JP2002147337A - Windmill-driven heat pump and windmill-driven refrigerating system - Google Patents

Windmill-driven heat pump and windmill-driven refrigerating system

Info

Publication number
JP2002147337A
JP2002147337A JP2001105574A JP2001105574A JP2002147337A JP 2002147337 A JP2002147337 A JP 2002147337A JP 2001105574 A JP2001105574 A JP 2001105574A JP 2001105574 A JP2001105574 A JP 2001105574A JP 2002147337 A JP2002147337 A JP 2002147337A
Authority
JP
Japan
Prior art keywords
heat
compressor
wind turbine
wind
windmill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001105574A
Other languages
Japanese (ja)
Other versions
JP3679020B2 (en
Inventor
Takeshi Tamaki
健 玉城
Sadao Yasusato
貞夫 安里
Tomohiro Kureya
智浩 呉屋
Yusuke Kuniba
裕介 國場
Makoto Yamamoto
允 山本
Yujiro Shinoda
勇次郎 篠田
Katsumi Fujima
克己 藤間
Tomoiku Yoshikawa
朝郁 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2001105574A priority Critical patent/JP3679020B2/en
Publication of JP2002147337A publication Critical patent/JP2002147337A/en
Application granted granted Critical
Publication of JP3679020B2 publication Critical patent/JP3679020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a windmill-driven heat pump and a windmill-driven refrigerator system by simultaneous use of atmospheric air heat for a heat cycle formed by compressor driving by wind force energy. SOLUTION: This wind force-driven heat pump is composed of a windmill motive power transmitting part 10 for converting wind force into mechanical rotational energy, the heat pump 11, and a heat accumulating tank 12, and the heat pump 11 is operated by using both mechanical motive power sent from the windmill motive power transmitting part 10 and the air heat possessed by the atmosphere, and violently fluctuating and intermittently obtained cold heat is accumulated in the heat accumulating tank 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、風力エネルギを機
械的エネルギに変換し、変換した機械的にエネルギによ
り稼働する圧縮機→凝縮器→膨張弁→蒸発器よりなる冷
凍サイクルにおいて、 a、上記冷凍サイクルの蒸発器に大気より空気熱を導入
し、蒸発潜熱を吸収して、 凝縮器より凝縮熱を温熱源
として取り出す方式、 b、上記冷凍サイクルの凝縮器に大気より空気冷熱を導
入し、凝縮熱を吸収して、 蒸発器より蒸発潜熱を冷熱
源として取り出す方式、 上記二方式よりなり冷温水を作るヒートポンプに蓄熱槽
を付設した風車駆動ヒートポンプと、上記b方式の空冷
冷凍サイクルに氷蓄熱槽を付設した風車駆動冷凍機シス
テムとに関する。
The present invention relates to a refrigeration cycle comprising a compressor, a condenser, an expansion valve, and an evaporator, which converts wind energy into mechanical energy and operates using the converted mechanical energy. A method in which air heat is introduced from the atmosphere into the evaporator of the refrigeration cycle, the latent heat of evaporation is absorbed, and the heat of condensation is taken out from the condenser as a heat source.b. A method of absorbing condensed heat and extracting the latent heat of evaporation from the evaporator as a cold heat source. A windmill driven heat pump with a heat storage tank attached to a heat pump for producing cold and hot water consisting of the above two methods, and ice heat storage in the air cooling refrigeration cycle of the above b method The present invention relates to a windmill driven refrigerator system provided with a tank.

【0002】[0002]

【従来の技術】従来より風力エネルギを熱エネルギに変
換する手段としては、風力エネルギを電気的エネルギに
変換し、変換した電気的エネルギによりヒートポンプな
いし冷凍サイクルを介して熱エネルギへの変換が行なわ
れてきている。則ち、ヒートポンプを駆動する装置とし
て1978年に発表された「風車とヒートポンプを使用
した冷房システム」が知られている。このシステムはプ
ロペラ式風車で風力エネルギを電気エネルギに変換し
て、蓄電池に充電し、直流発電機で冷凍サイクルを稼働
させたものである。
2. Description of the Related Art Conventionally, as means for converting wind energy into heat energy, wind energy is converted into electric energy, and the converted electric energy is converted into heat energy via a heat pump or a refrigeration cycle. Is coming. In other words, a "cooling system using a windmill and a heat pump" which was announced in 1978 as a device for driving a heat pump is known. In this system, wind energy is converted into electric energy by a propeller type wind turbine, a storage battery is charged, and a refrigeration cycle is operated by a DC generator.

【0003】また、実公昭63−29882号公報に
は、サボニウス形風車の誘導板をヒートポンプ装置の集
放熱ユニットにした発明が開示されている。この提案で
は、風力の方向に略直角な直立回転軸を持つ風力原動機
で冷媒圧縮機を駆動し、その風力原動機への固定的風力
誘導手段である誘導板に冷媒の通路を設けて、誘導板を
加熱サイクルにあっては、冷媒の蒸発器とし、冷却サイ
クルにあっては、冷媒の凝縮器となるようにしている。
圧縮機がサボニウス風車で動かされているので、風速が
増す程この圧縮機の回転数が上がり、誘導板の空気との
熱伝達率が増加でき、従来方式に比べ、効率良く風力エ
ネルギから熱エネルギへの変換を行なうことができる。
Further, Japanese Utility Model Publication No. Sho 63-29882 discloses an invention in which a guide plate of a Savonius type wind turbine is used as a heat collecting and radiating unit of a heat pump device. In this proposal, a refrigerant compressor is driven by a wind motor having an upright rotation axis substantially perpendicular to the direction of the wind, and a refrigerant passage is provided in an induction plate which is a fixed wind induction means to the wind motor, and the induction plate is provided. Is a refrigerant evaporator in the heating cycle and a refrigerant condenser in the cooling cycle.
Since the compressor is driven by a Savonius wind turbine, the speed of the compressor increases as the wind speed increases, and the heat transfer coefficient with the air of the induction plate can be increased. Can be converted to

【0004】また、特開平11−82284号公報に
は、「風力利用エネルギシステム」として、風力エネル
ギより高温熱エネルギ、低温熱エネルギ及び電力を組み
合わせて生成するシステムに関する提案が開示されてい
る。上記提案は図3に示すように風力手段50と、該風
力手段50により得られた機械的動力により熱サイクル
を構成する圧縮機60を駆動させて温熱エネルギを得る
熱エネルギ変換手段72と、前記熱サイクルの膨張ター
ビン62の駆動により発電させる電気エネルギ変換手段
65とより構成し、前記風力手段50により得られた風
力エネルギを高温高圧熱エネルギに変換して温熱の供給
を可能にし、低温高圧熱エネルギにより膨張タービンを
駆動させ電力を得る構成にしてある。
[0004] Japanese Patent Application Laid-Open No. 11-82284 discloses a proposal as a "wind energy system" that relates to a system that combines high-temperature heat energy, low-temperature heat energy, and electric power from wind energy. As shown in FIG. 3, the above-mentioned proposal includes a wind power unit 50, a heat energy conversion unit 72 that drives a compressor 60 constituting a heat cycle by mechanical power obtained by the wind power unit 50 to obtain thermal energy, An electric energy converting means 65 for generating electric power by driving the expansion turbine 62 of the heat cycle, and converting the wind energy obtained by the wind means 50 into high-temperature and high-pressure heat energy to enable supply of heat; The expansion turbine is driven by energy to obtain electric power.

【0005】前記風力手段50は、風車51と、タワー
52上に設けた風車駆動軸53の回転を地上の駆動軸5
4に伝達する伝達機構55と、増速機構56と、流体継
手57とクラッチ58とより構成する。前記伝達機構5
5は内蔵する二組の傘歯ギヤ55a、55bにより、風
車に直結する水平回転を鉛直回転に変換し、さらに地上
水平回転に変換させるとともに、風向に対し図示しない
ヨー駆動装置を介して風車51を常に正対させる構造に
してある。
[0005] The wind power means 50 controls the rotation of a wind turbine 51 and a wind turbine drive shaft 53 provided on a tower 52 by using a drive shaft 5 on the ground.
4, a speed increasing mechanism 56, a fluid coupling 57 and a clutch 58. The transmission mechanism 5
Reference numeral 5 designates two built-in bevel gears 55a and 55b, which convert a horizontal rotation directly connected to the windmill into a vertical rotation, further convert it into a horizontal rotation on the ground, and also adjusts the wind direction through a yaw drive device (not shown). Is always facing directly.

【0006】前記熱エネルギ変換手段72は、前記クラ
ッチを介して得られた機械的動力により駆動して大気を
吸入圧縮して高温高圧空気を得る圧縮機60と、得られ
た高温高圧空気60aより温熱を得る高温熱交換器61
と、該熱交換器を経由して低温になった高圧空気60b
の持つ機械的エネルギにより駆動して直結発電機Gを駆
動させる膨張タービン62とより構成してある。
The thermal energy converting means 72 is driven by the mechanical power obtained through the clutch to suck and compress the atmosphere to obtain high-temperature, high-pressure air, and a high-temperature, high-pressure air 60a. High-temperature heat exchanger 61 that obtains heat
And high-pressure air 60b which has been cooled down through the heat exchanger.
And an expansion turbine 62 driven by the mechanical energy possessed by the direct drive generator G.

【0007】[0007]

【発明が解決しようとする課題】本発明は、風力エネル
ギによる圧縮機駆動により形成される熱サイクルに大気
空気熱を併用することで、風車駆動ヒートポンプ及び風
車駆動冷凍機システムを提供することを目的とする。則
ち、風力エネルギを機械的エネルギに変換し、変換した
機械的エネルギにより稼働する圧縮機→凝縮器→膨張弁
→蒸発器よりなる冷凍サイクルにおいて、 a、上記冷凍サイクルの蒸発器に大気より空気熱を導入
し、蒸発潜熱を吸収して、 凝縮器より凝縮温熱を温熱
源として取り出す方式と、 b、上記冷凍サイクルの凝縮器に大気より空気冷熱を導
入し、凝縮熱を吸収して、 蒸発器より蒸発潜熱を冷熱
源として取り出す方式と、 上記二方式よりなるヒートポンプに蓄熱槽を付設した風
車駆動ヒートポンプと、上記b方式の空冷冷凍サイクル
に氷蓄熱槽を付設した風車駆動冷凍機システムとを提供
するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a wind turbine driven heat pump and a wind turbine driven refrigerator system by using atmospheric air heat in combination with a heat cycle formed by driving a compressor by wind energy. And That is, in a refrigeration cycle composed of a compressor, a condenser, an expansion valve, and an evaporator, which operates by converting wind energy into mechanical energy and using the converted mechanical energy, a. A method in which heat is introduced, latent heat of evaporation is absorbed, and condensing heat is taken out from the condenser as a heat source. B. Air cooling is introduced from the atmosphere into the condenser of the refrigeration cycle to absorb the condensing heat and evaporate. A wind turbine drive heat pump in which a heat storage tank is attached to the heat pump composed of the above two methods, and a wind turbine drive refrigerator system in which an ice heat storage tank is attached to the air cooling refrigeration cycle of the above b method. To provide.

【0008】[0008]

【課題を解決するための手段】そこで、本発明の第1の
発明の風車駆動ヒートポンプは、風向きに常に正対する
正対機構を備えたプロペラ型風車や垂直軸型風車により
回転動力を得る風車駆動部と、該駆動部により得られた
回転数を増速する増速機構と、クラッチ機構とを含む風
車動力伝達部より得られた動力源を熱エネルギに変換す
る熱エネルギ変換装置において、採熱/放熱用ヒーティ
ングタワーと圧縮機と凝縮器/蒸発器と膨張弁とよりな
る、空気熱源と風力動力源とにより作動するヒートポン
プと、得られた温/冷熱を蓄熱する蓄熱槽とを設ける構
成としたことを特徴とする。
Therefore, a wind turbine drive heat pump according to a first aspect of the present invention is a wind turbine drive that obtains rotational power from a propeller type wind turbine or a vertical shaft type wind turbine having a facing mechanism that always faces the wind direction. A heat energy conversion device for converting a power source obtained from a wind turbine power transmission unit into heat energy, including a speed increasing mechanism for increasing the number of revolutions obtained by the driving unit, and a clutch mechanism. A configuration in which a heat pump composed of a heat radiation tower, a compressor, a condenser / evaporator, and an expansion valve and operated by an air heat source and a wind power source, and a heat storage tank for storing the obtained hot / cold heat are provided. It is characterized by having.

【0009】前記請求項1記載の発明は、風力エネルギ
から得られた機械的エネルギを熱媒体の圧縮に使用する
とともに、前記熱媒体により形成されるヒートポンプの
蒸発/凝縮過程に大気からの空気熱の放熱/採熱作用を
併用したもので、得られた温熱/冷熱は蓄熱槽に適宜蓄
熱するようにしてある。
According to the first aspect of the present invention, the mechanical energy obtained from the wind energy is used for compressing the heat medium, and the air heat from the atmosphere is used during the evaporation / condensation process of the heat pump formed by the heat medium. And the obtained heat / cold heat is appropriately stored in the heat storage tank.

【0010】なお、前記大気中からの空気熱の採熱/放
熱はヒーティングタワーにより行い、採熱時には該ヒー
ティングタワーを蒸発器として作動させて蒸発潜熱を奪
わせ、放熱時には前記ヒーティングタワーを凝縮器とし
て作動させ、凝縮熱を大気中へ放出するようにしてあ
る。
The heat collection / dissipation of the air heat from the atmosphere is performed by a heating tower. When the heat is collected, the heating tower is operated as an evaporator to take away latent heat of evaporation. Is operated as a condenser to release heat of condensation to the atmosphere.

【0011】なお、上記ヒートポンプに使用する熱媒体
にはブラインを使用し間接熱交換をする構成にしても良
い。
The heat medium used in the heat pump may be configured to use brine to perform indirect heat exchange.

【0012】なお、前記風車動力伝達部は、プロペラ風
車使用の場合は風向き正対機構を持つ水平軸駆動部と、
水平軸駆動を傘歯ギヤ駆動部を介して垂直回転駆動力を
得ているが、ダリウス型やハイブリッド型の垂直軸型風
車を使用する場合は前記垂直軸駆動に切り替える切り替
え機構を必要としない。
[0012] The wind turbine power transmission section includes a horizontal axis drive section having a wind direction facing mechanism when a propeller wind turbine is used;
Although the vertical axis driving force is obtained through the bevel gear drive unit for the horizontal axis drive, a switching mechanism for switching to the vertical axis drive is not required when a Darrieus type or hybrid type vertical axis wind turbine is used.

【0013】また、前記請求項1記載の圧縮機は横型圧
縮機を使用する構成としたことを特徴とする。
[0013] Further, the compressor according to the first aspect is characterized in that it is configured to use a horizontal compressor.

【0014】また、前記請求項1記載の圧縮機は立型圧
縮機を使用する構成としたことを特徴とする。
Further, the compressor according to the first aspect is characterized in that it is configured to use a vertical compressor.

【0015】上記請求項2、請求項3記載の発明は、横
型圧縮機、立型圧縮機を使用する構成について記載した
もので、圧縮機に水平軸駆動の横型圧縮機の使用の場合
は、前記風車動力伝達部に垂直軸駆動を水平軸駆動に変
換するための傘歯ギヤ駆動部の配設を必要とするが、圧
縮機に垂直軸駆動の立型圧縮機の使用の場合は、上記水
平軸駆動に変換するための傘歯ギヤ駆動部の配設は不要
となる。
The second and third aspects of the present invention describe a configuration in which a horizontal compressor and a vertical compressor are used. In the case of using a horizontal compressor driven by a horizontal axis as the compressor, The wind turbine power transmission unit needs to be provided with a bevel gear drive unit for converting vertical axis drive to horizontal axis drive, but in the case of using a vertical axis drive vertical compressor for the compressor, There is no need to dispose a bevel gear drive unit for converting to horizontal axis drive.

【0016】また、前記請求項1記載のヒーティングタ
ワーは、風向きに正対して大気をヒーティングタワーの
熱交換器の伝熱面へ誘導する誘導用の自動回動機構を持
つ空気取り入れ口を設けたことを特徴とする。
Further, the heating tower according to the first aspect of the present invention has an air intake having an automatic rotation mechanism for guiding the air facing the wind direction to the heat transfer surface of the heat exchanger of the heating tower. It is characterized by having been provided.

【0017】前記請求項4記載の発明は、ヒーティング
タワーの外気に接する伝熱面に上部より下方に吹き抜け
るラッパ状大気誘導パスを設けるとともに、その基部に
設けた回動機構により外気取り入れ口を風向に対し正対
させて外気の取り入れと伝熱の効率化を図っている。
According to a fourth aspect of the present invention, a trumpet-like air guiding path that blows downward from above is provided on the heat transfer surface of the heating tower that contacts the outside air, and the outside air intake is formed by a rotating mechanism provided at the base thereof. The air direction is directly opposed to the wind direction to improve the efficiency of heat intake and intake of outside air.

【0018】そして、本発明の第2の発明の風車駆動冷
凍システムは、風向きに常に正対する正対機構を備えた
プロペラ型風車や垂直軸型風車により回転動力を得る風
車駆動部と、該駆動部により得られた回転数を増速する
増速機構と、クラッチ機構とを含む風車動力伝達部より
得られた動力源を熱エネルギに変換する熱エネルギ変換
装置において、放熱用クーリングタワーと圧縮機と蒸発
器と膨張弁とよりなる空冷冷凍サイクルと、得られた冷
熱を蓄熱する氷蓄熱槽とを設ける構成としたことを特徴
とする。
A wind turbine drive refrigeration system according to a second aspect of the present invention is a wind turbine drive unit that obtains rotational power from a propeller type wind turbine or a vertical axis wind turbine having a facing mechanism that always faces the wind direction, In a heat energy conversion device for converting a power source obtained from a wind turbine power transmission unit into thermal energy including a speed increasing mechanism for increasing the rotation speed obtained by the unit and a clutch mechanism, a cooling tower for heat dissipation and a compressor are provided. An air-cooled refrigeration cycle including an evaporator and an expansion valve, and an ice heat storage tank for storing the obtained cold heat are provided.

【0019】前記請求項5記載の発明は、本発明の第2
の発明である、風力エネルギを冷熱変換にのみ使用する
ようにした、風力駆動冷凍システムについて記載したも
ので、凝縮器の凝縮熱はクーリングタワーにより行なう
ようにした空冷式冷凍サイクルより構成し、圧縮機、凝
縮器、蒸発器、膨張弁を一体構造として熱媒体にはアン
モニアを使用する場合にも対応できるようにしてある。
そして、得られた冷熱は氷蓄熱槽に貯留し断続運転を余
儀なくさせられる風力駆動に対応できる構成にしてあ
る。
The invention according to claim 5 is the second invention of the present invention.
A wind-driven refrigeration system in which wind energy is used only for cold-heat conversion according to the invention of the invention, wherein the compressor is constituted by an air-cooled refrigeration cycle in which condensation heat of a condenser is performed by a cooling tower. , A condenser, an evaporator, and an expansion valve are integrated so as to cope with a case where ammonia is used as a heat medium.
Then, the obtained cold heat is stored in an ice heat storage tank, and is configured to be compatible with a wind power drive which requires an intermittent operation.

【0020】なお、前記風車動力伝達部は、プロペラ風
車使用の場合は風向き正対機構を持つ水平軸駆動部と、
水平軸駆動を傘歯ギヤ駆動部を介して垂直回転駆動力を
得ているが、ダリウス型やハイブリッド型の垂直軸型風
車を使用する場合は前記垂直軸駆動に切り替える切り替
え機構を必要としない。
In the case where a propeller wind turbine is used, the wind turbine power transmission section includes a horizontal axis drive section having a wind direction facing mechanism,
Although the vertical axis driving force is obtained through the bevel gear drive unit for the horizontal axis drive, a switching mechanism for switching to the vertical axis drive is not required when a Darrieus type or hybrid type vertical axis wind turbine is used.

【0021】また、前記請求項5記載の圧縮機は横型圧
縮機を使用する構成としたことを特徴とする。
The compressor according to claim 5 is characterized in that it is configured to use a horizontal compressor.

【0022】また、前記請求項5記載の圧縮機は立型圧
縮機を使用する構成としたことを特徴とする。
Further, the compressor according to the fifth aspect is characterized in that it is configured to use a vertical compressor.

【0023】上記請求項6、請求項7記載の発明は、横
型圧縮機、立型圧縮機を使用する構成について記載した
もので、圧縮機に水平軸駆動の横型圧縮機の使用の場合
は、前記風車動力伝達部に垂直軸駆動を水平軸駆動に変
換するための傘歯ギヤ駆動部の配設を必要とするが、圧
縮機に垂直軸駆動の立型圧縮機の使用の場合は、上記水
平軸駆動に変換するための傘歯ギヤ駆動部の配設は不要
となる。
According to the sixth and seventh aspects of the present invention, a configuration using a horizontal compressor and a vertical compressor is described. In the case of using a horizontal compressor driven by a horizontal axis as the compressor, The wind turbine power transmission unit needs to be provided with a bevel gear drive unit for converting vertical axis drive to horizontal axis drive, but in the case of using a vertical axis drive vertical compressor for the compressor, There is no need to dispose a bevel gear drive unit for converting to horizontal axis drive.

【0024】また、請求項5記載の冷凍サイクルは、圧
縮機回転数が約3000rpmを中心にプラスマイナス
約20%の範囲においてはクラッチ機構を介して運転さ
せる構成としたことを特徴とする。
Further, the refrigeration cycle according to claim 5 is characterized in that the compressor is operated via a clutch mechanism when the number of revolutions of the compressor is in the range of about ± 20% centering on about 3000 rpm.

【0025】前記請求項8記載の発明は、風力より地上
機械動力を得る伝導機構に増速機構を設け、圧縮機の効
率的基準回転数である約3000rpmに増速させ、圧
縮効率への影響が低い上下約20%の範囲でクラッチを
介して断続運転させる構成にしたものである。
According to the eighth aspect of the present invention, a speed increasing mechanism is provided in a transmission mechanism for obtaining ground mechanical power from wind power, the speed is increased to about 3000 rpm, which is an efficient reference rotation speed of the compressor, and the effect on compression efficiency is improved. Is low and the intermittent operation is performed via the clutch in the range of about 20% in the vertical direction.

【0026】また、前記請求項5記載の増速機構は、圧
縮機入力回転数を約3600rpmまで増速する構成と
したことを特徴とする。
Further, the speed increasing mechanism according to the fifth aspect is characterized in that the input speed of the compressor is increased to about 3600 rpm.

【0027】前記請求項9記載の発明は、前記圧縮機の
効率的基準回転数は約3000rpmが適当であるた
め、前記伝導機構に付設した増速機構は最大約3600
rpmの増速を可能の構造にしてある。
According to the ninth aspect of the present invention, since the efficient reference rotation speed of the compressor is appropriately about 3000 rpm, the speed increasing mechanism attached to the transmission mechanism has a maximum of about 3600 rpm.
It has a structure capable of increasing the rpm.

【0028】また、請求項5記載の冷凍サイクルが運転
停止する期間は発電機を駆動させ、別途用意した蓄電池
を充電する構成としたことを特徴とする。
[0028] Further, during the period in which the operation of the refrigeration cycle is stopped, the generator is driven to charge a separately prepared storage battery.

【0029】前記請求項10記載の発明は、基準回転数
の上下約20%の範囲での運転をさせ、運転停止期間は
風力の有効利用を図るため、発電機を駆動させて蓄電池
に充電し、該蓄電池を介して電力の効率運転を行なうよ
うにしてある。
According to the tenth aspect of the present invention, the operation is performed within a range of about 20% above and below the reference rotation speed, and during the operation stop period, the generator is driven to charge the storage battery in order to effectively utilize the wind power. The power is efficiently operated through the storage battery.

【0030】[0030]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、材質、形状、その相対配置などは特
に特定的記載が無い限り、この発明の範囲をそれのみに
限定する趣旨ではなく単なる説明例に過ぎない。図1
は、本発明の第1の発明の風力エネルギを冷熱エネルギ
に変換する場合の風力駆動ヒートポンプの概略構成を示
す系統図で、図2は本発明の第2の発明の風力駆動冷凍
システムの概略構成を示す系統図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not merely intended to limit the scope of the present invention, but are merely illustrative examples, unless otherwise specified. . FIG.
FIG. 1 is a system diagram showing a schematic configuration of a wind-driven heat pump for converting wind energy into cold energy according to the first invention of the present invention. FIG. 2 is a schematic configuration of a wind-driven refrigeration system according to a second invention of the present invention. FIG.

【0031】図1に見るように本発明風力駆動ヒートポ
ンプは、風力を機械回転エネルギにに変換する風車動力
伝達部10と、ヒートポンプ11と、蓄熱槽12とより
構成し、前記動力伝達手段10より送られた機械的動力
と大気の持つ空気熱とを併用して、ヒートポンプ11を
作動させ、変動が激しく断続的に得られる冷温熱を蓄熱
槽12に蓄熱して定常的冷温熱の供給を可能としたもの
である。
As shown in FIG. 1, the wind-driven heat pump of the present invention comprises a wind turbine power transmission unit 10 for converting wind power into mechanical rotation energy, a heat pump 11 and a heat storage tank 12. By using the transmitted mechanical power and the air heat of the atmosphere together, the heat pump 11 is operated, and the cold and hot heat that is fluctuated and obtained intermittently is stored in the heat storage tank 12 so that the steady cold and hot heat can be supplied. It is what it was.

【0032】前記風車動力伝達部10は、風車51と、
タワー52上に設けた風車駆動軸53の機械的動力を地
上の駆動軸54に伝達する伝達機構55と、増速機構2
2と、クラッチ23とより構成する。前記伝達機構55
は内蔵する一の傘歯ギヤ55aにより、風車駆動軸53
の水平回転を鉛直回転に変換し、さらに他の一の傘歯ギ
ヤ55bにより前記鉛直回転より地上の駆動軸54の水
平回転に変換させるとともに、前記鉛直軸には図示しな
いユニバーサルジョイントを設け柔構造とするととも
に、図示しないヨー駆動装置を介して風車51を常に風
向に対し正対させる構造にしてある。
The wind turbine power transmission unit 10 includes a wind turbine 51,
A transmission mechanism 55 for transmitting mechanical power of a windmill drive shaft 53 provided on a tower 52 to a drive shaft 54 on the ground;
2 and the clutch 23. The transmission mechanism 55
Is driven by a built-in bevel gear 55a.
Is converted into a vertical rotation, and a further bevel gear 55b is used to convert the vertical rotation into a horizontal rotation of the drive shaft 54 on the ground, and a universal joint (not shown) is provided on the vertical shaft. In addition, the wind turbine 51 is always directly opposed to the wind direction via a yaw drive device (not shown).

【0033】なお、前記地上の駆動軸54には前記増速
機構22とクラッチ23を使用する構成にしてあるが、
前記増速機構は22は、特定の風力車基準風速領域を設
定し、その基準値を対象に風車回転数を増速し、得られ
た増速回転数を持つ風車動力により稼働する圧縮機の定
格回転数に一致させる構成にしてある。また、クラッチ
23は、変動する風速に頻繁に対応可能の構造とし、所
定回転数以下の風速の場合は運転をカットするようにし
てある。
Although the speed increasing mechanism 22 and the clutch 23 are used for the drive shaft 54 on the ground,
The speed increasing mechanism 22 sets a specific wind turbine reference wind speed region, increases the speed of the wind turbine with respect to the reference value, and operates the compressor operated by the wind turbine power having the obtained increased speed. It is configured to match the rated speed. Further, the clutch 23 has a structure capable of frequently coping with a fluctuating wind speed, and cuts off operation when the wind speed is equal to or lower than a predetermined rotation speed.

【0034】なお、前記風車動力伝達部10は、プロペ
ラ風車の代わりにダリウス型やハイブリッド型の垂直軸
型風車を使用する場合は、前記垂直軸駆動に切り替える
前記伝達機構55の傘歯ギヤ55a及び図示しない前記
ヨー駆動装置の設置は不要になる。また、後記するヒー
トポンプ11の圧縮機13に垂直駆動軸を持つ立型圧縮
機を使用する場合は、前記風車動力伝達部に設けた垂直
軸駆動を水平軸駆動に変換する他の一組みの傘歯ギヤ5
5bの配設は不要となるが、この場合には増速機構2
2、クラッチ23は前記圧縮機の上部に設ける必要があ
る。
When a Darrieus type or hybrid type vertical axis type wind turbine is used instead of the propeller wind turbine, the wind turbine power transmission unit 10 is provided with the bevel gear 55a of the transmission mechanism 55 for switching to the vertical axis drive. The installation of the yaw driving device (not shown) becomes unnecessary. When a vertical compressor having a vertical drive shaft is used for the compressor 13 of the heat pump 11, which will be described later, another set of umbrellas for converting the vertical shaft drive provided in the wind turbine power transmission unit to the horizontal shaft drive is used. Tooth gear 5
5b becomes unnecessary, but in this case, the speed increasing mechanism 2
2. It is necessary to provide the clutch 23 above the compressor.

【0035】前記ヒートポンプ11は、圧縮機13とヒ
ーティングタワー16と膨張弁15と凝縮器/蒸発器1
7と、切り替え弁18a、18bとより構成し、前記圧
縮機13に入力された風車動力伝達部10からの機械的
動力と、前記ヒーティングタワー16に導入された大気
中の空気熱の放熱/採熱のいずれかの選択により、前記
凝縮器/蒸発器17を蒸発器として作動させ蒸発潜熱よ
り冷熱を生成させるか、または凝縮器として作動させ凝
縮熱より温熱を生成させるようにしてある。前記放熱/
採熱の何れかの選択は切り替え弁18a、18bの90
度毎の回動により所定の選択ができる構成にしてある。
The heat pump 11 comprises a compressor 13, a heating tower 16, an expansion valve 15, a condenser / evaporator 1
7, and switching valves 18a and 18b. The mechanical power from the wind turbine power transmission unit 10 input to the compressor 13 and the heat radiation / air heat of atmospheric air introduced into the heating tower 16 Depending on the choice of heat collection, the condenser / evaporator 17 is operated as an evaporator to generate cold heat from latent heat of evaporation, or is operated as a condenser to generate warm heat from condensation heat. Heat dissipation /
The selection of any one of the heat collection is performed by switching the switching valves 18a and 18b.
A predetermined selection can be made by turning every degree.

【0036】則ち、図示の位置では、ヒーティングタワ
ー16により凝縮熱を放熱させ、凝縮器/蒸発器17よ
り冷熱を生成させ、図示の位置よりそれぞれ90度回動
させた場合はヒーティングタワー16での大気からの採
熱により蒸発状態にある冷媒を加熱し凝縮器/蒸発器1
7より温熱を生成させる。なお、ヒーティングタワー1
6の外気に接触する伝熱面には、上部より下方に吹き抜
けるラッパ状外気誘導パスを設けるとともに、その基部
に設けた回動機構により大気取り入れ口を風向に対し正
対させて外気の取り入れの効率化を図っている。なお上
記ヒートポンプに使用する熱媒体にはブラインを使用
し、間接熱交換により採熱/放熱及び冷温熱の取出しを
行なうようにしても良い。
That is, in the illustrated position, the heat of condensation is radiated by the heating tower 16 and the cool heat is generated by the condenser / evaporator 17. The refrigerant in the evaporating state is heated by collecting the heat from the atmosphere at 16 and the condenser / evaporator 1 is heated.
7 to generate heat. In addition, heating tower 1
In the heat transfer surface that comes in contact with the outside air, a trumpet-shaped outside air guide path that blows down from the upper part is provided on the heat transfer surface, and the air intake is directly opposed to the wind direction by a rotating mechanism provided at the base of the heat transfer surface. We are trying to improve efficiency. Note that brine may be used as a heat medium used in the heat pump, and heat collection / radiation and cold / hot heat extraction may be performed by indirect heat exchange.

【0037】上記ヒートポンプ11により生成された冷
温熱は蓄熱槽12へ導入蓄熱して、不規則な風車駆動に
対応、安定した冷温熱の供給を可能にしている。
The cold / hot heat generated by the heat pump 11 is introduced into the heat storage tank 12 and stored therein, so that the wind turbine can be driven irregularly and stable cold / hot heat can be supplied.

【0038】図2には本発明の第2の発明の風力駆動冷
凍システムの概略の構成を示してある。図に見るように
本発明の風力駆動冷凍システムは、風力を機械回転エネ
ルギに変換する風車動力伝達部20と、空冷式冷凍サイ
クル21と、増速機構22と、クラッチ23と、氷蓄熱
槽24と、発電機25とより構成し、前記風車動力伝達
部10より送られた機械的動力により空冷冷凍サイクル
を稼働させ、得られた冷熱を氷蓄熱槽24で蓄熱し、不
規則な風力動力の供給に対応させ、前記氷蓄熱槽を介し
て安定した冷熱の供給を可能にしている。
FIG. 2 shows a schematic configuration of a wind-driven refrigeration system according to a second invention of the present invention. As shown in the figure, the wind-driven refrigeration system of the present invention includes a wind turbine power transmission unit 20 that converts wind power into mechanical rotational energy, an air-cooled refrigeration cycle 21, a speed increasing mechanism 22, a clutch 23, and an ice heat storage tank 24. , A generator 25, and the air-cooled refrigeration cycle is operated by the mechanical power sent from the wind turbine power transmission unit 10, and the obtained cold heat is stored in the ice heat storage tank 24, and irregular wind power is generated. Corresponding to the supply, stable supply of cold heat through the ice heat storage tank is enabled.

【0039】前記風車動力伝達部20は、風車51と、
タワー52上に設けた風車駆動軸53の機械的動力を地
上の駆動軸54に伝達する伝達機構55とより構成す
る。前記伝達機構55は内蔵する二組の内の一の傘歯ギ
ヤ55aにより、風車駆動軸53の水平回転を鉛直回転
に変換し、さらに他の一の傘歯ギヤ55bにより前記鉛
直回転より地上の駆動軸54の水平回転に変換させると
ともに、前記鉛直軸には図示しないユニバーサルジョイ
ントを設け柔構造とするとともに、図示しないヨー駆動
装置を介して風車51を常に風向に対し正対させる構造
にしてある。
The wind turbine power transmission unit 20 includes a wind turbine 51,
It comprises a transmission mechanism 55 for transmitting mechanical power of a windmill drive shaft 53 provided on the tower 52 to a drive shaft 54 on the ground. The transmission mechanism 55 converts the horizontal rotation of the windmill drive shaft 53 into a vertical rotation by one of the two sets of built-in bevel gears 55a, and further converts the horizontal rotation of the windmill drive shaft 53 into ground by the other bevel gear 55b. The rotation is converted into horizontal rotation of the drive shaft 54, and a universal joint (not shown) is provided on the vertical shaft to have a flexible structure, and the wind turbine 51 is always directly opposed to the wind direction via a yaw drive device (not shown). .

【0040】なお、前記地上の駆動軸54には前記増速
機構22とクラッチ23を使用する構成にしてあるが、
前記増速機構は22は、使用する風車に対し特定の基準
風速領域を設定し、その基準値を対象に風風車回転数を
増速し、得られた増速回転数が風車動力により稼働する
圧縮機の定格回転数に一致させる構成にしてある。ま
た、クラッチ23は、変動する風速に頻繁に対応可能な
構造とし、所定回転数以下の風速の場合はカットし、前
記ベルト伝導する発電機25にカップリングして低風速
時の風力を電力に変換別途用意した図示しない蓄電池に
充電する構成にしてある。
The above-mentioned ground drive shaft 54 is configured to use the speed increasing mechanism 22 and the clutch 23.
The speed increasing mechanism 22 sets a specific reference wind speed region for the wind turbine to be used, increases the speed of the wind turbine at the reference value, and operates the obtained increased speed by the power of the wind turbine. It is configured to match the rated speed of the compressor. Further, the clutch 23 has a structure capable of frequently responding to a fluctuating wind speed, and cuts the wind speed when the wind speed is equal to or lower than a predetermined number of revolutions, and couples it to the belt-conducting generator 25 to convert the wind power at a low wind speed into electric power. The conversion is configured to charge a separately prepared storage battery (not shown).

【0041】なお、前記風車動力伝達部20は、プロペ
ラ風車の代わりにダリウス型やハイブリッド型の垂直軸
型風車を使用する場合には、前記垂直軸駆動に切り替え
る前記伝達機構55の傘歯ギヤ55a及び図示しない前
記ヨー駆動装置の設置は不要になる。また、後記する冷
凍サイクル21の圧縮機26に垂直駆動軸を持つ立型圧
縮機を使用する場合は、前記風車動力伝達部に設けた垂
直軸駆動を水平軸駆動に変換する他の一組みの傘歯ギヤ
55bの配設は不要となるが、この場合には増速機構2
2、クラッチ23は前記圧縮機の上部に設ける必要があ
る。
When a Darrieus type or hybrid type vertical axis type wind turbine is used instead of a propeller wind turbine, the windmill power transmission section 20 is provided with a bevel gear 55a of the transmission mechanism 55 for switching to the vertical axis drive. Also, the installation of the yaw driving device (not shown) becomes unnecessary. When a vertical compressor having a vertical drive shaft is used as the compressor 26 of the refrigeration cycle 21 described later, another set of converting a vertical shaft drive provided in the wind turbine power transmission unit into a horizontal shaft drive is used. The disposition of the bevel gear 55b becomes unnecessary, but in this case, the speed increasing mechanism 2
2. It is necessary to provide the clutch 23 above the compressor.

【0042】前記冷凍サイクル21は、圧縮機26とク
ーリングタワー27と膨張弁28と蒸発器29とより構
成し、前記圧縮機26に入力された風車動力伝達部20
よりの機械的動力により冷凍サイクル21を稼働させ、
生成された冷熱29aは氷蓄熱槽24へ導入蓄熱して、
不規則な風車駆動に対応、安定した冷熱の供給を可能に
している。
The refrigeration cycle 21 comprises a compressor 26, a cooling tower 27, an expansion valve 28, and an evaporator 29.
Operating the refrigeration cycle 21 with more mechanical power,
The generated cold heat 29a is introduced and stored in the ice heat storage tank 24,
Corresponds to irregular windmill drive and enables stable supply of cold heat.

【0043】なお、冷凍サイクル21は、前記したよう
に、凝縮器の凝縮熱は凝縮器を内蔵するクーリングタワ
ー27により行なうようにした空冷式冷凍サイクルで、
圧縮機、凝縮器、蒸発器、膨張弁をパッケージ状に一体
構造に形成し、熱媒体には環境に優しいアンモニアを使
用する構成にしても良い。圧縮機、凝縮器、蒸発器、膨
張弁により形成された上記冷凍サイクルには、2次冷媒
にブラインを使用し前記凝縮器での凝縮熱は前記ブライ
ンによりクーリングタワー27へ導入し、前記蒸発器で
の蒸発潜熱は前記ブラインを介してを氷蓄熱槽へ導入
し、−10〜−40℃の冷熱を得るす構成にしてある。
As described above, the refrigeration cycle 21 is an air-cooled refrigeration cycle in which the heat of condensation of the condenser is performed by a cooling tower 27 having a built-in condenser.
The compressor, the condenser, the evaporator, and the expansion valve may be integrally formed in a package, and the heat medium may be configured to use environmentally friendly ammonia. In the refrigeration cycle formed by the compressor, the condenser, the evaporator, and the expansion valve, brine is used as a secondary refrigerant, and the heat of condensation in the condenser is introduced into the cooling tower 27 by the brine, and The latent heat of vaporization is introduced into the ice heat storage tank via the above-mentioned brine to obtain cold heat of -10 to -40C.

【0044】なお、前記増速機構21は圧縮機の効率的
基準回転数である約3000rpmを基準とし上下約2
0%の範囲で運転させるため、最大3600rpmまで
増速可能の構造とし、クラッチ23を介して前記効率的
基準回転数3000rpmの上下約20%の範囲で断続
運転させ、下限回転数に対しては運転停止する機能を持
つ構成としたものである。
The speed-increasing mechanism 21 has an upper and lower rotation speed of about 3000 rpm which is an efficient reference rotation speed of the compressor.
In order to operate in the range of 0%, the structure is such that the speed can be increased up to 3600 rpm, and the intermittent operation is performed through the clutch 23 in the range of about 20% above and below the efficient reference speed 3000 rpm. It is configured to have the function of stopping operation.

【0045】[0045]

【発明の効果】本発明は上記構成により下記効果を奏す
る。風向に同期して多目的に風力エネルギを活用する構
成にしてあり、風力駆動ヒートポンプにおいては温水と
冷水とを同時に効率よく供給出来、また風力駆動冷凍シ
ステムにおいては−10〜−40℃程度の低温熱源と電
力源を同時に得ることができる。
According to the present invention, the following effects can be obtained by the above configuration. It is configured to utilize wind energy for multiple purposes in synchronization with the wind direction. In a wind-driven heat pump, hot water and cold water can be supplied efficiently simultaneously. In a wind-driven refrigeration system, a low-temperature heat source of about -10 to -40 ° C is used. And a power source can be obtained at the same time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の発明の風力エネルギを冷熱エネ
ルギに変換する場合の風力駆動ヒートポンプの概略構成
を示す系統図である。
FIG. 1 is a system diagram showing a schematic configuration of a wind-driven heat pump for converting wind energy into cold energy according to the first invention of the present invention.

【図2】本発明の第2の発明の風力駆動冷凍システムの
概略構成を示す系統図である。
FIG. 2 is a system diagram showing a schematic configuration of a wind-driven refrigeration system according to a second invention of the present invention.

【図3】従来の風力利用のエネルギシステムの概略構成
を示す系統図である。
FIG. 3 is a system diagram showing a schematic configuration of a conventional energy system using wind power.

【符号の説明】[Explanation of symbols]

10、20 風車動力伝達部 11 ヒートポンプ 12 蓄熱槽 13、26 圧縮機 15、28 膨張弁 16 ヒーティングタワー 17 凝縮器/蒸発器 18a、18b 切り替え弁 21 空冷式冷凍サイクル 22 増速機構 23 クラッチ 24 氷蓄熱槽 25 発電機 27 クーリングタワー 29 蒸発器 29a 冷熱 DESCRIPTION OF SYMBOLS 10, 20 Windmill power transmission part 11 Heat pump 12 Heat storage tank 13, 26 Compressor 15, 28 Expansion valve 16 Heating tower 17 Condenser / evaporator 18a, 18b Switching valve 21 Air-cooled refrigeration cycle 22 Speed-up mechanism 23 Clutch 24 Ice Thermal storage tank 25 Generator 27 Cooling tower 29 Evaporator 29a Cold heat

───────────────────────────────────────────────────── フロントページの続き (72)発明者 呉屋 智浩 沖縄県浦添市牧港五丁目2番1号 沖縄電 力株式会社内 (72)発明者 國場 裕介 沖縄県浦添市牧港五丁目2番1号 沖縄電 力株式会社内 (72)発明者 山本 允 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 篠田 勇次郎 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 藤間 克己 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 (72)発明者 吉川 朝郁 東京都江東区牡丹2丁目13番1号 株式会 社前川製作所内 Fターム(参考) 3H078 AA02 AA05 AA22 AA26 CC13 CC16 CC22 CC27 CC32 CC34 CC47 CC75 3L092 TA20 UA34  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomohiro Kureya 5-2-1 Makiminato, Urasoe-shi, Okinawa Inside Okinawa Electric Power Co., Inc. (72) Inventor Yusuke Kokuba 5-2-1 Makiminato, Urasoe-shi, Okinawa Okinawa Electric Power Company (72) Inventor Makoto Yamamoto 2-13-1, Botan, Koto-ku, Tokyo Co., Ltd. Inside Maekawa Manufacturing Co., Ltd. (72) Inventor Yujiro Shinoda 2-131, Botan, Koto-ku, Tokyo Stock Company In company Maekawa Works (72) Inventor Katsumi Fujima 2-13-1, Botan, Koto-ku, Tokyo Co., Ltd.In the Maekawa Works (72) Inventor Asayoshi Yoshikawa 2-3-1 Botan, Koto-ku, Tokyo Co., Ltd. Maekawa Factory F-term (reference) 3H078 AA02 AA05 AA22 AA26 CC13 CC16 CC22 CC27 CC32 CC34 CC47 CC75 3L092 TA20 UA34

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 風向きに常に正対する正対機構を備えた
プロペラ型風車や垂直軸型風車により回転動力を得る風
車駆動部と、該駆動部により得られた回転数を増速する
増速機構と、クラッチ機構とを含む風車動力伝達部より
得られた動力源を熱エネルギに変換する熱エネルギ変換
装置において、 採熱/放熱用ヒーティングタワーと圧縮機と凝縮器/蒸
発器と膨張弁とよりなる、空気熱源と風力動力源とによ
り作動するヒートポンプと、得られた温/冷熱を蓄熱す
る蓄熱槽とを設ける構成としたことを特徴とする風車駆
動ヒートポンプ。
1. A windmill drive unit for obtaining rotational power by a propeller-type windmill or a vertical-axis windmill provided with a facing mechanism that always faces the wind direction, and a speed increasing mechanism for increasing the rotation speed obtained by the drive unit A heat source / heat dissipating heating tower, a compressor, a condenser / evaporator, an expansion valve, and a heat source / heat dissipating heating tower. A heat pump driven by an air heat source and a wind power source, and a heat storage tank for storing the obtained hot / cold heat.
【請求項2】 前記圧縮機は横型圧縮機を使用する構成
としたことを特徴とする請求項1記載の風車駆動ヒート
ポンプ。
2. The wind turbine drive heat pump according to claim 1, wherein the compressor is configured to use a horizontal compressor.
【請求項3】 前記圧縮機は立型圧縮機を使用する構成
としたことを特徴とする請求項1記載の風車駆動ヒート
ポンプ。
3. The wind turbine drive heat pump according to claim 1, wherein the compressor is configured to use a vertical compressor.
【請求項4】 前記ヒーティングタワーは、風向きに正
対して大気をヒーティングタワーの熱交換器の伝熱面へ
誘導する外気誘導用の自動回動機構を持つ空気取り入れ
口を設けたことを特徴とする請求項1記載の風車駆動ヒ
ートポンプ。
4. The heating tower is provided with an air intake having an automatic rotation mechanism for guiding outside air, which guides the air to the heat transfer surface of the heat exchanger of the heating tower in the direction of the wind. The wind turbine drive heat pump according to claim 1, wherein
【請求項5】 風向きに常に正対する正対機構を備えた
プロペラ型風車や垂直軸型風車により回転動力を得る風
車駆動部と、該駆動部により得られた回転数を増速する
増速機構と、クラッチ機構とを含む風車動力伝達部より
得られた動力源を熱エネルギに変換する熱エネルギ変換
装置において、 クーリングタワーと圧縮機と蒸発器と膨張弁とよりなる
空冷冷凍サイクルと、得られた冷熱を蓄熱する氷蓄熱槽
とを設ける構成としたことを特徴とする風車駆動冷凍シ
ステム。
5. A windmill drive unit for obtaining rotational power from a propeller-type windmill or a vertical-axis windmill provided with a facing mechanism that always faces the wind direction, and a speed increasing mechanism for increasing the rotation speed obtained by the drive unit. And a heat energy conversion device for converting a power source obtained from a wind turbine power transmission unit including a clutch mechanism into thermal energy, comprising: an air-cooled refrigeration cycle including a cooling tower, a compressor, an evaporator, and an expansion valve. A windmill driven refrigeration system, comprising: an ice heat storage tank for storing cold heat.
【請求項6】 前記圧縮機は横型圧縮機を使用する構成
としたことを特徴とする請求項5記載の風車駆動冷凍シ
ステム。
6. The wind turbine drive refrigeration system according to claim 5, wherein said compressor is configured to use a horizontal compressor.
【請求項7】 前記圧縮機は立型圧縮機を使用する構成
としたことを特徴とする請求項5記載の風車駆動冷凍シ
ステム。
7. The wind turbine drive refrigeration system according to claim 5, wherein the compressor uses a vertical compressor.
【請求項8】 前記冷凍サイクルは、圧縮機回転数が約
3000rpmを中心にプラスマイナス約20%の範囲
においてはクラッチ機構を介して運転させる構成とした
ことを特徴とする請求項5記載の風車駆動冷凍システ
ム。
8. The wind turbine according to claim 5, wherein the refrigeration cycle is operated via a clutch mechanism when the number of rotations of the compressor is in a range of about ± 20% around a rotation speed of about 3000 rpm. Drive refrigeration system.
【請求項9】 前記増速機構は、圧縮機入力回転数を約
3600rpmまで増速する構成としたことを特徴とす
る請求項5記載の風車駆動の冷凍システム。
9. The refrigeration system driven by a wind turbine according to claim 5, wherein the speed increasing mechanism is configured to increase the input speed of the compressor to about 3600 rpm.
【請求項10】 前記冷凍サイクルが運転停止する期間
は別途用意した発電機を駆動させ、蓄電池を充電させる
構成としたことを特徴とする請求項5記載の風車駆動冷
凍システム。
10. The wind turbine drive refrigeration system according to claim 5, wherein a generator prepared separately is driven to charge the storage battery during a period when the operation of the refrigeration cycle is stopped.
JP2001105574A 2000-08-28 2001-04-04 Windmill-driven heat pump and windmill-driven refrigeration system Expired - Fee Related JP3679020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001105574A JP3679020B2 (en) 2000-08-28 2001-04-04 Windmill-driven heat pump and windmill-driven refrigeration system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-257015 2000-08-28
JP2000257015 2000-08-28
JP2001105574A JP3679020B2 (en) 2000-08-28 2001-04-04 Windmill-driven heat pump and windmill-driven refrigeration system

Publications (2)

Publication Number Publication Date
JP2002147337A true JP2002147337A (en) 2002-05-22
JP3679020B2 JP3679020B2 (en) 2005-08-03

Family

ID=26598567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105574A Expired - Fee Related JP3679020B2 (en) 2000-08-28 2001-04-04 Windmill-driven heat pump and windmill-driven refrigeration system

Country Status (1)

Country Link
JP (1) JP3679020B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083635A (en) * 2001-09-06 2003-03-19 Univ Waseda Wind turbine driven refrigerating system and operating method thereof
JP2005174801A (en) * 2003-12-12 2005-06-30 Tok Engineering Kk Permanent magnet type eddy current heating device
KR100893828B1 (en) 2007-11-02 2009-04-20 지에스건설 주식회사 Hybrid heat pump system for cooling and heating with integrated power generation system
CN101231040B (en) * 2006-11-22 2011-08-10 骆芮 Wind power central air-conditioning method
CN102297488A (en) * 2011-08-23 2011-12-28 唐山市拓又达科技有限公司 Ground source wind energy air conditioner system formed by vertical axis windmill and air conditioning method
KR101115428B1 (en) * 2009-06-24 2012-02-15 최경현 Device for requlating the wind force
CN102997497A (en) * 2012-12-21 2013-03-27 大连海洋大学 Wind-powered cooling and heating device
CN103148571A (en) * 2013-03-19 2013-06-12 广东吉荣空调有限公司 Wind energy heating unit and operation method thereof
CN103438504A (en) * 2013-08-21 2013-12-11 苏州张扬能源科技有限公司 Energy saving control system for air conditioner
CN103743010A (en) * 2013-12-18 2014-04-23 西安工程大学 Air conditioning unit combining wind power generation with evaporative cooling
RU2598859C2 (en) * 2014-11-21 2016-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Combined electric power plant
WO2019088920A1 (en) * 2017-11-02 2019-05-09 Baskar Jagannathan A wind powered cooling system
CN110595064A (en) * 2019-10-17 2019-12-20 贵州电网有限责任公司 Heating device
CN110701670A (en) * 2019-10-28 2020-01-17 上海电力大学 Wind-driven heat pump compressor heating device
CN111379667A (en) * 2018-12-28 2020-07-07 云南师范大学 Cold and hot economic benefits and social benefits energy storage system of independent energy supply of distributed off-grid wind-powered electricity generation
WO2021094779A1 (en) * 2019-11-14 2021-05-20 Global Partnerships Ltd Improvements in or relating to heating, ventilation and air conditioning systems
CN114263569A (en) * 2021-11-26 2022-04-01 中国科学院工程热物理研究所 Carbon dioxide compression cycle energy storage combined cooling heating and power supply coupled system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003083635A (en) * 2001-09-06 2003-03-19 Univ Waseda Wind turbine driven refrigerating system and operating method thereof
JP2005174801A (en) * 2003-12-12 2005-06-30 Tok Engineering Kk Permanent magnet type eddy current heating device
CN101231040B (en) * 2006-11-22 2011-08-10 骆芮 Wind power central air-conditioning method
KR100893828B1 (en) 2007-11-02 2009-04-20 지에스건설 주식회사 Hybrid heat pump system for cooling and heating with integrated power generation system
KR101115428B1 (en) * 2009-06-24 2012-02-15 최경현 Device for requlating the wind force
CN102297488A (en) * 2011-08-23 2011-12-28 唐山市拓又达科技有限公司 Ground source wind energy air conditioner system formed by vertical axis windmill and air conditioning method
CN102997497A (en) * 2012-12-21 2013-03-27 大连海洋大学 Wind-powered cooling and heating device
CN103148571A (en) * 2013-03-19 2013-06-12 广东吉荣空调有限公司 Wind energy heating unit and operation method thereof
CN103438504A (en) * 2013-08-21 2013-12-11 苏州张扬能源科技有限公司 Energy saving control system for air conditioner
CN103743010A (en) * 2013-12-18 2014-04-23 西安工程大学 Air conditioning unit combining wind power generation with evaporative cooling
CN103743010B (en) * 2013-12-18 2016-08-17 西安工程大学 Wind power generation is air conditioning unit with what evaporation cooling combined
RU2598859C2 (en) * 2014-11-21 2016-09-27 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Combined electric power plant
WO2019088920A1 (en) * 2017-11-02 2019-05-09 Baskar Jagannathan A wind powered cooling system
CN111379667A (en) * 2018-12-28 2020-07-07 云南师范大学 Cold and hot economic benefits and social benefits energy storage system of independent energy supply of distributed off-grid wind-powered electricity generation
CN110595064A (en) * 2019-10-17 2019-12-20 贵州电网有限责任公司 Heating device
CN110701670A (en) * 2019-10-28 2020-01-17 上海电力大学 Wind-driven heat pump compressor heating device
WO2021094779A1 (en) * 2019-11-14 2021-05-20 Global Partnerships Ltd Improvements in or relating to heating, ventilation and air conditioning systems
CN114263569A (en) * 2021-11-26 2022-04-01 中国科学院工程热物理研究所 Carbon dioxide compression cycle energy storage combined cooling heating and power supply coupled system
CN114263569B (en) * 2021-11-26 2024-01-23 中国科学院工程热物理研究所 Carbon dioxide compression cycle energy storage combined cooling heating power coupling system

Also Published As

Publication number Publication date
JP3679020B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3679020B2 (en) Windmill-driven heat pump and windmill-driven refrigeration system
CN201010924Y (en) Automatic fast cooling system for excavator hydraulic oil
WO2011004472A1 (en) Wind power generator
US20090228150A1 (en) HVAC system
JP5055155B2 (en) Wind power generator
CN102222993B (en) Hydraulic pump driven heat pipe cooling device for natural cooling
KR101579004B1 (en) The power generation system using solar energy
CN101338732A (en) Wind power generator adopting hot pipe for cooling wheel box
CN108397936B (en) A kind of Combined cold-heat-power supplying circulation system and method
TW200825280A (en) Power generating system driven by a heat pump
CN113138376B (en) Device for thermo-optical automatic correction of laser radar
JP3949946B2 (en) Wind turbine driven refrigeration system and wind turbine driven heat pump operating method and system
JP5312644B1 (en) Air conditioning power generation system
CN203196370U (en) Efficient heat exchange device
JP2009022123A (en) Power generation method using heat collection by heat pump
CN202216595U (en) Liquid pump driving heat pipe cooling device for natural cooling
CN110701670A (en) Wind-driven heat pump compressor heating device
AU2010211201B2 (en) Thermal power plant, in particular solar thermal power plant
CN105042939B (en) A kind of utilization cryogenic media obtains cold air, the method for electric energy and its device
KR101564813B1 (en) The power generation system using solar energy
CN201474883U (en) Device for transforming natural heat energy into storage energy of flywheel
CN202579069U (en) Superconducting room temperature (RT) organic Rankine cycle solar integration power generation system
CN114576033B (en) Waste dump temperature control and heat energy and wind energy cooperative power generation and heat dissipation device
CN204960998U (en) Organic working medium low temperature waste heat power generation system
CN216278044U (en) Cooling device for heat dissipation protection of steam turbine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees