5 to 3 μm.
【0021】後者の研磨工程においては、上記第3の手
段及び第6の手段の研磨剤(コロイダルシリカ等)の含
有量の好ましい範囲は3〜30wt%である。前者の研
磨工程によって得られた基板の端部形状を維持させるた
めにより好ましくは3〜10wt%である。上記第4の
手段及び第7の手段の研磨剤(酸化セリウム、酸化ジル
コニウム等)の含有量の好ましい範囲は1〜20wt%
である。上記第8の手段の研磨剤の粒径は、コロイダル
シリカ等の粒径は、0.01〜0.2μm、酸化セリウ
ム、酸化ジルコニウム等の粒径は、0.1〜1.5μm
とすることが好ましい。In the latter polishing step, the preferred range of the content of the abrasive (colloidal silica or the like) in the third means and the sixth means is 3 to 30 wt%. In order to maintain the shape of the edge of the substrate obtained by the former polishing step, it is more preferably 3 to 10% by weight. The preferable range of the content of the abrasive (cerium oxide, zirconium oxide, etc.) in the fourth means and the seventh means is 1 to 20 wt%.
It is. The particle size of the abrasive in the eighth means is 0.01 to 0.2 μm for colloidal silica and the like, and 0.1 to 1.5 μm for cerium oxide and zirconium oxide.
It is preferable that
【0022】研磨工程で使用する硬質ポリシャ、軟質ポ
リシャの材質には特に制限はない。硬質ポリシャとして
はウレタンパッド、不織布パッド、エポキシ樹脂パッド
等を使用することができ、軟質ポリシャとしてはスウェ
ードパッド、不織布パッド等を使用することができる。The material of the hard polisher and the soft polisher used in the polishing step is not particularly limited. As the hard polisher, a urethane pad, a nonwoven fabric pad, an epoxy resin pad, or the like can be used. As the soft polisher, a suede pad, a nonwoven fabric pad, or the like can be used.
【0023】また、第9の手段のように、本発明の情報
記録媒体用ガラス基板の製造方法は、結晶化ガラス基板
に特に有用である。結晶化ガラスとしては、エンスタタ
イト、ムライト、フォステライト、コージェライト、ク
ォーツ(α−クォーツ、β−クォーツ)、スピネル、ガ
ーナイト、カナサイト、二珪酸リチウム等を主結晶とす
るものが挙げられる。Further, as in the ninth means, the method for producing a glass substrate for an information recording medium of the present invention is particularly useful for a crystallized glass substrate. Examples of the crystallized glass include those having main crystals of enstatite, mullite, fosterite, cordierite, quartz (α-quartz, β-quartz), spinel, garnite, canasite, lithium disilicate, and the like.
【0024】中でも、第10の手段のように、エンスタ
タイト及び/又はその固溶体を主結晶とする結晶化ガラ
スは、非常に研磨がしやすく、比較的短い時間で所望の
表面粗さが得られるという製造上の利点と、結晶粒子径
が小さく高表面平滑性が得られるという利点、さらには
結晶粒子径が小さくても高いヤング率が得られるという
機械的特性上の利点などから好ましい。具体的には、S
iO2:35〜65モル%、Al2O3:5〜25モル
%、MgO:10〜40モル%、TiO2:5〜15モ
ル%、Y2O3:0〜10モル%、ZrO2:0〜6モル
%、R2O:0〜5モル%(但し、Rは、Li,Na,
Kからなる群から選ばれる少なくとも1種を表す)、R
O:0〜5モル%(但し、RはCa,Sr,Baからな
る群から選ばれる少なくとも1種を表す)、As2O3+
Sb2O3:0〜2モル%、SiO2+Al2O3+MgO
+TiO2:92モル%以上であり、主結晶がエンスタ
タイト及び/又はその固溶体である結晶化ガラスが挙げ
られる。Above all, as in the tenth means, crystallized glass having enstatite and / or a solid solution thereof as a main crystal is very easy to polish, and a desired surface roughness can be obtained in a relatively short time. This is preferable from the viewpoint of the production advantage, the advantage of obtaining a high surface smoothness with a small crystal particle diameter, and the advantage of the mechanical properties that a high Young's modulus can be obtained even with a small crystal particle diameter. Specifically, S
iO 2: 35 to 65 mol%, Al 2 O 3: 5~25 mol%, MgO: 10 to 40 mol%, TiO 2: 5~15 mol%, Y 2 O 3: 0~10 mol%, ZrO 2 : 0-6 mol%, R 2 O: 0 to 5 mol% (wherein, R represents, Li, Na,
K represents at least one member selected from the group consisting of
O: 0 to 5 mol% (where R represents at least one selected from the group consisting of Ca, Sr and Ba), As 2 O 3 +
Sb 2 O 3 : 0 to 2 mol%, SiO 2 + Al 2 O 3 + MgO
+ TiO 2 : 92 mol% or more, and crystallized glass in which the main crystal is enstatite and / or a solid solution thereof.
【0025】また、第11の手段のように、結晶化ガラ
スの結晶粒子の平均粒子径は、100nm以下とするこ
とが好ましい。好ましくは、50nm以下、更に好まし
くは、30nm以下が望ましい。結晶粒子の平均粒子径
が100nmを超えると、ガラスの機械強度を低下させ
るだけでなく、研磨加工時に結晶の欠落を引き起こし
て、ガラス基板の表面粗度を悪化させる恐れがあるから
である。このような結晶粒子のサイズの制御は、主に、
含まれる結晶相の種類及び、熱処理条件によって行うこ
とができる。構成11のエンスタタイト及び/又はその
固溶体の主結晶が得られる熱処理条件において、上記し
た微細な結晶粒子サイズを得ることができる。熱処理条
件としては、例えば、700〜850℃の範囲で熱処理
をした後、さらに、850℃〜1150℃に挙げて結晶
を成長させることにより、結晶を微細化させることがで
きる。Further, as in the eleventh means, it is preferable that the average particle diameter of the crystal particles of the crystallized glass is 100 nm or less. Preferably, it is 50 nm or less, more preferably, 30 nm or less. If the average particle size of the crystal particles exceeds 100 nm, not only the mechanical strength of the glass is reduced, but also the crystal may be lost during polishing, which may deteriorate the surface roughness of the glass substrate. Control of the size of such crystal grains is mainly
It can be carried out depending on the type of the included crystal phase and the heat treatment conditions. Under the heat treatment conditions under which the main crystals of enstatite and / or a solid solution thereof of configuration 11 are obtained, the above-mentioned fine crystal particle size can be obtained. As the heat treatment conditions, for example, after performing a heat treatment in the range of 700 to 850 ° C., the crystal can be further refined by raising the temperature to 850 ° C. to 1150 ° C.
【0026】また、第12の手段のように、前記第1〜
第9の手段によって得られた情報記録媒体用ガラス基板
上に、少なくとも記録層を形成することで、高密度記録
に対応した情報記録媒体が得られる。情報記録媒体とし
ては、磁気ディスク、光磁気ディスク、光ディスクが挙
げられる。Also, as in the twelfth means,
By forming at least a recording layer on the glass substrate for an information recording medium obtained by the ninth means, an information recording medium compatible with high-density recording can be obtained. Examples of the information recording medium include a magnetic disk, a magneto-optical disk, and an optical disk.
【0027】なかでも、第13の手段のように、記録層
が磁性層とする磁気ディスクは、近年の高密度記録化に
伴い、記録再生を行う磁気ヘッドと磁気ディスクのスペ
ーシングが非常小さくする必要性から、磁気ディスクに
使用する磁気ディスク用ガラス基板の表面が高表面平滑
性のものが要求されており、特に有用である。磁性層と
しては、Co合金が一般的に使用され、Co以外に、P
t,Cr,Ni,Ta,B,Nb,W等の元素を点かし
た材料(CoPt,CoNi,CoCr,CoPtC
r,CoNiCr,CoCrTa,CoNiPt,Co
CrPtTa,CoCrPtB,CoNiCrTa,C
oNiCrPt,CoCrPtTaNb等)が使用され
る。In particular, as in the thirteenth means, in a magnetic disk having a recording layer as a magnetic layer, the spacing between a magnetic head for performing recording and reproduction and the magnetic disk is extremely reduced with the recent increase in recording density. From the necessity, a glass substrate for a magnetic disk used for a magnetic disk is required to have a high surface smoothness, which is particularly useful. For the magnetic layer, a Co alloy is generally used.
Materials in which elements such as t, Cr, Ni, Ta, B, Nb, and W are spotted (CoPt, CoNi, CoCr, CoPtC
r, CoNiCr, CoCrTa, CoNiPt, Co
CrPtTa, CoCrPtB, CoNiCrTa, C
oNiCrPt, CoCrPtTaNb, etc.).
【0028】また、所望の磁気特性を得るために、ガラ
ス基板と磁性層との間に、シード層、下地層、中間層等
を形成しても良い。また、磁性層上に保護層や潤滑層を
設けても良い。シード層は、下地層、磁性層の結晶粒径
を制御する役割があり、例えば、NiAl,CrTi,
CrNi,NiPなどの材料が使用される。また、下地
層は、主に、磁性層の磁気特性を向上する役割があり、
CrやCr合金などの材料が使用される。Cr合金とし
ては、CrV,CrMo,CrW,CrTiなどが挙げ
られ、単層、複数層設けても良い。また、中間層は、主
に磁性層の結晶配向を制御する役割があり、CoCr,
CoCrNbなどのHCP構造などの材料が使用され
る。保護層は、磁性層に対する耐食性、機械的耐久性の
ために設けられ、カーボン、水素化カーボン、窒化カー
ボン、SiC,SiO2,ZrO2などの材料が使用され
る。潤滑層は、磁気ヘッドの吸着防止、摩擦低減の役割
があり、一般にパーフルオロポリエーテル潤滑材が使用
される。これらの各層の膜厚、組成比については、所望
な磁気特性、耐久性等が得られるように適宜調整して形
成する。Further, in order to obtain desired magnetic characteristics, a seed layer, an underlayer, an intermediate layer, etc. may be formed between the glass substrate and the magnetic layer. Further, a protective layer or a lubricating layer may be provided on the magnetic layer. The seed layer has a role of controlling the crystal grain size of the underlayer and the magnetic layer. For example, NiAl, CrTi,
Materials such as CrNi and NiP are used. The underlayer mainly has a role of improving the magnetic properties of the magnetic layer.
Materials such as Cr and Cr alloy are used. Examples of the Cr alloy include CrV, CrMo, CrW, and CrTi, and a single layer or a plurality of layers may be provided. The intermediate layer mainly has a role of controlling the crystal orientation of the magnetic layer.
A material such as an HCP structure such as CoCrNb is used. The protective layer is provided for corrosion resistance and mechanical durability with respect to the magnetic layer, and is made of a material such as carbon, hydrogenated carbon, carbon nitride, SiC, SiO 2 , and ZrO 2 . The lubricating layer has a role of preventing adhesion of the magnetic head and reducing friction, and generally uses a perfluoropolyether lubricant. The thicknesses and composition ratios of these layers are appropriately adjusted so as to obtain desired magnetic properties, durability and the like.
【0029】[0029]
【発明の実施の形態】(実施例1)この実施例にかかる
情報記録媒体用ガラス基板の製造方法及び情報記録媒体
の製造方法は、(1) 円盤状ガラス基板素材製造工
程、(2) 結晶化ガラス製造工程、(3) 形状加工工
程、(4) 端面研磨工程、(5) 研削工程、(6)第
1研磨工程、(7) 最終研磨工程、(8) 磁気ディス
ク製造工程の各工程を有する。以下、各工程を詳細の説
明する。(Embodiment 1) A method for manufacturing a glass substrate for an information recording medium and a method for manufacturing an information recording medium according to this embodiment include (1) a disc-shaped glass substrate material manufacturing process, and (2) a crystal. Glass forming process, (3) shaping process, (4) edge polishing process, (5) grinding process, (6) first polishing process, (7) final polishing process, (8) magnetic disk manufacturing process Having. Hereinafter, each step will be described in detail.
【0030】(1) 円盤状ガラス基板素材製造工程 まず、SiO2:46.00モル%、Al2O3:10.
50モル%、MgO:31.00モル%、Y2O3:0.
50モル%、ZrO2:1.97モル%、TiO2:1
0.00モル%、Sb2O3:0.03モル%の組成から
なる原料を混合し、これを公知の溶融装置を用いて約1
550℃の温度で溶融した溶融ガラスを、上型、下型、
胴型を用いて、直径66mmφ、厚さ1.3mmの円盤状ガ
ラス基板にプレス成型した。(1) Disk-shaped glass substrate material manufacturing process First, SiO 2 : 46.00 mol%, Al 2 O 3 : 10.10.
50 mol%, MgO: 31.00 mol%, Y 2 O 3 : 0.
50 mol%, ZrO 2 : 1.97 mol%, TiO 2 : 1
A raw material having a composition of 0.00 mol% and Sb 2 O 3 : 0.03 mol% was mixed, and this was mixed with a known melting device to about 1%.
The molten glass melted at a temperature of 550 ° C.
Using a barrel mold, press molding was performed on a disk-shaped glass substrate having a diameter of 66 mm and a thickness of 1.3 mm.
【0031】(2) 結晶化ガラス製造工程 上記のガラス基板を、砥粒の粒度が#400である両面
ラッピング装置によってガラス基板の厚み、及び平坦度
を整えた。このラッピングによって得られた平坦度は、
0.5μmであった。その後、このガラス板を750℃で
約4時間熱処理して結晶核形成後、約1000℃の結晶
化温度で約4時間保持することにより、主結晶相がエン
スタタイト及びその固溶体である結晶化ガラス基板を製
造した。結晶粒子の平均粒子径は電子顕微鏡観察による
と、28nmであった。(2) Process of Producing Crystallized Glass The thickness and flatness of the above glass substrate were adjusted by a double-sided lapping apparatus having an abrasive grain size of # 400. The flatness obtained by this wrapping is
It was 0.5 μm. Thereafter, the glass plate is heat-treated at 750 ° C. for about 4 hours, and crystal nuclei are formed. Then, the crystal is maintained at a crystallization temperature of about 1000 ° C. for about 4 hours, so that the main crystal phase is enstatite and a crystallized glass having a solid solution thereof. A substrate was manufactured. The average particle size of the crystal particles was 28 nm according to observation with an electron microscope.
【0032】(3) 形状加工工程 上述の結晶化ガラス基板を、上記と同じ両面ラッピング
装置によってラッピングして、ガラス基板の反りを取り
除いた後、比較的粒度の粗いダイヤモンド砥石で、研削
加工して直径65mmφ、厚さ0.7mmに成形してガラス
基板を得た。このガラス基板の両面を粒度の細かいダイ
ヤモンド砥石で研削加工し、さらに円筒状の砥石を用い
てガラス基板の中央部分に孔を開けると共に、外周端面
も研削した後、外周面及び内周面に所定の面取り加工を
施した。この時のガラス基板の表面粗さRmaxは、約
10μmであり、ガラス基板端面の表面粗さRmax
は、約14μmであった。(3) Shape Processing Step The above-mentioned crystallized glass substrate is wrapped by the same double-sided lapping device as above to remove the warp of the glass substrate, and then ground by a relatively coarse diamond grindstone. A glass substrate was obtained by molding to a diameter of 65 mm and a thickness of 0.7 mm. Both sides of this glass substrate are ground with a fine-grained diamond grindstone, and a hole is made in the center of the glass substrate using a cylindrical grindstone, and the outer peripheral end surface is also ground. Chamfered. At this time, the surface roughness Rmax of the glass substrate was about 10 μm, and the surface roughness Rmax of the end surface of the glass substrate was Rmax.
Was about 14 μm.
【0033】(4) 端面研磨工程 次いで、コロイダルシリカ(10wt%)と酸化セリウ
ム(17wt%)を混合した研磨剤を使用して、線径が
0.2mmのナイロンからなるブラシによるブラシ研磨に
より、ガラス基板及び研磨ブラシを回転させながら、ガ
ラス基板の内周及び外周端面を研磨し、外周及び内周端
面の表面粗さRmaxを0.1μmに仕上げた。(4) End-face polishing step Next, using an abrasive in which colloidal silica (10 wt%) and cerium oxide (17 wt%) were mixed, the wire diameter was reduced.
By rotating the glass substrate and the polishing brush with a brush made of 0.2 mm nylon brush, the inner and outer peripheral end surfaces of the glass substrate are polished, and the surface roughness Rmax of the outer and inner peripheral end surfaces is reduced to 0.1 μm. Was.
【0034】(5) 研削工程 粒度#2000(粒径6〜8μm)のダイヤモンド砥粒
を固定したペレットを貼りつけた上下定盤に、キャリア
でガラス基板を保持し、潤滑油(クーラント)を供給し
ながら上下定盤を回転させてガラス基板の両面を研削加
工した。加工条件は、加工圧力10〜200g/c
m2、下定盤、上定盤回転数を3〜50rpmで調整し
て行った。この研削工程で得られたガラス基板の表面粗
さをミツトヨ(株)製触針式表面形状測定機サーフテス
トによって測定したところ、平均表面粗さRaが0.0
3μm、平坦度が1μmと良好な値を示していた。上
記、研削工程を終えたガラス基板を、中性洗剤、純水の
各洗浄槽に順次浸漬し、超音波洗浄した。(5) Grinding Step A glass substrate is held by a carrier on the upper and lower platens to which pellets having diamond abrasive grains having a particle size of # 2000 (particle diameter of 6 to 8 μm) are fixed, and lubricating oil (coolant) is supplied. The upper and lower platens were rotated while grinding both surfaces of the glass substrate. The processing conditions are a processing pressure of 10 to 200 g / c.
m 2 , lower platen and upper platen rotation speeds were adjusted at 3 to 50 rpm. The surface roughness of the glass substrate obtained in this grinding step was measured by a surf test using a stylus type surface profiler manufactured by Mitutoyo Corporation.
Good values of 3 μm and flatness of 1 μm were shown. The glass substrate after the above-described grinding step was sequentially immersed in each of washing tanks of a neutral detergent and pure water, and was subjected to ultrasonic washing.
【0035】(6) 第1研磨工程 次に、研削加工されたガラス基板に対して両面研磨装置
を用いて研磨加工を行った。両面研磨機は研磨パッドが
貼りつけられた上下定盤の間にキャリアにより保持した
ガラス基板を密着させ、このキャリアを太陽歯車と内歯
歯車とに噛合させ、上記ガラス基板を上下定盤によって
挟圧する。その後、研磨パッドとガラス基板の研磨面と
の間に研磨液を供給して回転させることによって、ガラ
ス基板の両面を同時に研磨加工するものである。尚、研
磨加工は、以下の条件で行った。 ポリシャ:硬質ポリシャ(硬質発泡ウレタン) 研磨液:コロイダルシリカ(30wt%)+酸化セリウ
ム(17wt%)+水 砥粒粒径:コロイダルシリカ(0.1μm)、酸化セリ
ウム(1.6μm) 加工圧力:120g/cm2 上定盤、下定盤回転数:5〜70rpm 除去量:20μm 研磨時間:80分(6) First Polishing Step Next, the ground glass substrate was polished using a double-side polishing apparatus. The double-side polishing machine makes the carrier hold the glass substrate held by the carrier between the upper and lower plates to which the polishing pad is attached, meshes the carrier with the sun gear and the internal gear, and holds the glass substrate between the upper and lower plates. Press. Thereafter, the polishing liquid is supplied and rotated between the polishing pad and the polishing surface of the glass substrate, thereby simultaneously polishing both surfaces of the glass substrate. The polishing was performed under the following conditions. Polisher: Hard polisher (hard urethane foam) Polishing liquid: Colloidal silica (30 wt%) + cerium oxide (17 wt%) + water Abrasive grain size: colloidal silica (0.1 μm), cerium oxide (1.6 μm) Processing pressure: Upper platen and lower platen at 120 g / cm 2 Rotation speed: 5 to 70 rpm Removal amount: 20 μm Polishing time: 80 minutes
【0036】上記第1研磨工程を終えたガラス基板を、
フッ酸+ケイフッ酸とを混合した酸の水溶液、中性洗
剤、純水、純水、IPA、IPA(蒸気乾燥)の各洗浄
槽に順次浸漬して、超音波洗浄し乾燥した。この得られ
たガラス基板の表面粗さをAFM(原子間力顕微鏡)で
測定したところ、平均表面粗さRaが0.6nm、最大
高さRmaxが4.2nmであった。また、研磨速度
は、0.25μm/minであった。After the first polishing step, the glass substrate is
They were sequentially immersed in cleaning tanks of an aqueous solution of an acid mixed with hydrofluoric acid and silicic hydrofluoric acid, a neutral detergent, pure water, pure water, IPA, and IPA (steam drying), ultrasonically washed and dried. When the surface roughness of the obtained glass substrate was measured by AFM (atomic force microscope), the average surface roughness Ra was 0.6 nm, and the maximum height Rmax was 4.2 nm. The polishing rate was 0.25 μm / min.
【0037】(7) 最終研磨工程 次に、第1研磨工程で使用した両面研磨装置を用い、以
下の条件で最終研磨加工を行った。 ポリシャ:軟質ポリシャ(スウェードパッド) 研磨液:コロイダルシリカ(5wt%)+酸化セリウム
(15wt%)+水 砥粒粒径:コロイダルシリカ(0.1μm)、酸化セリ
ウム(1.1μm) 加工圧力:120g/cm2 上定盤、下定盤回転数:5〜70rpm 除去量: 3μm 研磨時間:20分 上記最終研磨工程を終えたガラス基板を、フッ酸+ケイ
フッ酸とを混合した酸の水溶液、中性洗剤、純水、純
水、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬
して、超音波洗浄し乾燥した。(7) Final polishing step Next, using the double-side polishing apparatus used in the first polishing step, final polishing was performed under the following conditions. Polisher: Soft polisher (Suede pad) Polishing liquid: Colloidal silica (5 wt%) + cerium oxide (15 wt%) + water Abrasive grain size: colloidal silica (0.1 μm), cerium oxide (1.1 μm) Processing pressure: 120 g / cm 2 the upper platen, the lower plate rotation: 5~70Rpm removal quantity: 3 [mu] m polishing time: a glass substrate having been subjected to 20 minutes the final polishing step, an aqueous solution of the acid mixed with hydrofluoric acid + hydrosilicofluoric acid, neutral It was immersed sequentially in each of the cleaning tanks of detergent, pure water, pure water, IPA, and IPA (steam drying), ultrasonically washed, and dried.
【0038】この得られたラス基板の表面粗さをAFM
(原子間力顕微鏡)で測定したところ、平均表面粗さR
aが0.38nm、最大高さRmaxが3.9nmであ
った。また、微小うねり(95%PV値)は、 1.8
nmと良好な値を示していた。また、研磨速度は、0.
13μm/minであった。また、基板表面を微分干渉
顕微鏡による表面観察を行ったところ、基板表面に傷や
ピット(凹状欠陥)等の欠陥は存在せず、良好な表面で
あった。また、基板の端部形状をサーフテスト(触針式
表面形状測定機)によって測定したところ、ski-jumpの
値が0.00μm、roll-offの値が‐0.03μmと、
良好な値を示していた。The surface roughness of the obtained lath substrate was measured by AFM.
(Atomic force microscope), the average surface roughness R
a was 0.38 nm, and the maximum height Rmax was 3.9 nm. The minute undulation (95% PV value) is 1.8
nm and a good value. Further, the polishing rate is set at 0.1.
It was 13 μm / min. In addition, when the surface of the substrate was observed with a differential interference microscope, no defects such as scratches or pits (concave defects) were present on the substrate surface, and the surface was good. When the edge shape of the substrate was measured by a surf test (a stylus type surface shape measuring device), the ski-jump value was 0.00 μm, and the roll-off value was −0.03 μm.
It showed good values.
【0039】ここで、微小うねり(95%PV値)と
は、微小うねりの最大高さwaの95%PV値を意味す
る。この場合、微小うねりの最大高さwaとは、測定エ
リアにおいて全測定ポイントにおける測定曲線の最高点
と最低点との高さの差の値である。そして、95%PV
値とは、基板自体の表面状態を直接的には関係のないパ
ーティクルなどの異常突起による測定誤差を除くための
手法であり、全部の測定点について、測定値を横軸に、
その測定値が得られた測定個数を縦軸に表したヒストグ
ラム(測定値とその対応個数との関係を示す分布図であ
り、通常は正規分布曲線となる)をとったときに、その
分布曲線において、測定値を最小値から次第に大きくし
ていきながら各測定値に対応する測定の個数を累積して
いったとき、その累積個数が全個数の95%になったと
きの測定値を有効な測定値の最大値とする手法である。
この手法による最大値を「95%PV値」とし、この
「95%PV値」を最大高さwaとし、この最大高さw
aを微小うねりと表現するものである(詳しくは、特願
2000−99720号明細書参照)。Here, the minute undulation (95% PV value) means the 95% PV value of the maximum height wa of the minute undulation. In this case, the maximum height wa of the minute waviness is a value of a difference between the highest point and the lowest point of the measurement curve at all measurement points in the measurement area. And 95% PV
The value is a method for removing measurement errors due to abnormal projections such as particles that do not directly relate to the surface state of the substrate itself.For all measurement points, the measurement values are plotted on the horizontal axis.
When a histogram (a distribution diagram showing the relationship between the measured values and the corresponding number, which is usually a normal distribution curve) is displayed on the vertical axis of the measured number at which the measured value is obtained, the distribution curve is obtained. In the above, when the number of measurements corresponding to each measured value is accumulated while gradually increasing the measured value from the minimum value, the measured value when the accumulated number becomes 95% of the total number is effective. This is the method of setting the maximum value of the measured value.
The maximum value according to this method is “95% PV value”, the “95% PV value” is the maximum height wa, and the maximum height w
a is expressed as a minute undulation (for details, refer to Japanese Patent Application No. 2000-99720).
【0040】また、ski-jump及びroll-offとは、次のよ
うに定義されるものである。ski-jump値とは、基板の外
周端部形状が、ガラス基板の主表面の平坦面を基準とし
た場合の最も高い点(Ski-jump点)の値をいい、Roll-O
ff値とは、前記平坦面を基準面とした場合のグライド領
域の外周端位置における輪郭線上点(Roll-Off点)の値
をいう。詳しくは、以下のように測定されるものであ
る。図3に示すように、円板状のガラス基板の中央を通
り、主表面に垂直な面でガラス基板を切断した断面を考
える。この断面において、主表面の輪郭線上の記録エリ
ア内に2点の基準点を設定し、中央から近い順にR1,
R2とする。また、記録エリアの外周端部からさらに外
周方向に一定の距離のマージンをとった点R3(グライ
ド領域の外周端位置)を設定する。次に、点R1と点R
2とを結び、その延長線を描く。そうしたときに、点R
2から点R3までの領域において、基板の輪郭線上の点
と、直線R1R2(又はその延長線)との距離を測る。
その距離が正の方向に最も高いところの基板の輪郭線上
の点SがSki-jump(スキージャンプ)点であり、その距
離sの値がSki-jump値である。また、点R3の位置にお
ける輪郭線上点RがRoll-Off(ロールオフ)点であり、
点Rと直線R1R2(又はその延長線)との距離rがRo
ll-Off値である。なお、基板のサイズに応じて、上記点
R1、R2、R3を適宜選択する。例えば、外径サイズ
が2.5インチ、3.0インチ、3.5インチの基板の
場合、R3点は、基板の側壁面(側壁部)から内側に1
mmの位置に定める。また、外径サイズが2.5インチ
(外径65mmφ)の基板の場合、例えば、基板の中心
からの距離が、それぞれ、23mmの点(R1)、27
mmの点(R2)、31.5mmの点(R3)、32.
5mmの点(側壁面)のように定めることができる。The ski-jump and roll-off are defined as follows. The ski-jump value refers to the value of the highest point (Ski-jump point) when the shape of the outer peripheral edge of the substrate is based on the flat surface of the main surface of the glass substrate.
The ff value refers to a value of a point on a contour line (Roll-Off point) at an outer peripheral end position of the glide region when the flat surface is used as a reference surface. Specifically, it is measured as follows. As shown in FIG. 3, consider a cross section obtained by cutting the glass substrate along a plane passing through the center of the disk-shaped glass substrate and perpendicular to the main surface. In this section, two reference points are set in the recording area on the contour line of the main surface, and R1,
R2. Further, a point R3 (the outer peripheral end position of the glide area) is set with a certain distance margin in the outer peripheral direction from the outer peripheral end of the recording area. Next, the points R1 and R
Connect 2 and draw its extension. At that time, point R
In the region from the point 2 to the point R3, the distance between the point on the contour line of the substrate and the straight line R1R2 (or an extension thereof) is measured.
The point S on the contour line of the substrate where the distance is the highest in the positive direction is a Ski-jump (ski jump) point, and the value of the distance s is the Ski-jump value. The point R on the contour at the position of the point R3 is a Roll-Off (roll-off) point,
The distance r between the point R and the straight line R1R2 (or an extension thereof) is Ro
ll-Off value. Note that the points R1, R2, and R3 are appropriately selected according to the size of the substrate. For example, in the case of a substrate having an outer diameter of 2.5 inches, 3.0 inches, and 3.5 inches, the R3 point is 1 inward from the side wall surface (side wall portion) of the substrate.
mm. Further, in the case of a substrate having an outer diameter of 2.5 inches (outer diameter of 65 mmφ), for example, points (R1) and 27 (points) of 23 mm from the center of the substrate are 23 mm, respectively.
mm point (R2), 31.5 mm point (R3), 32.
It can be determined as a 5 mm point (side wall surface).
【0041】(8) 磁気ディスク製造工程 上記工程を経て得られた磁気ディスク用ガラス基板の両
主表面に、インライン型スパッタリング装置を用いて、
Cr下地層、CoCrPtB磁性層、水素化カーボン保
護層を順次成膜し、さらにディップ法によりパーフルオ
ロポリエーテル潤滑層を成膜して磁気ディスクを得た。
この得られた磁気ディスクについて、タッチダウンハイ
ト試験を実施したところ、5.5nmと良好な値を示し
た。また、ロードアンロード試験(10万回)を行って
もヘッドがクラッシュすることがなかった。(8) Magnetic Disk Manufacturing Process On both main surfaces of the magnetic disk glass substrate obtained through the above process, using an in-line sputtering device,
A Cr underlayer, a CoCrPtB magnetic layer, and a hydrogenated carbon protective layer were sequentially formed, and a perfluoropolyether lubricating layer was further formed by a dipping method to obtain a magnetic disk.
When a touch-down height test was performed on the obtained magnetic disk, a good value of 5.5 nm was obtained. Also, the head did not crash even after the load / unload test (100,000 times).
【0042】(実施例2)上述の実施例1において、酸
化セリウムを酸化ジルコニウムに変えた他は、実施例1
と同様にして(酸化ジルコニウムの濃度は10wt%、粒
径は1次研磨2.4μm、2次研磨1.0μm)磁気ディス
ク用ガラス基板、及び磁気ディスクを作成した。Example 2 Example 1 was the same as Example 1 except that cerium oxide was changed to zirconium oxide.
A glass substrate for a magnetic disk and a magnetic disk were prepared in the same manner as described above (the zirconium oxide concentration was 10 wt%, the particle size was 2.4 μm for primary polishing and 1.0 μm for secondary polishing).
【0043】この得られたラス基板の表面粗さをAFM
(原子間力顕微鏡)で測定したところ、平均表面粗さR
aが0.5nm、最大高さRmaxが7nmであった。ま
た、微小うねり(95%PV値)は、2.0nmと良好
な値を示していた。また、研磨速度は、第1研磨工程で
は0.28μm/min、最終研磨工程では、0.15
μm/minであった。また、基板表面を微分干渉顕微
鏡による表面観察を行ったところ、基板表面に傷やピッ
ト(凹状欠陥)等の欠陥は存在せず、良好な表面であっ
た。また、基板の端部形状をサーフテスト(触針式表面
形状測定機)によって測定したところ、ski-jumpが0.00
μm、roll-offが‐0.03μmと良好な値を示していた。
この得られた磁気ディスクについて、タッチダウンハイ
ト試験を実施したところ、6.5nmと良好な値を示し
た。また、ロードアンロード試験(10万回)を行って
もヘッドがクラッシュすることがなかった。The surface roughness of the obtained lath substrate was measured by AFM.
(Atomic force microscope), the average surface roughness R
a was 0.5 nm, and the maximum height Rmax was 7 nm. Further, the fine waviness (95% PV value) was as good as 2.0 nm. The polishing rate was 0.28 μm / min in the first polishing step, and 0.15 μm / min in the final polishing step.
μm / min. In addition, when the surface of the substrate was observed with a differential interference microscope, no defects such as scratches or pits (concave defects) were present on the substrate surface, and the surface was good. When the edge shape of the substrate was measured by a surf test (a stylus type surface shape measuring device), the ski-jump was 0.00.
μm and roll-off were −0.03 μm, which were good values.
When a touchdown height test was performed on the obtained magnetic disk, a good value of 6.5 nm was shown. Also, the head did not crash even after the load / unload test (100,000 times).
【0044】(比較例1〜3)上述の実施例において、
研磨液を酸化セリウム(17wt%)+水(比較例
1)、酸化ジルコニウム(10wt%)+水(比較例
2)、コロイダルシリカ(30wt%)+水(比較例
3)に変えた他は、実施例1と同様にして磁気ディスク
用ガラス基板、及び磁気ディスクを作製した。(Comparative Examples 1 to 3)
Except that the polishing liquid was changed to cerium oxide (17 wt%) + water (Comparative Example 1), zirconium oxide (10 wt%) + water (Comparative Example 2), colloidal silica (30 wt%) + water (Comparative Example 3), In the same manner as in Example 1, a glass substrate for a magnetic disk and a magnetic disk were manufactured.
【0045】その結果、比較例1、2では、基板表面に
傷やピットといった欠陥が発生し(ガラス相とセラミッ
クス相、固溶体部分の間で著しく加工速度が異なるた
め)、鏡面状態にならず、表面粗さは測定不能であっ
た。また、研磨速度も酸化セリウムのみの場合、第1研
磨工程では0.08μm、最終研磨工程では、0.04
μmであり、酸化ジルコニウムのみの場合、第1研磨工
程では0.09μm、最終研磨工程では、0.07μm
でありほぼ同等の研磨速度であった。これらの研磨速度
が低下した原因は、これらの研磨剤は結晶相及び固溶体
相に対する研磨速度が著しく低いためだと考えられる。As a result, in Comparative Examples 1 and 2, defects such as scratches and pits are generated on the substrate surface (because the processing speed is remarkably different between the glass phase, the ceramic phase, and the solid solution portion), and the mirror surface is not obtained. The surface roughness could not be measured. The polishing rate was 0.08 μm in the first polishing step when only cerium oxide was used, and 0.04 μm in the final polishing step.
μm, in the case of only zirconium oxide, 0.09 μm in the first polishing step, and 0.07 μm in the final polishing step.
And the polishing rates were almost the same. It is considered that the reason why these polishing rates were reduced is that these polishing agents have extremely low polishing rates for the crystal phase and the solid solution phase.
【0046】比較例3では、表面粗さは実施例1で得ら
れたものと同程度であったが、基板表面に傷やピットと
いった欠陥は見られなかった。しかし、第1研磨工程で
の研磨速度が0.08μm/min、最終研磨工程での
研磨速度が0.08μm/minと極端に遅くなり、実
施例1とほぼ同等の表面を得るために約3倍の時間を要
した。これは、コロイダルシリカはガラス基板に対して
研磨速度が一般的に遅いことと、研磨時間が長くなるに
したがい研磨パッドの目詰まりが発生し研磨速度が低下
したためと考えられる。一方、実施例1の場合には、コ
ロイダルシリカ(0.1μm)に比べて粒子径の大きい酸
化セリウム(1〜2μm)を含有するため、砥粒がパッ
ドにトラップされ易く、被加工面とパッドの間の滑りが
抑止されるため、目詰まりによる研磨速度の低下が起こ
りにくいためと考えられる。In Comparative Example 3, the surface roughness was similar to that obtained in Example 1, but no defects such as scratches and pits were found on the substrate surface. However, the polishing rate in the first polishing step was extremely low at 0.08 μm / min, and the polishing rate in the final polishing step was extremely low at 0.08 μm / min. It took twice as long. This is considered to be because the polishing rate of colloidal silica is generally low with respect to the glass substrate, and as the polishing time becomes longer, the polishing pad is clogged and the polishing rate decreases. On the other hand, in the case of Example 1, since cerium oxide (1-2 μm) having a larger particle diameter than colloidal silica (0.1 μm) is contained, abrasive grains are easily trapped by the pad, and the surface to be processed and the pad It is considered that since the slippage during the polishing is suppressed, the polishing rate is hardly reduced due to clogging.
【0047】また、これらのガラス基板を用いた磁気デ
ィスクについて、タッチダウンハイト試験、ロードアン
ロード試験を実施した結果、比較例1、2では、基板の
表面状態が悪いためにタッチダウンハイトを測定するこ
とができず、ロードアンロード試験もヘッドクラッシュ
が発生してしまった。また、比較例3では、タッチダウ
ンハイトが 5.5nmとほぼ実施例1と同様な結果
で、また、ロードアンロード試験もヘッドクラッシュは
発生しなかった。Further, a touchdown height test and a load unload test were performed on the magnetic disks using these glass substrates. As a result, in Comparative Examples 1 and 2, the touchdown height was measured because the surface condition of the substrate was poor. The head crash occurred in the load / unload test. In Comparative Example 3, the touchdown height was 5.5 nm, which was almost the same as that of Example 1. In the load / unload test, no head crash occurred.
【0048】(実施例3〜6,参考例1)次に、第1研
磨工程における研磨液の研磨剤濃度を変えたほかは、実
施例1と同様にして第1研磨工程を実施した例を実施例
3〜6,参考例1として掲げる。図1は第1研磨工程で
研磨液の研磨剤濃度を変えて研磨した実施例3〜6,参
考例1の場合の研磨速度、表面粗さRaを表にして示し
た図である。(Examples 3 to 6, Reference Example 1) Next, an example in which the first polishing step was performed in the same manner as in Example 1 except that the abrasive concentration of the polishing liquid in the first polishing step was changed. Examples 3 to 6 are listed as Reference Example 1. FIG. 1 is a table showing polishing rates and surface roughnesses Ra in the case of Examples 3 to 6 and Reference Example 1 in which polishing was performed by changing the polishing agent concentration of the polishing liquid in the first polishing step.
【0049】図1の表に示されるように、コロイダルシ
リカの濃度が高くなるに従い、研磨速度が早くなること
がわかる。コロイダルシリカの濃度が5wt%では、表
面に傷、ピットが発生することから、コロイダルシリカ
濃度は、10wt%以上にする必要があることがわか
る。また、コロイダルシリカの濃度を高くしても、得ら
れる基板の表面粗さRaは変化しないことから、経済性
を考慮すると、10〜30wt%が良い。As shown in the table of FIG. 1, it can be seen that the polishing rate increases as the concentration of colloidal silica increases. When the concentration of colloidal silica is 5 wt%, scratches and pits are generated on the surface, indicating that the colloidal silica concentration needs to be 10 wt% or more. Further, even if the concentration of colloidal silica is increased, the surface roughness Ra of the obtained substrate does not change. Therefore, from the viewpoint of economy, 10 to 30 wt% is preferable.
【0050】(実施例7〜11,比較例4,参考例2)
次に、最終研磨工程における研磨液の研磨剤濃度を変え
たほかは、実施例1と同様にして最終研磨工程を実施し
た例を実施例7〜11,比較例4,参考例2として掲げ
る。図2は最終研磨工程で研磨液の研磨剤濃度を変えて
研磨した実施例7〜11,比較例4,参考例2の場合の
研磨速度、表面粗さRaを表にして示した図である。(Examples 7 to 11, Comparative Example 4, Reference Example 2)
Next, examples in which the final polishing step was performed in the same manner as in Example 1 except that the abrasive concentration of the polishing liquid in the final polishing step was changed are listed as Examples 7 to 11, Comparative Example 4, and Reference Example 2. FIG. 2 is a table showing polishing rates and surface roughnesses Ra in Examples 7 to 11, Comparative Examples 4 and Reference Example 2 in which polishing was performed while changing the polishing agent concentration of the polishing liquid in the final polishing step. .
【0051】図2の表に示されるように、コロイダルシ
リカの濃度が2wt%の場合、基板表面に傷やピットが
発生してしまうことが分かる。また、研磨速度は、2〜
30wt%では一定であった。また、コロイダルシリカ
研磨剤濃度と、端部形状を観察したところ、研磨剤濃度
が高くなるに従って、roll-offの値が大きくなる結果と
なり、研磨剤濃度は、5〜10wt%が好ましいことが
分かる。尚、比較例4と参考例2では、基板表面に傷、
ピットが発生したことから、触針式測定器での測定では
再現性がなく、測定不能であった。As shown in the table of FIG. 2, when the concentration of colloidal silica is 2 wt%, scratches and pits are generated on the substrate surface. The polishing rate is 2 to
It was constant at 30 wt%. In addition, when the colloidal silica abrasive concentration and the end shape were observed, the higher the abrasive concentration, the larger the roll-off value, indicating that the abrasive concentration is preferably 5 to 10 wt%. . In Comparative Example 4 and Reference Example 2, the substrate surface was damaged.
Due to the occurrence of pits, the measurement with a stylus-type measuring instrument was not reproducible and could not be performed.
【0052】(実施例12〜15)実施例1において結
晶化ガラスの代わりに他の種類の結晶化ガラスを用いた
例として実施例12〜15を掲げる。すなわち、主結晶
がコージェライトの結晶化ガラス基板を用いた例(実施
例12)、スピネルの結晶化ガラス基板を用いた例(実
施例13)、α−クォーツの結晶化ガラス基板を用いた
例(実施例14)、リチウムジシリケートの結晶化ガラ
ス基板を用いた例(実施例15)である。これらの実施
例は、ガラスの種類を変えた他は、実施例1と同様にし
て磁気ディスク用ガラス基板、及び磁気ディスクを作製
したものである。但し、本発明の範囲内で、砥粒の粒径
及び濃度、加工圧力等の研磨条件は適宜調整して行っ
た。Examples 12 to 15 Examples 12 to 15 are given as examples in which another type of crystallized glass is used in place of the crystallized glass in Example 1. That is, an example using a crystallized glass substrate of cordierite as a main crystal (Example 12), an example using a crystallized glass substrate of spinel (Example 13), and an example using a crystallized glass substrate of α-quartz. (Example 14) An example (Example 15) using a crystallized glass substrate of lithium disilicate. In these examples, a glass substrate for a magnetic disk and a magnetic disk were produced in the same manner as in Example 1, except that the type of glass was changed. However, within the scope of the present invention, the polishing conditions such as the particle size and concentration of the abrasive grains and the processing pressure were appropriately adjusted.
【0053】その結果、いずれも基板表面には傷やピッ
トといった欠陥は発生せず、基板表面の表面粗さRa、
Rmax、微小うねりも実施例1と同様な値を示し良好
であった。また、磁気ディスクのタッチダウンハイト試
験、ロードアンロード試験もヘッドクラッシュは発生せ
ず、良好な結果であった。As a result, no defects such as scratches and pits are generated on the substrate surface, and the surface roughness Ra,
Rmax and fine swell also showed the same values as in Example 1 and were good. In the touchdown height test and the load unload test of the magnetic disk, no head crash occurred and the results were good.
【0054】[0054]
【発明の効果】以上詳述したように、本発明は、ガラス
基板の表面と研磨部材との間に研磨液を介在させ、ガラ
ス基板と研磨部材とを相対運動させて研磨加工する場合
において、研磨液として、ガラス相に対してメカノケミ
カルな研磨作用を有する第1研磨剤と、セラミックス相
に対して主にメカニカルな研磨作用を有する第2研磨剤
とを混合したものを用いることを特徴とするもので、こ
れにより、表面欠陥の発生をおさえつつ高い表面平滑性
を保ち、かつ、迅速な研磨ができる情報記録媒体用ガラ
ス基板の製造方法及び情報記録媒体の製造方法を得てい
るものである。As described above in detail, the present invention relates to a case where a polishing liquid is interposed between the surface of a glass substrate and a polishing member, and the glass substrate and the polishing member are relatively moved to perform polishing. As the polishing liquid, a mixture of a first abrasive having a mechanochemical polishing action on a glass phase and a second abrasive having a mainly mechanical polishing action on a ceramic phase is used. Accordingly, a method for manufacturing a glass substrate for an information recording medium and a method for manufacturing an information recording medium capable of maintaining high surface smoothness while suppressing the occurrence of surface defects, and enabling quick polishing have been obtained. is there.
【図1】第1研磨工程で研磨液の研磨剤濃度を変えて研
磨した実施例3〜6,参考例1の場合の研磨速度、表面
粗さRaを表にして示した図である。FIG. 1 is a table showing polishing rates and surface roughnesses Ra in Examples 3 to 6 and Reference Example 1 in which polishing was performed by changing the polishing agent concentration of a polishing liquid in a first polishing step.
【図2】最終研磨工程で研磨液の研磨剤濃度を変えて研
磨した実施例7〜11,比較例4,参考例2の場合の研
磨速度、表面粗さRaを表にして示した図である。FIG. 2 is a table showing polishing rates and surface roughnesses Ra in Examples 7 to 11, Comparative Examples 4 and Reference Example 2 in which polishing was performed by changing the polishing agent concentration of a polishing liquid in a final polishing step. is there.
【図3】スキージャンプ及びロールオフの説明図であ
る。FIG. 3 is an explanatory diagram of ski jump and roll-off.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C03C 10/14 C03C 10/14 Fターム(参考) 3C058 AA07 CA01 CA06 CB10 DA02 DA12 4G059 AA09 AB09 AC03 4G062 AA11 BB01 BB06 CC10 DA05 DA06 DB03 DB04 DC01 DD01 DE01 DF01 EA01 EA02 EA03 EB01 EB02 EB03 EC01 EC02 EC03 ED04 ED05 EE01 EE02 EE03 EF01 EF02 EF03 EG01 EG02 EG03 FA01 FB03 FB04 FC01 FC02 FC03 FD01 FE01 FF01 FG01 FH01 FJ01 FJ02 FJ03 FK01 FL01 GA01 GA10 GB01 GC01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM27 NN33 QQ02 QQ05 QQ08 QQ16 5D112 AA02 BA03 GA09 GA14 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) C03C 10/14 C03C 10/14 F term (reference) 3C058 AA07 CA01 CA06 CB10 DA02 DA12 4G059 AA09 AB09 AC03 4G062 AA11 BB01 BB06 CC10 DA05 DA06 DB03 DB04 DC01 DD01 DE01 DF01 EA01 EA02 EA03 EB01 EB02 EB03 EC01 EC02 EC03 ED04 ED05 EE01 EE02 EE03 EF01 EF02 EF03 EG01 EG02 EG03 FA01 FB03 FB04 FC01 F01 F01 F01 FF01 F01 FF01 GD01 GE01 HH01 HH03 HH05 HH07 HH09 HH11 HH13 HH15 HH17 HH20 JJ01 JJ03 JJ04 JJ05 JJ07 JJ10 KK01 KK03 KK05 KK07 KK10 MM27 NN33 QQ02 QQ05 QQ08 QQ16 5D112 AA02 BA03 GA09
Claims (7)
磨液を介在させ、ガラス基板と研磨部材とを相対運動さ
せて研磨加工する情報記録媒体用ガラス基板の製造方法
において、前記ガラス基板は、少なくとも基板表面にガ
ラス相とセラミックス相とを有する結晶化ガラスであっ
て、 前記研磨液は、ガラス相(非晶質相)に対してメカノケ
ミカル(機械化学的)な研磨作用を有する第1研磨剤
と、セラミックス相(結晶相)に対して主にメカニカル
(機械的)な研磨作用を有する第2研磨剤とを混合した
ものであることを特徴とする情報記録媒体用ガラス基板
の製造方法。1. A method for manufacturing a glass substrate for an information recording medium, wherein a polishing liquid is interposed between a surface of a glass substrate and a polishing member, and the glass substrate and the polishing member are relatively moved to perform polishing. Is a crystallized glass having at least a glass phase and a ceramic phase on a substrate surface, wherein the polishing liquid has a mechanochemical (mechanochemical) polishing action on a glass phase (amorphous phase). (1) A glass substrate for an information recording medium, comprising: a mixture of an abrasive and a second abrasive mainly having a mechanical (mechanical) polishing action on a ceramic phase (crystal phase). Method.
ノケミカル(機械化学的)な研磨作用を有する第1研磨
剤としては、酸化セリウム、酸化ジルコニウム、酸化
鉄、酸化マンガンの中から選ばれる少なくとも1種であ
って、 前記セラミックス相(結晶相)に対して主にメカニカル
(機械的)な研磨作用を有する第2研磨剤としては、コ
ロイダルシリカ、酸化チタンの中から選ばれる少なくと
も一種であることを特徴とする請求項1記載の情報記録
媒体用ガラス基板の製造方法。2. The first abrasive having a mechanochemical (mechanochemical) polishing action on the glass phase (amorphous phase) is selected from cerium oxide, zirconium oxide, iron oxide and manganese oxide. At least one selected from the group consisting of at least one selected from colloidal silica and titanium oxide as the second abrasive having a mainly mechanical (mechanical) polishing action on the ceramic phase (crystal phase) 2. The method for manufacturing a glass substrate for an information recording medium according to claim 1, wherein:
相(結晶相)に対して主にメカニカル(機械的)な研磨
作用を有する第2研磨剤の含有量を、3〜30wt%と
することを特徴とする請求項1又は2記載の情報記録媒
体用ガラス基板の製造方法。3. The method according to claim 1, wherein the content of the second polishing agent having a mechanical (mechanical) polishing action on the ceramic phase (crystal phase) in the polishing liquid is 3 to 30 wt%. The method for producing a glass substrate for an information recording medium according to claim 1 or 2, wherein:
晶質相)に対してメカノケミカル(機械化学的)な研磨
作用を有する第1研磨剤の含有量を、1〜20wt%と
することを特徴とする請求項3記載の情報記録媒体用ガ
ラス基板の製造方法。4. The content of the first abrasive having a mechanochemical (mechanochemical) polishing action on the glass phase (amorphous phase) in the polishing liquid is 1 to 20% by weight. 4. The method for manufacturing a glass substrate for an information recording medium according to claim 3, wherein:
を、研磨布を張った上下定盤に挟持させ、研磨液を供給
して上下定盤をそれぞれ回転させることにより、ガラス
基板の表面を研磨加工する研磨工程を有する情報記録媒
体用ガラス基板の製造方法において、 前記研磨液は、酸化セリウムと酸化ジルコニウムのいず
れか一方又は両方と、コロイダルシリカとを混合したも
のであることを特徴とする情報記録媒体用ガラス基板の
製造方法。5. The surface of a glass substrate is polished by holding a glass substrate held by a carrier between upper and lower platens covered with a polishing cloth, supplying a polishing liquid, and rotating the upper and lower platens, respectively. A method for manufacturing a glass substrate for an information recording medium having a polishing step, wherein the polishing liquid is a mixture of colloidal silica and one or both of cerium oxide and zirconium oxide. Of manufacturing glass substrates for use.
用ガラス基板の製造方法によって得られた情報記録媒体
用ガラス基板上に、少なくとも記録層を形成することを
特徴とする情報記録媒体の製造方法。6. An information recording medium according to claim 1, wherein at least a recording layer is formed on the information recording medium glass substrate obtained by the method for producing an information recording medium glass substrate according to claim 1. Production method.
とする請求項6記載の情報記録媒体の製造方法。7. The method according to claim 6, wherein the recording layer is a magnetic layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000341637A JP4562274B2 (en) | 2000-11-09 | 2000-11-09 | Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000341637A JP4562274B2 (en) | 2000-11-09 | 2000-11-09 | Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002150548A true JP2002150548A (en) | 2002-05-24 |
JP4562274B2 JP4562274B2 (en) | 2010-10-13 |
Family
ID=18816349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000341637A Expired - Fee Related JP4562274B2 (en) | 2000-11-09 | 2000-11-09 | Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4562274B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005022621A1 (en) * | 2003-08-27 | 2005-03-10 | Fujimi Incorporated | Polishing composition and polishing method using same |
WO2006025539A1 (en) * | 2004-08-30 | 2006-03-09 | Showa Denko K.K. | Polishing slurry, production method of glass substrate for information recording medium and production method of information recording medium |
WO2006025545A1 (en) * | 2004-08-30 | 2006-03-09 | Showa Denko K.K. | Magnetic disk substrate and production method of magnetic disk |
JP2007260853A (en) * | 2006-03-29 | 2007-10-11 | Konica Minolta Opto Inc | Polishing method of amorphous glass |
JP2009086519A (en) * | 2007-10-02 | 2009-04-23 | Shin Etsu Chem Co Ltd | Polarizing glass, optical isolator using the same, and manufacturing method |
JP2011000704A (en) * | 2006-03-24 | 2011-01-06 | Hoya Corp | Method of manufacturing glass substrate for magnetic disk, and method for manufacturing the magnetic disk |
JP2011230220A (en) * | 2010-04-27 | 2011-11-17 | Asahi Glass Co Ltd | Polishing method of glass substrate, and method of manufacturing glass substrate by using the polishing method of glass substrate |
JP2012079364A (en) * | 2010-09-30 | 2012-04-19 | Konica Minolta Opto Inc | Method for manufacturing glass substrate for information recording medium |
JP2012143845A (en) * | 2011-01-13 | 2012-08-02 | Kao Corp | Polishing liquid composition for amorphous glass substrate |
JP2013140669A (en) * | 2007-09-28 | 2013-07-18 | Hoya Corp | Method of manufacturing glass substrate for magnetic disk |
JP2015009315A (en) * | 2013-06-28 | 2015-01-19 | Hoya株式会社 | Grinding/polishing carrier, and method for manufacturing glass substrate for magnetic disk |
WO2019097945A1 (en) * | 2017-11-17 | 2019-05-23 | 信越化学工業株式会社 | Polishing agent for synthetic quartz glass substrate and polishing method for synthetic quartz glass substrate |
WO2020066998A1 (en) * | 2018-09-26 | 2020-04-02 | 株式会社バイコウスキージャパン | Polishing liquid, concentrate of same, method for producing polished article using polishing liquid, and polishing method of substrate using polishing liquid |
DE102022134350A1 (en) | 2022-12-21 | 2024-06-27 | Fraunhofer-Institut für Lasertechnik ILT | Quartz glass workpiece for use in a plasma-assisted manufacturing process and method for producing the workpiece |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536756B2 (en) * | 1974-05-13 | 1978-03-10 | ||
JPH07502778A (en) * | 1992-04-27 | 1995-03-23 | ロデール インコーポレーテッド | Compositions and methods for polishing and planarizing surfaces |
JPH07244947A (en) * | 1994-03-08 | 1995-09-19 | Hitachi Ltd | Magnetic disk device, magnetic disk and production of magnetic disk |
JPH08147688A (en) * | 1994-11-16 | 1996-06-07 | Ohara Inc | Manufacture of magnetic disk substrate |
JPH09132770A (en) * | 1995-11-07 | 1997-05-20 | Mitsui Mining & Smelting Co Ltd | Abradant, its production and abrasion |
JPH10226532A (en) * | 1995-12-28 | 1998-08-25 | Yamamura Glass Co Ltd | Glass composition for magnetic disk substrate and magnetic disk substrate |
JPH11116267A (en) * | 1996-09-04 | 1999-04-27 | Hoya Corp | Glass having high modulus of specific elasticity |
JP2000163740A (en) * | 1998-11-26 | 2000-06-16 | Mitsui Kinzoku Precision:Kk | Production of crystallized glass substrate for magnetic recording medium |
JP2000336344A (en) * | 1999-03-23 | 2000-12-05 | Seimi Chem Co Ltd | Abrasive |
-
2000
- 2000-11-09 JP JP2000341637A patent/JP4562274B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS536756B2 (en) * | 1974-05-13 | 1978-03-10 | ||
JPH07502778A (en) * | 1992-04-27 | 1995-03-23 | ロデール インコーポレーテッド | Compositions and methods for polishing and planarizing surfaces |
JPH07244947A (en) * | 1994-03-08 | 1995-09-19 | Hitachi Ltd | Magnetic disk device, magnetic disk and production of magnetic disk |
JPH08147688A (en) * | 1994-11-16 | 1996-06-07 | Ohara Inc | Manufacture of magnetic disk substrate |
JPH09132770A (en) * | 1995-11-07 | 1997-05-20 | Mitsui Mining & Smelting Co Ltd | Abradant, its production and abrasion |
JPH10226532A (en) * | 1995-12-28 | 1998-08-25 | Yamamura Glass Co Ltd | Glass composition for magnetic disk substrate and magnetic disk substrate |
JPH11116267A (en) * | 1996-09-04 | 1999-04-27 | Hoya Corp | Glass having high modulus of specific elasticity |
JP2000163740A (en) * | 1998-11-26 | 2000-06-16 | Mitsui Kinzoku Precision:Kk | Production of crystallized glass substrate for magnetic recording medium |
JP2000336344A (en) * | 1999-03-23 | 2000-12-05 | Seimi Chem Co Ltd | Abrasive |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005022621A1 (en) * | 2003-08-27 | 2005-03-10 | Fujimi Incorporated | Polishing composition and polishing method using same |
WO2006025539A1 (en) * | 2004-08-30 | 2006-03-09 | Showa Denko K.K. | Polishing slurry, production method of glass substrate for information recording medium and production method of information recording medium |
WO2006025545A1 (en) * | 2004-08-30 | 2006-03-09 | Showa Denko K.K. | Magnetic disk substrate and production method of magnetic disk |
JP2006096977A (en) * | 2004-08-30 | 2006-04-13 | Showa Denko Kk | Polishing slurry, method for producing glass substrate for information recording medium and method for producing information recording medium |
US8029687B2 (en) | 2004-08-30 | 2011-10-04 | Showa Denko K.K. | Polishing slurry, production method of glass substrate for information recording medium and production method of information recording medium |
US8763428B2 (en) | 2006-03-24 | 2014-07-01 | Hoya Corporation | Method for producing glass substrate for magnetic disk and method for manufacturing magnetic disk |
US9038417B2 (en) | 2006-03-24 | 2015-05-26 | Hoya Corporation | Method for producing glass substrate for magnetic disk and method for manufacturing magnetic disk |
JP2011000704A (en) * | 2006-03-24 | 2011-01-06 | Hoya Corp | Method of manufacturing glass substrate for magnetic disk, and method for manufacturing the magnetic disk |
JP2007260853A (en) * | 2006-03-29 | 2007-10-11 | Konica Minolta Opto Inc | Polishing method of amorphous glass |
JP2013140669A (en) * | 2007-09-28 | 2013-07-18 | Hoya Corp | Method of manufacturing glass substrate for magnetic disk |
JP2009086519A (en) * | 2007-10-02 | 2009-04-23 | Shin Etsu Chem Co Ltd | Polarizing glass, optical isolator using the same, and manufacturing method |
JP2011230220A (en) * | 2010-04-27 | 2011-11-17 | Asahi Glass Co Ltd | Polishing method of glass substrate, and method of manufacturing glass substrate by using the polishing method of glass substrate |
JP2012079364A (en) * | 2010-09-30 | 2012-04-19 | Konica Minolta Opto Inc | Method for manufacturing glass substrate for information recording medium |
JP2012143845A (en) * | 2011-01-13 | 2012-08-02 | Kao Corp | Polishing liquid composition for amorphous glass substrate |
JP2015009315A (en) * | 2013-06-28 | 2015-01-19 | Hoya株式会社 | Grinding/polishing carrier, and method for manufacturing glass substrate for magnetic disk |
WO2019097945A1 (en) * | 2017-11-17 | 2019-05-23 | 信越化学工業株式会社 | Polishing agent for synthetic quartz glass substrate and polishing method for synthetic quartz glass substrate |
WO2020066998A1 (en) * | 2018-09-26 | 2020-04-02 | 株式会社バイコウスキージャパン | Polishing liquid, concentrate of same, method for producing polished article using polishing liquid, and polishing method of substrate using polishing liquid |
DE102022134350A1 (en) | 2022-12-21 | 2024-06-27 | Fraunhofer-Institut für Lasertechnik ILT | Quartz glass workpiece for use in a plasma-assisted manufacturing process and method for producing the workpiece |
Also Published As
Publication number | Publication date |
---|---|
JP4562274B2 (en) | 2010-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0941973B1 (en) | Crystallized glass substrate, and information recording medium using the crystallized glass substrate | |
US5868953A (en) | Method for manufacturing a magnetic disk substrate | |
JP4785406B2 (en) | Polishing slurry, method for producing glass substrate for information recording medium, and method for producing information recording medium | |
JP5142548B2 (en) | Manufacturing method of glass substrate for magnetic disk and polishing pad | |
JP3568888B2 (en) | Glass substrate for information recording medium, information recording medium, and method for producing them | |
JP2006092722A (en) | Magnetic disk substrate and production method of magnetic disk | |
JP2003036528A (en) | Base for information recording medium, its manufacturing method, and information recording medium | |
JP4562274B2 (en) | Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium | |
JP6490842B2 (en) | Grinding tool, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, and magnetic disk manufacturing method | |
JP5321594B2 (en) | Manufacturing method of glass substrate and manufacturing method of magnetic recording medium | |
JP3512702B2 (en) | Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium | |
JPWO2009031401A1 (en) | Manufacturing method of glass substrate for information recording medium, glass substrate for information recording medium and magnetic recording medium | |
JP3254157B2 (en) | Glass substrate for recording medium, and recording medium using the substrate | |
WO2012029857A1 (en) | Method for producing glass substrate for magnetic disks, and method for producing magnetic disk | |
WO2010041537A1 (en) | Process for producing glass substrate, and process for producing magnetic recording medium | |
JP3554476B2 (en) | Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same | |
WO2010041536A1 (en) | Process for producing glass substrate, and process for producing magnetic recording medium | |
JP3639277B2 (en) | Glass substrate for magnetic recording medium, magnetic recording medium, and manufacturing method thereof | |
JP3665777B2 (en) | Method for manufacturing glass substrate for magnetic recording medium, and method for manufacturing magnetic recording medium | |
JPH10241134A (en) | Glass substrate for information-recording medium and magnetic recording medium using the same | |
JP2006095675A (en) | Magnetic disk substrate, and method of producing magnetic disk | |
JP4347146B2 (en) | Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk | |
JP3600767B2 (en) | Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same | |
JP5859757B2 (en) | Manufacturing method of glass substrate for HDD | |
WO2014103284A1 (en) | Method for producing glass substrate for information recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070417 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090707 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090827 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100727 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100727 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |