JP4051441B2 - Thin film thermoelectric conversion material and method for forming the same - Google Patents

Thin film thermoelectric conversion material and method for forming the same Download PDF

Info

Publication number
JP4051441B2
JP4051441B2 JP2003071311A JP2003071311A JP4051441B2 JP 4051441 B2 JP4051441 B2 JP 4051441B2 JP 2003071311 A JP2003071311 A JP 2003071311A JP 2003071311 A JP2003071311 A JP 2003071311A JP 4051441 B2 JP4051441 B2 JP 4051441B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
thermoelectric conversion
conversion material
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003071311A
Other languages
Japanese (ja)
Other versions
JP2004281726A (en
Inventor
敏行 三原
良次 舟橋
正人 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003071311A priority Critical patent/JP4051441B2/en
Priority to PCT/JP2004/003482 priority patent/WO2004084321A1/en
Publication of JP2004281726A publication Critical patent/JP2004281726A/en
Application granted granted Critical
Publication of JP4051441B2 publication Critical patent/JP4051441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜状熱電変換材料及びその形成方法に関する。
【0002】
【従来の技術】
我が国では、一次供給エネルギーからの有効なエネルギーの得率は30%程度に過ぎず、約70%ものエネルギ−が最終的には熱として大気中に廃棄されている。また、工場やごみ焼却場などにおいて燃焼により生じる熱も他のエネルギーに変換されることなく大気中に廃棄されている。このように、我々人類は非常に多くの熱エネルギーを無駄に廃棄しており、化石エネルギーの燃焼等の行為から僅かなエネルギーしか獲得していない。
【0003】
エネルギーの得率を向上させるためには、大気中に廃棄されている熱エネルギーを利用できるようすることが有効である。そのためには熱エネルギーを直接電気エネルギーに変換する熱電変換は有効な手段である。熱電変換とは、ゼーベック効果を利用したものであり、熱電変換材料の両端で温度差をつけることで電位差を生じさせて発電を行うエネルギー変換法である。この熱電発電では、熱電変換材料の一端を廃熱により生じた高温部に配置し、もう一端を大気中(室温)に配置して、それぞれの両端に導線を接続するだけで電気が得られ、一般の発電に必要なモーターやタービン等の可動装置は全く必要ない。このためコストも安く、燃焼等によるガスの排出も無く、熱電変換材料が劣化するまで継続的に発電を行うことができる。
【0004】
このように、熱電発電は今後心配されるエネルギー問題の解決の一端を担う技術として期待されているが、熱電発電を実現するためには、高い熱電変換効率を有し、耐熱性、化学的耐久性等に優れた熱電変換材料を大量に供給することが必要となる。
【0005】
これまでに、高温の空気中で優れた熱電変換性能を示す物質として、各種の複合酸化物についての研究がなされており、例えば、CaCo等のCoO系層状酸化物、Bi,Pb、Sr,Ca,Co等を含むBi系複合酸化物等が報告されている(下記特許文献1参照)。これらの複合酸化物としては、多結晶体、単結晶体などが報告されており、使用目的に応じた形状に成形して、熱電変換素子として使用することが試みられている。
【0006】
この様な優れた熱電変換性能を有する複合酸化物について、その使用範囲をより一層拡大するためには、各種の形状に成形して使用することが望まれる。例えば、これらの複合酸化物を各種の基板上に薄膜状に形成できれば、電子回路への組み込みや微細部分での利用等の新たな応用が可能となる。
【0007】
薄膜状の熱電変換材料の形成方法としては、例えば、MgO、SrTiO、LSAT等の単結晶基板を700℃以上の高温に加熱し、この基板上にパルスレーザー法で複合酸化物薄膜を形成する方法が報告されている(例えば、下記非特許文献1参照)。この方法は、単結晶基板上にエピタキシャルに複合酸化物薄膜を成長させる方法であり、単結晶基板を用いることが必要であるために、基板が高価であり、しかも使用できる基板が非常に限定される。また、薄膜形成時に基板を高温に加熱するため、堆積する複合酸化物薄膜の組成が変動しやすく、目的とする組成の複合酸化物薄膜を形成することが困難である。このため、上記した方法で形成される薄膜は、熱電変換性能が不安定となりやすく、満足のいく性能を発揮することができない。
【0008】
【特許文献1】
特開2002−141562号公報
【0009】
【非特許文献1】
第48回応用物理学関係連合講演会 講演予稿集、演題番号:30p−P13−12、2001年3月、p223
【0010】
【発明が解決しようとする課題】
本発明は、上記した従来技術に鑑みてなされたものであり、その主な目的は、各種の基板上に熱電変換材料の薄膜を形成でき、しかも、形成される複合酸化物が良好な熱電変換性能を有するものとなる、新規な薄膜状熱電変換材料の形成方法を提供することである。
【0011】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、パルスレーザー堆積法などの気相蒸着法を採用して基板上に特定組成のBi系複合酸化物を堆積させた後、特定の温度範囲で熱処理を行う方法によれば、各種の基板上に優れた熱電変換性能を有する複合酸化物薄膜を形成できることを見出した。そして、この方法によれば、室温の基板上に複合酸化物薄膜を形成できるので、薄膜形成時に組成変動が生じ難く、安定な性能の熱電変換膜を形成でき、しかも、基板の種類が限定されないので、安価な基板を使用可能であり、また、熱伝導率が低い基板を用いる場合には、基板の影響を抑えて良好な熱電変換性能を発揮することが可能となることを見出した。本発明は、これらの知見に基づいてなされたものである。
【0012】
即ち、本発明は、下記の薄膜状熱電変換材料及びその形成方法を提供するものである。
1. 一般式:Bi1.6 2.2Pb0 0.25Sr1.1 2.2Ca0 0.8Co29-x(0≦x≦1)で表される複合酸化物の薄膜を、基板(但し、単結晶基板を除く)上に形成してなる薄膜状熱電変換材料。
2. 基板が、低熱伝導率の基板である上記項1に記載の薄膜状熱電変換材料。
3. 基板の熱伝導率が25℃において10W/m・K以下である上記項2に記載の薄膜状熱電変換材料。
4. 基板が、ガラス基板、セラミックス基板又はプラスチック基板である上記項1〜3のいずれかに記載の薄膜状熱電変換材料。
5. Bi含有物、Pb含有物、Sr含有物、Ca含有物及びCo含有物の混合物又は該混合物の焼成物を原料として用い、気相蒸着法によって、一般式:Bi1.6 2.2Pb0 0.25Sr1.1 2.2Ca0 0.8Co29-x(0≦x≦1)で表される複合酸化物を基板上に堆積させた後、600〜740℃で熱処理を行うことを特徴とする薄膜状熱電変換材料の形成方法。
6. 気相蒸着法が、パルスレーザー堆積法である上記項5に記載の方法。
7. 複合酸化物を堆積させる際の基板温度が室温である上記項5又は6に記載の方法。
8. 基板がガラス基板、セラミックス基板又はプラスチック基板である上記項5〜7のいずれかに記載の方法。
【0013】
【発明の実施の形態】
本発明の薄膜状熱電変換材料は、一般式:Bi1.6 2.2Pb0 0.25Sr1.1 2.2Ca0 0.8Co29-x(0≦x≦1)で表される複合酸化物からなるものである。
【0014】
この様な複合酸化物は、高いゼーベック係数を有し、且つ電気抵抗率が低く良好な電気伝導性を有するものであり、一部変動はあるものの、全体として温度の上昇と共にゼーベック係数が増加し、電気抵抗率が減少する傾向を示す。本発明の複合酸化物は、この様な高いゼーベック係数と低い電気抵抗率を同時に有することによって、熱電変換材料として用いた場合に優れた熱電変換性能を発揮することができる。
【0015】
上記した複合酸化物からなる薄膜状熱電変換材料は、所定の組成の原料物質を用い、これを気相蒸着法によって基板上に堆積させた後、600〜740℃で熱処理することによって形成することができる。
【0016】
原料物質としては、Bi含有物、Pb含有物、Sr含有物、Ca含有物及びCo含有物を混合して用いるか、或いは、これらの混合物を焼成して焼成物として用いることができる。
【0017】
Bi含有物、Pb含有物、Sr含有物、Ca含有物及びCo含有物としては、気相蒸着法によって気化させて基板上に堆積させることにより、酸化物を形成し得るものであれば特に限定なく使用できる。例えば、上記した金属成分を含む金属単体、酸化物、各種化合物(炭酸塩等)等を用いることができる。例えば、Bi含有物としては、酸化ビスマス(Bi)、硝酸ビスマス(Bi(NO)、塩化ビスマス(BiCl)、水酸化ビスマス(Bi(OH))、アルコキシド化合物(Bi(OCH、Bi(OC、Bi(OC等)等を用いることができ、Pb含有物としては酸化鉛(PbO)、硝酸鉛(Pb(NO)、塩化鉛(PbCl)、水酸化鉛(Pb(OH))、アルコキシド化合物(Pb(OCH、Pb(OC、Pb(OCH7)等)等を用いることができ、Sr含有物としては酸化ストロンチウム(SrO)、塩化ストロンチウム(SrCl)、炭酸ストロンチウム(SrCO)、硝酸ストロンチウム(Sr(NO)、水酸化ストロンチウム(Sr(OH))、アルコキシド化合物(Sr(OCH、Sr(OC、Sr(OC等)等を用いることができ、Ca含有物としては酸化カルシウム(CaO)、塩化カルシウム(CaCl)、炭酸カルシウム(CaCO)、硝酸カルシウム(Ca(NO)、水酸化カルシウム(Ca(OH))、アルコキシド化合物(Ca(OCH、Ca(OC、Ca(OC等)等を用いることができ、Co含有物としては酸化コバルト(CoO,Co,Co等)、塩化コバルト(CoCl)、炭酸コバルト(CoCO)、硝酸コバルト(Co(NO)、水酸化コバルト(Co(OH))、アルコキシド化合物(Co(OC)等を用いることができる。また、本発明の複合酸化物の構成原子を二種以上含む原料物質を使用してもよい。
【0018】
本発明では、上記したBi含有物、Pb含有物、Sr含有物、Ca含有物及びCo含有物を目的とする複合酸化物の金属成分比と同様の金属比となるように混合して、そのまま用いることが可能であるが、特に、これらの原料物質を混合し焼成して用いることが好ましい。焼成物とすることにより、後述する気相蒸着の際に原料物質の取り扱いが容易となる。
【0019】
原料物質の焼成条件については特に限定はなく、上記した一般式で表される複合酸化物の結晶が形成さる高温度で焼成しても良く、或いは、上記複合酸化物の結晶が生じることが無く、仮焼体が形成される程度の比較的低温度で焼成してもよい。焼成手段は特に限定されず、電気加熱炉、ガス加熱炉等任意の手段を採用できる。焼成雰囲気は、通常、酸素気流中、空気中等の酸化性雰囲気中とすればよいが、不活性雰囲気中で焼成することも可能である。
【0020】
本発明では、上記したBi含有物、Pb含有物、Sr含有物、Ca含有物及びCo含有物の混合物又はこれらの焼成物を原料物質として用い、気相蒸着法によって目的とする複合酸化物の薄膜を基板上に形成する。
【0021】
気相蒸着法としては、特に限定的ではなく、上記した原料物質を用いて基板上に酸化物薄膜を形成できる方法であればよく、例えば、パルスレーザー堆積法、スパッタリング法、真空蒸着法、イオンプレーティング法、プラズマアシスト蒸着法、イオンアシスト蒸着法、反応性蒸着法等の物理蒸着法を好適に採用できる。これらの方法の内で、多元素を含む複合酸化物を蒸着させる際に組成変動を生じ難い点で、パルスレーザー堆積法が好ましい。
【0022】
本発明方法では、複合酸化物を堆積させる際に、基板を加熱する必要はなく、基板温度は室温のままでよい。室温の基板上に複合酸化物を堆積させた状態では、該複合酸化物は、結晶化の程度が非常に低く、良好な熱電変換性能を発揮できないが、後述する熱処理を行うことによって、該複合酸化物の結晶化が進行して良好な熱電変換性能を発揮できるようになる。
【0023】
本発明では、従来のように使用できる基板が単結晶基板に限定されることがない。このため、後述する熱処理温度において変質を生じない材質であれば基板として限定なく使用でき、使用できる基板の種類が非常に多く、安価な基板を使用可能である。また、ガラス基板、セラミックス基板などの熱伝導率が低い基板を使用できるので、このような基板を用いることにより、形成される複合酸化物膜の熱電変換性能に対する基板温度の影響を大きく低減できる。また、後述する熱処理温度において変質しない材質であれば、プラスチック基板を用いることも可能である。
【0024】
本発明では、特に、25℃における熱伝導率が10W/m・K程度以下の低熱伝導率の基板を用いることが好ましく、より好ましく熱伝導率5W/m・K程度以下、更に好ましくは熱伝導率2W/m・K程度以下の基板を用いることがよい。
【0025】
基板上に複合酸化物薄膜を形成する際には、常法に従って減圧下において気相蒸着を行えばよい。具体的な減圧条件については、採用する気相蒸着法に応じて目的とする複合酸化物膜が形成されるように適宜決めれば良い。例えば、パルスレーザー堆積では10Pa程度以下の圧力とすればよく、スパッタリング法では1Pa程度以下の圧力とすればよく、真空蒸着法では10−3Pa程度以下の圧力とすればよい。
【0026】
形成される複合酸化物薄膜の厚さについては、特に限定的ではなく、該薄膜の使用態様などに応じて良好な熱電変換性能を発揮できる範囲に適宜設定すればよく、例えば、100nm程度以上、好ましくは300nm程度以上の厚さで良好な性能を発揮できる。また、膜厚の上限については、特に限定的ではないが、薄膜としての用途を考える場合には、通常、10μm程度以下、好ましくは5μm程度以下、より好ましくは2μm程度以下とすればよい。
【0027】
上記した方法で基板上に複合酸化物薄膜を形成した後、600〜740℃で熱処理を行う。この温度範囲で熱処理を行うことによって、複合酸化物薄膜の結晶化が進行して、良好な熱電変換性能を有するものとなる。熱処理温度が低すぎる場合には、結晶化が十分に進行せず、熱電変換性能が劣るものとなるので好ましくない。一方、熱処理温度が高すぎると、別の相が出現して、やはり熱電変換性能が低下するので好ましくない。
【0028】
熱処理時の雰囲気については、通常、大気中や酸素を5%程度以上含む雰囲気下などの酸化性雰囲気とすればよい。 この時の圧力は、特に限定的ではなく、減圧、大気圧、加圧のいずれでも良く、例えば、10−3Pa〜2MPa程度の範囲とすることができる。
【0029】
熱処理時間は、被処理物の大きさや複合酸化物薄膜の厚さなどによって異なるが、該複合酸化物薄膜の結晶化が十分に進行するまで熱処理を行えばよく、通常、3分〜10時間程度、好ましくは1〜3時間程度程度の熱処理時間とすればよい。
【0030】
以上の方法によって、一般式:Bi1.6 2.2Pb0 0.25Sr1.1 2.2Ca0 0.8Co29-x(0≦x≦1)で表される複合酸化物の薄膜を各種の基板上に形成することができる。
【0031】
形成される複合酸化物は、絶縁性のBi−Sr−O層と伝導性のCo−O層が交互に積層した構造であり、高いゼーベック係数を有し、且つ電気抵抗率が低い材料であり、電気抵抗率の温度依存性は、半導体的特性を有するものである。この様な特性を有する複合酸化物薄膜は、P型熱電材料として優れた熱電変換性能を有するものであり、薄膜状であることを利用して、電子回路への組み込みや、微細部分での利用などが可能である。
【0032】
【発明の効果】
本発明によれば、基板の種類について限定されること無く、各種の基板上に優れた熱電変換性能を有する複合酸化物薄膜を形成することができる。従って、安価な基板を使用することが可能であり、低コストで熱電変換材料の薄膜を形成できる。また、熱伝導率の低い基板を使用することが可能であり、この様な基板を用いることによって、熱電変換性能に対する基板の影響を抑制することができる。
【0033】
更に、室温の基板上に複合酸化物薄膜を堆積できるので、薄膜形成時に組成変動が生じ難く、安定な性能の熱電変換膜を形成できる。
【0034】
【実施例】
以下、実施例を挙げて本発明を更に詳細に説明する。
【0035】
実施例1
原料としてBi、SrCO及びCoを用い、これらをBi:Sr:Co(原子比)=2:2:2となるように混合し、大気中で800℃10時間で仮焼した後、850℃で20時間焼成して、直径2cm、厚さ3mmのペレット状の焼結体を得た。
【0036】
得られた焼結体をターゲットとし、溶融石英ガラスを基板として、ArFエキシマレーザーを用いてパルスレーザー堆積法により、該基板上に複合酸化物を堆積させた。この際、基板は加熱することなく室温とした。
【0037】
具体的な成膜条件は下記の通りである。
・レーザー:ArFエキシマレーザー
・レーザー出力:150mJ
・繰り返し周波数:5Hz
・圧力:5×10−5Torr
・ターゲット−基板間距離:3cm
・基板:石英ガラス
・基板温度:室温
上記した方法で得た厚さ1700nmの複合酸化物薄膜について、大気雰囲気中で450〜750℃の範囲の各種温度で10時間の熱処理を行った。熱処理後の各薄膜のXRDパターンを図1に示す。図1から、600℃以上の温度で熱処理することにより、複合酸化物薄膜が結晶化されて、焼結体(バルク)と同様の結晶構造となり、750℃以上の熱処理温度では異相が出現することが判る。
【0038】
また、上記した方法で堆積させた複合酸化物薄膜について、700℃で2時間熱処理を行い、その後、電気的測定を行った。この複合酸化物薄膜は、組成式:BiSrCoで表され、Bi−Sr−O層とCo−O層が交互に積層した構造であった。熱処理後の複合酸化物薄膜の電気抵抗率の温度依存性を示すグラフを図2に示す。図2から明らかなように、該複合酸化物の電気抵抗率の温度依存性は半導体的挙動を示し、室温における電気抵抗率は30mΩcmであった。また、室温でのゼーベック係数は88μV/Kあり、P型熱電変換材料としての熱電性能を示すものであった。
【図面の簡単な説明】
【図1】実施例1において、各種の温度で熱処理された複合酸化物薄膜について、X線回折パターンを示すグラフ。
【図2】実施例1で得た複合酸化物薄膜の電気抵抗率の温度依存性を示すグラフ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film thermoelectric conversion material and a method for forming the same.
[0002]
[Prior art]
In Japan, the effective energy yield from primary supply energy is only about 30%, and about 70% of energy is finally discarded as heat into the atmosphere. In addition, heat generated by combustion in a factory or a waste incineration plant is discarded in the atmosphere without being converted into other energy. In this way, we humans are wasting a great deal of thermal energy, and have gained little energy from actions such as burning fossil energy.
[0003]
In order to improve the energy yield, it is effective to be able to use the thermal energy discarded in the atmosphere. For this purpose, thermoelectric conversion that directly converts thermal energy into electrical energy is an effective means. Thermoelectric conversion uses the Seebeck effect and is an energy conversion method in which a potential difference is generated by generating a temperature difference at both ends of a thermoelectric conversion material to generate power. In this thermoelectric power generation, one end of the thermoelectric conversion material is placed in a high temperature part generated by waste heat, the other end is placed in the atmosphere (room temperature), and electricity is obtained simply by connecting a conductive wire to each end. No movable devices such as motors and turbines necessary for general power generation are required. Therefore, the cost is low, gas is not discharged due to combustion, and power generation can be continuously performed until the thermoelectric conversion material deteriorates.
[0004]
In this way, thermoelectric power generation is expected as a technology that will play a part in solving energy problems that are a concern in the future, but in order to realize thermoelectric power generation, it has high thermoelectric conversion efficiency, heat resistance, chemical durability. It is necessary to supply a large amount of thermoelectric conversion materials excellent in properties and the like.
[0005]
So far, various composite oxides have been studied as substances exhibiting excellent thermoelectric conversion performance in high-temperature air. For example, CoO 2 layered oxides such as Ca 3 Co 4 O 9 , Bi , Pb, Sr, Ca, Co, and the like have been reported (see Patent Document 1 below). As these complex oxides, polycrystals, single crystals, and the like have been reported, and attempts have been made to use them as thermoelectric conversion elements by shaping them into shapes according to the purpose of use.
[0006]
In order to further expand the range of use of such a complex oxide having excellent thermoelectric conversion performance, it is desired to use it in various shapes. For example, if these complex oxides can be formed in a thin film on various substrates, new applications such as incorporation into an electronic circuit and use in a fine portion become possible.
[0007]
As a method for forming a thin film thermoelectric conversion material, for example, a single crystal substrate such as MgO, SrTiO 3 , or LSAT is heated to a high temperature of 700 ° C. or higher, and a complex oxide thin film is formed on the substrate by a pulse laser method. A method has been reported (for example, see Non-Patent Document 1 below). This method is a method of growing a complex oxide thin film epitaxially on a single crystal substrate. Since it is necessary to use a single crystal substrate, the substrate is expensive and the usable substrates are very limited. The In addition, since the substrate is heated to a high temperature when the thin film is formed, the composition of the deposited complex oxide thin film is likely to vary, and it is difficult to form a complex oxide thin film having the desired composition. For this reason, the thin film formed by the above-described method tends to be unstable in thermoelectric conversion performance and cannot exhibit satisfactory performance.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-141562
[Non-Patent Document 1]
48th Joint Conference on Applied Physics Lecture Proceedings, Title: 30p-P13-12, March 2001, p223
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described prior art, and the main object thereof is to form a thin film of a thermoelectric conversion material on various substrates, and the formed composite oxide has a good thermoelectric conversion. It is an object of the present invention to provide a novel method for forming a thin film thermoelectric conversion material having performance.
[0011]
[Means for Solving the Problems]
The present inventor has intensively studied to achieve the above-described object. As a result, according to a method in which a Bi-based composite oxide having a specific composition is deposited on a substrate by using a vapor deposition method such as a pulsed laser deposition method, and then heat treatment is performed at a specific temperature range, It has been found that a composite oxide thin film having excellent thermoelectric conversion performance can be formed. According to this method, since a complex oxide thin film can be formed on a substrate at room temperature, a composition fluctuation hardly occurs during the formation of the thin film, and a thermoelectric conversion film with stable performance can be formed, and the type of the substrate is not limited. Therefore, it has been found that an inexpensive substrate can be used, and when a substrate having low thermal conductivity is used, it is possible to suppress the influence of the substrate and exhibit good thermoelectric conversion performance. The present invention has been made based on these findings.
[0012]
That is, the present invention provides the following thin film thermoelectric conversion material and a method for forming the same.
1. A compound oxide thin film represented by a general formula: Bi 1.6 to 2.2 Pb 0 to 0.25 Sr 1.1 to 2.2 Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1) is formed on a substrate (however, a single crystal substrate) A thin film thermoelectric conversion material formed on top.
2. Item 2. The thin film thermoelectric conversion material according to Item 1, wherein the substrate is a substrate having low thermal conductivity.
3. 3. The thin film thermoelectric conversion material according to item 2, wherein the substrate has a thermal conductivity of 10 W / m · K or less at 25 ° C.
4). Item 4. The thin film thermoelectric conversion material according to any one of Items 1 to 3, wherein the substrate is a glass substrate, a ceramic substrate, or a plastic substrate.
5. Using a Bi-containing material, a Pb-containing material, a Sr-containing material, a Ca-containing material, a Co-containing material mixture or a fired product of the mixture as a raw material, a general formula: Bi 1.6 to 2.2 Pb 0 to 0.25 Sr A thin film characterized by depositing a composite oxide represented by 1.1 to 2.2 Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1) on a substrate and then performing heat treatment at 600 to 740 ° C. Of forming a thermoelectric conversion material.
6). Item 6. The method according to Item 5, wherein the vapor deposition method is a pulsed laser deposition method.
7). Item 7. The method according to Item 5 or 6, wherein the substrate temperature when depositing the composite oxide is room temperature.
8). Item 8. The method according to any one of Items 5 to 7, wherein the substrate is a glass substrate, a ceramic substrate, or a plastic substrate.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The thin film thermoelectric conversion material of the present invention comprises a composite oxide represented by a general formula: Bi 1.6 to 2.2 Pb 0 to 0.25 Sr 1.1 to 2.2 Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1). It will be.
[0014]
Such a composite oxide has a high Seebeck coefficient and a low electrical resistivity and good electrical conductivity. Although there are some fluctuations, the Seebeck coefficient increases as the temperature increases as a whole. The electric resistivity tends to decrease. The composite oxide of the present invention can exhibit excellent thermoelectric conversion performance when used as a thermoelectric conversion material by having such a high Seebeck coefficient and a low electrical resistivity at the same time.
[0015]
The thin film thermoelectric conversion material composed of the complex oxide is formed by using a raw material having a predetermined composition and depositing it on a substrate by vapor deposition, followed by heat treatment at 600 to 740 ° C. Can do.
[0016]
As a raw material, a Bi-containing material, a Pb-containing material, a Sr-containing material, a Ca-containing material, and a Co-containing material can be mixed and used, or these mixtures can be fired and used as a fired product.
[0017]
Bi-containing materials, Pb-containing materials, Sr-containing materials, Ca-containing materials, and Co-containing materials are particularly limited as long as they can form oxides by being vaporized by vapor deposition and deposited on a substrate. Can be used without For example, a metal simple substance containing the above-mentioned metal component, an oxide, various compounds (carbonate etc.), etc. can be used. For example, Bi-containing materials include bismuth oxide (Bi 2 O 3 ), bismuth nitrate (Bi (NO 3 ) 3 ), bismuth chloride (BiCl 3 ), bismuth hydroxide (Bi (OH) 3 ), alkoxide compound (Bi (OCH 3 ) 3 , Bi (OC 2 H 5 ) 3 , Bi (OC 3 H 7 ) 3, etc.) can be used, and Pb-containing materials include lead oxide (PbO), lead nitrate (Pb (NO 3) 2 ), lead chloride (PbCl 2 ), lead hydroxide (Pb (OH) 2 ), alkoxide compound (Pb (OCH 3 ) 2 , Pb (OC 2 H 5 ) 2 , Pb (OC 3 H7) 3 etc.) or the like can be used, strontium oxide as Sr-containing compound (SrO), strontium chloride (SrCl 2), strontium carbonate (SrCO 3), strontium nitrate (Sr (NO 3 2), 2 strontium hydroxide (Sr (OH)), alkoxide compounds (Sr (OCH 3) 2, Sr (OC 2 H 5) 2, Sr (OC 3 H 7) 2 , etc.) or the like can be used. Examples of Ca-containing materials include calcium oxide (CaO), calcium chloride (CaCl 2 ), calcium carbonate (CaCO 3 ), calcium nitrate (Ca (NO 3 ) 2 ), calcium hydroxide (Ca (OH) 2 ), alkoxide compounds ( Ca (OCH 3 ) 2 , Ca (OC 2 H 5 ) 2 , Ca (OC 3 H 7 ) 2, etc. can be used, and Co-containing materials include cobalt oxide (CoO, Co 2 O 3 , Co 3). O 4, etc.), cobalt chloride (CoCl 2), cobalt carbonate (CoCO 3), cobalt nitrate (Co (NO 3) 2) , cobalt hydroxide (Co (OH) ), Alkoxide compounds (Co (OC 3 H 7) 2) or the like can be used. Moreover, you may use the raw material which contains 2 or more types of structural atoms of the complex oxide of this invention.
[0018]
In the present invention, the Bi-containing material, the Pb-containing material, the Sr-containing material, the Ca-containing material, and the Co-containing material are mixed so that the metal ratio is the same as the metal component ratio of the target composite oxide. Although it is possible to use these, it is particularly preferable to mix these raw materials and to fire them. By using a fired product, handling of the raw material is facilitated during vapor phase vapor deposition described later.
[0019]
There are no particular limitations on the firing conditions of the raw material, and it may be fired at a high temperature at which the complex oxide crystal represented by the above general formula is formed, or there is no occurrence of the complex oxide crystal. The calcination may be performed at a relatively low temperature so that a calcined body is formed. The firing means is not particularly limited, and any means such as an electric heating furnace or a gas heating furnace can be adopted. The firing atmosphere is usually an oxidizing atmosphere such as an oxygen stream or air, but it is also possible to fire in an inert atmosphere.
[0020]
In the present invention, the above-mentioned Bi-containing material, Pb-containing material, Sr-containing material, Ca-containing material and Co-containing material mixture or a fired product thereof is used as a raw material, and the target composite oxide is obtained by a vapor deposition method. A thin film is formed on the substrate.
[0021]
The vapor deposition method is not particularly limited as long as it is a method capable of forming an oxide thin film on a substrate using the above-described raw materials. For example, a pulse laser deposition method, a sputtering method, a vacuum evaporation method, an ion A physical vapor deposition method such as a plating method, a plasma assist vapor deposition method, an ion assist vapor deposition method, or a reactive vapor deposition method can be suitably employed. Among these methods, the pulsed laser deposition method is preferable in that the composition does not easily change when a composite oxide containing multiple elements is vapor-deposited.
[0022]
In the method of the present invention, when depositing the composite oxide, it is not necessary to heat the substrate, and the substrate temperature may remain at room temperature. In the state where the composite oxide is deposited on the substrate at room temperature, the composite oxide has a very low degree of crystallization and cannot exhibit good thermoelectric conversion performance. The crystallization of the oxide proceeds and good thermoelectric conversion performance can be exhibited.
[0023]
In the present invention, the substrate that can be used conventionally is not limited to a single crystal substrate. For this reason, any material can be used without limitation as long as it is a material that does not change in quality at the heat treatment temperature to be described later, and there are many types of substrates that can be used, and inexpensive substrates can be used. Further, since a substrate having a low thermal conductivity such as a glass substrate or a ceramic substrate can be used, the influence of the substrate temperature on the thermoelectric conversion performance of the formed complex oxide film can be greatly reduced by using such a substrate. In addition, a plastic substrate can be used as long as the material does not change at a heat treatment temperature described later.
[0024]
In the present invention, it is particularly preferable to use a low thermal conductivity substrate having a thermal conductivity of about 10 W / m · K or less at 25 ° C., more preferably a thermal conductivity of about 5 W / m · K or less, still more preferably thermal conductivity. A substrate with a rate of about 2 W / m · K or less is preferably used.
[0025]
When forming a complex oxide thin film on a substrate, vapor deposition may be performed under reduced pressure according to a conventional method. The specific decompression conditions may be determined as appropriate so that the desired composite oxide film is formed according to the vapor deposition method employed. For example, the pressure may be about 10 2 Pa or less in the pulse laser deposition, the pressure may be about 1 Pa or less in the sputtering method, and the pressure may be about 10 −3 Pa or less in the vacuum evaporation method.
[0026]
The thickness of the complex oxide thin film to be formed is not particularly limited, and may be appropriately set within a range in which good thermoelectric conversion performance can be exhibited according to the use mode of the thin film, for example, about 100 nm or more, Preferably, good performance can be exhibited at a thickness of about 300 nm or more. Further, the upper limit of the film thickness is not particularly limited, but when considering use as a thin film, it is usually about 10 μm or less, preferably about 5 μm or less, more preferably about 2 μm or less.
[0027]
After the complex oxide thin film is formed on the substrate by the method described above, heat treatment is performed at 600 to 740 ° C. By performing the heat treatment in this temperature range, the crystallization of the composite oxide thin film proceeds to have good thermoelectric conversion performance. If the heat treatment temperature is too low, crystallization does not proceed sufficiently, and the thermoelectric conversion performance becomes inferior. On the other hand, if the heat treatment temperature is too high, another phase appears and the thermoelectric conversion performance is lowered, which is not preferable.
[0028]
About the atmosphere at the time of heat processing, what is necessary is just to usually set it as oxidizing atmospheres, such as the atmosphere which contains about 5% or more in air | atmosphere. The pressure at this time is not particularly limited, and may be any of reduced pressure, atmospheric pressure, and increased pressure, and can be, for example, in the range of about 10 −3 Pa to 2 MPa.
[0029]
The heat treatment time varies depending on the size of the object to be treated and the thickness of the complex oxide thin film, but the heat treatment may be performed until the crystallization of the complex oxide thin film is sufficiently advanced, and is usually about 3 minutes to 10 hours. The heat treatment time is preferably about 1 to 3 hours.
[0030]
By the above method, thin films of complex oxides represented by the general formula: Bi 1.6 to 2.2 Pb 0 to 0.25 Sr 1.1 to 2.2 Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1) are formed on various substrates. Can be formed on top.
[0031]
The formed composite oxide has a structure in which insulating Bi—Sr—O layers and conductive Co—O layers are alternately stacked, and has a high Seebeck coefficient and a low electrical resistivity. The temperature dependence of the electrical resistivity has semiconductor characteristics. A complex oxide thin film having such characteristics has excellent thermoelectric conversion performance as a P-type thermoelectric material, and it can be incorporated into an electronic circuit or used in a fine part by utilizing the thin film form. Etc. are possible.
[0032]
【The invention's effect】
According to the present invention, a composite oxide thin film having excellent thermoelectric conversion performance can be formed on various types of substrates without being limited to the types of substrates. Therefore, an inexpensive substrate can be used, and a thin film of thermoelectric conversion material can be formed at low cost. Moreover, it is possible to use a board | substrate with low heat conductivity, By using such a board | substrate, the influence of the board | substrate with respect to thermoelectric conversion performance can be suppressed.
[0033]
Furthermore, since a complex oxide thin film can be deposited on a substrate at room temperature, a composition fluctuation hardly occurs during the formation of the thin film, and a thermoelectric conversion film with stable performance can be formed.
[0034]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0035]
Example 1
Bi 2 O 3 , SrCO 3, and Co 3 O 4 were used as raw materials, and these were mixed so that Bi: Sr: Co (atomic ratio) = 2: 2: 2 and temporarily mixed in the atmosphere at 800 ° C. for 10 hours. After firing, firing was performed at 850 ° C. for 20 hours to obtain a pellet-shaped sintered body having a diameter of 2 cm and a thickness of 3 mm.
[0036]
A composite oxide was deposited on the substrate by a pulse laser deposition method using an ArF excimer laser using the obtained sintered body as a target and a fused silica glass as a substrate. At this time, the substrate was brought to room temperature without heating.
[0037]
Specific film forming conditions are as follows.
・ Laser: ArF excimer laser ・ Laser output: 150 mJ
・ Repetition frequency: 5Hz
・ Pressure: 5 × 10 −5 Torr
・ Distance between target and substrate: 3cm
-Substrate: quartz glass-Substrate temperature: room temperature The composite oxide thin film having a thickness of 1700 nm obtained by the method described above was heat-treated at various temperatures in the range of 450 to 750 ° C for 10 hours in the air atmosphere. The XRD pattern of each thin film after heat treatment is shown in FIG. From FIG. 1, when the heat treatment is performed at a temperature of 600 ° C. or higher, the composite oxide thin film is crystallized to have a crystal structure similar to that of the sintered body (bulk), and a heterogeneous phase appears at a heat treatment temperature of 750 ° C. or higher. I understand.
[0038]
Further, the composite oxide thin film deposited by the above-described method was subjected to heat treatment at 700 ° C. for 2 hours, and then subjected to electrical measurement. This composite oxide thin film was represented by a composition formula: Bi 2 Sr 2 Co 2 O 9 and had a structure in which Bi—Sr—O layers and Co—O layers were alternately laminated. A graph showing the temperature dependence of the electrical resistivity of the complex oxide thin film after the heat treatment is shown in FIG. As is clear from FIG. 2, the temperature dependence of the electrical resistivity of the composite oxide showed a semiconductor behavior, and the electrical resistivity at room temperature was 30 mΩcm. Moreover, the Seebeck coefficient at room temperature was 88 μV / K, indicating the thermoelectric performance as a P-type thermoelectric conversion material.
[Brief description of the drawings]
1 is a graph showing an X-ray diffraction pattern of a complex oxide thin film that has been heat-treated at various temperatures in Example 1. FIG.
2 is a graph showing the temperature dependence of the electrical resistivity of the complex oxide thin film obtained in Example 1. FIG.

Claims (8)

一般式:Bi1.6 2.2Pb0 0.25Sr1.1 2.2Ca0 0.8Co29-x(0≦x≦1)で表される複合酸化物の薄膜を、基板(但し、単結晶基板を除く)上に形成してなる薄膜状熱電変換材料。A compound oxide thin film represented by a general formula: Bi 1.6 to 2.2 Pb 0 to 0.25 Sr 1.1 to 2.2 Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1) is formed on a substrate (however, a single crystal substrate) A thin film thermoelectric conversion material formed on top. 基板が、低熱伝導率の基板である請求項1に記載の薄膜状熱電変換材料。The thin film thermoelectric conversion material according to claim 1, wherein the substrate is a substrate having low thermal conductivity. 基板の熱伝導率が25℃において10W/m・K以下である請求項2に記載の薄膜状熱電変換材料。The thin film thermoelectric conversion material according to claim 2, wherein the substrate has a thermal conductivity of 10 W / m · K or less at 25 ° C. 基板が、ガラス基板、セラミックス基板又はプラスチック基板である請求項1〜3のいずれかに記載の薄膜状熱電変換材料。The thin film thermoelectric conversion material according to claim 1, wherein the substrate is a glass substrate, a ceramic substrate, or a plastic substrate. Bi含有物、Pb含有物、Sr含有物、Ca含有物及びCo含有物の混合物又は該混合物の焼成物を原料として用い、気相蒸着法によって、一般式:Bi1.6 2.2Pb0 0.25Sr1.1 2.2Ca0 0.8Co29-x(0≦x≦1)で表される複合酸化物を基板上に堆積させた後、600〜740℃で熱処理を行うことを特徴とする薄膜状熱電変換材料の形成方法。Using a Bi-containing material, a Pb-containing material, a Sr-containing material, a Ca-containing material, a Co-containing material mixture or a fired product of the mixture as a raw material, a general formula: Bi 1.6 to 2.2 Pb 0 to 0.25 Sr A thin film characterized by depositing a composite oxide represented by 1.1 to 2.2 Ca 0 to 0.8 Co 2 O 9-x (0 ≦ x ≦ 1) on a substrate and then performing heat treatment at 600 to 740 ° C. Of forming a thermoelectric conversion material. 気相蒸着法が、パルスレーザー堆積法である請求項5に記載の方法。The method according to claim 5, wherein the vapor deposition method is a pulsed laser deposition method. 複合酸化物を堆積させる際の基板温度が室温である請求項5又は6に記載の方法。The method according to claim 5 or 6, wherein the substrate temperature when depositing the composite oxide is room temperature. 基板がガラス基板、セラミックス基板又はプラスチック基板である請求項5〜7のいずれかに記載の方法。The method according to claim 5, wherein the substrate is a glass substrate, a ceramic substrate, or a plastic substrate.
JP2003071311A 2003-03-17 2003-03-17 Thin film thermoelectric conversion material and method for forming the same Expired - Lifetime JP4051441B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003071311A JP4051441B2 (en) 2003-03-17 2003-03-17 Thin film thermoelectric conversion material and method for forming the same
PCT/JP2004/003482 WO2004084321A1 (en) 2003-03-17 2004-03-16 Thin-film thermoelectric conversion material and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071311A JP4051441B2 (en) 2003-03-17 2003-03-17 Thin film thermoelectric conversion material and method for forming the same

Publications (2)

Publication Number Publication Date
JP2004281726A JP2004281726A (en) 2004-10-07
JP4051441B2 true JP4051441B2 (en) 2008-02-27

Family

ID=33027682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071311A Expired - Lifetime JP4051441B2 (en) 2003-03-17 2003-03-17 Thin film thermoelectric conversion material and method for forming the same

Country Status (2)

Country Link
JP (1) JP4051441B2 (en)
WO (1) WO2004084321A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2463117A (en) * 2008-09-08 2010-03-10 Landa Lab Ltd Generating electricity from the thermal motion of gas molecules
JP5185051B2 (en) * 2008-10-01 2013-04-17 中部電力株式会社 Method for producing thermoelectric conversion material
EP2175500A1 (en) 2008-10-10 2010-04-14 Ishikawa Prefectural Government Thermoelectric conversion elements, thermoelectric conversion modules and a production method of the thermoelectric conversion modules
CN105514257B (en) * 2016-01-06 2018-03-02 西华大学 Ca3Co4O9/Bi2Ca2Co2OyComposite thermoelectric material and preparation method thereof
FR3055740A1 (en) * 2016-09-08 2018-03-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives THERMOELECTRIC DEVICE ON OPTIMIZED SUBSTRATE AND METHOD FOR MANUFACTURING THE SAME

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3089301B1 (en) * 1999-07-05 2000-09-18 工業技術院長 Thermoelectric conversion material and method for producing composite oxide sintered body
US6806218B2 (en) * 2001-04-26 2004-10-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Grain oriented ceramics, thermoelectric conversion element and production process thereof
US6759587B2 (en) * 2001-04-27 2004-07-06 Hokushin Corporation Thermoelectric materials, thermoelectric device, and method for producing thermoelectric materials

Also Published As

Publication number Publication date
JP2004281726A (en) 2004-10-07
WO2004084321A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
US7649139B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2002100814A (en) Compound oxide having high seebeck coefficient and high electrical conductivity
JP4051441B2 (en) Thin film thermoelectric conversion material and method for forming the same
JP3626169B2 (en) Thermoelectric conversion material and method for producing the same
JP3896479B2 (en) Method for producing composite oxide sintered body
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP3472814B2 (en) Composite oxide with excellent thermoelectric conversion performance
JPS63288944A (en) Production of high temperature superconductor
JP2003218411A (en) Thermoelectric conversion material, its manufacturing method, and thin film thermoelectric conversion device
CN112864300B (en) Bismuth telluride base alloy film-perovskite oxide heterojunction composite thermoelectric material and preparation and application thereof
JPS63239742A (en) Manufacture for film superconductor
JPH0825742B2 (en) How to make superconducting material
US6860938B2 (en) Method for producing single crystal of composite oxide
JP2007149996A (en) Layered oxide thermoelectric material having delafossite structure
KR20190082424A (en) Thermoelectric materials and method for manufacturing the same
JP2603688B2 (en) Superconducting material reforming method
JPS63301424A (en) Manufacture of oxide superconductor membrane
JP2005223307A (en) Oxide-based thermoelectric conversion film and method of forming oxide thermoelectric conversion film
CN111719121B (en) Preparation method of out-of-plane highly-oriented CuFeSb film
JP2006056726A (en) Compound oxide having p-type thermoelectric transducing characteristic
JP2555477B2 (en) Superconducting thin film and manufacturing method thereof
JPS63257127A (en) Manufacture of thin film superconductor
JPH0244782A (en) Superconductive element and manufacture thereof
JPH01105416A (en) Manufacture of thin film superconductor
JPH01226734A (en) Production of superconducting thin film of bi-sr-ca-cu-o by sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

R150 Certificate of patent or registration of utility model

Ref document number: 4051441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term