JP2002141562A - Composite oxide excellent for thermoelectric conversion - Google Patents

Composite oxide excellent for thermoelectric conversion

Info

Publication number
JP2002141562A
JP2002141562A JP2000331819A JP2000331819A JP2002141562A JP 2002141562 A JP2002141562 A JP 2002141562A JP 2000331819 A JP2000331819 A JP 2000331819A JP 2000331819 A JP2000331819 A JP 2000331819A JP 2002141562 A JP2002141562 A JP 2002141562A
Authority
JP
Japan
Prior art keywords
composite oxide
compound
thermoelectric conversion
raw material
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000331819A
Other languages
Japanese (ja)
Other versions
JP3472814B2 (en
Inventor
Ryoji Funahashi
良次 舟橋
Ichiro Matsubara
一郎 松原
Masaru Sodeoka
賢 袖岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000331819A priority Critical patent/JP3472814B2/en
Publication of JP2002141562A publication Critical patent/JP2002141562A/en
Application granted granted Critical
Publication of JP3472814B2 publication Critical patent/JP3472814B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new material which is composed of elements abundantly existing but having respectively low toxicities and is excellent in its heat resistance and its chemical durability, etc., and further, has a high Seebeck coefficient and good electric conductivity. SOLUTION: By melting and cooling rapidly the raw material obtained by mixing each other in a specific ratio a Bi compound, a Pb compound, an Sr compound, a Ca compound, and a Co compound, a solid material is obtained. Then, by subjecting the solid material to a heat treatment in an oxygen atmosphere, there is grown as a fiber-form single crystal a composite oxide having an excellent thermoelectric conversion performance which is represented by the chemical formula of Bi1.6-2.2Pb0-0.25Sr1.1-2.2Ca0-0.8Co2O9-x (0<=x<=1).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、優れた熱電変換性
能を有する新規な複合酸化物及びその製造方法に関す
る。
[0001] The present invention relates to a novel composite oxide having excellent thermoelectric conversion performance and a method for producing the same.

【0002】[0002]

【従来の技術】我が国では、一次供給エネルギーからの
有効なエネルギーの得率は30%程度しかなく、約70
%ものエネルギ−を最終的には熱として大気中に廃棄し
ている。また、工場やごみ焼却場などにおいて燃焼によ
り生ずる熱も他のエネルギーに変換されることなく大気
中に廃棄されている。このように、我々人類は非常に多
くの熱エネルギーを無駄に廃棄しており、化石エネルギ
ーの燃焼等の行為から僅かなエネルギーしか獲得してい
ない。
2. Description of the Related Art In Japan, the yield of effective energy from primary supply energy is only about 30%, and is about 70%.
% Of energy is ultimately discarded into the atmosphere as heat. Also, heat generated by combustion in factories, refuse incineration plants, and the like is discarded into the atmosphere without being converted into other energy. In this way, human beings waste a great deal of heat energy wastefully, and have obtained only a small amount of energy from actions such as burning fossil energy.

【0003】エネルギーの得率を向上させるためには、
大気中に廃棄されている熱エネルギーを利用できるよう
することが有効である。そのためには熱エネルギーを直
接電気エネルギーに変換する熱電変換は有効な手段であ
る。この熱電変換とは、ゼーベック効果を利用したもの
であり、熱電変換材料の両端で温度差をつけることで電
位差を生じさせて発電を行うエネルギー変換法である。
この熱電発電では、熱電変換材料の一端を廃熱により生
じた高温部に配置し、もう一端を大気中(室温)に配置
して、それぞれの両端に導線を接続するだけで電気が得
られ、一般の発電に必要なモーターやタービン等の可動
装置は全く必要ない。このためコストも安く、さらに燃
焼等によるガスの排出も無く、熱電変換材料が劣化する
まで継続的に発電を行うことができる。
In order to improve the energy yield,
It is effective to make available thermal energy that is discarded in the atmosphere. For that purpose, thermoelectric conversion, which directly converts heat energy into electric energy, is an effective means. The thermoelectric conversion utilizes the Seebeck effect, and is an energy conversion method for generating power by generating a potential difference by applying a temperature difference between both ends of a thermoelectric conversion material.
In this thermoelectric power generation, electricity is obtained simply by placing one end of a thermoelectric conversion material in a high-temperature portion generated by waste heat, placing the other end in the atmosphere (room temperature), and connecting conductors to both ends, No moving devices such as motors and turbines required for general power generation are required. For this reason, the cost is low, the gas is not discharged due to combustion or the like, and the power generation can be continuously performed until the thermoelectric conversion material is deteriorated.

【0004】このように、熱電発電は今後心配されるエ
ネルギー問題の解決の一端を担う技術として期待されて
いるが、熱電発電を実現するためには、高い熱電変換効
率を有し、耐熱性、化学的耐久性等に優れた熱電変換材
料が必要となる。現在、高い熱電変換効率を有する物質
として知られているものは、金属間化合物であり、その
中でも、廃熱の温度域である600〜1000K程度の
温度域で高い変換効率を有する材料は、TeAgSb系
金属化合物である。しかしながら、TeやSbは毒性を
有する希少元素であり、しかも酸化し易いために空気中
では利用できない点等を考慮すると、TeAgSb系金
属化合物の実用材としての応用には限界がある。このた
め、毒性が少なく、存在量の多い元素により構成され、
耐熱性、化学的耐久性等に優れ、高い熱電変換効率を有
する材料の開発が期待されている。
As described above, thermoelectric power generation is expected to play a part in solving the energy problem of concern in the future, but in order to realize thermoelectric power generation, it has high thermoelectric conversion efficiency, heat resistance, A thermoelectric conversion material having excellent chemical durability and the like is required. At present, a substance having a high thermoelectric conversion efficiency is an intermetallic compound. Among them, a material having a high conversion efficiency in a temperature range of about 600 to 1000 K which is a temperature range of waste heat is TeAgSb. It is a base metal compound. However, the application of TeAgSb-based metal compounds as practical materials is limited in view of the fact that Te and Sb are toxic rare elements and cannot be used in air because they are easily oxidized. Because of this, it is composed of elements with low toxicity and high abundance,
Development of a material having excellent heat resistance, chemical durability and the like and high thermoelectric conversion efficiency is expected.

【0005】耐熱性や化学的耐久性に優れた材料として
は金属酸化物が考えられるが、金属酸化物の熱電変換効
率は、TeAgSb系金属化合物と比較して一桁低いの
が現状である。これは、従来知られている10mΩcm
程度以下の電気抵抗率を有する導電性の良好な酸化物
は、ゼーベック係数が数十μV/K程度以下の低い値し
か示さないためである。
As a material having excellent heat resistance and chemical durability, a metal oxide can be considered. At present, the thermoelectric conversion efficiency of the metal oxide is one digit lower than that of a TeAgSb-based metal compound. This is the conventional 10 mΩcm
This is because an oxide having good electrical conductivity having an electric resistivity of about or less has a Seebeck coefficient of only a low value of about several tens of μV / K or less.

【0006】[0006]

【発明が解決しようとする課題】本発明の主な目的は、
毒性が低く存在量の多い元素により構成され、耐熱性、
化学的耐久性等に優れ、高いゼーベック係数と良好な電
気伝導性を有する新規な材料を提供することである。
SUMMARY OF THE INVENTION The main object of the present invention is to:
It is composed of elements with low toxicity and high abundance, heat resistance,
An object of the present invention is to provide a novel material having excellent chemical durability and the like, and having a high Seebeck coefficient and good electric conductivity.

【0007】[0007]

【課題を解決するための手段】本発明者は、上記した熱
電変換材料の現状に鑑みて種々の研究を重ねた結果、B
i化合物、Pb化合物、Sr化合物、Ca化合物及びC
o化合物を特定の割合で混合した原料を溶融し急冷して
得られる固形物を、酸素雰囲気中で熱処理することによ
って、優れた熱電変換性能を有する複合酸化物が繊維状
の単結晶として成長することを見出し、ここに本発明を
完成するに至った。
The present inventor has conducted various studies in view of the current state of the above-mentioned thermoelectric conversion materials.
i compound, Pb compound, Sr compound, Ca compound and C
The solid obtained by melting and quenching the raw material obtained by mixing the o compound in a specific ratio is heat-treated in an oxygen atmosphere, whereby the composite oxide having excellent thermoelectric conversion performance grows as a fibrous single crystal. This has led to the completion of the present invention.

【0008】即ち、本発明は、下記の複合酸化物、及び
その製造方法を提供するものである。 1. 化学式:Bi1.6〜2.2Pb0〜0.25Sr1.1〜2.2
Ca0〜0.8Co29-x(0≦x≦1)で表される複合酸
化物。 2. MO−M’O−M’O−MO(MはCa又はSr
であり、M’はBi又はPbである)の順に積み重なっ
た岩塩型構造を有する層と、CoO2層とが交互に積層
した構造を有する請求項1に記載の複合酸化物。 3. 繊維状単結晶である上記項1又は2に記載の複合
酸化物。 4. 400K(絶対温度)において、150μV/K
以上のゼーベック係数と、10mΩcm以下の電気抵抗
率を有する上記項1〜3のいずれかに記載の複合酸化
物。 5. 原料混合物を溶融後、融液を急冷して得られる固
化物を、酸素含有雰囲気中で熱処理することを特徴とす
る上記項1〜4のいずれかに記載の複合酸化物の製造方
法。 6. Bi含有物、Pb含有物、Sr含有物、Ca含有
物及びCo含有物を、Bi:Pb:Sr:Ca:Co
(原子組成比)=0.8〜1.2:0〜1.2:0.8
〜1.2:0〜1.2:2の割合で含む混合物を原料と
して用いる上記項5に記載の複合酸化物の製造方法。 7. 上記項5又は6の方法で得られる複合酸化物。
That is, the present invention provides the following composite oxide and a method for producing the same. 1. Chemical formula: Bi 1.6~2.2 Pb 0~0.25 Sr 1.1~2.2
A composite oxide represented by Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1). 2. MO-M'O-M'O-MO (M is Ca or Sr
The composite oxide according to claim 1, wherein the composite oxide has a structure in which layers having a rock salt type structure and Mn are CoO 2 layers stacked alternately in this order. 3. Item 3. The composite oxide according to Item 1 or 2, which is a fibrous single crystal. 4. 150 μV / K at 400 K (absolute temperature)
Item 4. The composite oxide according to any one of Items 1 to 3, having the above Seebeck coefficient and an electric resistivity of 10 mΩcm or less. 5. Item 5. The method for producing a composite oxide according to any one of Items 1 to 4, wherein a solidified product obtained by melting the raw material mixture and rapidly cooling the melt is heat-treated in an oxygen-containing atmosphere. 6. Bi-containing material, Pb-containing material, Sr-containing material, Ca-containing material and Co-containing material are converted into Bi: Pb: Sr: Ca: Co
(Atomic composition ratio) = 0.8 to 1.2: 0 to 1.2: 0.8
Item 6. The method for producing a composite oxide according to Item 5, wherein a mixture containing the mixture in a ratio of from 1.2 to 0: 1.2: 2 is used as a raw material. 7. Item 7. A composite oxide obtained by the method according to item 5 or 6.

【0009】[0009]

【発明の実施の形態】本発明の複合酸化物は、化学式:
Bi1.6〜2.2Pb0〜0.25Sr1.1〜2.2Ca0 〜0.8Co2
9-x(0≦x≦1)で表されるものである。
BEST MODE FOR CARRYING OUT THE INVENTION The composite oxide of the present invention has a chemical formula:
Bi 1.6 to 2.2 Pb 0 to 0.25 Sr 1.1 to 2.2 Ca 0 to 0.8 Co 2
O 9-x (0 ≦ x ≦ 1).

【0010】この様な複合酸化物は、400K(絶対温
度)において、150μV/K以上の高いゼーベック係
数を有し、且つ電気抵抗率10mΩcm以下という良好
な電気伝導性を有するものであり、一部変動はあるもの
の、全体として温度の上昇と共にゼーベック係数が増加
し、電気抵抗率が減少する傾向を示す。本発明の複合酸
化物は、この様な高いゼーベック係数と低い電気抵抗率
を同時に有することによって、熱電変換材料として用い
た場合に優れた熱電変換性能を発揮することができる。
Such a composite oxide has a high Seebeck coefficient of 150 μV / K or more at 400 K (absolute temperature) and has a good electric conductivity of an electric resistivity of 10 mΩcm or less. Although there are fluctuations, the Seebeck coefficient generally increases with increasing temperature, and the electrical resistivity tends to decrease. The composite oxide of the present invention can exhibit excellent thermoelectric conversion performance when used as a thermoelectric conversion material by having such a high Seebeck coefficient and a low electric resistivity at the same time.

【0011】上記した化学式で表される本発明の複合酸
化物は、原料混合物を溶融後、融液を急冷して得られる
固化物を、酸素含有雰囲気中で熱処理することによって
得ることができる。
The composite oxide of the present invention represented by the above chemical formula can be obtained by melting a raw material mixture and then rapidly cooling the melt to obtain a heat treatment in an oxygen-containing atmosphere.

【0012】原料物質としては、Bi含有物、Pb含有
物、Sr含有物、Ca含有物及びCo含有物を用いる。
これらの原料物質は、焼成により酸化物を形成し得るも
のであれば特に限定なく使用でき、金属単体、酸化物、
各種化合物(炭酸塩等)等を用いることができる。例え
ば、Bi源としては酸化ビスマス(Bi23)、硝酸ビ
スマス(Bi(NO33)、塩化ビスマス(BiC
3)、水酸化ビスマス(Bi(OH)3)、アルコキシ
ド化合物(Bi(OCH33、Bi(OC253、B
i(OC373)等を用いることができ、Pb源とし
ては酸化鉛(PbO)、硝酸鉛(Pb(NO32)、塩
化鉛(PbCl2)、水酸化鉛(Pb(OH)2)、アル
コキシド化合物(Pb(OCH32、Pb(OC25
2、Pb(OC373)等を用いることができ、Sr源
としては酸化ストロンチウム(SrO)、塩化ストロン
チウム(SrCl2)、炭酸ストロンチウム(SrC
3)、硝酸ストロンチウム(Sr(NO32)、水酸
化ストロンチウム(Sr(OH) 2)、アルコキシド化
合物(Sr(OCH32、Sr(OC252、Sr
(OC 372)等を用いることができ、Ca源として
は酸化カルシウム(CaO)、塩化カルシウム(CaC
2)、炭酸カルシウム(CaCO3)、硝酸カルシウム
(Ca(NO32)、水酸化カルシウム(Ca(OH)
2)、アルコキシド化合物(Ca(OCH32、Ca
(OC252、Ca(OC372)等を用いることが
でき、Co源としては酸化コバルト(CoO,Co
23,Co34)、塩化コバルト(CoCl2)、炭酸
コバルト(CoCO3)、硝酸コバルト(Co(NO3
2)、水酸化コバルト(Co(OH)2)、アルコキシド
化合物(Co(OC372)等を用いることができ
る。また、本発明の複合酸化物の構成原子を二種以上含
む原料物質を使用してもよい。
The raw materials include Bi-containing substances and Pb-containing substances.
Material, Sr-containing material, Ca-containing material, and Co-containing material.
These raw materials can form oxides by firing.
It can be used without particular limitation if it is, simple metal, oxide,
Various compounds (such as carbonates) can be used. example
For example, as a Bi source, bismuth oxide (BiTwoOThree), Nitric acid
Smas (Bi (NOThree)Three), Bismuth chloride (BiC
lThree), Bismuth hydroxide (Bi (OH)Three), Alkoxy
Compound (Bi (OCHThree)Three, Bi (OCTwoHFive)Three, B
i (OCThreeH7)Three) Can be used as the Pb source
Lead oxide (PbO), lead nitrate (Pb (NOThree)Two),salt
Lead (PbClTwo), Lead hydroxide (Pb (OH)Two), Al
Coxide compound (Pb (OCHThree)Two, Pb (OCTwoHFive)
Two, Pb (OCThreeH7)Three) Can be used, and the Sr source
Strontium oxide (SrO), strontium chloride
Titanium (SrClTwo), Strontium carbonate (SrC
OThree), Strontium nitrate (Sr (NOThree)Two), Hydroxyl
Strontium fluoride (Sr (OH) Two), Alkoxidation
Compound (Sr (OCHThree)Two, Sr (OCTwoHFive)Two, Sr
(OC ThreeH7)Two) Can be used as a Ca source
Are calcium oxide (CaO), calcium chloride (CaC)
lTwo), Calcium carbonate (CaCOThree), Calcium nitrate
(Ca (NOThree)Two), Calcium hydroxide (Ca (OH)
Two), Alkoxide compounds (Ca (OCHThree)Two, Ca
(OCTwoHFive)Two, Ca (OCThreeH7)Two) Etc.
Co source can be cobalt oxide (CoO, Co
TwoOThree, CoThreeOFour), Cobalt chloride (CoClTwo), Carbonated
Cobalt (CoCOThree), Cobalt nitrate (Co (NOThree)
Two), Cobalt hydroxide (Co (OH)Two), Alkoxide
Compound (Co (OCThreeH7)Two) Etc. can be used
You. Further, the composite oxide of the present invention contains two or more constituent atoms.
Raw material may be used.

【0013】原料混合物の溶融条件は、原料物質を均一
に溶融できる条件であれば良いが、溶融容器からの汚染
や原料成分の蒸発を防止するためには、例えば、アルミ
ナ製ルツボを用いる場合には、1200〜1400℃程
度に加熱して溶融することが好ましい。加熱時間につい
ては特に限定はなく、原料物質が均一に溶融するまで加
熱すればよく、通常、30分〜1時間程度の加熱時間と
すれば良い。加熱手段については、特に限定されず、電
気加熱炉、ガス加熱炉等の任意の手段を採用することが
できる。溶融の際の雰囲気は、空気中や酸素気流中等の
酸素含有雰囲気とすればよいが、原料物質が十分量の酸
素を含む場合には、不活性雰囲気で溶融しても良い。
The melting conditions of the raw material mixture may be any conditions under which the raw material can be uniformly melted. In order to prevent contamination from the melting vessel and evaporation of the raw material components, for example, when an alumina crucible is used. Is preferably heated to about 1200 to 1400 ° C. and melted. There is no particular limitation on the heating time, and heating may be performed until the raw material is uniformly melted, and usually, the heating time may be about 30 minutes to 1 hour. The heating means is not particularly limited, and any means such as an electric heating furnace and a gas heating furnace can be adopted. The atmosphere at the time of melting may be an oxygen-containing atmosphere such as in air or an oxygen stream. However, when the raw material contains a sufficient amount of oxygen, the melting may be performed in an inert atmosphere.

【0014】急冷条件については特に限定的ではない
が、形成される固化物の少なくとも表面部分がガラス状
の非晶質層となる条件で急冷すればよい。例えば、溶融
物を金属板上に流し出し、上方から圧縮する等の手段に
より急冷すればよい。冷却速度は、通常、500℃/秒
程度以上とすればよく、103℃/秒以上とすることが
好ましい。
The quenching condition is not particularly limited, but the quenching may be performed under such a condition that at least the surface portion of the solidified product becomes a glassy amorphous layer. For example, the melt may be poured on a metal plate and rapidly cooled by a means such as compression from above. Usually, the cooling rate may be about 500 ° C./sec or more, and preferably 10 3 ° C./sec or more.

【0015】次いで、急冷により形成された固化物を酸
素含有雰囲気中で熱処理することによって、該固化物の
表面から複合酸化物が成長する。
Next, the solidified material formed by rapid cooling is subjected to a heat treatment in an oxygen-containing atmosphere, whereby a composite oxide grows from the surface of the solidified material.

【0016】熱処理温度は、880〜930℃程度とす
ればよく、空気中や酸素気流中等の酸素含有雰囲気中で
加熱すればよい。酸素気流中で加熱する場合には、例え
ば、300ml/分程度以下の流量の酸素気流中で加熱
すればよい。熱処理時間については、特に限定はなく、
目的とする複合酸化物の成長の程度に応じて決めればよ
いが、通常、60〜1000時間程度の加熱時間とすれ
ばよい。
The heat treatment temperature may be about 880-930 ° C., and the heating may be performed in an oxygen-containing atmosphere such as air or an oxygen stream. When heating in an oxygen stream, for example, heating may be performed in an oxygen stream at a flow rate of about 300 ml / min or less. There is no particular limitation on the heat treatment time,
The heating time may be determined depending on the degree of growth of the target composite oxide, but is usually set to about 60 to 1000 hours.

【0017】原料物質の混合割合は、目的とする複合酸
化物の組成に応じて決めることができる。具体的には、
上記固化物の表面の非晶質層部分から複合酸化物が形成
される際に、該非晶質部分の溶融物の組成を液相組成と
して、これと相平衡にある固相の組成の酸化物結晶が成
長するので、互いに平衡状態にある融液相と固相(単結
晶)の組成の関係によって、出発原料の組成を決めるこ
とができる。
The mixing ratio of the raw materials can be determined according to the desired composition of the composite oxide. In particular,
When the composite oxide is formed from the amorphous layer portion on the surface of the solidified product, the composition of the melt in the amorphous portion is defined as a liquid phase composition, and an oxide having a solid phase composition in phase equilibrium with the liquid phase composition Since the crystal grows, the composition of the starting material can be determined by the relationship between the composition of the melt phase and the composition of the solid phase (single crystal) which are in equilibrium with each other.

【0018】化学式:Bi1.6〜2.2Pb0〜0.25Sr
1.1〜2.2Ca0〜0.8Co29-x(0≦x≦1)で表され
る本発明の複合酸化物を得るには、例えば、Bi含有
物、Pb含有物、Sr含有物、Ca含有物及びCo含有
物を、Bi:Pb:Sr:Ca:Co(原子組成比)=
0.8〜1.2:0〜1.2:0.8〜1.2:0〜
1.2:2の割合で含む混合物を原料として用いればよ
い。
[0018] The chemical formula: Bi 1.6~2.2 Pb 0~0.25 Sr
In order to obtain the composite oxide of the present invention represented by 1.1 to 2.2 Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1), for example, Bi-containing material, Pb-containing material, Sr-containing material, Ca The content and the Co content are represented by Bi: Pb: Sr: Ca: Co (atomic composition ratio) =
0.8 to 1.2: 0 to 1.2: 0.8 to 1.2: 0
A mixture containing the mixture in a ratio of 1.2: 2 may be used as a raw material.

【0019】上記した方法によれば、本発明の複合酸化
物は、リボン形状を有する繊維状単結晶として成長す
る。
According to the above-described method, the composite oxide of the present invention grows as a fibrous single crystal having a ribbon shape.

【0020】酸化物単結晶の大きさは、原料物質の種
類、組成比、熱処理条件等により変わり得るが、例え
ば、長さ10〜1000μm程度、幅20〜200μm
程度、厚さ1〜5μm程度の繊維状の酸化物単結晶が形
成される。
The size of the oxide single crystal can vary depending on the kind of the raw material, the composition ratio, the heat treatment conditions, etc., for example, about 10 to 1000 μm in length and 20 to 200 μm in width.
A fibrous oxide single crystal having a thickness of about 1 to 5 μm is formed.

【0021】後述する実施例1で得られた酸化物単結晶
の走査型電子顕微鏡(SEM)写真を図1に示す。図1
から判るように、本発明方法で得られる複合酸化物は、
リボン形状を有する繊維状単結晶であり、良く成長した
面がab面であり、厚さ方向がc軸に相当する。
FIG. 1 shows a scanning electron microscope (SEM) photograph of the oxide single crystal obtained in Example 1 described later. FIG.
As can be seen from the composite oxide obtained by the method of the present invention,
It is a fibrous single crystal having a ribbon shape. The well-grown surface is the ab plane, and the thickness direction corresponds to the c-axis.

【0022】また、実施例1で得られた酸化物単結晶の
透過型電子顕微鏡(TEM)写真を図2に示し、この様
な結晶構造の模式図を図3に示す。これらの図から判る
様に、上記した方法で得られる複合酸化物は、Coの周
囲を六個の酸素が八面体配位した単位格子がその一辺を
共有するように層状に広がったCoO2層と、MO−
M’O−M’O−MOの順で積み重なった岩塩(NaC
l)型構造を有する層とがc軸方向に交互に積層した構
造を有する。ここで、MはCa又はSrであり、M’は
Bi又はPbである。
FIG. 2 shows a transmission electron microscope (TEM) photograph of the oxide single crystal obtained in Example 1, and FIG. 3 shows a schematic diagram of such a crystal structure. As can be seen from these figures, the composite oxide obtained by the above-described method has a CoO 2 layer in which a unit cell in which six oxygen atoms are octahedrally coordinated around Co is layered such that one side thereof is shared. And MO-
Rock salt (NaC) stacked in the order of M'O-M'O-MO
1) It has a structure in which layers having a type structure are alternately stacked in the c-axis direction. Here, M is Ca or Sr, and M ′ is Bi or Pb.

【0023】上記した特定組成を有する本発明の複合酸
化物は、高いゼーベック係数と低い電気抵抗率を同時に
有することによって、熱電変換素子の熱電変換材料とし
て用いた場合に、優れた熱電変換性能を発揮できる。
The composite oxide of the present invention having the above specific composition has a high Seebeck coefficient and a low electric resistivity at the same time, so that when used as a thermoelectric conversion material of a thermoelectric conversion element, it exhibits excellent thermoelectric conversion performance. Can demonstrate.

【0024】更に、本発明の複合酸化物は、毒性が少な
く存在量が多い元素によって構成されており、耐熱性、
化学的耐久性等が良好であり、熱電変換材料として実用
性の高い物質である。
Further, the composite oxide of the present invention is composed of elements having low toxicity and high abundance, and has heat resistance,
It has good chemical durability and the like, and is a highly practical substance as a thermoelectric conversion material.

【0025】本発明の複合酸化物を熱電変換材料として
用いる場合には、熱電変換素子の構造は公知の熱電変換
素子と同様とすればよく、本発明の複合酸化物は、例え
ば、P型熱電変換材料として用いればよい。
When the composite oxide of the present invention is used as a thermoelectric conversion material, the structure of the thermoelectric conversion element may be the same as that of a known thermoelectric conversion element. It may be used as a conversion material.

【0026】[0026]

【発明の効果】本発明の複合酸化物は、高いゼーベック
係数と低い電気抵抗率を同時に有する熱電変換性能に優
れた物質であり、しかも耐熱性、化学的耐久性等も良好
である。
The composite oxide of the present invention is a substance having both high Seebeck coefficient and low electric resistivity and excellent thermoelectric conversion performance, and also has good heat resistance and chemical durability.

【0027】該複合酸化物は、従来の金属間化合物材料
では不可能であった、空気中において高温で使用可能な
熱電変換材料としての応用ができる。従って、本発明の
酸化物材料を熱電発電システム中に組み込むことによっ
て、これまで大気中に廃棄されていた熱エネルギーを有
効に利用することが可能となる。
The composite oxide can be applied as a thermoelectric material which can be used at a high temperature in the air, which is impossible with a conventional intermetallic compound material. Therefore, by incorporating the oxide material of the present invention into a thermoelectric power generation system, it is possible to effectively use heat energy that has been discarded in the atmosphere.

【0028】[0028]

【実施例】以下、実施例を挙げて本発明を更に詳細に説
明する。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples.

【0029】実施例1 酸化ビスマス(Bi23)、酸化鉛(PbO)、炭酸ス
トロンチウム(SrCO3)、炭酸カルシウム(CaC
3)及び酸化コバルト(Co34)を出発原料として
用い、Bi:Pb:Sr:Ca:Co(原子比)=1:
1:1:1:2となる様に出発原料を十分に混合した
後、アルミナルツボに入れ、電気炉を用いて空気中で1
300℃で30分間原料粉末を溶融させた。次いで、こ
の溶融物を銅板上に流し出し、もう一枚の銅板で挟みつ
けて急冷することによりガラス前駆体を得た。このガラ
ス前駆体を酸素気流中(150ml/分)、930℃で
600時間熱処理することによって、該ガラス前駆体表
面に複合酸化物の単結晶を成長させた。
Example 1 Bismuth oxide (Bi 2 O 3 ), lead oxide (PbO), strontium carbonate (SrCO 3 ), calcium carbonate (CaC)
O 3 ) and cobalt oxide (Co 3 O 4 ) as starting materials, Bi: Pb: Sr: Ca: Co (atomic ratio) = 1:
After sufficiently mixing the starting materials in a ratio of 1: 1: 1: 2, the mixture was placed in an alumina crucible and placed in an air using an electric furnace in air.
The raw material powder was melted at 300 ° C. for 30 minutes. Next, this molten material was poured onto a copper plate, sandwiched between another copper plate, and rapidly cooled to obtain a glass precursor. This glass precursor was heat-treated at 930 ° C. for 600 hours in an oxygen stream (150 ml / min) to grow a single crystal of a composite oxide on the surface of the glass precursor.

【0030】得られた複合酸化物の走査型電子顕微鏡写
真を図1に示し、透過型電子顕微鏡写真を図2に示す。
また、この複合酸化物の単結晶は、化学式:Bi2.05
0. 11Sr1.90Ca0.42Co28.9で表されるものであ
った。
FIG. 1 shows a scanning electron micrograph of the obtained composite oxide, and FIG. 2 shows a transmission electron micrograph thereof.
The single crystal of this composite oxide has the chemical formula: Bi 2.05 P
It was represented by b 0. 11 Sr 1.90 Ca 0.42 Co 2 O 8.9.

【0031】得られた複合酸化物の100〜973K
(絶対温度)におけるゼーベック係数(S)の温度依存
性を示すグラフを図4に示す。図4から、この複合酸化
物のゼーベック係数は、500〜600Kで急激な低下
が見られるものの、その他の温度範囲では、温度上昇と
ともに増加することが判る。尚、後述する全ての実施例
において同様の温度依存性が観察され、400K以上の
温度で150μV/Kを上回るゼーベック係数であっ
た。
100 to 973K of the obtained composite oxide
FIG. 4 is a graph showing the temperature dependence of the Seebeck coefficient (S) in (absolute temperature). From FIG. 4, it can be seen that the Seebeck coefficient of this composite oxide sharply decreases at 500 to 600 K, but increases with increasing temperature in other temperature ranges. The same temperature dependence was observed in all the examples described later, and the Seebeck coefficient exceeded 150 μV / K at a temperature of 400 K or more.

【0032】更に、該複合酸化物の100〜973K
(絶対温度)における電気抵抗率(ρ)の温度依存性を
示すグラフを図5に示す。図5から、該複合酸化物は、
温度の上昇に伴って電気抵抗率が減少する半導体的挙動
を示し、400K以上の温度で10mΩcmを下回る電
気抵抗率であった。尚、後述する全ての実施例におい
て、同様の電気抵抗率(ρ)の温度依存性が観察され
た。
Further, 100 to 973 K of the composite oxide
FIG. 5 is a graph showing the temperature dependence of the electrical resistivity (ρ) at (absolute temperature). From FIG. 5, the composite oxide is
The semiconductor exhibited a semiconductor behavior in which the electrical resistivity decreased with increasing temperature, and the electrical resistivity was less than 10 mΩcm at a temperature of 400 K or more. In all examples described later, the same temperature dependence of the electrical resistivity (ρ) was observed.

【0033】実施例2〜17 表1及び表2の出発組成の項に示した配合割合となるよ
うに出発原料を混合し、実施例1と同様にしてガラス前
駆体を製造した。次いで、表1及び表2に示す熱処理温
度、熱処理時間及び酸素流量の条件下でガラス前駆体を
熱処理することによって、ガラス前駆体表面に複合酸化
物の単結晶を成長させた。
Examples 2 to 17 The starting materials were mixed so as to have the mixing ratios shown in the starting composition in Tables 1 and 2, and a glass precursor was produced in the same manner as in Example 1. Next, a single crystal of a composite oxide was grown on the surface of the glass precursor by heat-treating the glass precursor under the conditions of the heat treatment temperature, the heat treatment time, and the oxygen flow rate shown in Tables 1 and 2.

【0034】得られた複合酸化物の組成は、全て、化学
式:Bi1.6〜2.2Pb0〜0.25Sr1 .1〜2.2Ca0〜0.8
Co29-x(0≦x≦1)で表される組成の範囲内にあ
った。表1及び表2の単結晶組成の項には、各実施例で
得られた複合酸化物の平均組成を示す。また、各実施例
で得られた複合酸化物について、973Kにおけるゼー
ベック係数と電気抵抗率の測定結果も表1及び表2に示
す。
The composition of the obtained composite oxide, all the chemical formula: Bi 1.6~2.2 Pb 0~0.25 Sr 1 .1~2.2 Ca 0~0.8
It was within the range of the composition represented by Co 2 O 9-x (0 ≦ x ≦ 1). The single crystal composition section in Tables 1 and 2 shows the average composition of the composite oxide obtained in each example. Tables 1 and 2 also show the measurement results of the Seebeck coefficient and the electrical resistivity at 973 K of the composite oxide obtained in each example.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得られた複合酸化物の結晶構造を示
す走査型電子顕微鏡写真。
FIG. 1 is a scanning electron micrograph showing the crystal structure of the composite oxide obtained in Example 1.

【図2】実施例1で得られた複合酸化物の結晶構造を示
す透過型電子顕微鏡写真を電子化処理したデータの出力
図面。
FIG. 2 is an output drawing of data obtained by digitizing a transmission electron micrograph showing the crystal structure of the composite oxide obtained in Example 1.

【図3】本発明の複合酸化物の結晶構造を示す模式図。FIG. 3 is a schematic view showing a crystal structure of a composite oxide of the present invention.

【図4】実施例1で得られた複合酸化物のゼーベック係
数の温度依存性を示すグラフ。
FIG. 4 is a graph showing the temperature dependence of the Seebeck coefficient of the composite oxide obtained in Example 1.

【図5】実施例1で得られた複合酸化物の電気抵抗率の
温度依存性を示すグラフ。
FIG. 5 is a graph showing the temperature dependence of the electrical resistivity of the composite oxide obtained in Example 1.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】化学式:Bi1.6〜2.2Pb0〜0.25Sr
1.1〜2.2Ca0〜0.8Co29-x(0≦x≦1)で表され
る複合酸化物。
1. A chemical formula: Bi 1.6~2.2 Pb 0~0.25 Sr
1.1-2.2 Ca 0-0.8 A composite oxide represented by Co 2 O 9-x (0 ≦ x ≦ 1).
【請求項2】MO−M’O−M’O−MO(MはCa又
はSrであり、M’はBi又はPbである)の順に積み
重なった岩塩型構造を有する層と、CoO2層とが交互
に積層した構造を有する請求項1に記載の複合酸化物。
2. A layer having a rock-salt type structure stacked in the order of MO-M'OM-M'O-MO (M is Ca or Sr, M 'is Bi or Pb), and a CoO 2 layer. The composite oxide according to claim 1, which has a structure in which are alternately stacked.
【請求項3】繊維状単結晶である請求項1又は2に記載
の複合酸化物。
3. The composite oxide according to claim 1, which is a fibrous single crystal.
【請求項4】400K(絶対温度)において、150μ
V/K以上のゼーベック係数と、10mΩcm以下の電
気抵抗率を有する請求項1〜3のいずれかに記載の複合
酸化物。
4. At 150 K (absolute temperature), 150 μm
The composite oxide according to any one of claims 1 to 3, which has a Seebeck coefficient of V / K or more and an electric resistivity of 10 mΩcm or less.
【請求項5】原料混合物を溶融後、融液を急冷して得ら
れる固化物を、酸素含有雰囲気中で熱処理することを特
徴とする請求項1〜4のいずれかに記載の複合酸化物の
製造方法。
5. The composite oxide according to claim 1, wherein a solidified product obtained by melting the raw material mixture and rapidly cooling the melt is heat-treated in an oxygen-containing atmosphere. Production method.
【請求項6】Bi含有物、Pb含有物、Sr含有物、C
a含有物及びCo含有物を、Bi:Pb:Sr:Ca:
Co(原子組成比)=0.8〜1.2:0〜1.2:
0.8〜1.2:0〜1.2:2の割合で含む混合物を
原料として用いる請求項5に記載の複合酸化物の製造方
法。
6. Bi-containing material, Pb-containing material, Sr-containing material, C
The content of a and the content of Co are represented by Bi: Pb: Sr: Ca:
Co (atomic composition ratio) = 0.8 to 1.2: 0 to 1.2:
The method for producing a composite oxide according to claim 5, wherein a mixture containing 0.8 to 1.2: 0 to 1.2: 2 in a ratio of 0.8 to 1.2 is used as a raw material.
【請求項7】請求項5又は6の方法で得られる複合酸化
物。
7. A composite oxide obtained by the method according to claim 5.
JP2000331819A 2000-10-31 2000-10-31 Composite oxide with excellent thermoelectric conversion performance Expired - Lifetime JP3472814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000331819A JP3472814B2 (en) 2000-10-31 2000-10-31 Composite oxide with excellent thermoelectric conversion performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000331819A JP3472814B2 (en) 2000-10-31 2000-10-31 Composite oxide with excellent thermoelectric conversion performance

Publications (2)

Publication Number Publication Date
JP2002141562A true JP2002141562A (en) 2002-05-17
JP3472814B2 JP3472814B2 (en) 2003-12-02

Family

ID=18808113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000331819A Expired - Lifetime JP3472814B2 (en) 2000-10-31 2000-10-31 Composite oxide with excellent thermoelectric conversion performance

Country Status (1)

Country Link
JP (1) JP3472814B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013383A1 (en) * 2003-07-30 2005-02-10 National Institute Of Advanced Industrial Science And Technology Thermoelectric converter and thermoelectric conversion module
JP2006049494A (en) * 2004-08-03 2006-02-16 Ricoh Co Ltd Material and device for thermoelectric conversion
US7312392B2 (en) 2004-03-01 2007-12-25 Matsushita Electric Industrial Co., Ltd. Thermoelectric conversion device, and cooling method and power generating method using the device
US7554029B2 (en) 2004-08-18 2009-06-30 National Institute Of Advanced Industrial Science And Technology Complex oxide having p-type thermoelectric characteristics
CN104380491A (en) * 2012-06-04 2015-02-25 排放技术有限公司 Process for producing a thermoelectric component and a thermoelectric component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013383A1 (en) * 2003-07-30 2005-02-10 National Institute Of Advanced Industrial Science And Technology Thermoelectric converter and thermoelectric conversion module
JPWO2005013383A1 (en) * 2003-07-30 2006-09-28 独立行政法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
JP4595071B2 (en) * 2003-07-30 2010-12-08 独立行政法人産業技術総合研究所 Thermoelectric conversion element, thermoelectric conversion module, and thermoelectric conversion method
US7312392B2 (en) 2004-03-01 2007-12-25 Matsushita Electric Industrial Co., Ltd. Thermoelectric conversion device, and cooling method and power generating method using the device
JP2006049494A (en) * 2004-08-03 2006-02-16 Ricoh Co Ltd Material and device for thermoelectric conversion
JP4574274B2 (en) * 2004-08-03 2010-11-04 株式会社リコー Thermoelectric converter
US7554029B2 (en) 2004-08-18 2009-06-30 National Institute Of Advanced Industrial Science And Technology Complex oxide having p-type thermoelectric characteristics
CN104380491A (en) * 2012-06-04 2015-02-25 排放技术有限公司 Process for producing a thermoelectric component and a thermoelectric component
US9905746B2 (en) 2012-06-04 2018-02-27 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Method for producing a thermoelectric component, thermoelectric component and motor vehicle

Also Published As

Publication number Publication date
JP3472814B2 (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP3472813B2 (en) Composite oxides with high Seebeck coefficient and high electrical conductivity
JP2003282964A (en) COMPLEX OXIDE HAVING n-TYPE THERMOELECTRIC CHARACTERISTICS
JP3472814B2 (en) Composite oxide with excellent thermoelectric conversion performance
JP4320422B2 (en) Composite oxide with excellent thermoelectric conversion performance
JP3896479B2 (en) Method for producing composite oxide sintered body
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
US7554029B2 (en) Complex oxide having p-type thermoelectric characteristics
JP4143724B2 (en) Method for producing complex oxide single crystal
JP2003229605A (en) Thermoelectric conversion material and its manufacturing method
JP4051441B2 (en) Thin film thermoelectric conversion material and method for forming the same
JP4340768B2 (en) Whisker crystal of thermoelectric conversion layered cobalt oxide NaxCoO2 and method for producing the whisker crystal
JP3950956B2 (en) Method for producing complex oxide single crystal
JP3586716B2 (en) Composite oxide with high thermoelectric conversion efficiency
JP4193940B2 (en) Composite oxide with excellent thermoelectric conversion performance
JP2010228927A (en) Cobalt-manganese compound oxide
JP3864221B2 (en) Compound oxide single crystal and method for producing the same
JP4048272B2 (en) Method for producing composite oxide crystal, composite oxide crystal obtained by the method, thermoelectric conversion material and thermoelectric conversion element containing the crystal
JP2005223307A (en) Oxide-based thermoelectric conversion film and method of forming oxide thermoelectric conversion film
JP2004107151A (en) Metal oxide single crystal and method for producing the same
JPH01278449A (en) Production of oxide superconductor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3472814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term