JPH07244947A - Magnetic disk device, magnetic disk and production of magnetic disk - Google Patents

Magnetic disk device, magnetic disk and production of magnetic disk

Info

Publication number
JPH07244947A
JPH07244947A JP3672394A JP3672394A JPH07244947A JP H07244947 A JPH07244947 A JP H07244947A JP 3672394 A JP3672394 A JP 3672394A JP 3672394 A JP3672394 A JP 3672394A JP H07244947 A JPH07244947 A JP H07244947A
Authority
JP
Japan
Prior art keywords
magnetic disk
substrate
film
magnetic
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3672394A
Other languages
Japanese (ja)
Inventor
Kiyoshi Akamatsu
潔 赤松
Takao Nakamura
孝雄 中村
Hiroaki Hagimae
広明 萩前
Kenji Furusawa
賢司 古澤
Kouji Tani
谷  弘詞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3672394A priority Critical patent/JPH07244947A/en
Publication of JPH07244947A publication Critical patent/JPH07244947A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic disk having a high recording density and high reliability by forming island-shaped very small projecting parts on the surface of a substrate for the magnetic disk, thereby decreasing the adhesive force between the magnetic disk and a magnetic head. CONSTITUTION:A cerium pad consisting of a foamed polyurethane impregnated with cerium oxide is used as polishing cloth and fine powder of cerium oxide is used as a abrasive compound in the case of using a crystallized glass substrates as a magnetic disk substrate. The glass substrate is formed to gentle shapes A by a grinding method using the cerium oxide having an average grain size of 1 to 3mum. Crystallized particles 7 form projecting shapes and amorphous parts 8 form recessed shapes in the crystallized glass substrates. The shapes B are formed by smoothing by this working method. Further, the shapes C are obtd. by a working method using a mechanochemical grinding method. The nuclei 21 in the central parts of the crystal particles 7 are projected more than outer peripheral parts 22 including the nuclei 21 and the projecting parts smaller than the crystal particle are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高記録密度に適応した
磁気ディスク装置に係わり、特に、磁気ディスクの表面
性状に関し、磁気ディスクのヘッド浮上特性やCSS特
性、ヘッド粘着などの耐摺動特性を向上させることにつ
いて好適な表面性状の磁気ディスクを有する磁気ディス
ク装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic disk device adapted to a high recording density, and more particularly, to a surface property of a magnetic disk, a head floating characteristic, a CSS characteristic, a sliding resistance characteristic such as head adhesion of the magnetic disk. The present invention relates to a magnetic disk device having a magnetic disk having a surface texture suitable for improving the magnetic field.

【0002】[0002]

【従来の技術】従来、薄膜磁気ディスクにはアルミニウ
ム合金表面にNi−Pめっきを施し、その表面は砥粒を
用いたテクスチャ加工により凹凸形成している。
2. Description of the Related Art Conventionally, a thin film magnetic disk has an aluminum alloy surface which is plated with Ni-P, and the surface of the thin film magnetic disk is made uneven by texture processing using abrasive grains.

【0003】さらに、従来技術の結晶化ガラスについ
て、特開平2−187922号公報に記載されているよ
うに、結晶相と非晶質相の混合相を用い、表面に微小な
凸部を形成する方法が示されている。
Further, as to the crystallized glass of the prior art, as described in Japanese Patent Application Laid-Open No. 2-187922, a mixed phase of a crystalline phase and an amorphous phase is used to form minute convex portions on the surface. The method is shown.

【0004】一方、磁気ディスク装置の記録容量を増大
させるため、磁気ヘッドの浮上高さは非常に小さくな
り、100nmより狭くなることが要求されている。こ
のため、テクスチャ加工したディスクの基板表面の粗さ
は、表面凹凸が小さい研磨した加工面の表面粗さに近い
表面状態になる。したがって、浮上高さを小さくするた
めには、テクスチャ加工した面の表面粗さを小さくする
必要がある。このような基板形状の磁気ディスクでは、
磁気ヘッド及び磁気ヘッドスライダとの接触部が増大す
ることにより摩擦力が増大し、一時静止後の磁気ヘッド
が磁気ディスク表面に粘着し、磁気ディスク装置の始動
時にヘッド支持系の破損やディスク駆動用モ−タが回転
しないなどの問題があった。
On the other hand, in order to increase the recording capacity of the magnetic disk device, the flying height of the magnetic head is required to be extremely small, and it is required to be narrower than 100 nm. Therefore, the roughness of the substrate surface of the textured disk has a surface state close to that of the polished processed surface with small surface irregularities. Therefore, in order to reduce the flying height, it is necessary to reduce the surface roughness of the textured surface. With such a substrate-shaped magnetic disk,
The frictional force increases due to the increase in the contact area with the magnetic head and the magnetic head slider, and the magnetic head after temporary rest adheres to the magnetic disk surface, causing damage to the head support system or disk drive when the magnetic disk device is started. There was a problem that the motor did not rotate.

【0005】[0005]

【発明が解決しようとする課題】従来技術では、磁気デ
ィスク用基板はアルミニウム合金表面にニッケル−リン
をめっきした基板を用い、その基板面に砥粒を用いたテ
クスチャ加工により凹凸形成している。この凹凸形状は
基板に対して主として同心円上に形成され、凸部は連続
した尾根状になっている。そのため、磁気ヘッドと磁気
ディスクとの対向面での接触は線状になり、接触面の比
率(負荷比率)が大きくなる。この接触面の比率を小さ
くするには、凹凸をさらに大きくする方法があるが、磁
気ヘッドの低浮上化に適さない。したがって、凹凸を小
さくしかも磁気ヘッドと磁気ディスクとの接触面積を小
さくするには、凸部をアイランド状(島状)とする課題
が生じた。
In the prior art, as a magnetic disk substrate, a substrate in which an aluminum alloy surface is plated with nickel-phosphorus is used, and unevenness is formed on the substrate surface by texturing using abrasive grains. The concavo-convex shape is formed mainly on a concentric circle with respect to the substrate, and the convex portion has a continuous ridge shape. Therefore, the contact between the opposing surfaces of the magnetic head and the magnetic disk becomes linear, and the ratio of the contact surfaces (load ratio) increases. There is a method of further increasing the unevenness in order to reduce the ratio of the contact surface, but it is not suitable for reducing the flying height of the magnetic head. Therefore, in order to reduce the unevenness and also reduce the contact area between the magnetic head and the magnetic disk, there arises a problem that the convex portion has an island shape (island shape).

【0006】結晶化ガラスに関する従来技術は、特開平
2−187922号公報に記載されているように、結晶
相を凸形成する方法が示されている。しかしながら、結
晶相全体が凸部を形成しているにとどまり、結晶相中の
核と核を包含する周辺部との関係に関して述べられてお
らず、凸部を結晶相の微粒子より小さくすることができ
ない。
As a conventional technique relating to crystallized glass, as described in Japanese Patent Application Laid-Open No. 2-187922, a method of forming a convex crystal phase is shown. However, only the entire crystalline phase forms a convex portion, and the relationship between the nucleus in the crystalline phase and the peripheral portion including the nucleus is not described, and it is possible to make the convex portion smaller than the fine particles of the crystalline phase. Can not.

【0007】そこで、本発明は、磁気ディスク装置にお
ける磁気ディスクと磁気ヘッドとの接触面積を小さくし
て、磁気ヘッドスライダと磁気ディスクとの低浮上性お
よび耐摺動性が向上した磁気ディスク装置を提供するこ
とを目的とする。
Therefore, the present invention provides a magnetic disk device in which the contact area between the magnetic disk and the magnetic head in the magnetic disk device is reduced to improve the low flying property and sliding resistance between the magnetic head slider and the magnetic disk. The purpose is to provide.

【0008】また、本発明の他の目的は、磁気ディスク
装置に適用される磁気ディスクにおいて、磁気ヘッドも
しくは磁気ヘッドスライダとの低浮上性および耐摺動性
に関して優れた表面性状を有する磁気ディスクを提供す
ることである。
Another object of the present invention is to provide a magnetic disk applied to a magnetic disk device, which has a surface property excellent in low floating property and sliding resistance with respect to a magnetic head or a magnetic head slider. Is to provide.

【0009】更に、本発明の他の目的は、磁気ディスク
装置に適用される磁気ディスクにおいて、磁気ヘッドも
しくは磁気ヘッドスライダとの低浮上性および耐摺動性
に関して優れた表面性状を有する磁気ディスクの形成方
法に関する。
Still another object of the present invention is to provide a magnetic disk applied to a magnetic disk device, which has a surface property excellent in low flying property and sliding resistance with respect to a magnetic head or a magnetic head slider. It relates to a forming method.

【0010】さらに、本発明の他の目的としては、発明
が適用される磁気ディスク装置において、該装置の稼働
時に磁気ヘッドスライダと磁気ディスクとの接触による
影響を低減する機構であって、基板上に少なくとも磁性
層、保護層、及び潤滑層を有する磁気ディスクの磁気デ
ィスク基板もしくは磁気ディスク上の金属膜の表面形状
に関する。
Still another object of the present invention is a magnetic disk device to which the present invention is applied, which is a mechanism for reducing the influence of contact between the magnetic head slider and the magnetic disk when the device is in operation, The present invention relates to a surface shape of a magnetic disk substrate of a magnetic disk having at least a magnetic layer, a protective layer, and a lubricating layer, or a metal film on the magnetic disk.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明は、中心部に核を有しかつ核を包含する外周部
からなる微粒子が、磁気ディスク基板もしくは磁気ディ
スクの表面においてアイランド状に点在し、微粒子の形
成面より突出した部分を有し、その微粒子の中心部の核
によって突起部を形成し、核を包含する外周部が平滑面
を形成した磁気ディスクと、磁気ディスクに対して記録
/再生を行う磁気ヘッドを有する磁気ヘッドスライダと
を少なくとも磁気ディスク装置に有する。この時、本発
明が適用された磁気ディスクは、微粒子の外形より小さ
い凸部を有し、磁気ディスクの表面粗さを平滑に保ち且
つ微小突起を有することができるので、磁気ヘッドスラ
イダ及び磁気ヘッドとの低浮上性および耐摺動性が向上
する。
In order to achieve the above object, the present invention is directed to a case where fine particles having a nucleus in a central portion and having an outer peripheral portion including the nucleus are island-shaped on the surface of a magnetic disk substrate or a magnetic disk. A magnetic disk that has a portion that is scattered over the surface of the particle and that protrudes from the surface on which the particles are formed, the protrusions are formed by the core of the center of the particle, and the outer peripheral portion including the core forms a smooth surface. At least a magnetic disk device has a magnetic head slider having a magnetic head for recording / reproducing. At this time, the magnetic disk to which the present invention is applied has a convex portion smaller than the outer shape of the fine particles, can keep the surface roughness of the magnetic disk smooth, and can have fine protrusions. The low floating property and the sliding resistance are improved.

【0012】磁気ディスク基板に結晶化ガラス基板を用
いる場合について説明する。結晶化ガラス基板は、結晶
核を中心に結晶粒子を形成し、それぞれの結晶粒子の間
は非晶質層に取り囲まれている。従来の基板製造法で
は、基板のプレス成型、端面加工、平行出しラップ加
工、表面粗さを平滑にする研磨加工を行っている。最終
工程となる研磨加工において、従来、酸化セリウム入り
の硬質発泡ポリウレタンパッド上で、酸化セリウム水溶
液を介して、ガラスを研磨する方法が採られている。ま
た加工時間を短くするため、大きな研磨剤粒子が用いら
れていた。このため、研磨剤の酸化セリウムの機械的引
っかき作用により、10から40ナノメ−タの表面粗さ
であった。
A case where a crystallized glass substrate is used as the magnetic disk substrate will be described. The crystallized glass substrate forms crystal grains centering on crystal nuclei, and each crystal grain is surrounded by an amorphous layer. In the conventional substrate manufacturing method, press molding of a substrate, end face processing, parallel lap processing, and polishing processing for smoothing the surface roughness are performed. In the polishing process which is the final step, conventionally, a method of polishing glass on a hard foamed polyurethane pad containing cerium oxide via an aqueous cerium oxide solution has been adopted. Also, large abrasive particles have been used to shorten the processing time. Therefore, the surface roughness was 10 to 40 nanometers due to the mechanical scratching action of the abrasive cerium oxide.

【0013】結晶化ガラス基板が結晶粒子の核部分とそ
の核を包含する外周部と非晶質部分から構成されている
ことを利用して、ガラス基板表面に微小凹凸を形成する
方法を考えた。結晶粒子の核部分とその核を包含する外
周部と非晶質部分において加工特性が異なる加工状態に
することにより、結晶粒子の核部分のみを凸形状とする
加工法を行い、核を包含する外周部と非晶質部分を平滑
面とし、高密度で微細な凸部を有するアイランド状の磁
気ディスク基板にできる。
A method of forming minute irregularities on the surface of a glass substrate has been considered by utilizing the fact that the crystallized glass substrate is composed of a nucleus portion of crystal grains, an outer peripheral portion including the nucleus and an amorphous portion. . The core part of the crystal grain and the peripheral part including the core and the amorphous part are processed to have different processing characteristics, so that only the core part of the crystal grain is processed into a convex shape to include the core. It is possible to form an island-shaped magnetic disk substrate having a high density and fine projections by using the outer peripheral portion and the amorphous portion as smooth surfaces.

【0014】磁気ディスク20は、図19に示すよう
に、上記の磁気ディスク基板30の表面にCr等の下地
膜31、Co合金の磁性膜32、カ−ボン等の保護膜3
3さらにフッ素系潤滑膜34を形成して得られる。磁気
ディスク基板に磁性膜や保護膜を形成した後の磁気ディ
スクの表面形状は、成膜前の基板形状が残り、変化しな
い。したがって、基板形状の凸部が磁性膜や保護膜など
を成膜する前の磁気ディスク基板に形成されると、磁気
ディスクの表面上の凸部形状が規定される。ここで、上
記の磁気ディスクを図20に示すように、磁気ヘッド8
1を磁気ディスク80面上に設置し、磁気ディスクを数
枚積み重ね、あるいは1枚の磁気ディスクを組み立てて
磁気ディスク装置を構成する。この磁気ディスク装置に
おいて、装置が稼働すると、磁気ヘッドは図21に示す
ようにディスク面上を摺動し、ディスク表面とヘッドス
ライダ82面(図22に示す)との間に介入する空気の
流れによって浮上し、また装置が停止すると磁気ヘッド
はディスク表面上に静止する状態となる。この動作を一
般にContact−Start−Stop(CSS)
特性と呼ぶ。本発明では、このCSS時での磁気ヘッド
がディスク面上を浮上する状態での磁気ヘッドの低浮上
化、また磁気ヘッドがディスク面上に静止状態でのヘッ
ド粘着回避、さらに、磁気ヘッドと磁気ディスク面上を
摺動している状態での磁気ヘッドと磁気ディスクとの接
触力の低減を達成できる。
As shown in FIG. 19, the magnetic disk 20 has a base film 31 of Cr or the like, a magnetic film 32 of Co alloy, a protective film 3 of carbon or the like on the surface of the magnetic disk substrate 30.
3 Obtained by further forming a fluorine-based lubricating film 34. The surface shape of the magnetic disk after forming the magnetic film and the protective film on the magnetic disk substrate remains unchanged from the shape of the substrate before film formation. Therefore, when the substrate-shaped convex portion is formed on the magnetic disk substrate before forming the magnetic film or the protective film, the convex shape on the surface of the magnetic disk is defined. Here, as shown in FIG.
1 is installed on the surface of the magnetic disk 80, several magnetic disks are stacked, or one magnetic disk is assembled to form a magnetic disk device. In this magnetic disk device, when the device is operated, the magnetic head slides on the disk surface as shown in FIG. 21, and the air flow intervenes between the disk surface and the head slider 82 surface (shown in FIG. 22). The magnetic head floats, and when the apparatus stops, the magnetic head comes to rest on the disk surface. This operation is generally called Contact-Start-Stop (CSS).
Call it a characteristic. The present invention reduces the flying height of the magnetic head when the magnetic head flies above the disk surface during CSS, avoids head adhesion when the magnetic head is stationary on the disk surface, and further It is possible to reduce the contact force between the magnetic head and the magnetic disk while sliding on the disk surface.

【0015】結晶化ガラス以外の磁気ディスク基板にお
いても、微粒子の突起制御法により高密度で微細な凸部
を有するアイランド状の表面形状を有する磁気ディスク
基板に磁性膜、保護膜、潤滑膜を形成した磁気ディスク
にできる。具体的には、基板上にもしくは基板の上部に
設けた各層上へ中心部に核を有しかつ核を包含する外周
部からなる微粒子を設け、結晶粒子の核部分とその核を
包含する外周部と非晶質部分において加工特性が異なる
加工状態にすることにより、結晶粒子の核部分のみを凸
形状とする加工法を行い、核を包含する外周部と非晶質
部分を平滑面とし、高密度で微細な凸部を有するアイラ
ンド状の磁気ディスクを得ることができる。
Also for magnetic disk substrates other than crystallized glass, a magnetic film, a protective film, and a lubricating film are formed on a magnetic disk substrate having an island-like surface shape with high density and fine projections by a method of controlling fine particle projections. It can be a magnetic disk. Specifically, on the substrate or on each layer provided on the upper part of the substrate, fine particles having a nucleus in the center and an outer peripheral portion including the nucleus are provided, and the nucleus portion of the crystal grain and the outer periphery including the nucleus are provided. By making the processing state in which the processing characteristics are different in the part and the amorphous part, a processing method is performed in which only the core part of the crystal grain has a convex shape, and the outer peripheral part including the core and the amorphous part are smooth surfaces, It is possible to obtain an island-shaped magnetic disk having high density and fine protrusions.

【0016】[0016]

【作用】結晶質部分と非晶質部分への研磨剤砥粒の押し
込みに注目する。被加工物への砥粒の押し込みにより砥
粒のひっかき跡が基板形状として転写され、表面粗さ形
状が形成される。研磨剤となる砥粒の機械的作用は、砥
粒の粒子径や押し込み圧力や材質の影響を受けると考え
られる。結晶粒子に比べ微細な砥粒の押し込み圧力は研
磨布全体の負荷荷重のみで決められず、微視的に見れば
砥粒を支持する研磨布の硬さにより決まる。
[Operation] Attention is paid to the pressing of the abrasive grains into the crystalline portion and the amorphous portion. When the abrasive grains are pressed into the workpiece, the scratch marks of the abrasive grains are transferred as a substrate shape, and a surface roughness shape is formed. It is considered that the mechanical action of the abrasive grains as the abrasive is influenced by the particle size of the abrasive grains, the pressing pressure, and the material. The pressing pressure of finer abrasive grains than that of crystal grains is not determined only by the load applied to the entire polishing cloth, but microscopically determined by the hardness of the polishing cloth that supports the abrasive grains.

【0017】さらに、結晶粒子の核部分とその核を包含
する外周部部分との加工性に注目する。結晶粒子の核と
その核を包含する外周部の機械的化学的研磨作用の差に
よる加工量差を設定することにより、結晶粒子の核部を
凸部に形成可能となる。
Further, attention is paid to the workability between the core part of the crystal grain and the outer peripheral part including the core. By setting the processing amount difference due to the difference in mechanical / chemical polishing action between the core of the crystal grain and the outer peripheral portion including the core, the core portion of the crystal grain can be formed in the convex portion.

【0018】したがって、ディスク基板の材質、研磨剤
の砥粒および研磨布を選定し、その加工特性を制御する
ことにより、ディスク基板上にナノメ−タオ−ダ−の加
工量差を設け、アイランド状の高密度かつ微細な凸部形
状を形成することが可能となる。
Therefore, by selecting the material of the disk substrate, the abrasive grains of the polishing agent and the polishing cloth and controlling the processing characteristics thereof, a processing amount difference of nanometer order is provided on the disk substrate to form an island shape. It is possible to form a high density and fine convex shape.

【0019】[0019]

【実施例】本発明の一実施例を図を用いて説明する。Embodiment An embodiment of the present invention will be described with reference to the drawings.

【0020】図1を用いて磁気ディスク基板の形状形成
の加工方法について説明する。加工工程1では、両面研
磨装置の上定盤1、下定盤2に、硬度70度から80度
の硬質な研磨パッド、略して硬質パッド3を装着してい
る。加工工程2では、両面研磨装置の上下定盤1、2に
は、硬度20度の軟質な研磨パッド、略して軟質パッド
4を装着している。磁気ディスク基板5は上下定盤1、
2の間にキャリア6を介して保持されている。加工工程
1および加工工程2はともに、研磨剤として二酸化けい
素の微粉末を用いる。それぞれディスク基板5に研磨用
硬質パッド3、軟質パッド4を押し付け研磨圧力を負荷
して、研磨剤を介して相対摺動させて研磨加工をする。
A processing method for forming the shape of the magnetic disk substrate will be described with reference to FIG. In the processing step 1, a hard polishing pad having a hardness of 70 to 80 degrees, that is, a hard pad 3 for short is attached to the upper surface plate 1 and the lower surface plate 2 of the double-side polishing apparatus. In the processing step 2, a soft polishing pad having a hardness of 20 degrees, that is, a soft pad 4 for short is attached to the upper and lower surface plates 1 and 2 of the double-side polishing apparatus. The magnetic disk substrate 5 is the upper and lower surface plate 1,
It is held via carrier 6 between the two. In both the processing step 1 and the processing step 2, fine powder of silicon dioxide is used as an abrasive. The polishing hard pad 3 and the soft pad 4 are pressed against the disk substrate 5 respectively, a polishing pressure is applied thereto, and they are slid relative to each other through an abrasive for polishing.

【0021】本発明による磁気ディスク基板の表面形状
の形成モデルを図2を用いて説明する。磁気ディスク基
板に結晶化ガラス基板を用いる場合について説明する。
従来のガラス基板の研磨加工法は、酸化セリウムを用い
ている。この方法によれば、酸化セリウムを含浸した発
泡ポリウレタンによるセリウムパッドを研磨布とし、研
磨剤として酸化セリウムの微粉末を用いている。酸化セ
リウムの砥粒がガラス基板に機械的作用を主にしてはた
らき、酸化セリウムの砥粒径に応じて、ガラス基板の表
面が形成され、平均砥粒径が1から3μmの酸化セリウ
ムを用いる研磨法では、ガラス基板はなだらかな(A)
形状に形成され、その表面粗さは10から40nmRmax
になる。結晶化ガラス基板では、結晶粒子7が凸形状、
非晶質部8が凹形状となり、凹凸面を形成している。酸
化セリウムの平均砥粒径が1から3μmであり、0.1μ
m以下の砥粒を用いる磁気ディスク用ガラス基板の加工
法について、加工面のナノメ−タオ−ダの形状形成は明
らかになされていなかった。本発明による加工工程1に
よる平滑化加工により、(B)形状となる。結晶粒子7
を構成する核21と核21を包含する外周部22と非晶
質部8が平滑面を形成する。さらに、機械的化学的研磨
法を用いる加工法により、(C)形状となる。(C)形
状では、結晶粒子7の中心部の核21が核21を包含す
る外周部22に比べに突起に形成されている。結晶粒子
の中心部の核21が微小な凸形状を形成し、結晶粒子の
中心部を包含する外周部分22と非晶質部8が平滑面を
形成することにより、結晶粒子より小さい凸部が形成さ
れる。
A model for forming the surface shape of the magnetic disk substrate according to the present invention will be described with reference to FIG. A case where a crystallized glass substrate is used as the magnetic disk substrate will be described.
Cerium oxide is used as a conventional glass substrate polishing method. According to this method, a cerium pad made of expanded polyurethane impregnated with cerium oxide is used as a polishing cloth, and cerium oxide fine powder is used as an abrasive. Abrasive grains of cerium oxide act mainly on the mechanical action on the glass substrate, the surface of the glass substrate is formed according to the abrasive grain size of cerium oxide, and polishing using cerium oxide having an average abrasive grain size of 1 to 3 μm By law, the glass substrate is gentle (A)
Shaped, the surface roughness is 10 to 40 nm Rmax
become. In the crystallized glass substrate, the crystal grains 7 have a convex shape,
The amorphous portion 8 has a concave shape and forms an uneven surface. The average abrasive grain size of cerium oxide is 1 to 3 μm,
Regarding the method of processing a glass substrate for a magnetic disk using abrasive grains of m or less, the formation of nanometer-ordered shapes on the processed surface has not been clarified. The (B) shape is obtained by the smoothing processing in the processing step 1 according to the present invention. Crystal grain 7
The core 21, the outer peripheral portion 22 including the core 21, and the amorphous portion 8 form a smooth surface. Further, the (C) shape is obtained by the processing method using the mechanical chemical polishing method. In the shape (C), the nucleus 21 at the central portion of the crystal grain 7 is formed as a protrusion as compared with the outer peripheral portion 22 including the nucleus 21. The core 21 at the center of the crystal grain forms a minute convex shape, and the outer peripheral portion 22 including the center of the crystal grain and the amorphous portion 8 form a smooth surface. It is formed.

【0022】図3に、本発明による加工面形状の表面粗
さ計による形状を示す。酸化セリウムを用いた従来加工
法による断面形状は(D)となり、なだらか形状で、表
面粗さは20nmRmaxの加工面である。本発明によ
る図2(B)の平滑化加工面を断面形状(E)に示すよ
うに、3nmRmaxの平滑面になっている。さらに、
本発明による図2(C)の機械的化学的研磨法によるテ
クスチャ加工面は断面形状(F)に示すように、15か
ら20nmRmaxのアイランド状の凸部を形成してい
る。
FIG. 3 shows the shape of the machined surface according to the present invention as measured by a surface roughness meter. The cross-sectional shape obtained by the conventional processing method using cerium oxide is (D), which is a smooth surface and has a surface roughness of 20 nmRmax. The smoothed surface of FIG. 2B according to the present invention is a smooth surface of 3 nmRmax as shown in the sectional shape (E). further,
As shown in the sectional shape (F), the textured surface by the mechanical chemical polishing method of FIG. 2 (C) according to the present invention forms island-shaped convex portions of 15 to 20 nmRmax.

【0023】本発明による磁気ディスク基板の原子間力
顕微鏡による表面形状を図4に示す。図4は、従来加工
法によるなだらかな研磨面を示している。図5に、本発
明による加工面を示している。原子間力顕微鏡による測
定結果に示されるように、1mm平方の領域に本発明に
よる凸部がアイランド状に4×106個形成されてい
る。
FIG. 4 shows the surface shape of the magnetic disk substrate according to the present invention observed by an atomic force microscope. FIG. 4 shows a smooth polished surface by the conventional processing method. FIG. 5 shows a machined surface according to the present invention. As shown by the measurement result by the atomic force microscope, 4 × 10 6 island-shaped projections according to the present invention are formed in a 1 mm square area.

【0024】図6に、図5の形状の電子顕微鏡による観
察結果を示す。断面写真図6(A)によれば、結晶粒子
の中央部に微小突起があり、結晶粒子の大きさは約1μ
m、その突起の大きさは約0.1μmでありその突起高
さは20から30nmであり、その突起の大きさは結晶
粒子のほぼ1/10であり、結晶粒子より小さくなって
いる。結晶粒子の核部分を除いた核を包含する部分と非
晶質部分が平滑面を形成している。平面観察によれば
(図6(B))、突起密度は4.4×106個/1mm2
である。
FIG. 6 shows an observation result of the shape of FIG. 5 by an electron microscope. Cross-sectional photograph According to FIG. 6 (A), there is a fine protrusion in the center of the crystal grain, and the size of the crystal grain is about 1 μm.
m, the size of the protrusion is about 0.1 μm, the height of the protrusion is 20 to 30 nm, and the size of the protrusion is about 1/10 of the crystal grain, which is smaller than the crystal grain. A part including the core excluding the core part of the crystal grain and the amorphous part form a smooth surface. According to the plan view (FIG. 6 (B)), the protrusion density is 4.4 × 10 6 pieces / 1 mm 2
Is.

【0025】図7に、研磨剤の砥粒径の微細化によるガ
ラス基板の平滑化効果を示す。従来加工法である研磨剤
に酸化セリウムを用いた場合、平均砥粒径が1.3μm
から2.5μmであり、図3(D)に示すようになり、
10nmRp前後のなだらかな形状になる。本発明によ
る硬質の発泡ポリウレタンの研磨パッドを研磨布とし
て、研磨剤として酸化けい素の微粉末を用いることによ
り、酸化セリウムを用いたときに比べ、10nmRpか
ら2nmRpとなり、図3(E)の断面曲線に示すよう
に平滑化できる。
FIG. 7 shows the smoothing effect of the glass substrate by reducing the abrasive grain size of the abrasive. When using cerium oxide as the polishing agent, which is the conventional processing method, the average abrasive grain size is 1.3 μm.
To 2.5 μm, as shown in FIG.
It has a gentle shape of around 10 nmRp. By using the hard polyurethane foam polishing pad according to the present invention as the polishing cloth and using the fine powder of silicon oxide as the polishing agent, it becomes 10 nmRp to 2 nmRp as compared with the case of using cerium oxide, and the cross section of FIG. It can be smoothed as shown by the curve.

【0026】図8に、研磨パッドの硬度と研磨剤の砥粒
径の組合せによるガラス基板の表面粗さ形状への影響を
示す。微細な酸化けい素を研磨剤として用いた場合を7
−1、研磨剤に酸化セリウム平均砥粒径1.3μm、
2.5μmを用いた場合を7−2、7−3に示す。発泡
ポリウレタンの研磨パッドを研磨布に用い、研磨剤に酸
化セリウムを用いると、研磨パッドの硬度が20から8
0度では、結晶化ガラス基板の表面粗さ形状への影響は
小さい。これは、酸化セリウムの粒子径が大きく、その
機械的研磨作用が研磨面の表面形状形成の主要因となっ
ているためである。平均砥粒径20nmの微細な酸化け
い素を研磨剤として用いる場合、研磨パッドの硬さによ
って、結晶化ガラス基板の表面粗さ形状が変化する。す
なわち、硬度が70から80度の硬質な研磨パッドと微
細な酸化けい素の組合せによって、機械的研磨作用によ
り、結晶化ガラス基板の表面粗さ形状はより平滑にな
る。さらに、硬度が20度の軟質な研磨パッドと微細な
酸化けい素の組合せによって、機械的化学的研磨作用に
より、その表面形状の微小凸部がアイランド状に高密度
に点在することを示している。
FIG. 8 shows the influence of the combination of the hardness of the polishing pad and the abrasive grain size of the polishing agent on the surface roughness shape of the glass substrate. 7 when using fine silicon oxide as an abrasive
-1, cerium oxide having an average abrasive grain size of 1.3 μm as an abrasive,
The case of using 2.5 μm is shown in 7-2 and 7-3. When a polyurethane foam polishing pad is used as the polishing cloth and cerium oxide is used as the polishing agent, the hardness of the polishing pad is 20 to 8
At 0 degree, the influence on the surface roughness shape of the crystallized glass substrate is small. This is because the particle diameter of cerium oxide is large and its mechanical polishing action is the main factor for forming the surface shape of the polishing surface. When using fine silicon oxide having an average grain size of 20 nm as an abrasive, the surface roughness shape of the crystallized glass substrate changes depending on the hardness of the polishing pad. That is, the combination of a hard polishing pad having a hardness of 70 to 80 degrees and fine silicon oxide makes the surface roughness shape of the crystallized glass substrate smoother by the mechanical polishing action. Furthermore, by combining a soft polishing pad with a hardness of 20 degrees and fine silicon oxide, it is shown that the fine protrusions of the surface shape are scattered in high density in an island shape by the mechanical and chemical polishing action. There is.

【0027】図9に、本発明による結晶化ガラス基板の
加工面に関して、軟質な研磨パッドと微細な酸化けい素
を研磨剤として用いる場合の表面粗さへの加工時間の影
響を示す。加工時間とともに非晶質部分が除去され、結
晶質部分が凸部を形成し、その突出し量が大きくなり、
表面粗さが大きくなることを示している。加工速度30
m/min、加工圧力10kPaの加工条件において、
加工時間2分から4分において、表面粗さRpが20か
ら25nmとなり、ナノメ−タオ−ダ−で突起形状を制
御できることを示している。
FIG. 9 shows the influence of the processing time on the surface roughness when a soft polishing pad and fine silicon oxide are used as an abrasive for the processed surface of the crystallized glass substrate according to the present invention. Amorphous parts are removed with processing time, crystalline parts form convex parts, and the protruding amount increases,
It shows that the surface roughness becomes large. Processing speed 30
In the processing conditions of m / min and processing pressure of 10 kPa,
The surface roughness Rp becomes 20 to 25 nm in the processing time of 2 to 4 minutes, which shows that the protrusion shape can be controlled by the nanometer order.

【0028】図10に、本発明による結晶化ガラス基板
の加工面の表面粗さと負荷比率の関係を示す。断面形状
の突起部から5nm下がった高さにある波形の面積比率
を負荷比率5nmと呼び、図中aで示し、突起部から1
0nm下がった高さにある波形の面積比率を負荷比率1
0nmと呼び、図中bで示す。従来のガラス基板の酸化
セリウムを用いる研磨加工法では、表面粗さ10nmR
pであるが、負荷比率5nmが8%以上となり粘着力の
増大が心配される。軟質な研磨パッドと微細な酸化けい
素を研磨剤として用いる場合、結晶粒子が凸部を形成
し、表面粗さ20nmRpで、負荷比率5nmが0.2
%を得られる。
FIG. 10 shows the relationship between the surface roughness of the processed surface of the crystallized glass substrate according to the present invention and the load ratio. The area ratio of the waveform at a height 5 nm lower than the protrusion of the cross-sectional shape is called a load ratio of 5 nm, and it is indicated by a in the figure and is 1 from the protrusion.
The area ratio of the waveform at the height lowered by 0 nm is the load ratio 1
It is called 0 nm and is indicated by b in the figure. In the conventional polishing method using cerium oxide for a glass substrate, the surface roughness is 10 nmR
However, the load ratio of 5 nm is 8% or more, and there is concern that the adhesive strength will increase. When a soft polishing pad and fine silicon oxide are used as abrasives, the crystal grains form convex portions, the surface roughness is 20 nmRp, and the load ratio is 5 nm is 0.2.
% Can be obtained.

【0029】図11に、上記の微細な凸部を形成した結
晶化ガラス基板にCo−Cr−Ta磁性膜を膜厚30n
m、カ−ボンの保護膜を膜厚30nm、フッ素系潤滑剤
を膜厚5nm形成した磁気ディスクに対して、磁気ヘッ
ドの浮上性を調べた結果を説明する。磁気ヘッドの浮上
量は、磁気ディスクの表面粗さ形状と相関があり、粗さ
が小さいほど、すなわち、平滑面であるほど浮上量を小
さくできる。従来法に比べ、本発明による磁気ディスク
基板は、例えば、表面粗さRpが20nmの場合、従来
法ではヘッド浮上量は50nmであるが、本発明では3
2nmに低減できた。
In FIG. 11, a Co-Cr-Ta magnetic film having a film thickness of 30 n is formed on the crystallized glass substrate having the fine projections formed thereon.
The results of examining the levitation property of the magnetic head with respect to a magnetic disk having a protective film of m, a carbon protective film of 30 nm, and a fluorine-based lubricant of 5 nm will be described. The flying height of the magnetic head has a correlation with the surface roughness shape of the magnetic disk, and the smaller the roughness, that is, the smoother the surface, the smaller the flying height. Compared with the conventional method, in the magnetic disk substrate according to the present invention, for example, when the surface roughness Rp is 20 nm, the head flying height is 50 nm in the conventional method.
It could be reduced to 2 nm.

【0030】図12に、本発明による磁気ディスクと磁
気ヘッドとの摩擦係数について説明する。従来法による
基板形状では、表面を平滑にし、表面粗さRpが20n
m以下になると、磁気ヘッドと磁気ディスクとの摩擦係
数が急激に増大し、磁気ヘッドが磁気ディスクに粘着す
る。本発明による、凸部を有する磁気ディスク基板に薄
膜形成した磁気ディスクでは、表面粗さRpが20nm
以下においても摩擦係数の増大を押さえ、磁気ヘッドが
磁気ディスクに粘着することを回避できる。したがっ
て、本発明による磁気ディスク基板を用いた磁気ディス
クから成る磁気ディスク装置において、高記録密度およ
び、装置の高い信頼性を達成するために必須である磁気
ヘッドの低浮上化とヘッド粘着防止を同時に達成でき、
著しい効果を得ることが確認された。
FIG. 12 illustrates the friction coefficient between the magnetic disk and the magnetic head according to the present invention. In the conventional substrate shape, the surface is smoothed and the surface roughness Rp is 20n.
If it is less than m, the friction coefficient between the magnetic head and the magnetic disk rapidly increases, and the magnetic head adheres to the magnetic disk. In the magnetic disk according to the present invention in which a thin film is formed on the magnetic disk substrate having the convex portion, the surface roughness Rp is 20 nm.
Also in the following, it is possible to suppress the increase of the friction coefficient and prevent the magnetic head from sticking to the magnetic disk. Therefore, in a magnetic disk device including a magnetic disk using a magnetic disk substrate according to the present invention, at the same time, it is essential to achieve high recording density and low reliability of the magnetic head, which is essential for achieving high reliability of the device. Can be achieved,
It was confirmed that a remarkable effect was obtained.

【0031】図13に、本発明の一実施例における加工
プロセスと形状モデル図を示す。図13−(A)に示す
ように、平滑な磁気ディスク基板9に微細粒子10を分
散付着させる。この微細粒子10は、中心部に核21と
核21を包含する外周部22により構成されている。図
13−(B)に示すように、その微細粒子10を核にし
て膜成長を行い、非晶質部11を形成する。さらに、図
13−(C)に示すように、軟質パッドと微細粒子の組
合せによる機械的化学的な研磨方法により、微細粒子1
0の中心の核21が凸部となり、核21を包含する外周
部22と非晶質部11が平滑面を形成し、微細凸部がア
イランド状に点在する磁気ディスク基板を形成する。
FIG. 13 shows a machining process and a shape model diagram in one embodiment of the present invention. As shown in FIG. 13- (A), fine particles 10 are dispersed and attached to a smooth magnetic disk substrate 9. The fine particles 10 are composed of a core 21 and an outer peripheral portion 22 including the core 21 in the center. As shown in FIG. 13- (B), film growth is performed using the fine particles 10 as nuclei to form the amorphous portion 11. Further, as shown in FIG. 13- (C), the fine particles 1 are formed by a mechanical chemical polishing method using a combination of a soft pad and fine particles.
The nucleus 21 at the center of 0 forms a convex portion, the outer peripheral portion 22 including the nucleus 21 and the amorphous portion 11 form a smooth surface, and the fine convex portions form a magnetic disk substrate scattered in an island shape.

【0032】図14に、本発明による他の実施例におけ
る加工プロセスと形状モデル図を示す。図14−(A)
に示すように、平滑な磁気ディスク基板9上の磁性膜1
2に微細粒子10を分散付着させる。図14−(B)に
示すように、その微細粒子10を核にして膜成長を行
い、非晶質部11を形成する。非晶質部11を形成する
ためにはデポジションにより最適な条件を揃えてガラス
質材料を膜形成すれば良い。この時膜厚を数nmに制御
する必要があり、デポジションによる成膜が望ましいが
この方法により限定されるものではない。
FIG. 14 shows a machining process and a shape model diagram in another embodiment according to the present invention. Figure 14- (A)
As shown in FIG. 1, the magnetic film 1 on the smooth magnetic disk substrate 9
The fine particles 10 are dispersed and adhered to 2. As shown in FIG. 14- (B), film growth is performed using the fine particles 10 as nuclei to form an amorphous portion 11. In order to form the amorphous portion 11, a glassy material may be formed into a film under the optimum conditions by deposition. At this time, it is necessary to control the film thickness to several nm, and film formation by deposition is desirable, but the method is not limited to this method.

【0033】さらに、図14−(C)に示すように、基
板形状に追従する軟質パッドと微細粒子の組合せによる
機械的化学的な研磨方法により、微細粒子10の中心の
核21が凸部となり、核21を包含する外周部22と非
晶質部11が平滑面を形成し、本願発明の目的とする微
細な凸部がアイランド状に点在する磁気ディスク基板を
形成する。
Further, as shown in FIG. 14- (C), the core 21 at the center of the fine particle 10 becomes a convex portion by the mechanical chemical polishing method by the combination of the soft pad following the shape of the substrate and the fine particle. The outer peripheral portion 22 including the nuclei 21 and the amorphous portion 11 form a smooth surface, and a magnetic disk substrate in which fine convex portions which are the object of the present invention are scattered in an island shape is formed.

【0034】図15に、本発明による磁気ディスクの他
の加工方法として、磁気ディスク基板の内周側と外周側
の表面形状を異なるものとする方法について説明する。
プロセス1では、硬質パッド3と微細砥粒の組合せによ
り基板全面に平滑形状を形成し、次に、基板の内周側の
みに加工面とする軟質パッドを貼付た加圧装置13によ
り部分凸形状加工を行う。プロセス2では、軟質パッド
4と微細砥粒の組合せにより基板全面に凸部形状を形成
し、次に、基板の外周側のみに加工するような硬質パッ
ドを貼付た加圧装置14により平滑化形状加工を行う。
FIG. 15 illustrates another method of processing a magnetic disk according to the present invention, in which the surface shapes of the magnetic disk substrate on the inner peripheral side and the outer peripheral side are different.
In the process 1, a smooth shape is formed on the entire surface of the substrate by combining the hard pad 3 and the fine abrasive grains, and then the partial convex shape is applied by the pressurizing device 13 to which the soft pad to be the processed surface is attached only on the inner peripheral side of the substrate. Perform processing. In the process 2, the convex shape is formed on the entire surface of the substrate by the combination of the soft pad 4 and the fine abrasive grains, and then, the smoothing shape is applied by the pressurizing device 14 to which the hard pad for processing only the outer peripheral side of the substrate is attached. Perform processing.

【0035】図16に、部分凸部形成法と部分平滑化法
に用いる加工装置の概要を示す。プロセス1では、磁気
ディスク基板5はガイドロ−ラ15によって支持されて
いる。同時に、磁気ディスク基板5の内周側のみに軟質
パッドを貼付た加圧装置13に両側から押し付けられ加
工する。プロセス2では、磁気ディスク基板5は内周部
の保持治具16により支持されている。同時に、磁気デ
ィスク基板5の外周側のみに硬質パッドを貼付た加圧装
置14に両側から押し付けられ加工する。
FIG. 16 shows an outline of a processing apparatus used for the partial convex portion forming method and the partial smoothing method. In process 1, the magnetic disk substrate 5 is supported by the guide roller 15. At the same time, the magnetic disk substrate 5 is pressed from both sides and processed by the pressure device 13 having the soft pad attached only to the inner peripheral side. In process 2, the magnetic disk substrate 5 is supported by the holding jig 16 on the inner peripheral portion. At the same time, the magnetic disk substrate 5 is processed by being pressed from both sides to the pressure device 14 having a hard pad attached only on the outer peripheral side.

【0036】図17により、磁気ディスク基板5の加工
領域について説明する。基板5の内周部は磁気ディスク
装置において、磁気ヘッドが磁気ディスク上を浮上し、
磁気記録を読み込み、書き取りする領域であるデ−タゾ
−ン17である。磁気ヘッドが磁気ディスク上を浮上、
停止する領域、Contact−Start−Stop
(CSS)と呼んでいる、領域18である。
The processing area of the magnetic disk substrate 5 will be described with reference to FIG. In the magnetic disk device, the magnetic head floats above the magnetic disk at the inner peripheral portion of the substrate 5,
The data zone 17 is an area for reading and writing magnetic recording. The magnetic head flies over the magnetic disk,
Area to stop, Contact-Start-Stop
The area 18 is called (CSS).

【0037】図18に、請求項12と請求項13に記載
した結晶化ガラス基板形状を示す。結晶化ガラス基板を
対象に、図13に示す加工プロセスを適用した場合の加
工形状のモデル図を示している。プロセス1では、デ−
タゾ−ン17の平均面が、CSSゾ−ン18の平均面に
比べナノメ−タオ−ダで相対的に高い位置関係になる。
また、プロセス2では、デ−タゾ−ン17の平均面が、
CSSゾ−ン18の平均面に比べナノメ−タオ−ダで相
対的に低い位置関係になる。
FIG. 18 shows the crystallized glass substrate shapes described in claims 12 and 13. FIG. 14 shows a model diagram of a processed shape when the processing process shown in FIG. 13 is applied to a crystallized glass substrate. In process 1,
The average surface of the zoning 17 has a relatively higher positional relationship in nanometer order than the average surface of the CSS zone 18.
In Process 2, the average surface of the data zone 17 is
Compared to the average surface of the CSS zone 18, the nanometer order has a relatively low positional relationship.

【0038】以上、本発明における実施例によれば、磁
気ディスク用基板の表面にアイランド状の微小凸部を形
成することにより、磁気ディスク用基板の表面粗さ形状
をナノメ−タオ−ダで制御でき、しかも、その凸部を均
一な分布とすることができる。このため、磁気ディスク
装置において、磁気ディスクに対する磁気ヘッドの浮上
量をより小さくでき、しかも突起を分散させ、その接触
面積を小さくすることにより磁気ディスクと磁気ヘッド
との粘着力を小さくすることができるので、高記録密度
・高信頼性の磁気ディスクを得られる。
As described above, according to the embodiment of the present invention, by forming the island-shaped minute projections on the surface of the magnetic disk substrate, the surface roughness shape of the magnetic disk substrate is controlled by the nanometer order. In addition, the convex portions can have a uniform distribution. Therefore, in the magnetic disk device, the flying height of the magnetic head with respect to the magnetic disk can be further reduced, and the protrusions can be dispersed to reduce the contact area between the projections to reduce the adhesive force between the magnetic disk and the magnetic head. Therefore, a magnetic disk with high recording density and high reliability can be obtained.

【0039】さらに、平滑化工程と凸部形成加工法を組
み合わせることによって、磁気ディスクのCSSゾ−ン
の凸量を大きくすることによって、磁気ディスクと磁気
ヘッドとの粘着力を小さくすることができ、デ−タの読
み書きする領域では、より平滑な加工面とすることがで
きるので、磁気ディスクと磁気ヘッドとのすきまを狭め
ることができるので、高記録密度な磁気ディスクが得ら
れる。
Further, by combining the smoothing step and the convex portion forming processing method to increase the convex amount of the CSS zone of the magnetic disk, the adhesive force between the magnetic disk and the magnetic head can be reduced. In the area where the data is read and written, a smoother processed surface can be formed, and the gap between the magnetic disk and the magnetic head can be narrowed, so that a magnetic disk having a high recording density can be obtained.

【0040】このようにいくつかの実施例によって得ら
れた磁気ディスクは、図20の如くの磁気ディスク装置
に適用され、磁気ヘッドスライダ81によってCSS動
作、及び情報の記録/再生を行うことによって、磁気ヘ
ッドスライダの磁気ディスクへの粘着防止、磁気ディス
ク駆動モータへの負荷の低減、及び磁気ヘッドスライダ
又は磁気ヘッドの浮上量の低浮上か及び安定化を達する
ことができ、磁気ディスク装置の高記録密度化及び高信
頼性化を有する事ができる、
The magnetic disks thus obtained according to some embodiments are applied to the magnetic disk apparatus as shown in FIG. 20, and the CSS operation and the recording / reproducing of information are performed by the magnetic head slider 81. It is possible to prevent the magnetic head slider from sticking to the magnetic disk, reduce the load on the magnetic disk drive motor, and achieve a low flying height and stabilization of the flying height of the magnetic head slider or magnetic head, thus achieving high recording of the magnetic disk device. Can have higher density and higher reliability,

【0041】[0041]

【発明の効果】本発明によると、高密度で微細な凸部を
有するアイランド状の表面形状を有する磁気ディスク
と、その磁気ディスクへ情報を記録/再生を行う磁気ヘ
ッドスライダとを良好な状態にすることができ、高記録
密度、及び高信頼性を有する磁気ディスク装置を得る。
According to the present invention, a magnetic disk having an island-like surface shape having high density and fine projections, and a magnetic head slider for recording / reproducing information on / from the magnetic disk are put into a good state. A magnetic disk device having high recording density and high reliability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による磁気ディスク基板の形状加工法の
説明図。
FIG. 1 is an explanatory view of a magnetic disk substrate shape processing method according to the present invention.

【図2】本発明による磁気ディスク基板の表面形状の形
成モデル図。
FIG. 2 is a model drawing of the surface shape of the magnetic disk substrate according to the present invention.

【図3】本発明による磁気ディスク基板の触針式表面粗
さ計による断面形状を示すグラフ。
FIG. 3 is a graph showing a cross-sectional shape of a magnetic disk substrate according to the present invention by a stylus type surface roughness meter.

【図4】従来加工法による磁気ディスク基板の表面形状
を原子力顕微鏡によって測定した結果を示す図。
FIG. 4 is a view showing a result of measuring a surface shape of a magnetic disk substrate by a conventional processing method with an atomic force microscope.

【図5】本発明における磁気ディスク基板の表面形状を
原子力顕微鏡によって測定した結果を示す図。
FIG. 5 is a diagram showing a result of measuring a surface shape of a magnetic disk substrate according to the present invention by an atomic force microscope.

【図6】本発明による磁気ディスク基板の表面形状を走
査型電子顕微鏡によって測定した結果を示す図。
FIG. 6 is a diagram showing a result of measuring a surface shape of a magnetic disk substrate according to the present invention with a scanning electron microscope.

【図7】研磨剤の砥粒径の微細化によるガラス基板の平
滑化の効果を示す図。
FIG. 7 is a diagram showing the effect of smoothing a glass substrate by reducing the abrasive grain size of an abrasive.

【図8】研磨パッドの硬度と研磨剤の砥粒径の組合せに
よるガラス基板の表面粗さ形状への影響を示す図。
FIG. 8 is a diagram showing the influence of the combination of the hardness of the polishing pad and the abrasive grain size of the polishing agent on the surface roughness shape of the glass substrate.

【図9】本発明による結晶化ガラス基板の加工面に関し
て、軟質な研磨パッドと微細な酸化けい素を研磨剤とし
て用いる場合の表面粗さへの加工時間の影響を示す図。
FIG. 9 is a diagram showing the influence of processing time on the surface roughness when a soft polishing pad and fine silicon oxide are used as abrasives with respect to the processed surface of the crystallized glass substrate according to the present invention.

【図10】本発明による結晶化ガラス基板の加工面の表
面粗さと負荷比率の関係を示す図。
FIG. 10 is a diagram showing the relationship between the surface roughness of the processed surface of the crystallized glass substrate according to the present invention and the load ratio.

【図11】本発明による結晶化ガラス基板の加工面の表
面粗さと浮上性の関係を示す図。
FIG. 11 is a diagram showing the relationship between the surface roughness of the processed surface of the crystallized glass substrate according to the present invention and the floating property.

【図12】本発明による結晶化ガラス基板の加工面の表
面粗さと磁気ヘッドとの摩擦係数の関係を示す図。
FIG. 12 is a diagram showing the relationship between the surface roughness of the processed surface of the crystallized glass substrate according to the present invention and the coefficient of friction with the magnetic head.

【図13】本発明の一実施例における加工プロセスと形
状モデル図を示す図。
FIG. 13 is a diagram showing a machining process and a shape model diagram in one embodiment of the present invention.

【図14】本発明による他の実施例における加工プロセ
スと形状モデルを示す図。
FIG. 14 is a view showing a machining process and a shape model in another embodiment according to the present invention.

【図15】本発明による一実施例における磁気ディスク
基板の内周側と外周側の表面形状を異なるものとする方
法の説明図。
FIG. 15 is an explanatory view of a method of making the surface shapes of the inner peripheral side and the outer peripheral side of the magnetic disk substrate different from each other in one embodiment according to the present invention.

【図16】部分凸形成法と部分平滑化法に用いる加工装
置の概要を示す図。
FIG. 16 is a diagram showing an outline of a processing apparatus used for a partial convex forming method and a partial smoothing method.

【図17】磁気ディスク基板の部分凸形成法と部分平滑
化法の加工領域について説明する説明図。
FIG. 17 is an explanatory diagram for explaining a processing area of a partial protrusion forming method and a partial smoothing method of a magnetic disk substrate.

【図18】結晶化ガラス基板を対象にし、図15に示す
加工プロセスを適用した場合の加工形状のモデル図。
FIG. 18 is a model view of a processed shape when the processing process shown in FIG. 15 is applied to a crystallized glass substrate.

【図19】本発明を適用する磁気ディスクの構成を示す
図。
FIG. 19 is a diagram showing a configuration of a magnetic disk to which the present invention is applied.

【図20】本発明を適用する磁気ディスク装置の構成を
示す図。
FIG. 20 is a diagram showing a configuration of a magnetic disk device to which the present invention is applied.

【図21】磁気デイスクと磁気ヘッドの摺動状態を示す
図。
FIG. 21 is a diagram showing a sliding state of a magnetic disk and a magnetic head.

【図22】本発明による磁気ディスクの特性評価に用い
た磁気ヘッドの形状を示す図。
FIG. 22 is a diagram showing the shape of a magnetic head used for evaluating the characteristics of a magnetic disk according to the present invention.

【符号の説明】[Explanation of symbols]

1 両面研磨装置の上定盤 2 両面研磨装置の下定盤 3 硬質な研磨パッド 4 軟質な研磨パッド 5 磁気ディスク基板 7 結晶化ガラス基板の結晶粒子 8 結晶化ガラス基板の非晶質部分 10 微粒子 13 基板の内周側のみに加工するような軟質パッドを
貼付た加圧装置 14 磁気ディスク基板5の外周側のみに硬質パッドを
貼付た加圧装置 15 ガイドロ−ラ 16 磁気ディスク基板の内周部の保持治具 20 磁気ディスク 21 結晶粒子の中心部の核 22 結晶粒子の中心部の核を包含する外周部 80 磁気ディスク 81 磁気ヘッドスライダ 85 磁気ディスク装置
1 Upper Plate of Double-sided Polishing Device 2 Lower Plate of Double-sided Polishing Device 3 Hard Polishing Pad 4 Soft Polishing Pad 5 Magnetic Disk Substrate 7 Crystal Particles of Crystallized Glass Substrate 8 Amorphous Part of Crystallized Glass Substrate 10 Fine Particles 13 Pressurizing device with a soft pad attached so that it is processed only on the inner peripheral side of the substrate 14 Pressurizing device with a hard pad attached only on the outer peripheral side of the magnetic disk substrate 15 Guide roller 16 For the inner peripheral portion of the magnetic disk substrate Holding jig 20 Magnetic disk 21 Nucleus at center of crystal grain 22 Peripheral part including nucleus at center of crystal grain 80 Magnetic disk 81 Magnetic head slider 85 Magnetic disk device

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年7月28日[Submission date] July 28, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】従来加工法による磁気ディスク基板の表面形状
を原子間力顕微鏡によって測定した結果を示す写真。
FIG. 4 is a photograph showing a result of measuring a surface shape of a magnetic disk substrate by a conventional processing method with an atomic force microscope.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】 明細書[Document name to be amended] Statement

【補正対象項目名】 図5[Name of item to be corrected] Figure 5

【補正方法】 変更[Correction method] Change

【補正の内容】[Contents of correction]

【図5】本発明における磁気ディスク基板の表面形状を
原子間力顕微鏡によって測定した結果を示す写真。
FIG. 5 is a photograph showing the result of measuring the surface shape of the magnetic disk substrate in the present invention by an atomic force microscope.

【手続補正3】[Procedure 3]

【補正対象書類名】 明細書[Document name to be amended] Statement

【補正対象項目名】 図6[Name of item to be corrected] Figure 6

【補正方法】 変更[Correction method] Change

【補正の内容】[Contents of correction]

【図6】本発明による磁気ディスク基板の表面形状を走
査型電子顕微鏡によって測定した結果を示す写真。
FIG. 6 is a photograph showing the results of measuring the surface shape of a magnetic disk substrate according to the present invention with a scanning electron microscope.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古澤 賢司 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 (72)発明者 谷 弘詞 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenji Furusawa 2880, Kozu, Odawara-shi, Kanagawa Stock Company Hitachi Storage Systems Division (72) Inventor, Hiroji 2880, Kozu, Odawara, Kanagawa Hitachi Storage Co., Ltd. System Division

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】磁気ディスク基板の表面形状に関し、中心
部に核を有しかつ核を包含する外周部からなる微粒子が
磁気ディスク基板表面にアイランド状に点在し、微粒子
の中心部の核が突起部を形成し、核を包含する外周部と
微粒子を保持する非晶質部が平滑面を形成し、微粒子の
中心部の核が微粒子の外形より小さい凸部を形成し、微
粒子の核の微小凸部と、核を包含する外周部および微粒
子を保持する非晶質部が平滑面を形成する表面形状を有
する磁気ディスク基板の表面に磁性膜、保護膜、潤滑剤
の薄膜を形成した磁気ディスクから成り、磁気ヘッドの
低浮上性および耐摺動性を向上できることを特徴とする
磁気ディスク装置。
1. Regarding the surface shape of a magnetic disk substrate, fine particles having a nucleus at the center and consisting of an outer peripheral portion including the nucleus are scattered in an island shape on the surface of the magnetic disk substrate, and the nucleus at the center of the fine particles is The outer periphery including the nuclei and the amorphous part holding the fine particles form a smooth surface, and the nuclei at the center of the fine particles form a convex portion smaller than the outer shape of the fine particles. A magnetic film, a protective film, and a lubricant thin film formed on the surface of a magnetic disk substrate that has a surface shape in which minute convex portions, an outer peripheral portion including nuclei, and an amorphous portion holding fine particles form a smooth surface. A magnetic disk device comprising a disk and capable of improving the low flying property and sliding resistance of a magnetic head.
【請求項2】磁気ディスク基板の表面形状に関し、その
表面形状の微小凸部がアイランド状に点在し、その微小
凸部密度が1×106〜1×108個/1mm2であり、
その表面形状である微小凸部の高さを表わすRpが5〜
30nmであり、特許請求項1に記載の特徴を有する磁
気ディスク基板の表面に磁性膜、保護膜、潤滑剤の薄膜
を形成したことを特徴とする磁気ディスク。
2. With respect to the surface shape of a magnetic disk substrate, the fine projections of the surface shape are scattered in an island shape, and the density of the fine projections is 1 × 10 6 to 1 × 10 8 pieces / 1 mm 2 .
Rp, which represents the height of the minute convex portion that is the surface shape, is 5 to
A magnetic disk having a thickness of 30 nm and a magnetic film, a protective film, and a thin film of a lubricant formed on the surface of the magnetic disk substrate having the features of claim 1.
【請求項3】結晶化ガラス基板の表面に関し、結晶粒子
および非晶質部に一様に機械的研磨作用が働き、結晶粒
子の結晶核と結晶核を包含する粒子部と結晶粒子を包含
する非晶質部の機械的化学的研磨作用に差を生じさせる
ことにより、結晶核の加工能率を小さくし、結晶核を包
含する外周部および非晶質部の加工能率を大きくする機
械的化学的な研磨加工方法により、特許請求項1に記載
の特徴を有し、この磁気ディスク基板に磁性膜、保護
膜、潤滑膜を形成したことを特徴とする磁気ディスク。
3. The surface of a crystallized glass substrate has a uniform mechanical polishing action on the crystal grains and the amorphous portion, and includes the crystal nucleus of the crystal grain, the grain portion including the crystal nucleus, and the crystal grain. By making the mechanical-chemical polishing action of the amorphous part different, the processing efficiency of the crystal nucleus is reduced, and the processing efficiency of the peripheral portion including the crystal nucleus and the amorphous portion is increased. A magnetic disk having the characteristics as set forth in claim 1 by a different polishing method, wherein a magnetic film, a protective film, and a lubricating film are formed on the magnetic disk substrate.
【請求項4】結晶化ガラス基板の表面に関し、結晶粒子
および非晶質部への研磨圧力を一様に付加するために、
基板形状に追従する軟質な研磨パッドと、結晶化ガラス
基板の結晶粒子より微細な粒子との組合せを用いて機械
的化学的な研磨加工方法により、結晶核の加工能率を小
さくし、結晶核を包含する粒子部と結晶粒子を包含する
非晶質部との加工能率を大きくし、特許請求項1に記載
の特徴を有し、この磁気ディスク基板に磁性膜、保護
膜、潤滑膜を形成したことを特徴とする磁気ディスク。
4. With respect to the surface of the crystallized glass substrate, in order to uniformly apply a polishing pressure to the crystal grains and the amorphous portion,
By using a combination of a soft polishing pad that follows the substrate shape and particles that are finer than the crystal particles of the crystallized glass substrate, the mechanical and chemical polishing method reduces the processing efficiency of the crystal nuclei and reduces the crystal nuclei. The processing efficiency of the included particle part and the amorphous part including crystal particles is increased, and the magnetic film substrate has the characteristics described in claim 1, and a magnetic film, a protective film, and a lubricating film are formed on the magnetic disk substrate. A magnetic disk characterized in that.
【請求項5】結晶化ガラス基板の表面に関し、結晶粒子
および非晶質部より構成される基板形状に追従せず結晶
粒子の凸部に選択的に研磨圧を付加する機械的な研磨加
工方法で、その基板表面形状を平滑研磨し、次に、機械
的化学的な研磨加工方法により、特許請求項1に記載の
特徴を有し、この磁気ディスク基板に磁性膜、保護膜、
潤滑膜を形成したことを特徴とする磁気ディスク。
5. A mechanical polishing method for selectively applying a polishing pressure to a convex portion of a crystal grain without following the shape of the substrate composed of the crystal grain and the amorphous portion on the surface of the crystallized glass substrate. Then, the surface shape of the substrate is smooth-polished, and then the mechanical and chemical polishing method is used to have the characteristics of claim 1, and a magnetic film, a protective film,
A magnetic disk having a lubricating film formed thereon.
【請求項6】結晶化ガラス基板の表面を、結晶粒子およ
び非晶質部より構成される基板形状に追従せず結晶粒子
の凸部に選択的に研磨圧を付加するため硬質な研磨パッ
ドと結晶化ガラス基板の結晶粒子より小さい微細粒子の
組合せの機械的な研磨加工方法で、その基板表面形状を
平滑に研磨し、次に、結晶粒子および非晶質部への研磨
圧力を一様に付加する基板形状に追従する軟質な研磨パ
ッドと結晶化ガラス基板の結晶粒子より小さい微細粒子
の組合せを用いて機械的化学的な研磨加工方法により、
特許請求項1に記載の特徴を有し、この磁気ディスク基
板に磁性膜、保護膜、潤滑膜を形成したことを特徴とす
る磁気ディスク。
6. A hard polishing pad for selectively applying a polishing pressure to a convex portion of a crystal grain on the surface of the crystallized glass substrate without following the shape of the substrate composed of the crystal grain and the amorphous portion. A mechanical polishing method that combines fine particles smaller than the crystal particles of a crystallized glass substrate, smoothes the substrate surface shape, and then makes the polishing pressure on the crystal particles and the amorphous part uniform. By a mechanical and chemical polishing method using a combination of a soft polishing pad that follows the substrate shape to be added and fine particles smaller than the crystal particles of the crystallized glass substrate,
A magnetic disk having the features of claim 1, wherein a magnetic film, a protective film, and a lubricating film are formed on the magnetic disk substrate.
【請求項7】非晶質の化学強化ガラス基板やシリコン等
の単結晶基板の平滑面に、微粒子を点在させてその粒子
を核に膜成長を行い、機械的化学的な研磨方法により、
特許請求項1に記載の特徴を有し、この磁気ディスク基
板に磁性膜、保護膜、潤滑膜を形成したことを特徴とす
る磁気ディスク。
7. A smooth surface of an amorphous chemically strengthened glass substrate or a single crystal substrate of silicon or the like is interspersed with fine particles, and the particles are used as nuclei for film growth.
A magnetic disk having the features of claim 1, wherein a magnetic film, a protective film, and a lubricating film are formed on the magnetic disk substrate.
【請求項8】非晶質の化学強化ガラス基板やシリコン等
の単結晶基板の平滑面に、微粒子を点在させてその粒子
を核に膜成長を行い、軟質な研磨パッドと微細粒子の組
合せを用いて機械的化学的な研磨方法により、特許請求
項1に記載の特徴を有し、この磁気ディスク基板に磁性
膜、保護膜、潤滑膜を形成したことを特徴とする磁気デ
ィスク。
8. A combination of a soft polishing pad and fine particles, in which fine particles are scattered on a smooth surface of an amorphous chemically strengthened glass substrate or a single crystal substrate of silicon or the like, and film growth is performed using the particles as nuclei. A magnetic disk having the characteristics according to claim 1 by a mechanical chemical polishing method using, and a magnetic film, a protective film, and a lubricating film formed on the magnetic disk substrate.
【請求項9】ガラス基板やシリコン等の単結晶基板や、
カ−ボンやセラミックス等の焼結基板の平滑面を基板材
料として、その表面に磁性膜、保護膜、潤滑膜を形成し
た磁気ディスクに関し、微細粒子を磁性膜あるいは保護
膜上に点在させて、その粒子を核に膜成長を行い、軟質
な研磨パッドと微細粒子の組合せを用いて機械的化学的
な研磨加工方法により、特許請求項1に記載の特徴を有
する磁気ディスク。
9. A glass substrate, a single crystal substrate such as silicon,
Regarding a magnetic disk in which a smooth surface of a sintered substrate such as carbon or ceramics is used as a substrate material and a magnetic film, a protective film, or a lubricating film is formed on the surface, fine particles are scattered on the magnetic film or the protective film. A magnetic disk having the characteristics of claim 1, wherein a film is grown using the particles as nuclei and a mechanical and chemical polishing method is used using a combination of a soft polishing pad and fine particles.
【請求項10】結晶化ガラス基板の表面に、硬質な研磨
パッドと微細粒子の組合せにより機械的な研磨加工方法
で、その基板表面形状を平滑研磨し、次に、磁気ヘッド
の摺動面と接する磁気ディスク接触面の内周側部分にの
み、軟質な研磨パッドと微細粒子の組合せを用いて機械
的化学的な研磨方法により、特許請求項1に記載の特徴
を有し、しかも凹凸形成面の外周側は平滑な表面形状を
有する磁気ディスク基板に磁性膜、保護膜、潤滑膜を形
成したことを特徴とする磁気ディスク。
10. A surface of a crystallized glass substrate is subjected to mechanical polishing by a combination of a hard polishing pad and fine particles to smooth the substrate surface shape, and then to a sliding surface of a magnetic head. The mechanical and chemical polishing method using a combination of a soft polishing pad and fine particles only on the inner peripheral side portion of the contact surface of the magnetic disk, which has the features of claim 1, and has a surface with an uneven surface. A magnetic disk characterized in that a magnetic film, a protective film, and a lubricating film are formed on a magnetic disk substrate having a smooth surface shape on the outer peripheral side.
【請求項11】結晶化ガラス基板の表面に、軟質な研磨
パッドと微細粒子の組合せを用いて機械的化学的な研磨
加工方法により、特許請求項1に記載の特徴を有し、次
に、凹凸形成面の外周側は硬質な研磨パッドと微細粒子
の組合せにより機械的な研磨加工方法で、その基板表面
形状を平滑研磨し、磁気ヘッドの摺動面と接する磁気デ
ィスク接触面の内周側部分にのみ凹凸面を形成し、それ
よりも外周側は平滑な表面形状を有する磁気ディスク基
板に磁性膜、保護膜、潤滑膜を形成したことを特徴とす
る磁気ディスク。
11. The method according to claim 1, wherein the surface of the crystallized glass substrate has a mechanical and chemical polishing method using a combination of a soft polishing pad and fine particles, and The outer peripheral side of the concavo-convex forming surface is a mechanical polishing method using a combination of a hard polishing pad and fine particles, the substrate surface shape is smooth-polished, and the inner peripheral side of the magnetic disk contact surface in contact with the sliding surface of the magnetic head. A magnetic disk characterized in that an uneven surface is formed only on a part, and a magnetic film, a protective film, and a lubricating film are formed on a magnetic disk substrate having a smooth surface shape on the outer peripheral side.
【請求項12】磁気ディスクの下地基板である結晶化ガ
ラス基板の表面に関し、磁気記録のデ−タを読み書きす
るデ−タゾ−ンに形成した表面凹凸の平均面が、磁気ヘ
ッドが停止、浮上を行うCSSゾ−ンに形成した表面凹
凸の平均面との相対的位置関係において、デ−タゾ−ン
の平均面がCSSゾ−ンの平均面より相対的に高い位置
関係にあり、これらの表面に磁性膜、保護膜、潤滑膜を
形成したことを特徴とする磁気ディスク。
12. An average surface of surface irregularities formed on a data zone for reading and writing magnetic recording data on the surface of a crystallized glass substrate which is a base substrate of a magnetic disk, the magnetic head stops and floats. In the relative positional relationship with the average surface of the surface irregularities formed on the CSS zone, the average surface of the data zone is relatively higher than the average surface of the CSS zone. A magnetic disk having a magnetic film, a protective film, and a lubricating film formed on its surface.
【請求項13】結晶化ガラス基板の表面に関し、磁気記
録のデ−タを読み書きするデ−タゾ−ンに形成した表面
凹凸の平均面が、磁気ヘッドが停止、浮上を行うCSS
ゾ−ンに形成した表面凹凸の平均面との相対的位置関係
において、デ−タゾ−ンがCSSゾ−ンより相対的に低
い位置関係にあり、これらの表面に磁性膜、保護膜、潤
滑膜を形成したことを特徴とする磁気ディスク。
13. A CSS in which a magnetic head stops and floats on an average surface of surface irregularities formed on a data zone for reading and writing magnetic recording data on the surface of a crystallized glass substrate.
In the relative positional relationship with the average surface of the surface irregularities formed on the zone, the data zone has a relative lower positional relationship than the CSS zone, and the magnetic film, the protective film, and the lubricating layer are formed on these surfaces. A magnetic disk having a film formed thereon.
【請求項14】結晶化ガラス基板の表面に関し、結晶粒
子および非晶質部への研磨圧力を一様に付加する基板形
状に追従する軟質な研磨パッドと、結晶核を包含する粒
子部と結晶粒子を包含する非晶質部との機械的化学的研
磨作用を大きくする結晶化ガラス基板の結晶粒子より微
細な粒子との組合せを用いて機械的化学的な研磨加工方
法に関し、両面同時研磨装置を用い、研磨工具となる加
工面に軟質な研磨パッドを装着し、微細な粒子を研磨剤
として用い、軟質な研磨パッドで結晶化ガラス基板の両
面を同時に研磨することによって、特許請求項1に記載
の特徴を有する磁気ディスク基板に磁性膜、保護膜、潤
滑膜を形成したことを特徴とする磁気ディスクの製造方
法。
14. A soft polishing pad that follows a substrate shape for uniformly applying a polishing pressure to crystal grains and an amorphous portion on the surface of a crystallized glass substrate, a grain portion including crystal nuclei and a crystal. A method for mechanical and chemical polishing using a combination with an amorphous part including particles and a grain finer than the crystal grains of a crystallized glass substrate for increasing the mechanical and chemical polishing action, and a double-sided simultaneous polishing apparatus A soft polishing pad is attached to the processed surface to be a polishing tool, fine particles are used as an abrasive, and both surfaces of the crystallized glass substrate are simultaneously polished with the soft polishing pad, thereby making A method of manufacturing a magnetic disk, comprising forming a magnetic film, a protective film, and a lubricating film on a magnetic disk substrate having the characteristics described above.
【請求項15】結晶化ガラス基板の表面に関し、結晶粒
子および非晶質部より構成される基板形状に追従せず、
結晶粒子の凸部に選択的に研磨圧を付加するため、硬質
な研磨パッドと結晶化ガラス基板の結晶粒子より小さい
微細粒子の組合せの機械的な研磨加工方法で、その基板
表面形状を平滑に研磨し、次に、結晶粒子および非晶質
部への研磨圧力を一様に付加する基板形状に追従する軟
質な研磨パッドと結晶化ガラス基板の結晶粒子より小さ
い微細粒子の組合せを用いて機械的化学的な研磨加工方
法に関し、両面同時研磨装置を用い、第1工程では研磨
工具となる加工面に軟質な研磨パッドを装着し、微細な
粒子を研磨剤として用い、軟質な研磨パッドで結晶化ガ
ラス基板の両面を同時に研磨することによって、さら
に、第2工程では研磨工具となる加工面に硬質な研磨パ
ッドを装着し、微細な粒子を研磨剤として用い、硬質な
研磨パッドで結晶化ガラス基板の両面を同時に研磨する
ことによって、特許請求項1に記載の特徴を有する磁気
ディスク基板に磁性膜、保護膜、潤滑膜を形成したこと
を特徴とする磁気ディスクの製造方法。
15. The surface of the crystallized glass substrate does not follow the shape of the substrate composed of crystal grains and amorphous portions,
In order to selectively apply polishing pressure to the convex parts of the crystal particles, the surface shape of the substrate is made smooth by a mechanical polishing method that combines a hard polishing pad and fine particles smaller than the crystal particles of the crystallized glass substrate. Polish and then machine using a combination of a soft polishing pad that follows the substrate shape that uniformly applies a polishing pressure to the crystalline particles and the amorphous portion and fine particles smaller than the crystalline particles of the crystallized glass substrate. Regarding the mechanical and chemical polishing method, a double-sided simultaneous polishing apparatus is used, and in the first step, a soft polishing pad is attached to the processing surface to be a polishing tool, and fine particles are used as an abrasive to crystallize with the soft polishing pad. By polishing both sides of the glass substrate at the same time, in the second step, a hard polishing pad is attached to the processing surface that will become the polishing tool, and fine particles are used as an abrasive, and the hard polishing pad crystallizes. By polishing the both sides of the glass substrate at the same time, the magnetic film in the magnetic disk substrate having the features according to patent claim 1, the protective film manufacturing method of a magnetic disk, characterized in that the formation of the lubricating film.
【請求項16】非晶質の化学強化ガラス基板やシリコン
等の単結晶基板の平滑面に、微粒子を点在させてその粒
子を核に膜成長を行い、軟質な研磨パッドと微細粒子の
組合せを用いて機械的化学的な研磨方法により、特許請
求項1に記載の特徴を有する磁気ディスク基板に磁性
膜、保護膜、潤滑膜を形成したことを特徴とする磁気デ
ィスクの製造方法。
16. A combination of a soft polishing pad and fine particles, in which fine particles are scattered on a smooth surface of an amorphous chemically strengthened glass substrate or a single crystal substrate of silicon or the like, and film growth is performed by using the particles as nuclei. A method of manufacturing a magnetic disk, wherein a magnetic film, a protective film, and a lubricating film are formed on the magnetic disk substrate having the characteristics of claim 1 by a mechanical and chemical polishing method using.
【請求項17】ガラス基板やシリコン等の単結晶基板
や、カ−ボンやセラミックス等の焼結基板どの平滑面を
基板材料として、その表面に磁性膜、保護膜、潤滑膜を
形成した磁気ディスクに関し、微細粒子を磁性膜あるい
は保護膜上に点在させて、その粒子を核に膜成長を行
い、軟質な研磨パッドと微細粒子の組合せを用いて機械
的化学的な研磨加工方法により、特許請求項1に記載の
特徴を有する磁気ディスクの製造方法。
17. A magnetic disk comprising a glass substrate, a single crystal substrate such as silicon, or a sintered substrate such as carbon or ceramics as a substrate material, and a magnetic film, a protective film, and a lubricating film formed on the surface thereof. , The fine particles are scattered on a magnetic film or a protective film, the particles are used as a nucleus for film growth, and a combination of a soft polishing pad and fine particles is used to perform a mechanical-chemical polishing method. A method of manufacturing a magnetic disk having the characteristics according to claim 1.
【請求項18】結晶化ガラス基板の表面に、硬質な研磨
パッドと微細粒子の組合せにより機械的な研磨加工方法
で、その基板表面形状を平滑研磨し、次に、磁気ヘッド
の摺動面と接する磁気ディスク接触面の内周側部分にの
み、軟質な研磨パッドと微細粒子の組合せを用いて機械
的化学的な研磨方法により、特許請求項1に記載の特徴
を有し、しかも凹凸形成面の外周側は平滑な表面形状を
有する磁気ディスク基板に磁性膜、保護膜、潤滑膜を形
成したことを特徴とする磁気ディスクの製造方法。
18. A surface of a crystallized glass substrate is polished by a mechanical polishing method using a combination of a hard polishing pad and fine particles to smooth the substrate surface shape, and then a sliding surface of a magnetic head. The mechanical and chemical polishing method using a combination of a soft polishing pad and fine particles only on the inner peripheral side portion of the contact surface of the magnetic disk, which has the features of claim 1, and has a surface with an uneven surface. A magnetic disk manufacturing method characterized in that a magnetic film, a protective film, and a lubricating film are formed on a magnetic disk substrate having a smooth surface shape on the outer peripheral side.
【請求項19】結晶化ガラス基板の表面に、軟質な研磨
パッドと微細粒子の組合せを用いて機械的化学的な研磨
加工方法により、特許請求項1に記載の特徴を有し、次
に、凹凸形成面の外周側は硬質な研磨パッドと微細粒子
の組合せにより機械的な研磨加工方法で、その基板表面
形状を平滑研磨し、磁気ヘッドの摺動面と接する磁気デ
ィスク接触面の内周側部分にのみ凹凸面を形成し、それ
よりも外周側は平滑な表面形状を有する磁気ディスク基
板に磁性膜、保護膜、潤滑膜を形成したことを特徴とす
る磁気ディスクの製造方法。
19. The method according to claim 1, wherein the surface of the crystallized glass substrate is subjected to a mechanical and chemical polishing method using a combination of a soft polishing pad and fine particles, and then: The outer peripheral side of the concavo-convex forming surface is a mechanical polishing method using a combination of a hard polishing pad and fine particles, the substrate surface shape is smooth-polished, and the inner peripheral side of the magnetic disk contact surface in contact with the sliding surface of the magnetic head. A method of manufacturing a magnetic disk, comprising forming a concavo-convex surface only on a part and forming a magnetic film, a protective film, and a lubricating film on a magnetic disk substrate having a smooth surface shape on the outer peripheral side.
【請求項20】結晶化ガラス基板の表面に関し、磁気記
録のデ−タを読み書きするデ−タゾ−ンに形成した表面
凹凸の平均面が、磁気ヘッドが停止、浮上を行うCSS
ゾ−ンに形成した表面凹凸の平均面との相対的位置関係
において、デ−タゾ−ンの平均面がCSSゾ−ンの平均
面より相対的に高い位置関係にあり、これらの表面に磁
性膜、保護膜、潤滑膜を形成したことを特徴とする磁気
ディスクの製造方法。
20. With respect to the surface of a crystallized glass substrate, an average surface of surface irregularities formed in a data zone for reading and writing data of magnetic recording causes the magnetic head to stop and fly.
In the relative positional relationship with the average surface of the surface irregularities formed on the zone, the average surface of the data zone is relatively higher than the average surface of the CSS zone, and the magnetic surface is A method for manufacturing a magnetic disk, comprising forming a film, a protective film, and a lubricating film.
【請求項21】結晶化ガラス基板の表面に関し、磁気記
録のデ−タを読み書きするデ−タゾ−ンに形成した表面
凹凸の平均面が、磁気ヘッドが停止、浮上を行うCSS
ゾ−ンに形成した表面凹凸の平均面との相対的位置関係
において、デ−タゾ−ンの平均面がCSSゾ−ンの平均
面より相対的に低い位置関係にあり、これらの表面に磁
性膜、保護膜、潤滑膜を形成したことを特徴とする磁気
ディスクの製造方法。
21. With respect to the surface of a crystallized glass substrate, an average surface of surface irregularities formed on a data zone for reading and writing data of magnetic recording causes the magnetic head to stop and float.
In the relative positional relationship with the average surface of the surface irregularities formed on the zone, the average surface of the data zone is relatively lower than the average surface of the CSS zone, and the magnetic surface is A method for manufacturing a magnetic disk, comprising forming a film, a protective film, and a lubricating film.
JP3672394A 1994-03-08 1994-03-08 Magnetic disk device, magnetic disk and production of magnetic disk Pending JPH07244947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3672394A JPH07244947A (en) 1994-03-08 1994-03-08 Magnetic disk device, magnetic disk and production of magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3672394A JPH07244947A (en) 1994-03-08 1994-03-08 Magnetic disk device, magnetic disk and production of magnetic disk

Publications (1)

Publication Number Publication Date
JPH07244947A true JPH07244947A (en) 1995-09-19

Family

ID=12477675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3672394A Pending JPH07244947A (en) 1994-03-08 1994-03-08 Magnetic disk device, magnetic disk and production of magnetic disk

Country Status (1)

Country Link
JP (1) JPH07244947A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147688A (en) * 1994-11-16 1996-06-07 Ohara Inc Manufacture of magnetic disk substrate
WO1999045536A1 (en) * 1998-03-04 1999-09-10 Hitachi, Ltd. Magnetic recording medium, method of production thereof, and magnetic storage
JP2000301441A (en) * 1999-04-19 2000-10-31 Nippon Micro Coating Kk Chemical-mechanical texture working method
JP2002092867A (en) * 2000-09-21 2002-03-29 Hoya Corp Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP2002150548A (en) * 2000-11-09 2002-05-24 Hoya Corp Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP2007250166A (en) * 2006-02-14 2007-09-27 Hoya Corp Manufacturing method of glass substrate for magnetic disk
JP2008112572A (en) * 2008-01-21 2008-05-15 Hoya Corp Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate
JP6106813B1 (en) * 2015-09-30 2017-04-05 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08147688A (en) * 1994-11-16 1996-06-07 Ohara Inc Manufacture of magnetic disk substrate
WO1999045536A1 (en) * 1998-03-04 1999-09-10 Hitachi, Ltd. Magnetic recording medium, method of production thereof, and magnetic storage
JP2000301441A (en) * 1999-04-19 2000-10-31 Nippon Micro Coating Kk Chemical-mechanical texture working method
JP2002092867A (en) * 2000-09-21 2002-03-29 Hoya Corp Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP2002150548A (en) * 2000-11-09 2002-05-24 Hoya Corp Method of manufacturing glass substrate for information recording medium and method of manufacturing information recording medium
JP2007250166A (en) * 2006-02-14 2007-09-27 Hoya Corp Manufacturing method of glass substrate for magnetic disk
JP2008112572A (en) * 2008-01-21 2008-05-15 Hoya Corp Manufacturing method of glass substrate for information recording medium and manufacturing method of information recording medium
CN108133714B (en) * 2014-03-31 2019-08-23 Hoya株式会社 Glass substrate for disc
CN106030709A (en) * 2014-03-31 2016-10-12 Hoya株式会社 Magnetic disk-use glass substrate
CN106030709B (en) * 2014-03-31 2018-02-23 Hoya株式会社 Glass substrate for disc
CN108133714A (en) * 2014-03-31 2018-06-08 Hoya株式会社 Glass substrate for disc
US10032472B2 (en) 2014-03-31 2018-07-24 Hoya Corporation Magnetic-disk glass substrate
WO2015152316A1 (en) * 2014-03-31 2015-10-08 Hoya株式会社 Magnetic disk-use glass substrate
US11024335B2 (en) 2014-03-31 2021-06-01 Hoya Corporation Magnetic-disk glass substrate
JP6106813B1 (en) * 2015-09-30 2017-04-05 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk
WO2017057686A1 (en) * 2015-09-30 2017-04-06 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate body, and method for manufacturing glass substrate for magnetic disk
JP2017130249A (en) * 2015-09-30 2017-07-27 Hoya株式会社 Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and manufacturing method of glass substrate for magnetic disk
US10720180B2 (en) 2015-09-30 2020-07-21 Hoya Corporation Magnetic-disk glass substrate, magnetic-disk glass substrate intermediate, and method for manufacturing magnetic-disk glass substrate
US11211090B2 (en) 2015-09-30 2021-12-28 Hoya Corporation Magnetic-disk glass substrate, magnetic-disk glass substrate intermediate, and method for manufacturing magnetic-disk glass substrate
US11710505B2 (en) 2015-09-30 2023-07-25 Hoya Corporation Magnetic-disk glass substrate, magnetic-disk glass substrate intermediate, and method for manufacturing magnetic-disk glass substrate

Similar Documents

Publication Publication Date Title
US6248395B1 (en) Mechanical texturing of glass and glass-ceramic substrates
US6972135B2 (en) Texturing of magnetic disk substrates
JPH0592363A (en) Duplex simultaneous polishing method for base and its device, polishing method for magnetic disc base using above device and manufacture of magnetic disc and magnetic disc
JP5142548B2 (en) Manufacturing method of glass substrate for magnetic disk and polishing pad
JP2004303281A (en) Polishing pad, manufacturing method of information recording medium glass substrate using above pad and information recording medium glass substrate obtained by above method
JP2018092697A (en) Grinding tool, method of manufacturing glass substrate, method of manufacturing glass substrate for magnetic disk, and method of manufacturing magnetic disk
JPH07244947A (en) Magnetic disk device, magnetic disk and production of magnetic disk
US20010046614A1 (en) Magnetic recording medium substrate, method of producing the same, and method of evaluating magnetic recording medium
WO2011033948A1 (en) Glass substrate for information recording medium, information recording medium, and method for producing glass substrate for information recording medium
JPH04250979A (en) Polishing tape and polishing method fro magnetic head
JP3554476B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JPH07134823A (en) Manufacture of glass base for magnetic recording medium and magnetic recording medium
KR20060049836A (en) Manufacturing method for perpendicular magnetic recording disk
JP2001250224A (en) Substrate for magnetic recording medium, its manufacturing method and magnetic recording medium
JPH09245345A (en) Production of magnetic disk and magnetic disk
JP2005293840A (en) Glass disk substrate, magnetic disk, method for manufacturing glass disk substrate for magnetic disk, and method for manufacturing magnetic disk
JPH10249737A (en) Polishing pad of substrate for magnetic recording medium and polishing method
JP3600767B2 (en) Glass substrate for information recording medium, method of manufacturing the same, magnetic recording medium using the substrate, and method of manufacturing the same
JPH07244845A (en) Manufacture of magnetic recording medium
JP2002032909A (en) Substrate for magnetic recording medium, magnetic recording medium, method for manufacturing substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP3869380B2 (en) Method for manufacturing glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
US20040238002A1 (en) Method of producing a glass substrate for a magnetic disk and method of producing a magnetic disk
JP2006007385A (en) Method for manufacturing glass substrate for magnetic disc and method for manufacturing magnetic disc
JP2005141824A (en) Manufacturing method of glass substrate for magnetic disk , and manufacturing method of the magnetic disk
JP3766424B2 (en) Manufacturing method of glass substrate for magnetic disk and manufacturing method of magnetic disk

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427