JP2003060244A - Cooling element and thermoelectric conversion element - Google Patents

Cooling element and thermoelectric conversion element

Info

Publication number
JP2003060244A
JP2003060244A JP2001244200A JP2001244200A JP2003060244A JP 2003060244 A JP2003060244 A JP 2003060244A JP 2001244200 A JP2001244200 A JP 2001244200A JP 2001244200 A JP2001244200 A JP 2001244200A JP 2003060244 A JP2003060244 A JP 2003060244A
Authority
JP
Japan
Prior art keywords
axis
thermoelectric conversion
cooling element
conversion material
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001244200A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2001244200A priority Critical patent/JP2003060244A/en
Publication of JP2003060244A publication Critical patent/JP2003060244A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cooling element capable of improving conversion effi ciency from electricity to heat of an thermoelectric conversion element by using multiplier effect of peltier effect and Ettingshausen effect. SOLUTION: A set of rectangular solid is formed with p-type and n-type strip thin-sheet thermoelectric conversion elements 1, having the ratio 5 or more of (length of long side (z-direction)/length of short side (x-direction)) contacted against each other and alternately laminated in (n) sheets, and a rectangular element is composed by alternately laminating the rectangular solids and rectangular solid permanent magnets 2. Electrodes 3 and 4 are formed on one high temperature side and the other cold temperature side of a pair of opposed sides formed by y-axis and z-axis on each material. Each of the permanent magnets 2 is magnetized in the laminated direction (y) of the thin conversion elements 1 to generate magnetic field B in the same direction. Each of the terminals 3, 4 is connected to feed current in the widthwise direction (x) of the elements 1 orthogonal to the direction of the magnetic field B. Then, current I is applied to the terminals 3, 4 to generate temperature gradient in the longitudinal direction (z) of the elements 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、特定形状の熱電
変換素子を用いてこれに磁場を印加することにより、電
気エネルギーから熱エネルギーへの変換効率を向上させ
た冷却素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling element in which a thermoelectric conversion element having a specific shape is used and a magnetic field is applied to the thermoelectric conversion element to improve the efficiency of conversion of electric energy into heat energy.

【0002】[0002]

【従来の技術】ペルチェ素子は、電子機器の小型化及び
コンパクト化において発生する蓄熱を防止するために、
電気から冷熱への変換効率の高効率化が期待されている
デバイスであり、例えば、光通信の半導体レーザー発振
器の温度制御や半導体部品の製造工程における反応槽の
温度制御、保冷庫等、特に精密な温度制御の必要な部品
や装置に使用されている。
2. Description of the Related Art Peltier devices are used in order to prevent heat storage that occurs when electronic devices are made smaller and more compact.
Devices that are expected to improve the efficiency of conversion from electricity to cold heat, such as temperature control of semiconductor laser oscillators for optical communication, temperature control of reaction tanks in the manufacturing process of semiconductor parts, cold storage, etc. It is used for parts and devices that require precise temperature control.

【0003】ペルチェ素子用の熱電変換材料としては、
高性能を有するIrSb3、Bi2Te3、PbTe等の
カルコゲン系化合物のほか、熱電特性は低いが資源的に
豊富なFeSi2、SiGe等のケイ化物が知られてい
る。
Thermoelectric conversion materials for Peltier devices include:
In addition to chalcogen compounds having high performance such as IrSb 3 , Bi 2 Te 3 and PbTe, silicides such as FeSi 2 and SiGe which have low thermoelectric properties but are rich in resources are known.

【0004】ペルチェ素子は熱電変換材料に電流に流す
ことにより熱(冷熱)を発生させているが、ペルチェ素
子の変換効率は材料の性能指数(ZT=S2/ρκ、こ
こでSはゼーベック係数、ρは電気抵抗率、κは熱伝導
率)に比例し、上記の熱電変換材料では性能指数は高い
ものでも1前後であり、十分とは言えないものであっ
た。
The Peltier element generates heat (cold heat) by passing an electric current through the thermoelectric conversion material. The conversion efficiency of the Peltier element is the material performance index (ZT = S 2 / ρκ, where S is the Seebeck coefficient). , Ρ is proportional to electrical resistivity, and κ is proportional to thermal conductivity. The above thermoelectric conversion material has a high figure of merit of around 1, which is not sufficient.

【0005】電気エネルギーから熱エネルギーに変換す
るペルチェ素子のエネルギー変換効率はもっとも高い効
率を有するBi2Te3でもせいぜい数%であり、太陽電
池のそれ(約20%)等に比べて非常に低く、例えば光
通信の半導体レーザー発振器では発振器に消費されるエ
ネルギーの80%は冷却に使用されており、この効率の
低さがペルチェ素子の用途を狭めている主な原因であ
る。
The energy conversion efficiency of the Peltier device for converting electric energy into heat energy is at most several percent even for Bi 2 Te 3 having the highest efficiency, which is much lower than that of solar cells (about 20%). For example, in a semiconductor laser oscillator for optical communication, 80% of the energy consumed by the oscillator is used for cooling, and this low efficiency is the main reason for narrowing the application of the Peltier device.

【0006】[0006]

【発明が解決しようとする課題】電流を流した熱電変換
材料に磁場を印加すると冷却効率が向上することはエッ
チングスハウゼン(Ettingshausen)効果
として知られている(L. L. Campbell,
”Galvanomagnetic andTher
momagnetic Effects”, (Lon
don:Longmans, Green), cha
p. 9(1923))。
It is known as an Etchingshausen effect that the cooling efficiency is improved by applying a magnetic field to the thermoelectric conversion material in which an electric current is passed (LL Campbell,
"Galvanomagnetic and ther
momographic Effects ”, (Lon
don: Longmans, Green), cha
p. 9 (1923)).

【0007】また、磁場をかけて電気を熱に変換し、も
しくは逆の変換を行なうエッチングスハウゼン素子が、
例えば特開昭63−257282号公報に示されてい
る。図7はエッチングスハウゼン素子11がN極とS極
を向かい合って設置した磁石12に挾まれており、これ
が絶縁台13上に設置されたものである。
In addition, an etching Shausen element that applies a magnetic field to convert electricity into heat or vice versa,
For example, it is disclosed in JP-A-63-257282. In FIG. 7, the etching-Shausen element 11 is sandwiched between magnets 12 having N and S poles facing each other, and this is installed on an insulating base 13.

【0008】エッチングスハウゼン効果とは、図7に示
すように、エッチングスハウゼン素子に電流Iをx軸方
向に流し、その方向と垂直なy軸方向に磁場Bがかかっ
ている場合、z軸方向に温度勾配▽Tが生じるものであ
る。
As shown in FIG. 7, the etching Schauzen effect means that when a current I is passed through an etching Schauzen element in the x-axis direction and a magnetic field B is applied in the y-axis direction perpendicular to the direction, the z-axis is applied. A temperature gradient ∇T is generated in the direction.

【0009】上記特開昭63−257282号公報に示
される構成をさらに改良したものが特開平4−2068
84号公報に示されている。図8に示すように、電気絶
縁性基板23上に、エッチングスハウゼン素子薄膜21
と磁化された磁性薄膜22とが交互に帯状に形成されそ
れらをAl薄膜24で直列接続し、磁性薄膜22により
発生した磁場方向(y軸方向)に垂直な方向(x軸方
向)でそれぞれが同じ向きに電流が流れるように配置接
続した熱電装置である。
What is further improved from the structure disclosed in Japanese Patent Laid-Open No. 63-257282 is Japanese Patent Laid-Open No. 4-2068.
No. 84 publication. As shown in FIG. 8, the etching Schausen element thin film 21 is formed on the electrically insulating substrate 23.
And magnetized magnetic thin films 22 are alternately formed in a strip shape, and they are connected in series by an Al thin film 24, and each is formed in a direction (x-axis direction) perpendicular to the magnetic field direction (y-axis direction) generated by the magnetic thin film 22. The thermoelectric devices are arranged and connected so that currents flow in the same direction.

【0010】上記特開平4−206884号公報に記載
の構成は、デバイスを小型にすることができる、平面状
に冷却を行なうことができる、大量生産が可能であるな
どの効果を得ることができるが、依然としてエネルギー
変換効率は低く、近年の高効率化を満足するまでには至
っていない。
The structure described in the above-mentioned Japanese Patent Laid-Open No. 4-206884 can obtain effects such that the device can be downsized, cooling can be performed in a plane, and mass production is possible. However, the energy conversion efficiency is still low, and it has not reached the high efficiency in recent years.

【0011】一方、O’ BrinenとWallac
eはペルチェ材料がexponential cyli
nderいう特殊な形状を有する時に、冷却効率が向上
することを明らかにし、冷却効率が熱電材料の形状に依
存することを示した(B.J. O’ Brien a
nd C. S. Wallace, J. App
l. Phys. 29(1958)1010)。さら
にErtlらは直方体の熱電変換材料のx軸方向に電流
を流し、y軸方向に磁場を印加し、さらに発生した温度
勾配の方向をz軸とした時に、電気から熱への変換効率
を高めるためには、熱電変換材料に最適なアスペクト比
(x軸長とz軸長の比)にする必要があることを指摘し
ている(M. E. Ertl, G. R. Pfi
sterand H. J. Goldsmid, B
r. J. Appl. Phys. 14(196
3)161)。
On the other hand, O'Brinen and Wallac
e is Peltier material exponential cyli
It was clarified that the cooling efficiency was improved when it had a special shape called nder, and it was shown that the cooling efficiency depends on the shape of the thermoelectric material (BJ O'Brien a.
nd C.I. S. Wallace, J.M. App
l. Phys. 29 (1958) 1010). Further, Ertl et al. Increase the conversion efficiency from electricity to heat when a current is passed in the x-axis direction of a rectangular parallelepiped thermoelectric conversion material, a magnetic field is applied in the y-axis direction, and the z-axis is the direction of the generated temperature gradient. In order to achieve this, it is pointed out that the optimum aspect ratio (ratio of x-axis length and z-axis length) for the thermoelectric conversion material is required (ME Ertl, GR Pfi).
star H. J. Goldsmid, B
r. J. Appl. Phys. 14 (196
3) 161).

【0012】しかしながら、これらの実験はいずれも低
温での結果であり、室温でエッチングスハウゼン効果を
利用した素子では、その冷却効率は極めて低いものであ
った。
However, these experiments are all results at low temperature, and the cooling efficiency of the device utilizing the etching-Shausen effect at room temperature was extremely low.

【0013】この発明は、ペルチェ効果とエッチングス
ハウゼン効果との相乗効果を使用して、熱電変換材料の
電気から熱への変換効率を向上させることができる冷却
素子の提供を目的とする。
An object of the present invention is to provide a cooling element capable of improving the efficiency of conversion of electricity of a thermoelectric conversion material into heat by utilizing the synergistic effect of the Peltier effect and the etching Shausen effect.

【0014】[0014]

【課題を解決するための手段】発明者は、熱電変換材料
の特性向上を図るだけでは冷却効率の向上に限界がある
ことに鑑み、熱電変換材料の最適な形状について鋭意研
究の結果、熱電変換材料において電流が流れる方向をx
軸、磁場の方向をy軸、温度勾配の方向をz軸とした
時、(z軸の長さ/x軸の長さ)が5以上であり、かつ
y軸の長さが1mm以下の形状とすることにより、冷却
効率が著しく向上することを知見した。
Means for Solving the Problems In view of the fact that the improvement of the cooling efficiency is limited only by improving the characteristics of the thermoelectric conversion material, the inventor has conducted earnest research on the optimum shape of the thermoelectric conversion material, and as a result, X is the direction of current flow in the material
A shape in which (axis length, length of z-axis / length of x-axis) is 5 or more and y-axis length is 1 mm or less, where y is the axis, the direction of the magnetic field and z is the direction of the temperature gradient. It was found that the cooling efficiency is remarkably improved by the above.

【0015】また、発明者は、上記形状の熱電変換材料
を複数で一組とし、それを永久磁石と交互に配置するこ
と、電流Iを流すための電極の位置並びに結線方法を最
適化することによって、さらに冷却効率が向上すること
を知見し、この発明を完成した。
Further, the inventor has made a plurality of thermoelectric conversion materials of the above-mentioned shape one set and arranged them alternately with the permanent magnets, and optimized the position of the electrode for passing the current I and the wiring method. It was found that the cooling efficiency is further improved by this, and the present invention has been completed.

【0016】すなわち、この発明は、下記(1)〜(1
2)のいずれかの構成により達成される。
That is, the present invention provides the following (1) to (1
This is achieved by either configuration of 2).

【0017】(1) 電流Iが流れる方向をx軸、磁場
Bの方向をy軸、温度勾配▽Tの方向をz軸とした時、
(z軸の長さ/x軸の長さ)が5以上であり、かつy軸
の長さが1mm以下である熱電変換材料を用いた冷却素
子であって、熱電変換材料のy軸方向に磁場Bを印加す
るための永久磁石を有するとともに、熱電変換材料のy
軸とz軸とで形成される一対の対向面のそれぞれに電極
を有し、該電極に電流Iを流すことによりz軸方向に温
度勾配▽Tを発生させる冷却素子。
(1) When the x-axis is the direction in which the current I flows, the y-axis is the direction of the magnetic field B, and the z-axis is the direction of the temperature gradient ▽ T,
A cooling element using a thermoelectric conversion material having a (length of z-axis / length of x-axis) of 5 or more and a length of y-axis of 1 mm or less, which is in the y-axis direction of the thermoelectric conversion material. It has a permanent magnet for applying a magnetic field B, and y of the thermoelectric conversion material.
A cooling element having electrodes on each of a pair of opposing surfaces formed by an axis and a z-axis, and causing a current I to flow through the electrodes to generate a temperature gradient ▽ T in the z-axis direction.

【0018】(2) 磁場Bの大きさが0.1T以上で
ある上記(1)に記載の冷却素子。
(2) The cooling element according to (1), wherein the magnitude of the magnetic field B is 0.1 T or more.

【0019】(3) 熱電変換材料と永久磁石とが熱電
変換材料のy軸方向に交互に複数配置される上記(1)
に記載の冷却素子。
(3) A plurality of thermoelectric conversion materials and permanent magnets are alternately arranged in the y-axis direction of the thermoelectric conversion material, (1).
The cooling element according to 1.

【0020】(4) 熱電変換材料が複数で一組をなす
上記(3)に記載の冷却素子。
(4) The cooling element according to (3) above, wherein a plurality of thermoelectric conversion materials form one set.

【0021】(5) 熱電変換材料と永久磁石とが熱電
変換材料のy軸方向に交互に複数配置された冷却素子を
一組とし、複数組からなる冷却素子のそれぞれの両端部
を磁性材料にて接続して閉磁路回路とした上記(3)に
記載の冷却素子。
(5) One set of cooling elements in which a plurality of thermoelectric conversion materials and permanent magnets are alternately arranged in the y-axis direction of the thermoelectric conversion material is set, and both ends of each of the plurality of sets of cooling elements are made of a magnetic material. The cooling element according to (3) above, which is connected to form a closed magnetic circuit circuit.

【0022】(6) 熱電変換材料がp型とn型とから
なり、各材料のy軸とz軸とで形成される一対の対向面
における一方面の高温側と他方の面の低温側のそれぞれ
に電極が配設され、該電極と隣り合う各材料の同温側の
電極とが結線され、各材料が直列に接続された上記
(1)に記載の冷却素子。
(6) The thermoelectric conversion material is of p-type and n-type, and one of a pair of opposing surfaces formed by the y-axis and the z-axis of each material has a high temperature side on one side and a low temperature side on the other side. The cooling element according to the above (1), in which an electrode is provided for each of the electrodes, the adjacent electrode of each material on the same temperature side is connected, and each material is connected in series.

【0023】(7) 熱電変換材料がp型またはn型か
らなり、各材料のy軸とz軸とで形成される一対の対向
面における一方面の高温側と他方の面の低温側のそれぞ
れに電極が配設され、該電極と隣り合う各材料の異温側
の電極とが結線され、各材料が直列に接続された上記
(1)に記載の冷却素子。
(7) The thermoelectric conversion material is p-type or n-type, and one of the pair of facing surfaces formed by the y-axis and the z-axis of each material has a high temperature side on one side and a low temperature side on the other side. The cooling element according to (1) above, in which the electrode is disposed, the electrode and the adjacent electrode on the different temperature side of each material are connected, and each material is connected in series.

【0024】(8) 熱電変換材料がp型またはn型か
らなり、各材料のy軸とz軸とで形成される一対の対向
面における一方面の高温側と他方の面の低温側のそれぞ
れに電極が配設され、該電極と隣り合う各材料の同温側
の電極とを結線し、各材料が並列に接続された上記
(1)に記載の冷却素子。
(8) The thermoelectric conversion material is p-type or n-type, and one of the pair of facing surfaces formed by the y-axis and the z-axis of each material has a high temperature side on one side and a low temperature side on the other side. The cooling element according to (1) above, in which the electrode is disposed, the electrode is connected to an electrode on the same temperature side of each material adjacent to each other, and each material is connected in parallel.

【0025】(9) 熱電変換材料および/または永久
磁石がその表面に絶縁性被膜を有する上記(1)に記載
の冷却素子。
(9) The cooling element according to the above (1), wherein the thermoelectric conversion material and / or the permanent magnet has an insulating coating on the surface thereof.

【0026】(10) 絶縁性被膜がポリイミド被膜ま
たはアルミナ被膜である上記(9)に記載の冷却素子。
(10) The cooling element according to (9) above, wherein the insulating coating is a polyimide coating or an alumina coating.

【0027】(11) 電流Iが流れる方向をx軸、磁
場Bの方向をy軸、温度勾配▽Tの方向をz軸とした
時、(z軸の長さ/x軸の長さ)が5以上であり、かつ
y軸の長さが1mm以下である熱電変換材料を用いた冷
却素子であって、熱電変換材料のy軸方向に磁場Bを印
加する手段と、熱電変換材料のy軸とz軸とで形成され
る一対の対向面間に電流Iを流す手段とを有し、z軸方
向に温度勾配▽Tを発生させる冷却素子。
(11) When the direction of the current I flows is the x-axis, the direction of the magnetic field B is the y-axis, and the direction of the temperature gradient ▽ T is the z-axis, (the length of the z-axis / the length of the x-axis) is A cooling element using a thermoelectric conversion material having a length of 5 or more and a y-axis length of 1 mm or less, a means for applying a magnetic field B in the y-axis direction of the thermoelectric conversion material, and a y-axis of the thermoelectric conversion material. And a means for passing a current I between a pair of opposing surfaces formed by the z axis, and a cooling element for generating a temperature gradient ∇T in the z axis direction.

【0028】(12) 電流Iが流れる方向をx軸、磁
場Bの方向をy軸、温度勾配▽Tの方向をz軸とした
時、(z軸の長さ/x軸の長さ)が5以上であり、かつ
y軸の長さが1mm以下である冷却素子用熱電変換材
料。
(12) When the x-axis is the direction in which the current I flows, the y-axis is the direction of the magnetic field B, and the z-axis is the direction of the temperature gradient ∇T, (z-axis length / x-axis length) is A thermoelectric conversion material for a cooling element having a length of 5 or more and a y-axis length of 1 mm or less.

【0029】[0029]

【発明の実施の形態】この発明による、電気から熱へ変
換する冷却素子の原理と構成について以下に説明する。
図1に示す高さa、幅b、厚さd/nの直方体の熱電変
換材料1に、図面手前面下から奥面上の方向(x軸方
向)に電流Iを印加すると同時に、y軸方向に磁場Bを
印加したと過程すると、z軸方向に温度差△T(T1
2)が発生する。
BEST MODE FOR CARRYING OUT THE INVENTION The principle and structure of a cooling element for converting electricity into heat according to the present invention will be described below.
A current I is applied in the direction from the lower front side to the upper side (x-axis direction) in the drawing (the x-axis direction) to the rectangular parallelepiped thermoelectric conversion material 1 having the height a, width b, and thickness d / n shown in FIG. If a magnetic field B is applied in the direction, the temperature difference ΔT (T 1
T 2 ) occurs.

【0030】ペルチェ効果の△Tとエッチングスハウゼ
ン効果の△Tは、個別に理論的には先述したB. J.
O’ Brien and C. S. Walla
ceによって与えられているが、まとめて解析した結果
は今までにはなかった。ペルチェ効果とエッチングスハ
ウゼン効果とによる△Tをまとめて一つの式に表したの
が下記式(1)及び式(2)である。
The ΔT of the Peltier effect and the ΔT of the etching Shausen effect are individually theoretically described in B. J.
O'Brien and C.I. S. Walla
Although it is given by ce, there has been no result of analyzing collectively. The following expressions (1) and (2) collectively represent ΔT due to the Peltier effect and the etching Shausen effect in one expression.

【0031】[0031]

【数1】 [Equation 1]

【0032】I−Ix+Iz …… 式(2)I-Ix + Iz (2)

【0033】ここで、第一項はエッチングスハウゼン効
果による温度差であり、第二項はペルチェ効果による温
度差を表す。またPeはエッチングスハウゼン係数、P
はペルチェ係数、κは熱伝導率、ρは電気抵抗率、Ix
とIzはそれぞれx軸とz軸方向の電流の大きさを表
す。さらに簡略化のために式(3)とおくと、電流Iの
各成分IxとIzは近似的に式(4)式のように表すこ
とができる。
Here, the first term is the temperature difference due to the etching-Shausen effect, and the second term is the temperature difference due to the Peltier effect. Pe is the etching Shausen coefficient, P
Is Peltier coefficient, κ is thermal conductivity, ρ is electrical resistivity, Ix
And Iz represent the magnitude of the current in the x-axis and z-axis directions, respectively. If equation (3) is used for simplification, the components Ix and Iz of the current I can be approximately represented by equation (4).

【0034】b/a=X …… 式(3)B / a = X (3)

【0035】 Ix=I・x/(1+x) , Iz=I/(1+x) …… 式(4)[0035] Ix = I · x / (1 + x), Iz = I / (1 + x) (4)

【0036】式(3)と式(4)を式(1)に代入する
と、式(1)は式(5)のようになる。
Substituting equations (3) and (4) into equation (1), equation (1) becomes equation (5).

【0037】[0037]

【数2】 [Equation 2]

【0038】次に、式(5)の温度差を最大にするXと
nを式(6)にて求める。そして、式(6)から式
(7)が得られ、また式(8)から式(9)が得られ
る。
Next, X and n that maximize the temperature difference of the equation (5) are calculated by the equation (6). Then, the formula (7) is obtained from the formula (6), and the formula (9) is obtained from the formula (8).

【0039】[0039]

【数3】 [Equation 3]

【0040】[0040]

【数4】 [Equation 4]

【0041】[0041]

【数5】 [Equation 5]

【0042】[0042]

【数6】 [Equation 6]

【0043】式(9)を式(7)に代入すると、式
(7)は厳密に求められて式(10)となる。
By substituting the equation (9) into the equation (7), the equation (7) is strictly obtained and becomes the equation (10).

【0044】[0044]

【数7】 [Equation 7]

【0045】これは温度差△Tを最大にするためには、
磁場Bの大きさによって熱電変換材料のアスペクト比
(=b/a)を変えなければならないことを表してい
る。
In order to maximize the temperature difference ΔT,
It indicates that the aspect ratio (= b / a) of the thermoelectric conversion material must be changed depending on the magnitude of the magnetic field B.

【0046】次に、式(10)を式(9)に代入すると
式(11)となり、式(10)と式(11)を式(5)
に代入すると、式(5)は式(12)となる。
Next, substituting equation (10) into equation (9) yields equation (11), and equations (10) and (11) are transformed into equation (5).
Substituting into, equation (5) becomes equation (12).

【0047】 n=dPX(1+X)/ρI …… 式(11)[0047] n = dPX (1 + X) / ρI Equation (11)

【0048】[0048]

【数8】 [Equation 8]

【0049】ここで、磁場Bと電流Iは熱電変換材料の
物性値とアスペクト比(=X)を使って、式(10)と
式(11)から求めた値であるとすると、磁場がB=
0、すなわち、X=0の時は温度差はペルチェ効果のみ
で、△T=P2/2ρκとなり、またX≫1の時には△
Tがエッチングスハウゼン効果によって飛躍的に向上す
るので、ペルチェ効果を無視すると△T=κ(PeB)
2/2ρとなる。この結果は従来からペルチェ効果とエ
ッチングスハウゼン効果によって発生する温度差を個別
に求めた結果と一致している。
Here, assuming that the magnetic field B and the current I are values obtained from the equations (10) and (11) using the physical property value of the thermoelectric conversion material and the aspect ratio (= X), the magnetic field is B =
0, that is, when X = 0, the temperature difference is only Peltier effect and ΔT = P 2 / 2ρκ, and when X >> 1, Δ
Since T is dramatically improved by the etching-Shausen effect, if the Peltier effect is ignored, ΔT = κ (PeB)
It becomes 2 / 2ρ. This result is consistent with the result of individually obtaining the temperature difference caused by the Peltier effect and the etching Shausen effect.

【0050】次にnについて調べる。式(12)の△T
は熱電変換材料の厚みdをn等分した時の最適な厚みt
(d/n)に対する温度差であり、つまり、各熱電変換
材料の厚みtは式(11)から式(13)となる。
Next, n will be examined. ΔT in equation (12)
Is the optimum thickness t when the thickness d of the thermoelectric conversion material is divided into n equal parts.
It is a temperature difference with respect to (d / n), that is, the thickness t of each thermoelectric conversion material is expressed by Expression (11) to Expression (13).

【0051】 t=d/n=ρI/PX(1+X) …… 式(13)[0051] t = d / n = ρI / PX (1 + X) (13)

【0052】ここで、ρとPは熱電変換材料の物性値で
あり、またXは該材料の幾何学的な値であるために、該
材料の厚みtは電流値と密接な関係があることが分か
る。できる限り電流値を下げて、できる限り熱電変換材
料の温度差を大きくするためには、個々の熱電変換材料
の厚みを薄くすればよいことがわかる。
Here, since ρ and P are physical property values of the thermoelectric conversion material and X is a geometrical value of the material, the thickness t of the material is closely related to the current value. I understand. It can be seen that in order to reduce the current value as much as possible and increase the temperature difference of the thermoelectric conversion materials as much as possible, the thickness of each thermoelectric conversion material should be thin.

【0053】つまり、厚みdの熱電変換材料の代わりに
厚みtのものを使えば、電流はI/nで同じ効果が得ら
れることになる。今までペルチェ効果とエッチングスハ
ウゼン効果を利用した素子の冷却効率を高めるために、
熱電変換材料のアスペクト比の重要性は指摘されていた
が、その厚みについては全く言及されていなかった。
That is, if a thermoelectric conversion material having a thickness of d is used instead of a thermoelectric conversion material having a thickness of d, the same effect can be obtained at a current of I / n. Until now, in order to increase the cooling efficiency of the element using the Peltier effect and the etching Shausen effect,
The importance of the aspect ratio of the thermoelectric conversion material was pointed out, but its thickness was not mentioned at all.

【0054】以上の解析式を、例えば多結晶Biからな
る熱電変換材料に適用するために、該熱電変換材料の室
温の物性値として、ρ=1.2×10-6(Ωm)、Pe
=2.3×10-3(m3K/Ws)、κ=7.9(W/
mK)、P=3×10-2(V)を採用し、また磁場と電
流としてB=1.2(Vs/m2)、I=3(A)を流
したとすると、式(10)のXはX=0.85となり、
また式(13)のtはt=0.076(mm)となる。
これらの値を式(12)に代入すると、△T=72.6
(K)が得られる。
In order to apply the above analytical formula to, for example, a thermoelectric conversion material made of polycrystalline Bi, ρ = 1.2 × 10 −6 (Ωm), Pe as a physical property value of the thermoelectric conversion material at room temperature.
= 2.3 × 10 −3 (m 3 K / Ws), κ = 7.9 (W /
mK), P = 3 × 10 −2 (V), and B = 1.2 (Vs / m 2 ) and I = 3 (A) as the magnetic field and current, the equation (10) is obtained. X becomes X = 0.85,
Further, t in the equation (13) is t = 0.076 (mm).
Substituting these values into equation (12), ΔT = 72.6
(K) is obtained.

【0055】これはあくまでも厚みt=0.076(m
m)の多結晶Bi材料を使った場合に得られる両端部の
温度差であり、また大気による放熱・吸熱が全くない理
想の状態である。しかし実際には、Biの薄板が作製で
きない(強度の点で)こと、及び熱電変換材料と周囲の
環境との熱の出入りによる影響があって、このような温
度差を達成することは難しい。
This is the thickness t = 0.076 (m
This is a temperature difference between both ends obtained when the polycrystalline Bi material of m) is used, and is an ideal state in which there is no heat dissipation or heat absorption by the atmosphere. However, in reality, it is difficult to form such a thin plate of Bi (in terms of strength), and it is difficult to achieve such a temperature difference due to the influence of the heat input and output between the thermoelectric conversion material and the surrounding environment.

【0056】以上の解析結果から、厚みtの熱電変換材
料をn枚重ねてトータル厚みをdにすれば、I/nの電
流値で熱電変換材料の温度差△Tは熱電材料の厚みdで
電流Iを流した時と同じになる。従って、熱電変換材料
を出来る限り薄くして電気的に絶縁した状態で複数層配
置し、各熱電変換材料の高温側と低温側に設けた電極を
リード線で結線することにより、電気エネルギーから熱
エネルギーへの変換効率を向上させることができる。
From the above analysis results, if n thermoelectric conversion materials having a thickness t are stacked and the total thickness is d, the temperature difference ΔT of the thermoelectric conversion material at the current value of I / n is the thickness d of the thermoelectric material. It is the same as when the current I is passed. Therefore, the thermoelectric conversion material should be made as thin as possible and placed in multiple layers in an electrically insulated state, and the electrodes provided on the high temperature side and low temperature side of each thermoelectric conversion material should be connected by lead wires to generate heat from the electrical energy. The conversion efficiency to energy can be improved.

【0057】この発明の特徴は、上記解析結果を元に、
さらに実際の熱電変換材料に適用させるために形状寸法
を最適化した熱電変換材料を用いて冷却素子を構成した
ことにある。すなわち、電流Iが流れる方向をx軸、磁
場Bの方向をy軸、温度勾配▽Tの方向をz軸とした
時、(z軸の長さ/x軸の長さ)が5以上であり、かつ
y軸の長さが1mm以下である熱電変換材料を用いて、
該熱電変換材料のy軸方向に磁場Bを印加する手段と、
熱電変換材料のy軸とz軸とで形成される一対の対向面
間に電流Iを流す手段とを有し、z軸方向に温度勾配▽
Tを発生させる冷却素子である。
The characteristics of the present invention are based on the above analysis results.
Further, the cooling element is configured by using a thermoelectric conversion material whose shape and dimension are optimized for application to an actual thermoelectric conversion material. That is, when the direction of the current I flows is the x-axis, the direction of the magnetic field B is the y-axis, and the direction of the temperature gradient ▽ T is the z-axis, (the length of the z-axis / the length of the x-axis) is 5 or more. And using a thermoelectric conversion material having a y-axis length of 1 mm or less,
Means for applying a magnetic field B in the y-axis direction of the thermoelectric conversion material;
The thermoelectric conversion material has a means for causing a current I to flow between a pair of opposing surfaces formed by the y axis and the z axis, and has a temperature gradient ▽ in the z axis direction.
It is a cooling element that generates T.

【0058】より具体的構成としては、上記熱電変換材
料のy軸方向に磁場Bを印加するための永久磁石を配置
するとともに、熱電変換材料のy軸とz軸とで形成され
る一対の対向面のそれぞれに電極を有し、該電極に電流
Iを流すことによりz軸方向に温度勾配▽Tを発生させ
る冷却素子である。
As a more specific structure, a permanent magnet for applying a magnetic field B is arranged in the y-axis direction of the thermoelectric conversion material, and a pair of opposed electrodes formed by the y-axis and the z-axis of the thermoelectric conversion material are arranged. It is a cooling element which has electrodes on each of the surfaces and generates a temperature gradient ∇T in the z-axis direction by passing a current I through the electrodes.

【0059】熱電変換材料の(z軸の長さ/x軸の長
さ)が5未満の場合、あるいはy軸の長さが1mmを超
えるある場合は、所定の磁場と電流を熱電変換材料に印
可した際に得られるペルチェ効果とエッチングスハウゼ
ン効果の相乗効果が低下し、冷却効率が著しく低下す
る。従って、熱電変換材料の(z軸の長さ/x軸の長
さ)が5以上であり、かつy軸の長さが1mm以下とす
る。
When the (z-axis length / x-axis length) of the thermoelectric conversion material is less than 5, or when the y-axis length exceeds 1 mm, a predetermined magnetic field and current are applied to the thermoelectric conversion material. The synergistic effect of the Peltier effect and the etching Shausen effect obtained when applied is reduced, and the cooling efficiency is significantly reduced. Therefore, the length (z-axis length / x-axis length) of the thermoelectric conversion material is 5 or more, and the y-axis length is 1 mm or less.

【0060】磁場Bを印加する手段としては、永久磁石
を用いるほか、電磁コイル、超伝導磁石など公知の磁場
発生装置を用いることも可能であるが、装置の小型化、
軽量化、メインテナンスなどの点から永久磁石を用いる
ことが特に好ましい。
As means for applying the magnetic field B, it is possible to use a known magnetic field generator such as an electromagnetic coil or a superconducting magnet in addition to using a permanent magnet, but to downsize the device,
It is particularly preferable to use a permanent magnet in terms of weight saving and maintenance.

【0061】例えば、永久磁石としてSm−Co系ある
いはNd−Fe−B系の希土類永久磁石を用いると、冷
却素子として実用化する上で非常に好都合である。55
0K以上の高温で冷却を行う場合にはキュリー点の高い
Sm−Co系永久磁石(Tc=1170K)が好まし
く、550K未満ではNd−Fe−B系永久磁石が好ま
しい。
For example, when a Sm-Co type or Nd-Fe-B type rare earth permanent magnet is used as the permanent magnet, it is very convenient for practical use as a cooling element. 55
When cooling is performed at a high temperature of 0 K or higher, a Sm-Co-based permanent magnet (Tc = 1170 K) having a high Curie point is preferable, and when it is less than 550 K, an Nd-Fe-B-based permanent magnet is preferable.

【0062】磁場Bの大きさは0.1T以上が好まし
く、前記の相乗効果が有効に機能する。さらに好ましい
磁場は0.3T以上である。すなわち、磁場Bを小さく
すると、発生する温度差はほとんどペルチェ効果だけに
なるために大きな温度差は得られない。また電流値を下
げるとペルチェ効果もエッチングスハウゼン効果も小さ
くなるために大きな温度差は得られない。従って、所定
の磁場と電流を熱電材料に印可することによってペルチ
ェ効果とエッチングスハウゼン効果の相乗効果で熱電変
換材料の温度差が飛躍的に大きくなり、冷却効率は著し
く向上する。
The magnitude of the magnetic field B is preferably 0.1 T or more, and the synergistic effect described above effectively functions. A more preferable magnetic field is 0.3 T or more. That is, when the magnetic field B is reduced, a large temperature difference cannot be obtained because the generated temperature difference is almost the Peltier effect. Further, when the current value is lowered, the Peltier effect and the etching Shausen effect are reduced, and a large temperature difference cannot be obtained. Therefore, by applying a predetermined magnetic field and current to the thermoelectric material, the temperature difference between the thermoelectric conversion materials is dramatically increased by the synergistic effect of the Peltier effect and the etching Schauzen effect, and the cooling efficiency is significantly improved.

【0063】この発明において、熱電変換材料としては
IrSb3、Bi2Te3、PbTe等のカルコゲン系化
合物や、FeSi2、SiGe等のケイ化物など、公知
の材料を用いることができるが、キャリアー移動度の大
きいBi基材料が特に好ましい。Bi基材料を用いるこ
とにより、ペルチェ効果とエッチングスハウゼン効果と
の相乗効果がより発揮され、変換効率を高めることがで
きる。
In the present invention, as the thermoelectric conversion material, known materials such as chalcogen compounds such as IrSb 3 , Bi 2 Te 3 and PbTe and silicides such as FeSi 2 and SiGe can be used. A Bi-based material having a high degree is particularly preferable. By using the Bi-based material, the synergistic effect of the Peltier effect and the etching Schauzen effect can be more exerted, and the conversion efficiency can be increased.

【0064】熱電変換材料としてBi基の単結晶材料を
用いる場合には、C軸方向に電流を流してbisect
rix軸方向に磁場を印加しbinary軸方向に温度
差が発生するような配置とすることが好ましい。このよ
うな構成でbisectrix軸方向の厚みを薄くすれ
ば低電流で冷却効率の高いモジュールとなり得る。
When a Bi-based single crystal material is used as the thermoelectric conversion material, an electric current is passed in the C-axis direction to generate a bisect.
It is preferable that the magnetic field is applied in the direction of the rix axis and the temperature difference is generated in the direction of the binary axis. If the thickness in the biaxial axis direction is reduced with such a configuration, a module with low current and high cooling efficiency can be obtained.

【0065】また、Bi基材料を使用した場合は、材料
の電気抵抗率が10-6(Ωm)オーダーと低いために、
熱電変換材料のy軸方向の厚みを薄くしても低電圧で大
きな電流が得られる利点があり、また、当該材料は半金
属のために同数の電子と正孔をもち、しかもキャリアー
移動度が大きいために低磁場でも比較的大きなエッチン
グスハウゼン効果が得られるので、低磁場・低電流で冷
却効率の高いモジュールになり得る。
When the Bi-based material is used, the electric resistivity of the material is as low as 10 −6 (Ωm) order.
Even if the thickness of the thermoelectric conversion material in the y-axis direction is made thin, there is an advantage that a large current can be obtained at a low voltage, and since the material has a semimetal, it has the same number of electrons and holes and has a carrier mobility. Since it is large, a relatively large etching Shausen effect can be obtained even in a low magnetic field, so that a module with a low magnetic field, low current and high cooling efficiency can be obtained.

【0066】この発明において、熱電変換材料は、熱電
変換材料のy軸方向に沿って永久磁石と交互に配置する
ことが好ましい。特に、図2に示すように、複数で一組
となした熱電変換材料1と永久磁石2とを交互に配置す
ることによって、電気エネルギーから熱エネルギーへの
変換効率をより向上させることができる。
In the present invention, the thermoelectric conversion material is preferably arranged alternately with the permanent magnets along the y-axis direction of the thermoelectric conversion material. In particular, as shown in FIG. 2, by alternately arranging a plurality of thermoelectric conversion materials 1 and permanent magnets 2 as a set, the conversion efficiency from electric energy to heat energy can be further improved.

【0067】熱電変換材料に電流Iを流すための電極
は、熱電変換材料のy軸とz軸とで形成される一対の対
向面における、一方面の高温側と他方の面の低温側のそ
れぞれに配設されることが好ましい。この配置を採用す
ることによって、変換効率をさらに向上させることがで
きる。
The electrodes for passing a current I through the thermoelectric conversion material are respectively a high temperature side of one surface and a low temperature side of the other surface in a pair of opposing surfaces formed by the y axis and the z axis of the thermoelectric conversion material. It is preferable to be arranged at. By adopting this arrangement, the conversion efficiency can be further improved.

【0068】電極に用いる材料及び電極と電極とを結線
するためのリード線としては、基本的にいずれの材質、
形態のものであっても使用できるが、融点の低い熱電変
換材料(600K未満)の場合には、電極材料として低
融点の材料(例えばIn半田)を用いることが好まし
い。融点の高い熱電変換材料の場合には電極材料を特に
限定する必要はない。
The material used for the electrodes and the lead wire for connecting the electrodes are basically made of any material,
Although it can be used even if it has a form, in the case of a thermoelectric conversion material having a low melting point (less than 600 K), it is preferable to use a low melting point material (for example, In solder) as an electrode material. In the case of a thermoelectric conversion material having a high melting point, it is not necessary to limit the electrode material.

【0069】図2に示す熱電変換材料は、長辺(z方
向)と短辺(x方向)の比が5以上の短冊薄板状(y方
向厚みt、1mm以下)からなる各熱電変換材料を、p
型とn型とを交互にその主面同士を当接させてn枚積層
して一組の直方体(積層厚みd=n・t)の熱電変換材
料となしてある。この一組の熱電変換材料を永久磁石2
と交互に複数配置する。各永久磁石2は該薄板状の熱電
変換材料1の積層(y)方向に磁化されて同(y)方向
に磁場Bを発生している。
The thermoelectric conversion material shown in FIG. 2 is a strip thin plate (y-direction thickness t, 1 mm or less) having a ratio of the long side (z direction) to the short side (x direction) of 5 or more. , P
Molds and n-types are alternately brought into contact with each other at their principal surfaces and n sheets are laminated to form a set of rectangular parallelepiped (lamination thickness d = n · t) thermoelectric conversion material. This set of thermoelectric conversion materials is used as a permanent magnet 2
And a plurality of them are arranged alternately. Each of the permanent magnets 2 is magnetized in the lamination (y) direction of the thin plate-shaped thermoelectric conversion material 1 to generate a magnetic field B in the same (y) direction.

【0070】各熱電変換材料1にはy軸とz軸とで形成
される一対の対向面における一方面の高温側と他方の面
の低温側のそれぞれに予め電極3,4を形成してある。
各永久磁石2の磁場Bの方向と直行方向となる前記短冊
薄板状の各材料1の短辺幅(x)方向に電流が流れるよ
うに各電極を結線して素子を完成し、該電極に電流Iを
印加することにより、前記短冊薄板状の各材料の長手
(z)方向に温度勾配▽Tを発生させることができる。
各熱電変換材料の結線方法について以下に説明する。
In each thermoelectric conversion material 1, electrodes 3 and 4 are formed in advance on the high temperature side of one surface and the low temperature side of the other surface of a pair of opposing surfaces formed by the y axis and the z axis. .
An element is completed by connecting each electrode so that a current flows in the direction of the short side width (x) of each strip-shaped material 1 which is orthogonal to the direction of the magnetic field B of each permanent magnet 2 and completes the element. By applying the current I, a temperature gradient ∇T can be generated in the longitudinal (z) direction of each of the strip thin plate-shaped materials.
The method of connecting each thermoelectric conversion material will be described below.

【0071】図2左側に位置する4個の熱電変換材料を
例にとると、4個の熱電変換材料の内一番左側のp型材
料における奥面下側(高温側)の電極3と左から二番目
のn型材料における奥面下側(高温側)の電極3とを接
続し、左から二番目のn型材料の手前面上側(低温側)
の電極4と左から三番目のp型材料の手前面上側(低温
側)の電極4とを接続するといったように、隣り合う各
材料の同温側の電極とを結線して、各材料を直列に接続
する。
Taking the four thermoelectric conversion materials located on the left side of FIG. 2 as an example, the leftmost electrode 3 and the left side of the p-type material on the leftmost side of the four thermoelectric conversion materials and the electrode 3 on the left side To the electrode 3 on the lower side (high temperature side) of the second n-type material from the bottom, and on the front side (low temperature side) of the second n-type material from the left
Connect the electrode 4 of No. 3 and the electrode 4 on the upper front side (low temperature side) of the third p-type material from the left, and connect the electrodes on the same temperature side of adjacent materials to each other. Connect in series.

【0072】一方、熱電変換材料1がp型のみあるいは
n型のみからなる場合は、図3に示すように、4個の熱
電変換材料1の内一番左側の材料における奥面下側(高
温側)の電極3と左から二番目の材料における手前面上
側(低温側)の電極4とを接続し、左から二番目のn型
材料の奥面下側(高温側)の電極3と左から三番目の材
料の手前面上側(低温側)電極4とを接続するといった
ように、隣り合う各材料の異温側の電極とを結線して、
各材料を直列に接続する。但し、この結線方法ではリー
ド線5を長くとらなければならないという問題がある。
On the other hand, when the thermoelectric conversion material 1 is of p-type only or n-type only, as shown in FIG. Side) electrode 3 and the electrode 4 on the front side (low temperature side) of the second material from the left, and the electrode 3 on the lower side (high temperature side) of the second n-type material from the left and the left side. By connecting to the electrode 4 on the front side (low temperature side) of the third material from, the electrodes on the different temperature sides of adjacent materials are connected,
Connect each material in series. However, this connection method has a problem that the lead wire 5 must be long.

【0073】そこで、図4に示すように、4個の熱電変
換材料の手前面上側(低温側)の電極4を全てを結線す
るとともに、奥面下側(高温側)の電極3を全て結線す
るごとく、並列に接続することも可能である。この結線
方法では、上記の構成よりも入力電圧を高くしなければ
ならないものの、リード線5が永久磁石や熱電変換材料
を横切らずに結線することができるので、構造がシンプ
ルで、より実用的である。
Therefore, as shown in FIG. 4, all the four electrodes 4 on the front side (low temperature side) of the front surface of the thermoelectric conversion material are connected, and all the electrodes 3 on the lower side (high temperature side) of the back surface are connected. As is the case, it is possible to connect them in parallel. In this connection method, although the input voltage must be higher than that in the above configuration, the lead wire 5 can be connected without traversing the permanent magnet or the thermoelectric conversion material, so that the structure is simple and more practical. is there.

【0074】熱電変換材料と永久磁石とを交互に配置し
た場合、あるいは複数で一組をなす熱電変換材料と永久
磁石とを交互に配置した場合、熱電変換材料と永久磁石
(特に希土類磁石)は共に金属的な電気伝導性を示すの
で、熱電変換材料同士及び熱電変換材料と永久磁石とを
電気的に絶縁することが好ましい。
When the thermoelectric conversion material and the permanent magnet are alternately arranged, or when a plurality of sets of the thermoelectric conversion material and the permanent magnet are alternately arranged, the thermoelectric conversion material and the permanent magnet (especially rare earth magnet) are Since both exhibit metallic electric conductivity, it is preferable to electrically insulate the thermoelectric conversion materials from each other and the thermoelectric conversion material from the permanent magnet.

【0075】絶縁被膜としては、電気絶縁性の高いポリ
イミド被膜やアルミナ被膜を被覆することが好ましい。
被膜厚みは数μm以下で十分である。被膜厚みを薄くす
ることにより、複数で一組となした熱電変換材料を永久
磁石問に挿入しても磁石問のギャップを熱電変換材料の
みのトータル厚みdに近づけることができ、磁束低下を
極力抑えることができる。
The insulating coating is preferably a polyimide coating or an alumina coating having high electric insulation.
A coating thickness of several μm or less is sufficient. By reducing the thickness of the coating, the gap between the magnets can be made close to the total thickness d of the thermoelectric conversion material even if a plurality of thermoelectric conversion materials are inserted into the permanent magnet, and the magnetic flux is reduced as much as possible. Can be suppressed.

【0076】ポリイミド被膜とアルミナ被膜の選択は使
用温度によって適宜選定する。使用温度が700K以下
であればいずれの被膜でもよく、700Kを超える場合
にはアルミナ被膜が適している。なお、熱電変換材料へ
の被覆時には電極となる部分に予めマスキング処理して
絶縁被膜が着かないようにしておくとよい。
The polyimide coating and the alumina coating are appropriately selected depending on the operating temperature. Any coating may be used as long as the operating temperature is 700K or lower, and an alumina coating is suitable when the operating temperature exceeds 700K. It should be noted that when coating the thermoelectric conversion material, it is advisable to perform a masking process in advance on the portion to be the electrode so that the insulating coating does not adhere.

【0077】上述した種々構成の冷却素子を用いた閉磁
路回路の構成を図5に示す。熱電変換材料1と永久磁石
2とが熱電変換材料1のy軸方向に交互に複数配置され
た冷却素子を一組とし、同様構成のものをもう一組準備
して、それらを並列配置して各組の両端部の永久磁石2
同士を鉄などの磁性材板6で接続することにより、閉磁
路回路にすることができる。
FIG. 5 shows the configuration of a closed magnetic circuit that uses the cooling elements having the various configurations described above. One set of cooling elements in which a plurality of thermoelectric conversion materials 1 and permanent magnets 2 are alternately arranged in the y-axis direction of the thermoelectric conversion material 1 is prepared, and another set of the same configuration is prepared, and they are arranged in parallel. Permanent magnets 2 at both ends of each set
A closed magnetic circuit circuit can be formed by connecting the magnetic material plates 6 such as iron to each other.

【0078】図6は上記の閉磁路回路による冷却素子の
一例であるが、図に示すごとく、熱電変換材料1が温度
勾配の方向では永久磁石2より長く、冷却板7や放熱板
8に直接接するようにして永久磁石2を通して熱伝導が
ないように設計することが望ましい。
FIG. 6 shows an example of a cooling element having a closed magnetic circuit as described above. As shown in the figure, the thermoelectric conversion material 1 is longer than the permanent magnet 2 in the direction of the temperature gradient and is directly attached to the cooling plate 7 or the heat radiating plate 8. It is desirable to design such that there is no heat conduction through the permanent magnet 2 so that they are in contact with each other.

【0079】これらの構成を採用することにより、各熱
電変換材料に電流を流すことによって熱電変換材料の上
端と下端に温度差を自動的に与えることができる。
By adopting these configurations, it is possible to automatically give a temperature difference between the upper end and the lower end of the thermoelectric conversion material by passing an electric current through each thermoelectric conversion material.

【0080】[0080]

【実施例】ペルチェ効果とエッチングスハウゼン効果と
の相乗効果を確認するために、熱電変換材料としてp型
及びn型のBi基熱電変換材料を作製した。まず、高純
度Bi(4N)に表1に示すような元素を所定の割合で
配合した後、石英管の中に真空封入して高周波溶解し
た。得られた円柱状のインゴットを10×10×1mm
の形状に加工し、極性とキャリアー濃度を確認するため
にホール係数を測定した。その結果を表1に示す。
Example In order to confirm the synergistic effect of the Peltier effect and the etching Shausen effect, p-type and n-type Bi-based thermoelectric conversion materials were produced as thermoelectric conversion materials. First, high purity Bi (4N) was mixed with the elements shown in Table 1 in a predetermined ratio, and then vacuum filled in a quartz tube to perform high frequency melting. The obtained cylindrical ingot is 10 × 10 × 1 mm
The hole coefficient was measured to confirm the polarity and carrier concentration. The results are shown in Table 1.

【0081】さらに、インゴットを表2に示す加工寸法
形状に切断加工し、熱電変換材料に印可する磁場と電流
を変えて、印可10秒後に高温部と低温部の温度差を測
定した。磁場と電流値並びに温度差を表2に示す。な
お、加工寸法は図1に示す定義による。また表2におい
て、番号6,7,8,10,12が本実施例であり、他
は比較例である。
Further, the ingot was cut into the processing dimensions and shapes shown in Table 2, the magnetic field and the current applied to the thermoelectric conversion material were changed, and the temperature difference between the high temperature portion and the low temperature portion was measured 10 seconds after the application. Table 2 shows the magnetic field, current value, and temperature difference. The processing dimensions are based on the definition shown in FIG. In Table 2, the numbers 6, 7, 8, 10, and 12 are the present examples, and the others are comparative examples.

【0082】[0082]

【表1】 [Table 1]

【0083】[0083]

【表2】 [Table 2]

【0084】[0084]

【発明の効果】この発明によれば、ペルチェ効果とエッ
チングスハウゼン効果との相乗効果を利用することがで
き、冷却効率を飛躍的に向上させた冷却素子を提供する
ことができる。
According to the present invention, it is possible to utilize the synergistic effect of the Peltier effect and the etching Shausen effect, and it is possible to provide a cooling element with dramatically improved cooling efficiency.

【0085】また、この発明において、磁場Bを印加す
る手段として永久磁石を用いると、比較的簡単な構造で
容易に冷却素子を作製することができ、冷却素子の小型
化、軽量化が図れるとともに使用時もメインテナンスフ
リーで使用できる利点がある。さらに、熱電変換材料と
してBi基材料を用いると、低磁場、低電流でも冷却効
率の高い冷却素子を提供することができる。
In the present invention, if a permanent magnet is used as the means for applying the magnetic field B, the cooling element can be easily manufactured with a relatively simple structure, and the cooling element can be made smaller and lighter. It has the advantage of being maintenance-free even when used. Furthermore, when a Bi-based material is used as the thermoelectric conversion material, it is possible to provide a cooling element having high cooling efficiency even in a low magnetic field and low current.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による熱電変換材料の原理を説明する
ための斜視説明図である。
FIG. 1 is a perspective explanatory view for explaining the principle of a thermoelectric conversion material according to the present invention.

【図2】この発明による熱電変換素子の一構成例を示す
斜視説明図である。
FIG. 2 is a perspective explanatory view showing a configuration example of a thermoelectric conversion element according to the present invention.

【図3】この発明による熱電変換素子の他の構成例を示
す斜視説明図である。
FIG. 3 is a perspective explanatory view showing another configuration example of the thermoelectric conversion element according to the present invention.

【図4】この発明による熱電変換素子の他の構成例を示
す斜視説明図である。
FIG. 4 is a perspective explanatory view showing another configuration example of the thermoelectric conversion element according to the present invention.

【図5】この発明による熱電変換素子の他の構成例を示
す平面説明図である。
FIG. 5 is an explanatory plan view showing another configuration example of the thermoelectric conversion element according to the present invention.

【図6】この発明による熱電変換素子の他の構成例を示
す平面説明図である。
FIG. 6 is an explanatory plan view showing another configuration example of the thermoelectric conversion element according to the present invention.

【図7】従来例を示す斜視説明図である。FIG. 7 is a perspective explanatory view showing a conventional example.

【図8】従来例を示す斜視説明図である。FIG. 8 is a perspective explanatory view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 熱電変換材料 2 永久磁石 3、4 電極 5 リード線 6 磁性材板 7 冷却板 8 放熱板 11 エッチングスハウゼン素子 12 磁石 13 絶縁台 21 エッチングスハウゼン素子薄膜 22 磁性薄膜 23 電気絶縁性基板 24 Al薄膜 1 Thermoelectric conversion material 2 permanent magnet 3, 4 electrodes 5 lead wires 6 Magnetic material plate 7 Cooling plate 8 heat sink 11 Etching Shausen element 12 magnets 13 Insulation stand 21 Etching Shausen element thin film 22 Magnetic thin film 23 Electrically insulating substrate 24 Al thin film

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 電流Iが流れる方向をx軸、磁場Bの方
向をy軸、温度勾配▽Tの方向をz軸とした時、(z軸
の長さ/x軸の長さ)が5以上であり、かつy軸の長さ
が1mm以下である熱電変換材料を用いた冷却素子であ
って、熱電変換材料のy軸方向に磁場Bを印加するため
の永久磁石を有するとともに、熱電変換材料のy軸とz
軸とで形成される一対の対向面のそれぞれに電極を有
し、該電極に電流Iを流すことによりz軸方向に温度勾
配▽Tを発生させる冷却素子。
1. When the direction of current I is x-axis, the direction of magnetic field B is y-axis, and the direction of temperature gradient ▽ T is z-axis, (length of z-axis / length of x-axis) is 5. The above is a cooling element using a thermoelectric conversion material having a y-axis length of 1 mm or less, having a permanent magnet for applying a magnetic field B in the y-axis direction of the thermoelectric conversion material, and performing thermoelectric conversion. Material y-axis and z
A cooling element having an electrode on each of a pair of facing surfaces formed by an axis and generating a temperature gradient ▽ T in the z-axis direction by passing a current I through the electrodes.
【請求項2】 磁場Bの大きさが0.1T以上である請
求項1に記載の冷却素子。
2. The cooling element according to claim 1, wherein the magnitude of the magnetic field B is 0.1 T or more.
【請求項3】 熱電変換材料と永久磁石とが熱電変換材
料のy軸方向に交互に複数配置される請求項1に記載の
冷却素子。
3. The cooling element according to claim 1, wherein a plurality of thermoelectric conversion materials and permanent magnets are alternately arranged in the y-axis direction of the thermoelectric conversion material.
【請求項4】 熱電変換材料が複数で一組をなす請求項
3に記載の冷却素子。
4. The cooling element according to claim 3, wherein a plurality of thermoelectric conversion materials form a set.
【請求項5】 熱電変換材料と永久磁石とが熱電変換材
料のy軸方向に交互に複数配置された冷却素子を一組と
し、複数組からなる冷却素子のそれぞれの両端部を磁性
材料にて接続して閉磁路回路とした請求項3に記載の冷
却素子。
5. A set of cooling elements in which a plurality of thermoelectric conversion materials and permanent magnets are alternately arranged in the y-axis direction of the thermoelectric conversion material is set, and both ends of each of the plurality of sets of cooling elements are made of a magnetic material. The cooling element according to claim 3, wherein the cooling element is connected to form a closed magnetic circuit.
【請求項6】 熱電変換材料がp型とn型とからなり、
各材料のy軸とz軸とで形成される一対の対向面におけ
る一方面の高温側と他方の面の低温側のそれぞれに電極
が配設され、該電極と隣り合う各材料の同温側の電極と
が結線され、各材料が直列に接続された請求項1に記載
の冷却素子。
6. The thermoelectric conversion material comprises p-type and n-type,
Electrodes are arranged on the high temperature side of one surface and the low temperature side of the other surface of a pair of opposing surfaces formed by the y axis and the z axis of each material, and the same temperature side of each material adjacent to the electrode. The cooling element according to claim 1, wherein the cooling element and the electrode are connected and the respective materials are connected in series.
【請求項7】 熱電変換材料がp型またはn型からな
り、各材料のy軸とz軸とで形成される一対の対向面に
おける一方面の高温側と他方の面の低温側のそれぞれに
電極が配設され、該電極と隣り合う各材料の異温側の電
極とが結線され、各材料が直列に接続された請求項1に
記載の冷却素子。
7. The thermoelectric conversion material is of p-type or n-type and is provided on each of a high temperature side of one surface and a low temperature side of the other surface of a pair of opposing surfaces formed by the y axis and z axis of each material. The cooling element according to claim 1, wherein an electrode is provided, the electrode and an electrode on a different temperature side of each material adjacent to each other are connected, and each material is connected in series.
【請求項8】 熱電変換材料がp型またはn型からな
り、各材料のy軸とz軸とで形成される一対の対向面に
おける一方面の高温側と他方の面の低温側のそれぞれに
電極が配設され、該電極と隣り合う各材料の同温側の電
極とを結線し、各材料が並列に接続された請求項1に記
載の冷却素子。
8. The thermoelectric conversion material is of p-type or n-type and is provided on each of the high temperature side of one surface and the low temperature side of the other surface of a pair of opposing surfaces formed by the y axis and z axis of each material. The cooling element according to claim 1, wherein an electrode is provided, the electrode is connected to an electrode on the same temperature side of each material adjacent to each other, and each material is connected in parallel.
【請求項9】 熱電変換材料および/または永久磁石が
その表面に絶縁性被膜を有する請求項1に記載の冷却素
子。
9. The cooling element according to claim 1, wherein the thermoelectric conversion material and / or the permanent magnet has an insulating coating on the surface thereof.
【請求項10】 絶縁性被膜がポリイミド被膜またはア
ルミナ被膜である請求項9に記載の冷却素子。
10. The cooling element according to claim 9, wherein the insulating coating is a polyimide coating or an alumina coating.
【請求項11】 電流Iが流れる方向をx軸、磁場Bの
方向をy軸、温度勾配▽Tの方向をz軸とした時、(z
軸の長さ/x軸の長さ)が5以上であり、かつy軸の長
さが1mm以下である熱電変換材料を用いた冷却素子で
あって、熱電変換材料のy軸方向に磁場Bを印加する手
段と、熱電変換材料のy軸とz軸とで形成される一対の
対向面間に電流Iを流す手段とを有し、z軸方向に温度
勾配▽Tを発生させる冷却素子。
11. When the direction in which the current I flows is the x-axis, the direction of the magnetic field B is the y-axis, and the direction of the temperature gradient ▽ T is the z-axis, (z
A cooling element using a thermoelectric conversion material having an axial length / x-axis length of 5 or more and a y-axis length of 1 mm or less, wherein a magnetic field B in the y-axis direction of the thermoelectric conversion material is used. A cooling element that has a means for applying a current and a means for causing a current I to flow between a pair of opposing surfaces of the thermoelectric conversion material formed by the y-axis and the z-axis, and generates a temperature gradient ▽ T in the z-axis direction.
【請求項12】 電流Iが流れる方向をx軸、磁場Bの
方向をy軸、温度勾配▽Tの方向をz軸とした時、(z
軸の長さ/x軸の長さ)が5以上であり、かつy軸の長
さが1mm以下である冷却素子用熱電変換材料。
12. When the direction in which the current I flows is the x-axis, the direction of the magnetic field B is the y-axis, and the direction of the temperature gradient ∇T is the z-axis, (z
A thermoelectric conversion material for a cooling element, wherein the length of the axis / the length of the x axis is 5 or more and the length of the y axis is 1 mm or less.
JP2001244200A 2001-08-10 2001-08-10 Cooling element and thermoelectric conversion element Pending JP2003060244A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001244200A JP2003060244A (en) 2001-08-10 2001-08-10 Cooling element and thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001244200A JP2003060244A (en) 2001-08-10 2001-08-10 Cooling element and thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2003060244A true JP2003060244A (en) 2003-02-28

Family

ID=19074175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001244200A Pending JP2003060244A (en) 2001-08-10 2001-08-10 Cooling element and thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2003060244A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1899659A1 (en) * 2005-06-24 2008-03-19 Carrier Corporation A combination thermo-electric and magnetic refrigeration system
CN101471419B (en) * 2007-12-29 2011-03-30 财团法人工业技术研究院 Film type thermoelectric conversion component, device and stacking component thereof
CN110998883A (en) * 2017-08-10 2020-04-10 太阳诱电株式会社 Laminated thermoelectric element
JP2020098860A (en) * 2018-12-18 2020-06-25 国立大学法人茨城大学 Thermoelectric conversion device and thermoelectric conversion method
US20230102920A1 (en) * 2020-03-19 2023-03-30 National Institute For Materials Science Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1899659A1 (en) * 2005-06-24 2008-03-19 Carrier Corporation A combination thermo-electric and magnetic refrigeration system
EP1899659A4 (en) * 2005-06-24 2009-03-04 Carrier Corp A combination thermo-electric and magnetic refrigeration system
CN101471419B (en) * 2007-12-29 2011-03-30 财团法人工业技术研究院 Film type thermoelectric conversion component, device and stacking component thereof
CN110998883A (en) * 2017-08-10 2020-04-10 太阳诱电株式会社 Laminated thermoelectric element
CN110998883B (en) * 2017-08-10 2023-09-05 太阳诱电株式会社 Laminated thermoelectric element
JP2020098860A (en) * 2018-12-18 2020-06-25 国立大学法人茨城大学 Thermoelectric conversion device and thermoelectric conversion method
JP7316579B2 (en) 2018-12-18 2023-07-28 国立大学法人茨城大学 thermoelectric converter
US20230102920A1 (en) * 2020-03-19 2023-03-30 National Institute For Materials Science Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same
US11889762B2 (en) * 2020-03-19 2024-01-30 National Institute For Materials Science Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same

Similar Documents

Publication Publication Date Title
JP4472359B2 (en) Thermoelectric device using double-sided Peltier junction and manufacturing method thereof
JP5585314B2 (en) Thermoelectric conversion element and thermoelectric conversion device
EP1594173A1 (en) Cooling device for electronic component using thermo-electric conversion material
US20180066875A1 (en) Solid state cooling device
US8809667B2 (en) Thermoelectric semiconductor component
JP2020532108A (en) Thermoelectric devices, methods for cooling devices, and methods for generating electrical energy
US20130104948A1 (en) Thermoelectric conversion element and thermoelectric conversion device
JP5775163B2 (en) Thermoelectric conversion element and thermoelectric conversion module using the same
EP3098864B1 (en) Thermoelectric conversion module
Murata et al. Prototype fabrication and performance evaluation of a thermoelectric module operating with the Nernst effect
EP4123897A1 (en) Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same
JP2003060244A (en) Cooling element and thermoelectric conversion element
JPWO2018042708A1 (en) Thermoelectric conversion device and electronic device
US20210273150A1 (en) Thermoelectric device utilizing non-zero berry curvature
JP2002064228A (en) Bi-BASED THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC TRANSDUCER
US20060016248A1 (en) Thermoelectric Circuits Utilizing Series Isothermal Heterojunctions
WO2002017406A1 (en) Bi GROUP THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT
Hawkins et al. Low-Temperature Ettingshausen Coolers
WO2022045249A1 (en) Thermoelectric element and thermoelectric device
JP2001185771A (en) Thermoelectric conversion method and thermoelectric element
JP5453296B2 (en) Semiconductor device
JP2001094162A (en) Method for using thermoelectric conversion material and thermoelectric conversion element
Ando et al. Multifunctional composite magnet for practical transverse thermoelectrics
JP2006049494A (en) Material and device for thermoelectric conversion
JP2001168403A (en) Thermoelectric conversion element