JP2006049494A - Material and device for thermoelectric conversion - Google Patents

Material and device for thermoelectric conversion Download PDF

Info

Publication number
JP2006049494A
JP2006049494A JP2004226888A JP2004226888A JP2006049494A JP 2006049494 A JP2006049494 A JP 2006049494A JP 2004226888 A JP2004226888 A JP 2004226888A JP 2004226888 A JP2004226888 A JP 2004226888A JP 2006049494 A JP2006049494 A JP 2006049494A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
magnetic field
conversion material
thermoelectric
applying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004226888A
Other languages
Japanese (ja)
Other versions
JP4574274B2 (en
Inventor
Yoshihiko Iijima
喜彦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004226888A priority Critical patent/JP4574274B2/en
Publication of JP2006049494A publication Critical patent/JP2006049494A/en
Application granted granted Critical
Publication of JP4574274B2 publication Critical patent/JP4574274B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material which can be improved in an essential thermoelectric conversion performance without setting a direction of temperature gradient, a direction of applying a magnetic field, and a direction of arranging electrodes, or a direction of pn junction to complicated ones; and also to provide a thermoelectric conversion device using the same. <P>SOLUTION: The thermoelectric conversion material is reduced in electric resistance by being applied with a magnetic field. The thermoelectric conversion device comprises the thermoelectric conversion material and a magnetic field generator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、本発明は、熱電変換材料及び熱電変換装置に関し、さらに詳しくは、磁場を印加することにより電気抵抗が変化する熱電変換材料、及び該熱電変換材料と磁場発生装置とを具備した熱電変換装置に関するものである。   The present invention relates to a thermoelectric conversion material and a thermoelectric conversion device. More specifically, the present invention relates to a thermoelectric conversion material whose electrical resistance changes by applying a magnetic field, and a thermoelectric device including the thermoelectric conversion material and a magnetic field generation device. The present invention relates to a conversion device.

現在、世界のエネルギーは、その多くを化石燃料の燃焼エネルギーに依存しているが、熱サイクルを使用する発電システムの場合、そのエネルギーの多くを廃熱として未利用のまま廃棄しているのが現状である。一方、地球環境の保全が世界的規模で議論されるようになり、エネルギーの未利用分の有効利用技術開発が精力的に進められている。   Currently, much of the world's energy depends on the combustion energy of fossil fuels, but in the case of power generation systems that use thermal cycles, most of that energy is discarded as waste heat. Currently. On the other hand, global environmental conservation has been debated on a global scale, and development of effective utilization technology for unused energy has been energetically promoted.

この中で、熱電変換を用いた発電は、比較的低品質の熱においても直接電気に変換することが可能であるため、現状の未利用の廃熱を回収できる技術であり、最近のエネルギー問題や環境問題の深刻化に伴い、熱電変換に対する期待度はますます大きくなっている。   Among these, power generation using thermoelectric conversion can directly convert even relatively low-quality heat into electricity. As the environmental problems become more serious, expectations for thermoelectric conversion are increasing.

この熱電変換とは、異なる2種の金属の組やp型半導体とn型半導体との組等によって構成される熱電変換材料に温度差を与えると、両端に熱起電力が発生するゼーベック効果を利用して、熱エネルギーを直接電力に変換する技術であり、モーターやタービン等の可動部がまったくなく、また、老廃物もないという優れた特徴を有している。熱電変換材料に関する従来技術としては特許文献1に開示される「熱電変換材料、熱電変換素子およびその製造方法」がある。   This thermoelectric conversion is a Seebeck effect in which thermoelectromotive force is generated at both ends when a temperature difference is given to thermoelectric conversion materials composed of two different types of metals or a combination of a p-type semiconductor and an n-type semiconductor. This is a technology that directly converts heat energy into electric power, and has excellent features such as no moving parts such as motors and turbines, and no waste. As a conventional technique related to a thermoelectric conversion material, there is “a thermoelectric conversion material, a thermoelectric conversion element, and a manufacturing method thereof” disclosed in Patent Document 1.

ここで、熱電特性の性能評価に用いられる性能指数Zは、下記の式で表される。
Z=α2/(κ・ρ)
α:ゼーベック係数
κ:熱伝導率
ρ:電気抵抗
すなわち、性能係数を向上させるためにはゼーベック係数が大きく、熱伝導率と電気抵抗とが小さいことが必要である。ここで、ゼーベック係数は物性値であるため、材料によって決まってしまうが、熱伝導率と電気抵抗とは、変化させることが可能なため、熱伝導率や電気抵抗とを小さくするための各種方法が検討されている。
Here, the figure of merit Z used for performance evaluation of thermoelectric characteristics is expressed by the following equation.
Z = α 2 / (κ ・ ρ)
α: Seebeck coefficient
κ: Thermal conductivity
ρ: electrical resistance That is, in order to improve the performance coefficient, it is necessary that the Seebeck coefficient is large and the thermal conductivity and electrical resistance are small. Here, since Seebeck coefficient is a physical property value, it depends on the material, but since thermal conductivity and electrical resistance can be changed, various methods for reducing thermal conductivity and electrical resistance Is being considered.

また、上記のゼーベック効果に加えて、ネルンスト効果(温度勾配があって熱が流れている導体又は半導体に、熱流の方向に垂直な方向に磁場を作用させると、両者に垂直な方向に電位差を生じる現象)による相乗効果を利用する提案もなされている。   In addition to the Seebeck effect described above, a Nernst effect (when a magnetic field is applied to a conductor or semiconductor that has a temperature gradient and heat flows in a direction perpendicular to the direction of heat flow, a potential difference is produced in the direction perpendicular to both. Proposals have also been made to use the synergistic effect of the phenomenon that occurs.

「Biに所要の添加元素を単独又は複合で5原子%以下含有したBi基熱電変換材料に磁場を印加すると、ゼーベック係数が大きく向上し、温度勾配の方向と直角に磁場を印加し、しかも温度勾配及び磁場の両方向と直角方向に温度勾配が与えられるように電極を配置した構造を採用することにより、ゼーベック係数が著しく向上する。」、という内容のBi基熱電変換材料と熱電変換素子とが提案されている(例えば、特許文献2参照)。   “When a magnetic field is applied to a Bi-based thermoelectric conversion material containing 5 atomic% or less of the required additive elements in Bi alone or in combination, the Seebeck coefficient is greatly improved, the magnetic field is applied perpendicular to the direction of the temperature gradient, and the temperature By adopting a structure in which electrodes are arranged so that a temperature gradient is provided in a direction perpendicular to both the gradient and magnetic field directions, the Seebeck coefficient is remarkably improved. ” It has been proposed (see, for example, Patent Document 2).

また、「所要の添加元素を含有させてp型半導体又はn型半導体となした直方体のBi基熱電変換材料と希土類磁石用合金粉末との複合体からなるp型熱電変換材料とn型熱電変換材料とをガラス板などの熱伝導率が低く電気抵抗率が高い材料を介して交互に配置し、それぞれの熱電変換材料の低温側同士をワイヤーで、高温側同士を別のワイヤーで接続すると、所要方向に磁場を印加して磁化し、上記磁化方向に直交する方向に温度勾配ΔT、上記2方向に直交する方向の面でpn接合して接続端より熱起電力を導出することによって、外部から磁場を印加しなくても、ゼーベック係数が飛躍的に向上する。」、という内容の熱電変換材料とその製造方法並びに熱電変換素子が提案されている(例えば、特許文献3参照)。
特開2002−353523号公報 特開2002−64228号公報 特開2002−118295号公報
Further, “a p-type thermoelectric conversion material and a n-type thermoelectric conversion composed of a composite of a rectangular Bi-based thermoelectric conversion material and a rare earth magnet alloy powder containing a required additive element to form a p-type semiconductor or an n-type semiconductor. When the materials are alternately arranged via a material with low thermal conductivity such as a glass plate and high electrical resistivity, the low temperature sides of each thermoelectric conversion material are connected with wires, and the high temperature sides are connected with different wires, By applying a magnetic field in the required direction and magnetizing, a temperature gradient ΔT in the direction orthogonal to the magnetization direction, a pn junction on the surface in the direction orthogonal to the two directions, and deriving the thermoelectromotive force from the connection end, the external Therefore, a thermoelectric conversion material, a method for manufacturing the thermoelectric conversion material, and a thermoelectric conversion element have been proposed (see, for example, Patent Document 3).
JP 2002-353523 A JP 2002-64228 A JP 2002-118295 A

しかしながら、上記特許文献2や3によって提案された方法によると、確かにゼーベック効果とネルンスト効果との相乗効果により熱起電力の向上を図ることが可能であるが、温度勾配の方向、磁場を印加する方向及び電極を配置する方向又はpn接合する方向が複雑であり、所定の方向からずれた場合には、十分の特性が得られないため、実際の廃熱の熱エネルギーを電気エネルギーに変換する場合には十分の熱起電力が得られないという不具合が生じているという問題がある。   However, according to the methods proposed in Patent Documents 2 and 3, it is possible to improve the thermoelectromotive force by the synergistic effect of the Seebeck effect and the Nernst effect, but the direction of the temperature gradient and the application of the magnetic field are applied. The direction in which the electrode is disposed and the direction in which the electrode is arranged or the direction in which the pn junction is formed are complicated, and if the direction deviates from a predetermined direction, sufficient characteristics cannot be obtained, so the actual heat energy of waste heat is converted into electric energy. In some cases, there is a problem that a sufficient thermoelectromotive force cannot be obtained.

そこで、複雑な方向に温度勾配の方向、磁場を印加する方向及び電極を配置する方向又はpn接合する方向を一致させることを必要とせず、本来の熱電変換材料の有する熱電変換性能を向上できる熱電変換材料又は熱電変換装置が切望されていた。   Therefore, it is not necessary to match the direction of the temperature gradient in the complicated direction, the direction of applying the magnetic field, the direction of arranging the electrodes, or the direction of pn junction, and the thermoelectric that can improve the thermoelectric conversion performance of the original thermoelectric conversion material. Conversion materials or thermoelectric conversion devices have been eagerly desired.

本発明は、上述した実情を考慮してなされたもので、熱電変換材料に磁場を印加することにより電気抵抗が減少する熱電変換材料及び該熱電変換材料と磁場発生装置とを具備した熱電変換装置を用いることにより、複雑な方向に温度勾配の方向、磁場を印加する方向及び電極を配置する方向又はpn接合する方向を一致させることを必要とせず、本来の熱電変換材料の有する熱電変換性能を向上できる熱電変換材料及び熱電変換装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and a thermoelectric conversion material whose electric resistance is reduced by applying a magnetic field to the thermoelectric conversion material, and a thermoelectric conversion device including the thermoelectric conversion material and a magnetic field generator. Therefore, it is not necessary to match the direction of the temperature gradient in the complicated direction, the direction of applying the magnetic field, the direction of arranging the electrodes, or the direction of pn junction, and the thermoelectric conversion performance of the original thermoelectric conversion material can be achieved. It aims at providing the thermoelectric conversion material and thermoelectric conversion apparatus which can be improved.

上記の課題を解決するために、請求項1に記載の発明は、磁場を印加することにより、電気抵抗が変化する熱電変換材料を特徴とする。   In order to solve the above problems, the invention described in claim 1 is characterized by a thermoelectric conversion material whose electrical resistance changes when a magnetic field is applied.

また、請求項2に記載の発明は、請求項1の熱電変換材料において、磁場を印加することにより、電気抵抗が減少する熱電変換材料を特徴とする。   The invention according to claim 2 is the thermoelectric conversion material according to claim 1, wherein the thermoelectric conversion material is such that the electric resistance is reduced by applying a magnetic field.

また、請求項3に記載の発明は、請求項1又は2記載の熱電変換材料において、少なくとも酸化物を含んで構成されている熱電変換材料を特徴とする。   According to a third aspect of the present invention, there is provided the thermoelectric conversion material according to the first or second aspect, wherein the thermoelectric conversion material includes at least an oxide.

また、請求項4に記載の発明は、請求項3の熱電変換材料において、酸化物が少なくとも層状化合物により構成されている熱電変換材料を特徴とする。   The invention according to claim 4 is the thermoelectric conversion material according to claim 3, characterized in that the oxide is composed of at least a layered compound.

また、請求項5に記載の発明は、請求項1から4のいずれか1項記載の熱電変換材料において、一方向に配向していることを特徴とする熱電変換材料を特徴とする。   The invention according to claim 5 is characterized in that the thermoelectric conversion material according to any one of claims 1 to 4 is oriented in one direction.

また、請求項6に記載の発明は、請求項5の熱電変換材料において、磁化率の異方性に沿った方向に配列していることを特徴とする。   The invention according to claim 6 is the thermoelectric conversion material according to claim 5, wherein the thermoelectric conversion material is arranged in a direction along the anisotropy of magnetic susceptibility.

また、請求項7に記載の発明は、請求項1から6のいずれか1項に記載の熱電変換材料及び磁場発生装置を具備した熱電変換装置を特徴とする。   A seventh aspect of the invention is characterized by a thermoelectric conversion device including the thermoelectric conversion material and the magnetic field generation device according to any one of the first to sixth aspects.

また、請求項8に記載の発明は、請求項7の熱電変換装置において、磁場発生装置が電磁石である熱電変換装置を特徴とする。   The invention according to claim 8 is the thermoelectric conversion device according to claim 7, characterized in that the magnetic field generation device is an electromagnet.

また、請求項9に記載の発明は、請求項7の熱電変換装置において、磁場発生装置が超伝導磁石である熱電変換装置を特徴とする。   The invention according to claim 9 is the thermoelectric converter according to claim 7, characterized in that the magnetic field generator is a superconducting magnet.

また、請求項10に記載の発明は、請求項7の熱電変換装置において、磁場発生装置が自発磁化を有する永久磁石である熱電変換装置を特徴とする。   The invention according to claim 10 is the thermoelectric conversion device according to claim 7, characterized in that the magnetic field generation device is a permanent magnet having spontaneous magnetization.

本発明によれば、熱電変換材料において、磁場を印加することにより、電気抵抗が変化することを特徴とする熱電変換材料により、熱電変換材料に磁場を印加することにより電気抵抗が減少し、熱電性能指数を大きくすることが可能になった。   According to the present invention, in the thermoelectric conversion material, the electric resistance is changed by applying a magnetic field to the thermoelectric conversion material, and the electric resistance is reduced by applying the magnetic field to the thermoelectric conversion material. It has become possible to increase the figure of merit.

また、熱電変換材料が、配向している、あるいは配向することにより、磁場を印加した場合に、電気抵抗の減少を容易にすることが可能になる。   Moreover, when the thermoelectric conversion material is or is oriented, it is possible to easily reduce the electric resistance when a magnetic field is applied.

さらに、磁場を印加することにより電気抵抗が減少する熱電変換材料及び磁場発生装置を具備することにより、本来の熱電変換材料の熱電変換性能を向上することが可能となる。   Furthermore, the thermoelectric conversion performance of the original thermoelectric conversion material can be improved by providing the thermoelectric conversion material and the magnetic field generator in which the electric resistance is reduced by applying a magnetic field.

以下、図面を参照して、本発明の実施形態を詳細に説明する。
図1は、材料における電気抵抗の磁場強度依存性の一例を概念図として示したものである。いわゆる、負の磁気抵抗効果と言い、磁場を印加したときに、材料の電気抵抗が減少する様子を示したものである。特に、酸化物系の材料では、巨大な負の磁気抵抗効果が数多く発見されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing an example of the dependence of the electrical resistance of a material on the magnetic field strength. This is the so-called negative magnetoresistance effect, and shows how the electrical resistance of a material decreases when a magnetic field is applied. In particular, a large number of huge magnetoresistive effects have been discovered for oxide-based materials.

前述した通り、熱電特性の性能評価に用いられる性能指数Zは、下記の式で表される。
Z=α2/(κ・ρ)
α:ゼーベック係数
κ:熱伝導率
ρ:電気抵抗
すなわち、熱電特性を向上させるためにはゼーベック係数が大きく、熱伝導率と電気抵抗とが小さいことが必要である。ここで、ゼーベック係数は物性値であるため、材料によって決まってしまうが、負の磁気抵抗効果を有する熱電変換材料に磁場を印加し、電気抵抗を減少させることにより、該熱電変換材料の性能指数を大きくし、それにより優れた熱電特性を得よう、というのが本発明の主たる考え方である。
As described above, the figure of merit Z used for the performance evaluation of thermoelectric characteristics is expressed by the following equation.
Z = α 2 / (κ ・ ρ)
α: Seebeck coefficient
κ: Thermal conductivity
ρ: Electric resistance That is, in order to improve the thermoelectric characteristics, it is necessary that the Seebeck coefficient is large and the thermal conductivity and electric resistance are small. Here, since the Seebeck coefficient is a physical property value, it depends on the material, but by applying a magnetic field to the thermoelectric conversion material having a negative magnetoresistance effect and reducing the electric resistance, the figure of merit of the thermoelectric conversion material is reduced. The main idea of the present invention is to increase the thickness and thereby obtain excellent thermoelectric characteristics.

図2は、負の磁気抵抗効果を有する熱電変換材料1を磁場発生装置2と隣接した場合の概念図を示したものである。該熱電変換材料1は、磁場を印加した場合に、電気抵抗が減少するので、磁場発生装置2により磁場を印加することによって、その性能指数を向上することができるものである。ここで、熱電変換材料1としては、負の磁気抵抗効果を有するものであれば、どのような材料を用いても特に問題ないが、負の磁気抵抗効果が大きいほど好ましく、その観点から、酸化物系材料を用いることがより好ましい。   FIG. 2 shows a conceptual diagram when the thermoelectric conversion material 1 having a negative magnetoresistance effect is adjacent to the magnetic field generator 2. The thermoelectric conversion material 1 can improve its figure of merit by applying a magnetic field by the magnetic field generator 2 because the electric resistance decreases when a magnetic field is applied. Here, as the thermoelectric conversion material 1, any material can be used as long as it has a negative magnetoresistance effect. However, a larger negative magnetoresistance effect is preferable, and from this viewpoint, oxidation is preferable. It is more preferable to use a physical material.

図3は、熱電変換材料を構成している熱電微粒子又は熱電変換材料の結晶粒が配向している場合の熱電変換材料の断面を概念図として示したものである。このように、配向した熱電変換材料、特に、磁化率の異方性に沿って一軸に配向した熱電変換材料3は、磁化の容易軸が一方向に配列しているため、その方向に磁場を印加することにより、電気抵抗が減少しやすい利点があり好ましい。この場合は、熱電変換材料は、磁化率の異方性を有していることが好ましい。すなわち、任意の方向には磁化率:χが小さく、他の任意の方向においては磁化率が大きく、その両方向の磁化率の差:Δχはできるだけ大きい方が好ましい。この意味からも酸化物が層状化合物から構成されていることが好ましい。この層状化合物は層状になっているため、層の積層方向とそれに垂直方向とでは磁化率が大きく異なっており、配向した熱電変換材料を形成しやすくなるためである。   FIG. 3 is a conceptual diagram showing a cross section of the thermoelectric conversion material when the thermoelectric fine particles constituting the thermoelectric conversion material or the crystal grains of the thermoelectric conversion material are oriented. As described above, the oriented thermoelectric conversion material, in particular, the thermoelectric conversion material 3 oriented uniaxially along the anisotropy of magnetic susceptibility has the easy axis of magnetization arranged in one direction. The application is preferable because there is an advantage that the electric resistance is easily reduced. In this case, the thermoelectric conversion material preferably has magnetic susceptibility anisotropy. That is, it is preferable that the susceptibility: χ is small in any direction, the susceptibility is large in any other direction, and the difference in susceptibility in both directions: Δχ is as large as possible. From this point of view, the oxide is preferably composed of a layered compound. This layered compound has a layered structure, so that the magnetic susceptibility is greatly different between the stacking direction of the layers and the direction perpendicular thereto, and an oriented thermoelectric conversion material can be easily formed.

図4は、上記に記載の負の磁気抵抗効果を有する熱電変換材料のp型材料4とn型材料5とを電極7で直列につないだ熱電変換素子の高温側と低温側とを絶縁伝熱体8で絶縁したものを、磁場発生装置6と隣接させた熱電変換装置の概念図を示したものである。   FIG. 4 shows an insulating transmission between the high temperature side and the low temperature side of the thermoelectric conversion element in which the p-type material 4 and the n-type material 5 of the thermoelectric conversion material having the negative magnetoresistance effect described above are connected in series by the electrode 7. The conceptual diagram of the thermoelectric conversion apparatus which made the thing insulated with the heat body 8 adjoin the magnetic field generator 6 is shown.

絶縁伝熱体8の一方を高温にし、もう一方の絶縁伝熱体側を低温にし、負の磁気抵抗効果を有する熱電変換材料のp型材料4とn型材料5とを電極7で直列につないだ熱電変換素子に温度差をつけることにより、熱起電力を得ることができるが、その際に、隣接する磁場発生装置6により磁場を印加することによって、負の磁気抵抗効果を有する熱電変換材料の電気抵抗が減少し、熱電変換材料の性能指数を大きくすることができるため、図4に示した熱電変換装置は、優れた熱電特性を得ることができるものである。   One of the insulated heat transfer bodies 8 is heated to a high temperature, the other insulated heat transfer body side is cooled to a low temperature, and a p-type material 4 and an n-type material 5 of a thermoelectric conversion material having a negative magnetoresistance effect are connected in series by an electrode 7. A thermoelectromotive force can be obtained by applying a temperature difference to the thermoelectric conversion element. At this time, a thermoelectric conversion material having a negative magnetoresistance effect is obtained by applying a magnetic field by the adjacent magnetic field generator 6. Thus, the thermoelectric conversion device shown in FIG. 4 can obtain excellent thermoelectric characteristics.

磁場発生装置の熱電変換素子への隣接のさせ方は、図4のように横方向に隣接させても問題ないし、図5に示したように縦方向に隣接させても特に問題ない。どちらに隣接させた方が熱電変換材料に好ましい方向に磁場を印加できるか、及び、どちらに隣接させた方が熱電変換素子に温度差をかけやすいか等で適切に選択すればよい。   There is no problem in making the magnetic field generator adjacent to the thermoelectric conversion element even if it is adjacent in the horizontal direction as shown in FIG. 4, and there is no particular problem if it is adjacent in the vertical direction as shown in FIG. What is necessary is just to select appropriately depending on which one can be adjacent to which the magnetic field can be applied in a preferable direction to the thermoelectric conversion material and which one is adjacent to which the temperature difference is likely to be applied to the thermoelectric conversion element.

ここで、磁場発生装置としては、磁場が発生できるものであれば何を用いても特に問題ない。磁場発生装置6として、通常用いられている電磁石を用いれば、コイルに流す電流の大きさによって磁場の強度を制御できるため好ましい。また、磁場発生装置6として、超伝導磁石を用いれば、強磁場を発生することが可能であるために、熱電変換材料の電気抵抗を減少するために強磁場が必要な場合等に大変好ましい。   Here, there is no particular problem even if any magnetic field generator is used as long as it can generate a magnetic field. It is preferable to use a commonly used electromagnet as the magnetic field generator 6 because the strength of the magnetic field can be controlled by the magnitude of the current flowing through the coil. In addition, if a superconducting magnet is used as the magnetic field generator 6, it is possible to generate a strong magnetic field, which is very preferable when a strong magnetic field is required to reduce the electric resistance of the thermoelectric conversion material.

さらに、磁場発生装置として、自発磁化を有する永久磁石を用いた場合は、外部から磁場を印加する必要がなく、電源がない場所でも磁場を印加できる利点があり、また、熱電変換装置の小型化の観点あるいはコストの低下及び生産性の向上の面からも大変好ましい。磁場発生装置として永久磁石を用いた場合の概念図を図6に示した。図6では、永久磁石が下側だけに隣接しているが、図5に示したように上下に隣接していても問題なく、また、図4に示したように、横に隣接していても問題ない。   Furthermore, when a permanent magnet having spontaneous magnetization is used as a magnetic field generator, there is no need to apply a magnetic field from the outside, and there is an advantage that a magnetic field can be applied even in a place where there is no power source, and the thermoelectric converter is downsized. From the viewpoint of cost reduction or productivity improvement, it is very preferable. A conceptual diagram when a permanent magnet is used as the magnetic field generator is shown in FIG. In FIG. 6, the permanent magnet is adjacent only to the lower side. However, as shown in FIG. 5, there is no problem even if the permanent magnets are adjacent to each other in the vertical direction. There is no problem.

以上説明したように、熱電変換材料に磁場を印加することにより電気抵抗が減少する、すなわち、負の磁気抵抗効果を有する熱電変換材料及び該熱電変換材料と磁場発生装置とを具備した熱電変換装置を用いることにより、複雑な方向に温度勾配の方向、磁場を印加する方向及び電極を配置する方向又はpn接合する方向を一致させることを必要とせず、本来の熱電変換材料の有する熱電変換性能を向上できる熱電変換材料及び熱電変換装置を提供することが可能になった。   As described above, the electric resistance is reduced by applying a magnetic field to the thermoelectric conversion material, that is, the thermoelectric conversion material having a negative magnetoresistance effect, and the thermoelectric conversion device including the thermoelectric conversion material and the magnetic field generation device. Therefore, it is not necessary to match the direction of the temperature gradient in the complicated direction, the direction of applying the magnetic field, the direction of arranging the electrodes, or the direction of pn junction, and the thermoelectric conversion performance of the original thermoelectric conversion material can be achieved. It has become possible to provide a thermoelectric conversion material and a thermoelectric conversion device that can be improved.

負の磁気抵抗効果を有するn型の熱電変換材料として、La−Sr−Mn系酸化物を用い、この熱電変換材料に、磁場発生装置を図2のように隣接させた。(試料1)磁場発生装置としては電磁石を用いた。この磁場発生装置により2Tの磁場を発生させたときの性能指数をZmとし、磁場を発生させなかった場合の性能指数をZnとした場合、Zm>Znとなり、磁場を印加することにより、熱電変換材料の性能指数を向上することができた。   As an n-type thermoelectric conversion material having a negative magnetoresistive effect, a La—Sr—Mn-based oxide was used, and a magnetic field generator was made adjacent to the thermoelectric conversion material as shown in FIG. (Sample 1) An electromagnet was used as the magnetic field generator. Zm> Zn, where Zm is a figure of merit when a 2T magnetic field is generated by this magnetic field generator and Zn is a figure of merit when no magnetic field is generated, and thermoelectric conversion is achieved by applying a magnetic field. The figure of merit of the material could be improved.

負の磁気抵抗効果を有するn型の熱電変換材料として、配向させたLa−Sr−Mn系酸化物を用い、この熱電変換材料に、磁場発生装置を図2のように隣接させた。(試料2)磁場発生装置としては実施例1と同様に電磁石を用いた。配向させたLa−Sr−Mn系酸化物熱電変換材料は、La−Sr−Mn系酸化物の微粒子を配向させて焼結することにより形成した。試料1と試料2とを磁場を印加した場合の性能指数を比較したところ、試料2を用いた場合の方が、より小さい磁場で性能指数を向上することができた。   As an n-type thermoelectric conversion material having a negative magnetoresistance effect, an oriented La—Sr—Mn-based oxide was used, and a magnetic field generator was adjacent to this thermoelectric conversion material as shown in FIG. (Sample 2) An electromagnet was used as the magnetic field generator in the same manner as in Example 1. The oriented La-Sr-Mn oxide thermoelectric conversion material was formed by orienting and sintering La-Sr-Mn oxide fine particles. When the performance index when a magnetic field was applied to Sample 1 and Sample 2 was compared, the performance index was improved with a smaller magnetic field when Sample 2 was used.

負の磁気抵抗効果を有するn型の熱電変換材料として、La−Sr−Mn系酸化物を用い、また、負の磁気抵抗効果を有するp型の熱電変換材料として、Bi−Sr−Ca−Co系酸化物を用い、これらの熱電変換材料を図4及び5に示したように直列につなぎ、磁場発生装置を隣接させた。但し、熱電変換素子対は1対とし、電極はAgペーストを用いた。また、磁場発生装置としては電磁石を用いた。この磁場発生装置により2Tの磁場を発生させた場合の発電電力をPmとし、磁場を発生させなかった場合の発電電力をPnとした場合、Pm>Pnとなり、磁場を印加することにより、熱電変換装置の発電電力を向上することができた。磁場発生装置を熱電変換装置の横に設置した型を図4に、上下に設置した型を図5に示した。   An La-Sr-Mn-based oxide is used as an n-type thermoelectric conversion material having a negative magnetoresistance effect, and Bi-Sr-Ca-Co is used as a p-type thermoelectric conversion material having a negative magnetoresistance effect. Using these oxides, these thermoelectric conversion materials were connected in series as shown in FIGS. 4 and 5, and the magnetic field generator was placed adjacent to each other. However, one thermoelectric conversion element pair was used and Ag paste was used for the electrodes. An electromagnet was used as the magnetic field generator. When the generated power when a magnetic field of 2T is generated by this magnetic field generator is Pm and the generated power when no magnetic field is generated is Pn, Pm> Pn, and by applying the magnetic field, thermoelectric conversion The generated power of the device could be improved. The type | mold which installed the magnetic field generator next to the thermoelectric converter was shown in FIG. 4, and the type | mold installed up and down was shown in FIG.

実施例3において、磁場発生装置としてNd−Fe−B系磁石を用い、図6に示すように熱電変換素子の下に隣接させた以外は実施例3と同様とした。Nd−Fe−B系磁石を隣接させた場合の発電電力をPmとし、Nd−Fe−B系磁石を隣接させなかった場合の発電電力をPnとした場合、Pm>Pnとなり、Nd−Fe−B系磁石を隣接させたことにより、外部から磁場を供給しない場合でも熱電変換装置の発電電力を向上することができた。   Example 3 was the same as Example 3 except that an Nd—Fe—B magnet was used as the magnetic field generator and was placed under the thermoelectric conversion element as shown in FIG. When the generated power when the Nd-Fe-B magnet is adjacent is Pm and the generated power when the Nd-Fe-B magnet is not adjacent is Pn, Pm> Pn, and Nd-Fe- By making the B-system magnet adjacent, it was possible to improve the generated power of the thermoelectric converter even when no magnetic field was supplied from the outside.

本発明の電気抵抗の磁場強度依存性の一例を示す説明図である。It is explanatory drawing which shows an example of the magnetic field strength dependence of the electrical resistance of this invention. 本発明の熱電変換材料を磁場発生装置と隣接した例の概略図である。It is the schematic of the example which adjoined the thermoelectric conversion material of this invention with the magnetic field generator. 本発明の配向した熱電変換材料使用時の断面を示す概念図である。It is a conceptual diagram which shows the cross section at the time of use of the oriented thermoelectric conversion material of this invention. 本発明のp型、n型熱電変換材料を直列につないだ熱電変換装置の概念図である。It is a conceptual diagram of the thermoelectric conversion apparatus which connected the p-type and n-type thermoelectric conversion material of this invention in series. 本発明のp型、n型熱電変換材料直列接続熱電変換装置の他の概念図である。It is another conceptual diagram of the p-type and n-type thermoelectric conversion material serial connection thermoelectric conversion device of the present invention. 本発明のp型、n型熱電変換材料直列接続熱電変換装置の永久磁石使用時の概念図である。It is a conceptual diagram at the time of permanent magnet use of the p-type and n-type thermoelectric conversion material series connection thermoelectric conversion apparatus of this invention.

符号の説明Explanation of symbols

1 熱電変換材料
2 磁場発生装置
3 配向した熱電変換材料
4 p型熱電変換材料
5 n型熱電変換材料
6 磁場発生装置
7 電極
8 絶縁伝熱体
9 永久磁石
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion material 2 Magnetic field generator 3 Oriented thermoelectric conversion material 4 p-type thermoelectric conversion material 5 n-type thermoelectric conversion material 6 Magnetic field generator 7 Electrode 8 Insulated heat transfer body 9 Permanent magnet

Claims (10)

磁場を印加することにより、電気抵抗が変化することを特徴とする熱電変換材料。   A thermoelectric conversion material characterized in that an electric resistance is changed by applying a magnetic field. 請求項1の熱電変換材料において、磁場を印加することにより、電気抵抗が減少することを特徴とする熱電変換材料。   2. The thermoelectric conversion material according to claim 1, wherein the electric resistance is reduced by applying a magnetic field. 請求項1又は2記載の熱電変換材料において、少なくとも酸化物を含んで構成されていることを特徴とする熱電変換材料。   The thermoelectric conversion material according to claim 1 or 2, comprising at least an oxide. 請求項3の熱電変換材料において、前記酸化物が少なくとも層状化合物により構成されていることを特徴とする熱電変換材料。   The thermoelectric conversion material according to claim 3, wherein the oxide is composed of at least a layered compound. 請求項1から4のいずれか1項記載の熱電変換材料において、一方向に配向していることを特徴とする熱電変換材料。   The thermoelectric conversion material according to any one of claims 1 to 4, wherein the thermoelectric conversion material is oriented in one direction. 請求項5の熱電変換材料において、磁化率の異方性に沿った方向に配列していることを特徴とする熱電変換材料。   The thermoelectric conversion material according to claim 5, wherein the thermoelectric conversion material is arranged in a direction along anisotropy of magnetic susceptibility. 請求項1から6のいずれか1項に記載の熱電変換材料及び磁場発生装置を具備したことを特徴とする熱電変換装置。   A thermoelectric conversion device comprising the thermoelectric conversion material and the magnetic field generation device according to claim 1. 請求項7の熱電変換装置において、前記磁場発生装置が電磁石であることを特徴とする熱電変換装置。   8. The thermoelectric conversion device according to claim 7, wherein the magnetic field generation device is an electromagnet. 請求項7の熱電変換装置において、前記磁場発生装置が超伝導磁石であることを特徴とする熱電変換装置。   8. The thermoelectric conversion device according to claim 7, wherein the magnetic field generator is a superconducting magnet. 請求項7の熱電変換装置において、前記磁場発生装置が自発磁化を有する永久磁石であることを特徴とする熱電変換装置。   8. The thermoelectric conversion device according to claim 7, wherein the magnetic field generation device is a permanent magnet having spontaneous magnetization.
JP2004226888A 2004-08-03 2004-08-03 Thermoelectric converter Expired - Fee Related JP4574274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004226888A JP4574274B2 (en) 2004-08-03 2004-08-03 Thermoelectric converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004226888A JP4574274B2 (en) 2004-08-03 2004-08-03 Thermoelectric converter

Publications (2)

Publication Number Publication Date
JP2006049494A true JP2006049494A (en) 2006-02-16
JP4574274B2 JP4574274B2 (en) 2010-11-04

Family

ID=36027723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004226888A Expired - Fee Related JP4574274B2 (en) 2004-08-03 2004-08-03 Thermoelectric converter

Country Status (1)

Country Link
JP (1) JP4574274B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147304A (en) * 2006-12-07 2008-06-26 Toyoda Gosei Co Ltd Thermoelectric conversion element
JP2015527037A (en) * 2012-07-30 2015-09-10 コーエン・ヨアフCOHEN, Yoav Method for generating useful energy from thermal energy
CN111052423A (en) * 2017-08-25 2020-04-21 国际商业机器公司 Thermoelectric device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846246A (en) * 1994-07-28 1996-02-16 Kaku Yugo Kagaku Kenkyusho Solar thermal power generator
JPH10163510A (en) * 1996-12-04 1998-06-19 Mitsubishi Electric Corp Infrared-detecting element
JP2001085218A (en) * 1999-09-17 2001-03-30 Sharp Corp Ferromagnetic metal oxide polycrystalline and its manufacture
JP2001185771A (en) * 1999-10-15 2001-07-06 Yyl:Kk Thermoelectric conversion method and thermoelectric element
JP2002141562A (en) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology Composite oxide excellent for thermoelectric conversion
JP2004087537A (en) * 2002-08-23 2004-03-18 Toyota Central Res & Dev Lab Inc P type thermoelectric converting material and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846246A (en) * 1994-07-28 1996-02-16 Kaku Yugo Kagaku Kenkyusho Solar thermal power generator
JPH10163510A (en) * 1996-12-04 1998-06-19 Mitsubishi Electric Corp Infrared-detecting element
JP2001085218A (en) * 1999-09-17 2001-03-30 Sharp Corp Ferromagnetic metal oxide polycrystalline and its manufacture
JP2001185771A (en) * 1999-10-15 2001-07-06 Yyl:Kk Thermoelectric conversion method and thermoelectric element
JP2002141562A (en) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology Composite oxide excellent for thermoelectric conversion
JP2004087537A (en) * 2002-08-23 2004-03-18 Toyota Central Res & Dev Lab Inc P type thermoelectric converting material and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147304A (en) * 2006-12-07 2008-06-26 Toyoda Gosei Co Ltd Thermoelectric conversion element
JP2015527037A (en) * 2012-07-30 2015-09-10 コーエン・ヨアフCOHEN, Yoav Method for generating useful energy from thermal energy
CN111052423A (en) * 2017-08-25 2020-04-21 国际商业机器公司 Thermoelectric device
JP2020532108A (en) * 2017-08-25 2020-11-05 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation Thermoelectric devices, methods for cooling devices, and methods for generating electrical energy
JP7252692B2 (en) 2017-08-25 2023-04-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Thermoelectric devices, methods for cooling devices, and methods for generating electrical energy
CN111052423B (en) * 2017-08-25 2023-08-08 国际商业机器公司 Thermoelectric device

Also Published As

Publication number Publication date
JP4574274B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
EP1946337B1 (en) Superconducting systems
JP2002118295A (en) Thermoelectric conversion material, manufacturing method thereof and thermoelectric conversion element
JP6233320B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP6350817B2 (en) Module group consisting of a combination of a thermoelectric conversion element and a π-type module group consisting of a thermoelectric material, a thermoelectric conversion element and a thermoelectric material.
JP6066091B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP6565689B2 (en) Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
JP4574274B2 (en) Thermoelectric converter
JPWO2013151088A1 (en) Thermoelectric conversion element, thermoelectric conversion system, and method of manufacturing thermoelectric conversion element
JP6349863B2 (en) Spin current thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion device
UpadhyayáKahaly Half-metallic perovskite superlattices with colossal thermoelectric figure of merit
JP2008071720A (en) Battery, battery system, and microwave transmitter
JPWO2014030264A1 (en) A thermoelectric conversion element that has a clue in a space part or a bridged space part that reduces the amount of heat transfer to the thermoelectric material and the working substance flow is more than the original thermoelectric material
WO2017082266A1 (en) Electromotive film for thermoelectric conversion element, and thermoelectric conversion element
WO2018146713A1 (en) Thermoelectric conversion element and method for manufacturing same
JP2015065254A (en) Thermoelectric conversion element and method for manufacturing the same
US20210066567A1 (en) Magnetic alloy material
JP2006049495A (en) Material and device for thermoelectric conversion
JP2015185778A (en) Thermoelectric conversion element and method for manufacturing the same
JP6413466B2 (en) Thermoelectric conversion element
WO2015087408A1 (en) Thermoelectric conversion element and thermoelectric module using same
JP6519230B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP6299237B2 (en) Thermoelectric conversion element and manufacturing method thereof
US11417818B2 (en) Thermoelectric conversion element
JP2003060244A (en) Cooling element and thermoelectric conversion element
JP6172439B2 (en) Spin current thermoelectric transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees