JP2009022123A - Power generation method using heat collection by heat pump - Google Patents

Power generation method using heat collection by heat pump Download PDF

Info

Publication number
JP2009022123A
JP2009022123A JP2007183845A JP2007183845A JP2009022123A JP 2009022123 A JP2009022123 A JP 2009022123A JP 2007183845 A JP2007183845 A JP 2007183845A JP 2007183845 A JP2007183845 A JP 2007183845A JP 2009022123 A JP2009022123 A JP 2009022123A
Authority
JP
Japan
Prior art keywords
heat
power generation
temperature
energy
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007183845A
Other languages
Japanese (ja)
Inventor
Taiji Sasaki
泰司 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007183845A priority Critical patent/JP2009022123A/en
Publication of JP2009022123A publication Critical patent/JP2009022123A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problem associated with conventional power generation devices that use fuel to produce high temperature and high pressure and convert it into electrical energy: when electrical energy is produced, thermal energy is not recovered and a large amount of heat must be discharged to the outside; and also when electrical energy is used, heat is produced and air is warmed by an amount equivalent to the amount of heat produced by using fuel as a whole. <P>SOLUTION: Thermal energy, which is difficult to use at low temperature, is collected to a heat pump so that the thermal energy can be converted into electrical energy and is turned into high-temperature energy to evaporate liquid. Utilizing a theory that gas is liquefied when exposed to low temperature, a flow of gas and a pressure difference are artificially produced. A power generation device is placed in the flow of gas and the pressure difference. The generator 5 is rotated by the flow of air and the pressure difference to convert them into electrical energy. An amount of thermal energy equivalent to an amount reduced as the result of conversion into electrical energy is made up by a heat exchanger 7 for heating. Thermal energy is thereby continuously taken out as electrical energy and provided to the outside. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、自然界に存在する熱エネルギーを運動エネルギーに変換し、そして電気エネルギーに変換する発電方法に関する。   The present invention relates to a power generation method that converts thermal energy existing in nature into kinetic energy and then converts it into electrical energy.

従来の発電装置は、化石燃料等の燃料を燃焼させ、燃焼時に発生する熱エネルギーで水を蒸発し高い圧力を発生させ、その圧力を利用し発電機を回転させ、又は内燃機関に接続して発電機を回転させて、電気エネルギーを得る発電方法であった。熱エネルギーを電気エネルギーに変換する特許文献として以下のものがある。
特願平4−124851 特公平02−001989 特願平7−344276
Conventional power generation devices combust fuels such as fossil fuels, evaporate water with the thermal energy generated during combustion, generate high pressure, rotate the generator using the pressure, or connect to an internal combustion engine This is a power generation method in which electric energy is obtained by rotating a generator. Patent documents that convert thermal energy into electrical energy include the following.
Japanese Patent Application 4-124851 JP 02-001989 Japanese Patent Application No. 7-344276

これには、次のような欠点があった。常に化石燃料等の燃料を燃焼させ続けなければならないし、高温・高圧力で扱い難かった。また、OTECと呼ばれる海洋温度差発電があるが、温度差が少ない為、効率が大変悪い。   This has the following drawbacks. It was always difficult to handle fossil fuels and other fuels at high temperatures and high pressures. Moreover, although there is an ocean temperature difference power generation called OTEC, since the temperature difference is small, the efficiency is very bad.

上記欠点を解決するために、本発明は、熱エネルギーを運動エネルギーに積極的に変換することを考案し、どこにでも存在する熱エネルギーをヒートポンプを利用して集熱し、高温部と低温部を作り、密閉した容器内の一端を高温部用8とし液体に熱を加えることにより気体に変え、もう一端を低温部用9としその気体の熱を奪うことで液体に戻し低温部9容器内の圧力を下げ高温部8容器内の液体を蒸発しやすくする。ヒートポンプで集熱することで高温部と低温部ができ、その間に気体の流れや圧力差が出来るようにした。よって熱エネルギーをまず運動エネルギーに変換し、その運動エネルギーを電気エネルギーに変換することとし、その気体の流れや圧力差を利用して連続的に発電することができる構成とした。   In order to solve the above drawbacks, the present invention devised to actively convert heat energy into kinetic energy, and collects the heat energy existing everywhere using a heat pump to create a high temperature part and a low temperature part. One end of the sealed container is changed to gas by applying heat to the liquid at the high temperature part 8 and the other end is changed to gas at the low temperature part 9 by removing heat from the gas. Is lowered to facilitate evaporation of the liquid in the high-temperature part 8 container. By collecting heat with a heat pump, a high temperature part and a low temperature part were created, and a gas flow and pressure difference were created between them. Therefore, the heat energy is first converted into kinetic energy, and the kinetic energy is converted into electric energy, so that power can be continuously generated using the gas flow and pressure difference.

従来の発電設備は、大規模な建造物で発電していたが、本発電方法は装置を小型にすることができ、車に搭載すれば無燃料電気自動車、走行しないときは売電も可能になる。
熱エネルギーから電気エネルギーに変換されなかった熱エネルギーは、従来の方法では外部に捨てていたけれども、本案の方法は低温部9にて回収し集熱し再利用することができ無駄なく最後まで電気エネルギーに変換できる。
低温部9容器にて蒸気が凝結し容器内の圧力が下がるため、高温部8容器内の液体は1気圧時の温度よりも低い温度で蒸発する為、蒸発しやすく、高圧にならず取り扱い易い。
マイナス273℃以上の温度があるならば、液体を適宜変更することにより理論上どんな熱源でも使用可能であり、離島や山奥などあらゆる場所で使用でき、送電線設備不要で利用できる。
Conventional power generation facilities generate electricity in large-scale buildings, but this power generation method can reduce the size of the device, and if it is installed in a car, it can be used as a fuel-free electric vehicle, and when it does not run, it can also sell power Become.
Although the heat energy that was not converted from heat energy to electric energy was thrown away to the outside in the conventional method, the method of the present plan can be recovered in the low temperature part 9 and collected and reused without waste. Can be converted to
Since the vapor condenses in the low temperature section 9 container and the pressure in the container drops, the liquid in the high temperature section 8 container evaporates at a temperature lower than the temperature at 1 atm. .
If there is a temperature of minus 273 ° C. or higher, theoretically any heat source can be used by appropriately changing the liquid, and it can be used in any place such as a remote island or in the mountains, and can be used without the need for transmission line facilities.

ヒートポンプの圧縮機2により凝縮し集められた高熱源を利用して液体を蒸発させる為の熱交換器3を備えた高温部8容器とヒートポンプの膨張弁12を通過し気化した低温ガスで蒸発した気体を液体に戻す為の冷却器(コンデンサー)4を備えた低温部9容器を備 え、高温部容器と低温部容器の間に発電装置を設け一つの閉鎖された容器とし、真空ポンプにて容器内の空気を取り出し真空にし、容器内の高温部8になる一端に液体1として水を入れ、ヒートポンプの圧縮機2の熱交換器3で水を蒸発させる。もう一方の低温部9になる端は、ヒートポンプの冷却器(コンデンサー)4により蒸発した水を液体に戻す。高熱源を利用して容器内の液体を蒸発させた気体のある容器内の高温部8の一端と冷却器(コンデンサー)低温部9の一端の間には、蒸発した気体の流れと圧力差が発生する。高温部8の一端と低温部9の一端の間に発電装置を設置し、蒸発した気体の流れと圧力差によって発電機5を回転させ発電する。冷却器(コンデンサー)4によって液体に戻った水は返送ポンプ6にて高温部8容器に送る。ヒートポンプの低温ガスは電気エネルギーに変換された熱エネルギー分だけ低温になっており、不足した熱エネルギーは加熱用熱交換器7を通して補充されヒートポンプの圧縮機へと向かい圧縮集熱される。圧縮集熱された熱エネルギーは、再度水を蒸発させることに利用され運動エネルギーになり、それから電気エネルギーに変換され、水を介しての熱エネルギーが運動エネルギーになりそして電気エネルギーとなり一つの連続したサイクルが構成される。 Evaporated with the vaporized low-temperature gas that passed through the high-temperature section 8 container and the heat pump expansion valve 12 equipped with the heat exchanger 3 for evaporating the liquid using the high heat source condensed and collected by the compressor 2 of the heat pump. A low-temperature part 9 container equipped with a cooler (condenser) 4 for returning the gas to a liquid is provided. A power generation device is provided between the high-temperature part container and the low-temperature part container to form a closed container. The air in the container is taken out and evacuated, water is added as liquid 1 to one end that becomes the high temperature part 8 in the container, and water is evaporated by the heat exchanger 3 of the compressor 2 of the heat pump. The other end which becomes the low temperature part 9 returns the water evaporated by the cooler (condenser) 4 of the heat pump to a liquid. Between the one end of the high temperature part 8 and the one end of the cooler (condenser) low temperature part 9 in the container where the gas in which the liquid in the container is evaporated is utilized using a high heat source, there is a flow of the evaporated gas and a pressure difference. appear. A power generator is installed between one end of the high temperature part 8 and one end of the low temperature part 9, and the generator 5 is rotated by the flow of the vaporized gas and the pressure difference to generate power. The water returned to the liquid by the cooler (condenser) 4 is sent to the high temperature section 8 container by the return pump 6. The low-temperature gas of the heat pump is low in temperature by the amount of heat energy converted into electric energy, and the insufficient heat energy is replenished through the heat exchanger 7 for heating and is compressed and collected toward the compressor of the heat pump. The compressed and collected heat energy is used to evaporate water again to become kinetic energy, then converted into electrical energy, and the heat energy via water becomes kinetic energy and then becomes electrical energy, one continuous A cycle is constructed.

ヒートポンプの集熱効率を表す単位としてCOPがあるが、現在4から6となっている。水蒸気の流れを風と見た場合、風力発電の発電効率は現在30%と言われている。COPを4として考えた場合、1kWのヒートポンプで4KWの熱を集熱することができ、4KWの熱から30%を電気エネルギーに変換されると計算すると、1KW×4×0.3=1.2KWの発電ができ、1.2KW−1kW=0.2KWになります。よって1kwの電気エネルギーで1.2kwの電気エネルギーを作ることができ0.2KWの電気エネルギーが余り、この装置から0.2kwの電気を外部に提供することができる。電気エネルギーに変換されなかった熱エネルギーは、冷却器(コンデンサー)4により回収再利用され、さらにヒートポンプの圧縮機2等から放熱される熱エネルギーも加熱用熱交換器7によって無駄なく回収されるため、本発電方法はエネルギーロスが無いと考えられる。燃料を使用して発電するには、加熱用熱交換器7に燃料から発生する熱エネルギーを供給すれば可能です。燃料使用の場合の発電効率は、電気エネルギーに変換されなかった熱エネルギーを冷却器(コンデンサー)4で回収する為100%に近くなる。 Although there is COP as a unit representing the heat collection efficiency of the heat pump, it is currently 4 to 6. When the flow of water vapor is regarded as wind, the power generation efficiency of wind power generation is currently said to be 30%. Assuming that COP is 4, it is possible to collect 4 kW of heat with a 1 kW heat pump, and it is calculated that 30% is converted from 4 kW of heat into electric energy. 1 kW × 4 × 0.3 = 1. 2KW can be generated, and 1.2KW-1kW = 0.2KW. Therefore, 1.2 kW of electrical energy can be produced with 1 kW of electrical energy, and 0.2 kW of electrical energy is surplus, and 0.2 kW of electricity can be provided to the outside from this device. The heat energy that has not been converted into electric energy is recovered and reused by the cooler (condenser) 4, and the heat energy radiated from the compressor 2 of the heat pump is also recovered by the heating heat exchanger 7 without waste. This power generation method is considered to have no energy loss. In order to generate electricity using fuel, it is possible to supply heat energy generated from the fuel to the heat exchanger 7 for heating. The power generation efficiency in the case of using fuel is close to 100% because the heat energy that has not been converted into electric energy is recovered by the cooler (condenser) 4.

上記本発明の特徴によれば、本体内の密閉された容器内の高温部8にヒートポンプの圧縮機2により凝縮し集められた高熱源を利用して容器内の液体を蒸発させる熱交換器3を設置し、もう一方の低温部9に蒸発した気体を液体に戻すヒートポンプの膨張弁を通過し気化した低温ガスでの冷却器4を設置し、高熱源を利用して容器内の液体を蒸発させた気体と冷却器4の間に発電装置を設置し、容器内を真空状態にし、容器内高温部8に液体を挿入する。そしてヒートポンプの熱交換器3を通して液体に熱エネルギーを加えると気化する。蒸発した気体は冷却されると凝結する為、発電装置を境に圧力差が生じファン13を介して発電機5を回転させることができる。冷却器(コンデンサー)4によって液体に戻った水は液体返送ポンプ6により、熱交換器3側に送られ再度蒸発する。発電に変換された熱エネルギーの損失分は、ヒートポンプの膨張弁を通過した低温ガスに加熱用熱交換器7を通して熱エネルギーを吸熱させ補充すればよい。熱交換器3が異常に温度が上がることを防止するために加熱用熱交換器7を制御するコントロールユニット10を設置し、冷却器4の温度が異常に下がることを防止するためにヒートポンプの圧縮機2を制御するコントロールユニット11を設置する。 According to the above feature of the present invention, the heat exchanger 3 evaporates the liquid in the container using the high heat source condensed and collected by the compressor 2 of the heat pump in the high temperature portion 8 in the sealed container in the main body. Is installed, and the cooler 4 with the vaporized low temperature gas passing through the expansion valve of the heat pump that returns the evaporated gas to the liquid in the other low temperature part 9 is installed, and the liquid in the container is evaporated using a high heat source A power generation device is installed between the gas and the cooler 4, the inside of the container is evacuated, and the liquid is inserted into the high temperature portion 8 in the container. When heat energy is applied to the liquid through the heat exchanger 3 of the heat pump, the liquid is vaporized. Since the evaporated gas condenses when cooled, a pressure difference is generated at the boundary of the power generation device, and the generator 5 can be rotated via the fan 13. The water returned to the liquid by the cooler (condenser) 4 is sent to the heat exchanger 3 side by the liquid return pump 6 and evaporated again. The loss of heat energy converted into power generation may be supplemented by absorbing the heat energy through the heat exchanger 7 for heating to the low-temperature gas that has passed through the expansion valve of the heat pump. In order to prevent the temperature of the heat exchanger 3 from rising abnormally, a control unit 10 for controlling the heat exchanger 7 for heating is installed, and in order to prevent the temperature of the cooler 4 from dropping abnormally, the heat pump is compressed. A control unit 11 for controlling the machine 2 is installed.

従来の様に高温を作る為の燃料を使用する必要が無く、周りにある熱エネルギーを電気エネルギーに変換する為、公害が発生しない。発生した電気エネルギーは、最終的に熱エネルギーになり熱の収支に変化がない為、何度でも繰り返し熱エネルギーを電気エネルギーとして利用する事が可能である。 There is no need to use fuel for creating high temperatures as in the past, and the surrounding heat energy is converted into electrical energy, so no pollution occurs. Since the generated electrical energy finally becomes thermal energy and there is no change in the heat balance, it is possible to repeatedly use the thermal energy as electrical energy.

図1は本発明の実施例を示すヒートポンプの集熱を利用した発電装置の要部の構成図であり、大きく分けてヒートポンプ部と蒸発部と発電装置部になる。 FIG. 1 is a configuration diagram of a main part of a power generation device using heat collection of a heat pump according to an embodiment of the present invention, and is roughly divided into a heat pump unit, an evaporation unit, and a power generation device unit.

蒸発していた水蒸気は冷却器4により冷やされ凝結し水に戻り、密閉容器内は気圧が低くなり、高温部8にある水は、熱交換器3が100℃以下でも蒸発する。気化した水蒸気は、圧力の低い冷却器4のある低温部9に向かって進む。これが、熱エネルギーが運動エネルギーに変化したところである。発電装置に付いているファンやタービン13に水蒸気が当り発電機5を回転させ発電する。 The evaporated water vapor is cooled by the cooler 4, condensed and returned to water, the pressure inside the sealed container is lowered, and the water in the high temperature part 8 is evaporated even when the heat exchanger 3 is 100 ° C. or less. The vaporized water vapor proceeds toward the low temperature part 9 where the cooler 4 having a low pressure is provided. This is where the heat energy has changed to kinetic energy. Water vapor hits the fan or turbine 13 attached to the power generation device to rotate the generator 5 to generate power.

本発明法を実施するための一例を示す構成図である。It is a block diagram which shows an example for implementing this invention method. ヒートポンプを2台利用した場合の構成図である。It is a block diagram at the time of using two heat pumps.

符号の説明Explanation of symbols

1液体
2ヒートポンプ圧縮機
3熱交換器
4冷却器(コンデンサー)
5発電機
6液体返送ポンプ
7加熱用熱交換器
8高温部
9低温部
10集熱コントロールユニット
11冷却コントロールユニット
12膨張弁
13ファン・タービン
1 liquid 2 heat pump compressor 3 heat exchanger 4 cooler (condenser)
5 Generator 6 Liquid return pump 7 Heat exchanger for heating 8 High temperature part 9 Low temperature part 10 Heat collection control unit 11 Cooling control unit 12 Expansion valve 13 Fan turbine

Claims (4)

ヒートポンプの圧縮機により凝縮し集められた高熱源を利用して液体を蒸発させる為の熱交換器を備えた高温部容器とヒートポンプの膨張弁を通過し気化した低温ガスで蒸発した気体を液体に戻す為の冷却器(コンデンサー)を備えた低温部容器を備え、高温部容器と低温部容器の間に発電装置を設け一つの閉鎖された容器とし、容器内を液体と液体が蒸発した蒸気で出来るだけ満たし、高温部容器から低温部容器へ蒸発した気体が流れる圧力差によるエネルギーを発電装置で電気エネルギーに変換し、冷却器(コンデンサー)によって液体に戻った液体を高温部容器に返送するポンプを備えたヒートポンプの集熱を利用した発電方法。 A high-temperature container equipped with a heat exchanger for evaporating liquid using the high heat source condensed and collected by the compressor of the heat pump and the gas evaporated by the low-temperature gas evaporated through the expansion valve of the heat pump into liquid A low temperature vessel with a condenser (condenser) for return is provided, and a power generation device is provided between the high temperature vessel and the low temperature vessel to form a closed vessel. A pump that fills as much as possible and converts the energy due to the pressure difference that the vaporized gas flows from the high-temperature vessel into the low-temperature vessel into electrical energy with a power generator, and returns the liquid returned to the liquid by the condenser (condenser) to the high-temperature vessel Power generation method using heat collection of heat pump equipped with 低温部を通過したヒートポンプ用低温ガスに熱を供給する為の加熱用熱交換器を備えていることを特徴とする請求項1記載のヒートポンプの集熱を利用した発電方法。 The power generation method using the heat collection of the heat pump according to claim 1, further comprising a heat exchanger for heating for supplying heat to the low temperature gas for heat pump that has passed through the low temperature portion. 2台以上のヒートポンプを利用し集めた熱源を高温部容器に熱エネルギーとして供給することを特徴とする請求項1又は2記載のヒートポンプの集熱を利用した発電方法。 3. A power generation method using heat collection of a heat pump according to claim 1, wherein heat sources collected by using two or more heat pumps are supplied as heat energy to the high temperature container. 熱交換器3が異常に温度が上がることを防止するために加熱用熱交換器7を制御するコントロールユニット10を設置し、冷却器4の温度が異常に下がることを防止するためにヒートポンプの圧縮機2を制御するコントロールユニット11を設置したことを特徴とする請求項1,2,3記載のヒートポンプの集熱を利用した発電方法。 In order to prevent the temperature of the heat exchanger 3 from rising abnormally, a control unit 10 for controlling the heat exchanger 7 for heating is installed, and in order to prevent the temperature of the cooler 4 from dropping abnormally, the heat pump is compressed. 4. A power generation method using heat collection of a heat pump according to claim 1, wherein a control unit 11 for controlling the machine 2 is installed.
JP2007183845A 2007-07-13 2007-07-13 Power generation method using heat collection by heat pump Pending JP2009022123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007183845A JP2009022123A (en) 2007-07-13 2007-07-13 Power generation method using heat collection by heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183845A JP2009022123A (en) 2007-07-13 2007-07-13 Power generation method using heat collection by heat pump

Publications (1)

Publication Number Publication Date
JP2009022123A true JP2009022123A (en) 2009-01-29

Family

ID=40361254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183845A Pending JP2009022123A (en) 2007-07-13 2007-07-13 Power generation method using heat collection by heat pump

Country Status (1)

Country Link
JP (1) JP2009022123A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098508A1 (en) * 2012-12-19 2014-06-26 Shin Gil Hyun System powered by combination of heat engine and heat pump
CN104296373A (en) * 2014-10-15 2015-01-21 中山昊天节能科技有限公司 Air energy water heating system
CN104296223A (en) * 2014-10-15 2015-01-21 中山昊天节能科技有限公司 Air energy central heating device
CN104373159A (en) * 2014-10-15 2015-02-25 中山昊天节能科技有限公司 Small air energy generator
CN104390349A (en) * 2014-10-15 2015-03-04 中山昊天节能科技有限公司 Decontamination-type air energy water heater
CN104405462A (en) * 2014-10-15 2015-03-11 中山昊天节能科技有限公司 Energy conversion system for converting air energy into electric energy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098508A1 (en) * 2012-12-19 2014-06-26 Shin Gil Hyun System powered by combination of heat engine and heat pump
CN104296373A (en) * 2014-10-15 2015-01-21 中山昊天节能科技有限公司 Air energy water heating system
CN104296223A (en) * 2014-10-15 2015-01-21 中山昊天节能科技有限公司 Air energy central heating device
CN104373159A (en) * 2014-10-15 2015-02-25 中山昊天节能科技有限公司 Small air energy generator
CN104390349A (en) * 2014-10-15 2015-03-04 中山昊天节能科技有限公司 Decontamination-type air energy water heater
CN104405462A (en) * 2014-10-15 2015-03-11 中山昊天节能科技有限公司 Energy conversion system for converting air energy into electric energy

Similar Documents

Publication Publication Date Title
US10774733B2 (en) Bottoming cycle power system
EP2499342B1 (en) System and method for secondary energy production in a compressed air energy storage system
US20120001436A1 (en) Power generator using a wind turbine, a hydrodynamic retarder and an organic rankine cycle drive
CN101842557B (en) Method and device for converting thermal energy of a low temperature heat source into mechanical energy
UA61957C2 (en) Method for obtaining energy from the exhaust gas of gas turbine, method and system of regeneration of energy of the exhaust gas heat
JP7251225B2 (en) power generation system
US20090313995A1 (en) Power generation system
JP2009022123A (en) Power generation method using heat collection by heat pump
KR20130091806A (en) Cogeneration system using heat pump
JP2015096703A (en) Heat recovery power generation system
KR20140085001A (en) Energy saving system for using waste heat of ship
KR101247772B1 (en) generator of ship using the organic rankine cycle
JP2014122576A (en) Solar heat utilization system
JP5527513B2 (en) Fluid machine drive system
JP5312644B1 (en) Air conditioning power generation system
KR101528935B1 (en) The generating system using the waste heat of condenser
KR20150109102A (en) Organic Rankine Cycle electricity generation system
JP2014190285A (en) Binary power generation device operation method
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
KR20190052794A (en) Generation system of organic rankine cycle integrated wind turbine cooling system
KR101488656B1 (en) Power generation system for waste heat recovery
KR20130119162A (en) Direct organic rankine cycle power generation system using solar power
RU2812381C1 (en) Operating method of steam gas plant
RU2812135C1 (en) Method of operation of thermal power steam plant
KR20150033567A (en) elctronic power generator using heat pump and driving method thereof