JP5585314B2 - Thermoelectric conversion element and thermoelectric conversion device - Google Patents

Thermoelectric conversion element and thermoelectric conversion device Download PDF

Info

Publication number
JP5585314B2
JP5585314B2 JP2010195508A JP2010195508A JP5585314B2 JP 5585314 B2 JP5585314 B2 JP 5585314B2 JP 2010195508 A JP2010195508 A JP 2010195508A JP 2010195508 A JP2010195508 A JP 2010195508A JP 5585314 B2 JP5585314 B2 JP 5585314B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
spin
hall effect
dielectric
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010195508A
Other languages
Japanese (ja)
Other versions
JP2011249746A (en
Inventor
英治 齊藤
健一 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2010195508A priority Critical patent/JP5585314B2/en
Publication of JP2011249746A publication Critical patent/JP2011249746A/en
Application granted granted Critical
Publication of JP5585314B2 publication Critical patent/JP5585314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明は、熱電変換素子及び熱電変換装置に関するものであり、特に、素子の設計自由度を高める構成に特徴のある熱電変換素子及び熱電変換装置に関するものである。   The present invention relates to a thermoelectric conversion element and a thermoelectric conversion device, and more particularly to a thermoelectric conversion element and a thermoelectric conversion device that are characterized by a configuration that increases the degree of design freedom of the element.

近年、地球温暖化対策としてクリーンエネルギーの必要性が叫ばれており、このようなクリーンエネルギー源として熱電効果の応用が期待されている。その一例として、火力発電所や工場或いは自動車の廃熱・排熱をゼーベック効果素子を利用して電力に変換することが提案されている(例えば、特許文献1参照)。   In recent years, the need for clean energy has been screamed as a countermeasure against global warming, and the application of the thermoelectric effect is expected as such a clean energy source. As an example, it has been proposed to convert waste heat and exhaust heat of a thermal power plant, factory, or automobile into electric power using a Seebeck effect element (see, for example, Patent Document 1).

しかし、現在のゼーベック効果素子の効率は十分ではなく、クリーンエネルギー源としての実用化に際してはさらなる熱電変換効率の高効率化が必要である。   However, the efficiency of the current Seebeck effect element is not sufficient, and it is necessary to further increase the thermoelectric conversion efficiency for practical use as a clean energy source.

現在のゼーベック係数が互いに異なる2種類の金属による異種金属接合を用いたゼーベック効果素子の熱電変換効率の指標となる性能指数Zは、ゼーベック係数をS、電気伝導度をσ、熱伝導率をκとすると、
Z=S×(σ/κ) ・・・(1)
と表される。また、起電力Vの発生方向は温度勾配▽Tと平行方向になる。
The performance index Z, which is an index of the thermoelectric conversion efficiency of the Seebeck effect element using different types of metal junctions of two kinds of metals with different Seebeck coefficients, is S, the Seebeck coefficient is S, the electrical conductivity is σ, and the thermal conductivity is κ. Then,
Z = S 2 × (σ / κ) (1)
It is expressed. The direction of generation of the electromotive force V is parallel to the temperature gradient ▽ T.

この場合、ゼーベック係数S、電気伝導度σ及び熱伝導率κは全て物質固有の値であるので、性能指数Zも物質固有の値となり、高効率の熱電発電を実現するためには性能指数Zの高い熱電変換素子が必要になる。そして、性能指数Zを高めるためには新規な物質の開発が必要であった。   In this case, the Seebeck coefficient S, the electrical conductivity σ, and the thermal conductivity κ are all material-specific values. Therefore, the performance index Z is also a material-specific value. In order to realize highly efficient thermoelectric generation, the performance index Z A high thermoelectric conversion element is required. In order to increase the figure of merit Z, it was necessary to develop a new substance.

一方、現在の半導体装置等のエレクトロニクス分野において利用されている電子の電荷の自由度に代わるものとして、電子が電荷以外に有するスピンという自由度、即ち、スピン角運動量の自由度を利用したスピントロニクスが次世代のエレクトロニクス技術の担い手として注目を集めている。   On the other hand, as an alternative to the degree of freedom of electron charge used in the field of electronics such as current semiconductor devices, spintronics utilizing the degree of freedom of spin other than the charge of the electron, that is, the degree of freedom of spin angular momentum, is available. It attracts attention as a leader of next-generation electronics technology.

このスピントロニクスでは電子の電荷とスピンの自由度を同時に利用することによって、従来にない機能や特性を得ることを目指しているが、スピントロニクス機能の多くはスピン流によって駆動される。   This spintronics aims to obtain unprecedented functions and characteristics by simultaneously using the charge of electrons and the degree of freedom of spin, but many of the spintronic functions are driven by spin current.

スピン流はエネルギーの散逸が少ないため、効率の良いエネルギー伝達に利用できる可能性が期待されており、スピン流の生成方法や検出方法の確立が急務になっている。   Since the spin current has little energy dissipation, it is expected that it can be used for efficient energy transfer, and there is an urgent need to establish a spin current generation method and detection method.

なお、スピン流の生成方法としては、スピンポンピングによるスピン流が提案されており(例えば、非特許文献1参照)、スピン流の検出方法についても、本発明者等により逆スピンホール効果(ISHE)によるスピン流の検出方法が提案されている(例えば、非特許文献2参照)。   As a spin current generation method, a spin current by spin pumping has been proposed (see, for example, Non-Patent Document 1), and the present inventors have also used the inverse spin Hall effect (ISHE) as a spin current detection method. Has been proposed (see, for example, Non-Patent Document 2).

図12は、逆スピンホール効果の説明図であり、試料中に純スピン流Jを注入すると、逆スピンホール効果により純スピン流Jの方向と垂直方向に電流Jが流れる。この逆スピンホール効果を利用することによって、試料の端部に電位差Vが発生するので、この電位差Vを検出することによって、純スピン流Jの流れの有無の検出が可能になる。 Figure 12 is an explanatory view of an inverted spin Hall, when injecting the pure spin current J s in the sample, a current flows J c by inverse spin Hall effect in the direction perpendicular to the direction of the pure spin current J s. By utilizing the inverse spin Hall, the potential difference V is generated in an end portion of the sample, by detecting the potential difference V, it allows detection of the presence or absence of flow of the pure spin current J s.

しかし、上述のゼーベック効果を利用した熱電変換においては、式(1)からわかるように、電気伝導度σが高い物質を用いると性能指数Zが大きくなる。しかし、金属の場合には、電気伝導度σが高い物質は熱伝導率κも高いため、電気伝導度σ向上による性能指数Z向上の効果は熱伝導率κにより相殺されてしまうという問題がある。   However, in the thermoelectric conversion using the Seebeck effect described above, as can be seen from the equation (1), when a substance having a high electric conductivity σ is used, the figure of merit Z is increased. However, in the case of a metal, since a material having a high electrical conductivity σ has a high thermal conductivity κ, the effect of improving the figure of merit Z by improving the electrical conductivity σ is offset by the thermal conductivity κ. .

そこで、本発明者は、NiFe等の磁性体とPt等のスピン軌道相互作用の大きな金属との接合を利用したスピン−ゼーベック効果素子を提案している(例えば、特許文献2参照)。このスピン−ゼーベック効果素子においてはNiFe等の磁性体において温度勾配により発生した熱スピン流をPtとの界面でスピン交換を行い、交換により発生した純スピン流により純スピン流の方向と垂直方向に流れる電流を磁性体の両端において電圧として出力するものである。   Therefore, the present inventor has proposed a spin-Seebeck effect element using a junction between a magnetic material such as NiFe and a metal such as Pt having a large spin-orbit interaction (see, for example, Patent Document 2). In this spin-Seebeck effect element, a thermal spin current generated by a temperature gradient in a magnetic material such as NiFe is subjected to spin exchange at the interface with Pt, and the pure spin current generated by the exchange causes a direction perpendicular to the direction of the pure spin current. The flowing current is output as a voltage at both ends of the magnetic body.

これは、磁性体、特に、強磁性体の場合には、外部磁場を印加した状態で温度勾配を与えると、アップスピン流とダウンスピン流に差ができて熱的にスピン流が発生することを見いだした結果を利用したものである。   This is because, in the case of a magnetic material, particularly a ferromagnetic material, if a temperature gradient is applied with an external magnetic field applied, there is a difference between an up-spin current and a down-spin current, and a thermal spin current is generated. This is the result of using the results found.

この場合の性能指数Zは、スピン−ゼーベック効果素子の熱電変換能をS、逆スピンホール部材の電気伝導率をσ、磁性体の熱伝導率をκ とすると、
Z=S ×(σ/κ) ・・・(2)
と表される。この場合の性能指数では、従来の性能指数と異なり、分子の電気伝導率と分母の熱伝導率はそれぞれ異なる物質が担うため、素子の材料選択をすることによって性能指数を大幅に変えることができる。
The figure of merit Z in this case is S s , the electrical conductivity of the spin-Seebeck effect element, σ I the electrical conductivity of the reverse spin Hall member, and κ F the thermal conductivity of the magnetic material.
Z = S s 2 × (σ I / κ F ) (2)
It is expressed. In this case, the figure of merit differs from the conventional figure of merit in that the electrical conductivity of the numerator and the thermal conductivity of the denominator are different materials, so the figure of merit can be changed significantly by selecting the material of the device. .

但し、この場合には、起電力Vの発生方向は、逆スピンホール効果を利用しているので温度勾配▽Tと垂直方向になる。スピン−ゼーベック効果素子の熱電変換能Sは温度勾配▽Tに垂直な方向の長さに比例するので、従来のゼーベック効果素子に比べて、試料サイズにより性能指数Zを変調することができるという特徴がある。即ち、試料のサイズを温度勾配▽Tに垂直な方向の長さが長くなるように構成することによって、長さに比例した起電力Vを得ることができる。 However, in this case, the direction of generation of the electromotive force V is perpendicular to the temperature gradient ▽ T because the reverse spin Hall effect is used. Since the thermoelectric conversion ability S s of the spin-Seebeck effect element is proportional to the length in the direction perpendicular to the temperature gradient ▽ T, the figure of merit Z can be modulated by the sample size as compared with the conventional Seebeck effect element. There are features. That is, by configuring the sample size such that the length in the direction perpendicular to the temperature gradient 長 T is increased, an electromotive force V proportional to the length can be obtained.

スピン流は物理的な保存量ではないため、このような熱スピン流変換を利用することによって、温度勾配を与えるだけでスピン流を連続して取り出すことができ、したがって、熱起電力も連続して取り出すことができる。   Since spin current is not a physical conserved quantity, by utilizing such thermal spin current conversion, spin current can be extracted continuously only by applying a temperature gradient, and therefore the thermoelectromotive force is also continuous. Can be taken out.

しかし、このスピン−ゼーベック効果素子においては、熱スピン流発生部材に熱伝導率κの大きい金属を用いており、したがって、起電力Vを増大させるために試料のサイズを大きくすると均一な温度勾配▽Tを設けることが困難になってしまう。よって、現状では、全金属系スピン−ゼーベック効果素子を用いて工業的に利用可能な熱電変換素子を実現することは困難である。   However, in this spin-Seebeck effect element, a metal having a high thermal conductivity κ is used for the thermal spin current generating member. Therefore, if the sample size is increased in order to increase the electromotive force V, a uniform temperature gradient ▽ It becomes difficult to provide T. Therefore, at present, it is difficult to realize an industrially usable thermoelectric conversion element using an all-metal spin-Seebeck effect element.

そこで、本発明者は、熱スピン流発生部材として、金属の代わりにYIG等の熱伝導率の小さな磁性誘電体を用いたスピン−ゼーベック効果素子を提案している(例えば、特許文献3参照)。ここで、図13を参照して、磁性誘電体を用いたスピン−ゼーベック効果素子を説明する。   Therefore, the present inventor has proposed a spin-Seebeck effect element using a magnetic dielectric material having a low thermal conductivity such as YIG instead of metal as a thermal spin current generating member (see, for example, Patent Document 3). . Here, a spin-Seebeck effect element using a magnetic dielectric will be described with reference to FIG.

図13は、磁性誘電体を用いたスピン−ゼーベック効果素子の概略的斜視図であり、磁性誘電体層51上にストライプ状の非磁性導電体52,53を設ける。この状態で、矢印の方向に外部磁界Hを印加するとともに、均一な温度勾配▽Tを設けることによって、素子の高温側及び低温側に位置する磁性誘電体/非磁性導電体界面にそれぞれ逆符号の純スピン流Jが流れる。常電導体52,53に注入された純スピン流Jは、電子相対論効果によって温度勾配▽Tに直交する方向の電流に変換され、高温側に設けた非磁性導電体52と低温側に設けた非磁性導電体53に互いに逆向きの熱起電力VISHEが発生する。即ち、逆スピン−ホール効果による起電力は、注入された純スピン流Jとスピンの偏極方向(磁性誘電体の磁化方向M)の外積方向に発生する。 FIG. 13 is a schematic perspective view of a spin-Seebeck effect element using a magnetic dielectric. Striped nonmagnetic conductors 52 and 53 are provided on the magnetic dielectric layer 51. In this state, an external magnetic field H is applied in the direction of the arrow, and a uniform temperature gradient ▽ T is provided, so that the magnetic dielectric / nonmagnetic conductor interface positioned on the high temperature side and the low temperature side of the element has an opposite sign. The pure spin current Js flows. The pure spin current J S injected into the normal conductors 52 and 53 is converted into a current in a direction perpendicular to the temperature gradient ▽ T by the electron relativity effect, and is supplied to the nonmagnetic conductor 52 provided on the high temperature side and the low temperature side. Thermoelectromotive forces VISHE that are opposite to each other are generated in the provided nonmagnetic conductor 53. That is, the electromotive force due to the inverse spin-Hall effect is generated in the outer product direction of the injected pure spin current JS and the spin polarization direction (magnetization direction M of the magnetic dielectric).

磁性誘電体51としては、FeやCoを含むものであれば何でも良いが、実用的には、入手が容易で且つスピン角運動量の散逸の小さいYIG(イットリウム鉄ガーネット)やイットリウムガリウム鉄ガーネット、即ち、一般式で表記するとYFe5−xGa12(但し、x<5)を用いる。また、逆スピンホール効果部材となる非磁性導電体52,53としては、Pt、Au、Pd、Ag、Bi、或いは、f軌道を有する元素のいずれかを用いることが望ましい。これらの元素はスピン軌道相互作用が大きいので、磁性誘電体51との界面において、熱スピン波スピン流と純スピン流の交換を高効率で行うことができる。 The magnetic dielectric 51 may be anything as long as it contains Fe or Co. However, practically, YIG (yttrium iron garnet) or yttrium gallium iron garnet, which is easily available and has low dissipation of spin angular momentum, In terms of general formula, Y 3 Fe 5-x Ga x O 12 (where x <5) is used. Further, as the nonmagnetic conductors 52 and 53 serving as the inverse spin Hall effect member, it is desirable to use any of Pt, Au, Pd, Ag, Bi, or an element having an f orbit. Since these elements have a large spin-orbit interaction, the thermal spin wave spin current and the pure spin current can be exchanged with high efficiency at the interface with the magnetic dielectric 51.

図14は、スピン波スピン流の説明図であり、図14に模式的に示すように、スピン波スピン流とは、スピンが平衡位置の周りで歳差運動し、その位相の変化が波としてスピン系を伝わっていくものであり、熱スピン波スピン流とは位相変化が熱により生起されたものをいう。スピン波スピン流の特徴は、伝導電子型の純スピン流のスピン拡散長が数nm〜数百nmであるのに対して、数mm或いは数cm以上の長距離に亘って伝播可能であることであり、これは様々な実験によってすでに確認されている(例えば、非特許文献3参照)。   FIG. 14 is an explanatory diagram of the spin wave spin current. As schematically shown in FIG. 14, the spin wave spin current is a phenomenon in which the spin precesses around the equilibrium position and the change in phase is expressed as a wave. It is transmitted through the spin system, and the thermal spin wave spin current is a phase change caused by heat. The spin wave spin current is characterized by being able to propagate over a long distance of several millimeters or several centimeters while the spin diffusion length of a conduction electron type pure spin current is several nanometers to several hundred nanometers. This has already been confirmed by various experiments (see, for example, Non-Patent Document 3).

この熱スピン波スピン流−純スピン流交換においては、磁性誘電体中において温度勾配により発生した熱スピン波スピン流が金属電極中のスピンと交換されて金属電極中に純スピン流が生起され、この純スピン流により電流が生じ、この電流により金属電極の両端に熱起電力VISHEが発生する。 In this thermal spin wave spin current-pure spin current exchange, the thermal spin wave spin current generated by the temperature gradient in the magnetic dielectric is exchanged with the spin in the metal electrode, and a pure spin current is generated in the metal electrode, A current is generated by the pure spin current, and a thermoelectromotive force VISHE is generated at both ends of the metal electrode by the current.

特開2007−165463号公報JP 2007-165463 A 特開2009−130070号公報JP 2009-130070 A 国際公開パンフレット WO 2009/151000International publication pamphlet WO 2009/151000

Phys.Rev.,B19,p.4382,1979Phys. Rev. B19, p. 4382, 1979 Applied Physics Letters Vol.88,p.182509,2006Applied Physics Letters Vol. 88, p. 182509, 2006 Nature,Vol.464,p.262−266,2010Nature, Vol. 464, p.262-266, 2010

しかし、上述の磁性誘電体を用いたスピン−ゼーベック効果素子の場合も磁性誘電体層の面内方向に温度勾配▽Tを設けているため、熱源との接触状態が限られ、ボイラーや煙突等に巻きつけるように接触させることができないという問題があり、その結果、現実の適用範囲が狭いという問題がある。   However, in the case of the spin-Seebeck effect element using the above-described magnetic dielectric, the temperature gradient ▽ T is provided in the in-plane direction of the magnetic dielectric layer, so that the contact state with the heat source is limited, such as a boiler or a chimney As a result, there is a problem that the actual application range is narrow.

したがって、本発明は、温度勾配から電力を取り出す際の設計自由度を高めることを目的とする。 Therefore, an object of the present invention is to increase the degree of design freedom when extracting power from a temperature gradient.

上記課題を解決するために、本発明は、熱電変換素子であって、磁性誘電体からなる熱スピン波スピン流発生部材に逆スピンホール効果部材を設け、前記熱スピン波スピン流発生部材の厚さ方向に温度勾配を設けるとともに、磁場印加手段により前記逆スピンホール効果部材の長手方向と直交する方向且つ前記温度勾配と直交する方向に磁場を印加して前記逆スピンホール効果部材において熱スピン波スピン流を電圧に変換して取り出す。   In order to solve the above problems, the present invention provides a thermoelectric conversion element, wherein a thermal spin wave spin current generating member made of a magnetic dielectric is provided with an inverse spin Hall effect member, and the thickness of the thermal spin wave spin current generating member is In addition, a magnetic field is applied in the direction perpendicular to the longitudinal direction of the inverse spin Hall effect member and in the direction perpendicular to the temperature gradient by the magnetic field applying means, and a thermal spin wave is generated in the reverse spin Hall effect member. The spin current is converted into voltage and extracted.

このように、熱スピン波スピン流発生部材の厚さ方向に温度勾配を設けることによって、熱起電力を温度勾配に垂直な方向に生成することができ、素子設計自由度が大きくなる。   Thus, by providing the temperature gradient in the thickness direction of the thermal spin wave spin current generating member, the thermoelectromotive force can be generated in the direction perpendicular to the temperature gradient, and the element design flexibility is increased.

また、磁性誘電体としては、フェリ磁性誘電体、強磁性誘電体でも或いは反強磁性誘電体でも良い。磁性誘電体をフェリ磁性誘電体或いは強磁性誘電体とする場合には、磁場印加手段として磁性誘電体に接してその磁化方向を固定する反強磁性層を設けても良い。   The magnetic dielectric may be a ferrimagnetic dielectric, a ferromagnetic dielectric, or an antiferromagnetic dielectric. When the magnetic dielectric is a ferrimagnetic dielectric or a ferromagnetic dielectric, an antiferromagnetic layer that contacts the magnetic dielectric and fixes the magnetization direction may be provided as a magnetic field applying means.

また、磁性誘電体としては、FeやCoを含むものであれば何でも良いが、ガーネットフェライト、MnZn1−xFe(但し、0<x<1)等のスピネルフェライト、或いは、六方晶フェライトを用いることが望ましい。 The magnetic dielectric may be anything as long as it contains Fe or Co, but garnet ferrite, spinel ferrite such as Mn x Zn 1-x Fe 2 O 4 (where 0 <x <1), or It is desirable to use hexagonal ferrite.

また、逆スピンホール効果部材としては、Pt、Au、Pd、Ag、Bi、或いは、f軌道或いは3d軌道を有する遷移金属元素、若しくはそれらの合金のいずれかを有する元素のいずれか、或いは、これらの材料とCu、Al、或いは、Siの合金を用いることが望ましい。 Further, as the reverse spin Hall effect member, any one of Pt, Au, Pd, Ag, Bi, a transition metal element having f or 3d orbital, or an element having any of these alloys, or these It is desirable to use a material of the above and an alloy of Cu, Al, or Si.

上述の熱電変換素子を複数個、磁化方向が互いに反対になるように交互に配置するか或いは磁化方向が互いに同じ向きになるように配置し、熱起電力が直列接続になるように前記逆スピンホール効果部材の端部を互いに接続することによって高起電力を出力する熱電変換装置を構成することができる。   A plurality of the above-described thermoelectric conversion elements are alternately arranged so that the magnetization directions are opposite to each other, or are arranged so that the magnetization directions are the same, and the reverse spin is performed so that the thermoelectromotive force is connected in series. A thermoelectric conversion device that outputs high electromotive force can be configured by connecting ends of the Hall effect members to each other.

或いは、磁性誘電体からなる熱スピン波スピン流発生部材の両面に逆スピンホール効果部材を設けて熱電変換要素を構成し、複数の前記熱電変換要素を非磁性絶縁体を介して積層するとともに、熱起電力が直列接続になるように前記逆スピンホール効果部材の端部を互いに接続し、前記熱電変換要素の積層方向に温度勾配を設けるとともに、磁場印加手段により前記逆スピンホール効果部材の長手方向と直交する方向且つ前記温度勾配と直交する方向に磁場を印加して前記逆スピンホール効果部材において熱スピン波スピン流を電圧に変換して取り出すようにしても良い。   Alternatively, a reverse spin Hall effect member is provided on both sides of a thermal spin wave spin current generating member made of a magnetic dielectric material to constitute a thermoelectric conversion element, and a plurality of the thermoelectric conversion elements are stacked via a nonmagnetic insulator, The ends of the reverse spin Hall effect members are connected to each other so that the thermoelectromotive force is connected in series, a temperature gradient is provided in the stacking direction of the thermoelectric conversion elements, and the length of the reverse spin Hall effect member is increased by a magnetic field applying means. A magnetic field may be applied in a direction orthogonal to the direction and in a direction orthogonal to the temperature gradient, and the thermal spin wave spin current may be converted into a voltage and extracted by the inverse spin Hall effect member.

本発明は、熱スピン波スピン流発生部材の厚さ方向に温度勾配を設けているので、熱起電力を温度勾配に垂直な方向に生成することができ、素子設計自由度が大きくなり、それによって適用可能な熱源が飛躍的に増大する。   In the present invention, since the temperature gradient is provided in the thickness direction of the thermal spin wave spin current generating member, the thermoelectromotive force can be generated in the direction perpendicular to the temperature gradient, which increases the degree of freedom in device design. As a result, the applicable heat source increases dramatically.

本発明の実施の形態の熱電変換素子の概念的構成図である。It is a notional block diagram of the thermoelectric conversion element of embodiment of this invention. 従来例の構成との対比を容易にするために変形した変形図である。It is the modification which deform | transformed in order to make contrast with the structure of a prior art example easy. Pt電極側を高温側とした場合の構成説明図である。It is structure explanatory drawing when the Pt electrode side is made into the high temperature side. Pt電極側を低温側とした場合の構成説明図である。It is structure explanatory drawing when the Pt electrode side is made into the low temperature side. 測定結果の説明図である。It is explanatory drawing of a measurement result. 本発明の実施例2の熱電変換装置の概念的構成図である。It is a notional block diagram of the thermoelectric conversion apparatus of Example 2 of this invention. 本発明の実施例3の熱電変換装置の概念的構成図である。It is a notional block diagram of the thermoelectric conversion apparatus of Example 3 of this invention. 本発明の実施例4の熱電変換装置の概念的構成図である。It is a notional block diagram of the thermoelectric conversion apparatus of Example 4 of this invention. 本発明の実施例5の熱電変換装置の概念的構成図である。It is a notional block diagram of the thermoelectric conversion apparatus of Example 5 of this invention. 本発明の実施例6の熱電変換装置の構成説明図である。It is composition explanatory drawing of the thermoelectric conversion apparatus of Example 6 of this invention. 本発明の実施例6における測定結果の説明図である。It is explanatory drawing of the measurement result in Example 6 of this invention. 逆スピンホール効果の説明図である。It is explanatory drawing of a reverse spin Hall effect. 磁性誘電体を用いたスピン−ゼーベック効果素子の概略的斜視図である。It is a schematic perspective view of a spin-Seebeck effect element using a magnetic dielectric. スピン波スピン流の説明図である。It is explanatory drawing of a spin wave spin current.

ここで、図1及び図2を参照して、本発明の実施の形態を説明する。図1は、本発明の実施の形態の熱電変換素子の概念的構成図であり、図1(a)は概念的斜視図であり、また、図1(b)は逆スピンホール効果部材側を高温にした場合の概念的断面図であり、図1(c)は、逆スピンホール効果部材側を低温にした場合の概念的断面図である。なお、図における矢印は熱流の方向を示している。 Here, with reference to FIG.1 and FIG.2, embodiment of this invention is described. FIG. 1 is a conceptual configuration diagram of a thermoelectric conversion element according to an embodiment of the present invention, FIG. 1 (a) is a conceptual perspective view, and FIG. 1 (b) is a reverse spin Hall effect member side. FIG. 1C is a conceptual cross-sectional view when the temperature is raised, and FIG. 1C is a conceptual cross-sectional view when the temperature of the reverse spin Hall effect member is lowered. In addition, the arrow in a figure has shown the direction of the heat flow.

図に示すように、磁性誘電体からなる熱スピン波スピン流発生部材11に逆スピンホール効果部材12を設け、熱スピン波スピン流発生部材11の厚さ方向に温度勾配(図における縦方向)を設けるとともに、磁場印加手段により逆スピンホール効果部材12の長手方向と直交する方向に磁場Hを印加して逆スピンホール効果部材12の両端から熱起電力Vを取り出す。   As shown in the figure, an inverse spin Hall effect member 12 is provided on a thermal spin wave spin current generating member 11 made of a magnetic dielectric, and a temperature gradient (longitudinal direction in the figure) is formed in the thickness direction of the thermal spin wave spin current generating member 11. And applying a magnetic field H in a direction orthogonal to the longitudinal direction of the reverse spin Hall effect member 12 by the magnetic field applying means to take out the thermoelectromotive force V from both ends of the reverse spin Hall effect member 12.

図2は、本発明の構成を図12に示した従来例の構成との対比を容易にするために変形した変形図であり、平板状の熱スピン波スピン流発生部材11の両端に非磁性導電体からなる逆スピンホール効果部材12,12を設け、熱スピン波スピン流発生部材11の長手方向に温度勾配▽Tを設けるとともに、熱スピン波スピン流発生部材11の厚さ方向に外部磁界Hを印加する。 FIG. 2 is a modified view in which the structure of the present invention is modified to facilitate comparison with the structure of the conventional example shown in FIG. The reverse spin Hall effect members 12 1 and 12 2 made of a conductor are provided, a temperature gradient ▽ T is provided in the longitudinal direction of the thermal spin wave spin current generation member 11, and the thickness direction of the thermal spin wave spin current generation member 11 is increased. An external magnetic field H is applied.

この時、熱スピン波スピン流Jは、逆スピンホール効果部材12,12との界面において、熱スピン波スピン流と純スピン流の交換により、逆スピンホール効果部材12,12に純スピン流として注入される。 In this case, thermal spin-wave spin current J s is the interface between the inverse spin Hall effect member 12 1, 12 2, by the exchange of thermal spin-wave spin current and pure spin current, reverse spin Hall effect member 12 1, 12 2 Is injected as a pure spin current.

注入された純スピン流は電子相対論的効果によって温度勾配と直交する方向に電流が流れて逆スピンホール効果部材12,12の長手方向に熱起電力VISHEが発生する。この時、両方の逆スピンホール効果部材12,12との界面の熱起電力VISHEの方向は、流れ込むスピン流の方向が同じであるので、熱起電力VISHEは同じ向きになる。 The injected pure spin current causes a current to flow in a direction orthogonal to the temperature gradient due to the electron relativistic effect, and a thermoelectromotive force V ISHE is generated in the longitudinal direction of the inverse spin Hall effect members 12 1 , 12 2 . At this time, since the direction of the thermoelectromotive force V ISHE at the interface between both the reverse spin Hall effect members 12 1 and 12 2 is the same as the direction of the flowing spin current, the thermoelectromotive force V ISHE becomes the same direction.

この図2に示した素子の熱スピン波スピン流発生部材11を温度勾配方向に極端に短くして厚さと同程度の長さとするとともに、一方の逆スピンホール効果部材12,12を除去し、それを90°回転させると図1に示した熱電変換素子と等価になる。逆スピンホール効果部材12を除去すると、図1(b)と等価になり、逆スピンホール効果部材12を除去すると、図1(c)と等価になる。 The thermal spin wave spin current generating member 11 of the element shown in FIG. 2 is extremely shortened in the temperature gradient direction to have the same length as the thickness, and one of the reverse spin Hall effect members 12 1 and 12 2 is removed. If it is rotated by 90 °, it becomes equivalent to the thermoelectric conversion element shown in FIG. Removal of the inverse spin Hall effect member 12 2, becomes equivalent to FIG. 1 (b), the Removal of the inverse spin Hall effect member 12 1, is equivalent to FIG. 1 (c).

磁性誘電体としては、FeやCoを含むものであれば何でも良いが、ガーネットフェライト、MnZn1−xFe(但し、0<x<1)等のスピネルフェライト、或いは、六方晶フェライト、特に、実用的には、入手が容易で且つスピン角運動量の散逸の小さいYIG(イットリウム鉄ガーネット)やイットリウムガリウム鉄ガーネット、即ち、一般式で表記するとYFe5-xGa12(但し、0≦x<5)からなるガーネットフェライト、或いは、YIGのYサイトをLa等の原子で置換したガーネットフェライト、例えば、LaYFe12等を用いることが望ましい。これは、YFe5-xGa12は電荷ギャップが大きいので伝導電子が非常に少なく、したがって、伝導電子によるスピン角運動量の散逸が小さいためである。但し、コストの観点からは、通常のフェライトFe等の安価な材料が望ましい。 The magnetic dielectric, but may be any as far as including Fe or Co, garnet ferrite, Mn x Zn 1-x Fe 2 O 4 ( where, 0 <x <1) spinel ferrite or the like, hexagonal Ferrite, particularly YIG (yttrium iron garnet) and yttrium gallium iron garnet, which are easily available and have low spin angular momentum dissipation, that is, Y 3 Fe 5 -x Ga x O 12 when expressed in a general formula. (However, it is desirable to use garnet ferrite having 0 ≦ x <5) or garnet ferrite in which Y sites of YIG are replaced with atoms such as La, for example, LaY 2 Fe 5 O 12 . This is because Y 3 Fe 5−x Ga x O 12 has a large charge gap and therefore has very few conduction electrons, and therefore, the dissipation of spin angular momentum by the conduction electrons is small. However, an inexpensive material such as ordinary ferrite Fe 3 O 4 is desirable from the viewpoint of cost.

また、反強磁性誘電体を用いる場合には、典型的には酸化ニッケルやFeOが挙げられるが、磁性誘電体の大半は反強磁性誘電体である。また、磁性誘電体層を強磁性誘電体で構成する場合には、磁性誘電体層の磁化方向を固定するために反強磁性層を設けることが望ましい。   Further, when an antiferromagnetic dielectric is used, typically nickel oxide and FeO can be mentioned, but most of the magnetic dielectric is an antiferromagnetic dielectric. When the magnetic dielectric layer is made of a ferromagnetic dielectric, it is desirable to provide an antiferromagnetic layer in order to fix the magnetization direction of the magnetic dielectric layer.

なお、磁性誘電体の代わりに導電性磁性体を用いた場合には、逆スピンホール効果部材と熱起電力が発生していない導電性磁性体とが接合した構造となり、両者の間で電気的な緩和が起こるので、逆スピンホール効果部材から熱起電力を取り出すことが非常に困難になる。   When a conductive magnetic material is used instead of the magnetic dielectric material, a structure in which an inverse spin Hall effect member and a conductive magnetic material that does not generate thermoelectromotive force are joined is electrically connected. Therefore, it is very difficult to extract the thermoelectromotive force from the inverse spin Hall effect member.

また、磁性誘電体層の成長方法としては、スパッタ法、MOD法(Metal-organic decomposition Method:有機金属塗布熱分解法)、ゾル−ゲル法、液相エピタキシー法、フローティングゾーン法、或いは、エアロゾルデポジッション法(必要ならば、上述の特許文献4参照)のいずれを用いても良い。また、磁性誘電体層の結晶性としては単結晶でも良いし或いは多結晶でも良い。   Further, as a growth method of the magnetic dielectric layer, sputtering method, MOD method (Metal-organic decomposition method), sol-gel method, liquid phase epitaxy method, floating zone method, aerosol deposition method, Any of the position methods (see the above-mentioned Patent Document 4 if necessary) may be used. Further, the crystallinity of the magnetic dielectric layer may be single crystal or polycrystal.

MOD法を用いる場合には、例えば、{100}面を主面とするGGG(GdGa12)単結晶基板上に、例えば、YFeGaO12組成のMOD溶液をスピンコート法で塗布する。この場合のスピンコート条件としては、まず、500rpmで5秒間回転させたのち、3000〜4000rpmで30秒間回転させてMOD溶液を焼成後の膜厚が100nmになるように均一に塗布する。なお、MOD溶液としては、例えば、(株)高純度化学研究所製のMOD溶液を用いる。 In the case of using the MOD method, for example, a MOD solution having a Y 3 Fe 4 GaO 12 composition is spin-coated on a GGG (Gd 3 Ga 5 O 12 ) single crystal substrate having a {100} plane as a main surface. Apply with. As spin coating conditions in this case, first, after rotating at 500 rpm for 5 seconds, rotating at 3000 to 4000 rpm for 30 seconds, the MOD solution is uniformly applied so that the film thickness after baking becomes 100 nm. As the MOD solution, for example, a MOD solution manufactured by Kojundo Chemical Laboratory Co., Ltd. is used.

次いで、例えば、150℃に加熱したホットプレート上で5分間乾燥させて、MOD溶液に含まれる余分な有機溶媒を蒸発させる。次いで、電気炉中において、例えば、550℃で5分間加熱する仮焼成によって酸化物層とする。   Next, for example, it is dried on a hot plate heated to 150 ° C. for 5 minutes to evaporate excess organic solvent contained in the MOD solution. Next, in an electric furnace, for example, the oxide layer is formed by pre-baking by heating at 550 ° C. for 5 minutes.

次いで、電気炉中において、750℃で1〜2時間加熱する本焼成において酸化物層の結晶化を進めてYIG層とする。最後に、YIG層を所定のサイズに切り出したのち、マスクスパッタ法を用いてYIG層上に、Pt電極等の逆スピンホール効果部材を設けることにより熱電変換素子が得られる。   Next, in the main firing in which heating is performed at 750 ° C. for 1 to 2 hours in an electric furnace, crystallization of the oxide layer is advanced to form a YIG layer. Finally, after the YIG layer is cut out to a predetermined size, a thermoelectric conversion element is obtained by providing an inverse spin Hall effect member such as a Pt electrode on the YIG layer using a mask sputtering method.

また、エアロゾルデポジション法を用いる場合には、例えば、平均粒径が1μmのFe、NiO,ZnOそれぞれ、50mol%、27mol%、23mol%のエアロゾル用粉体を用い、例えば、開口が0.4mm×10mmのノズルを用いてキャリガスとなるArガスを1000sccm流して基板上に噴射させて堆積させれば良い。 In the case of using the aerosol deposition method, for example, Fe 2 O 3 , NiO, and ZnO having an average particle diameter of 1 μm are used, and aerosol powders of 50 mol%, 27 mol%, and 23 mol%, respectively, are used. What is necessary is just to deposit Ar gas used as carrier gas at 1000 sccm by spraying it onto the substrate using a nozzle of 0.4 mm × 10 mm.

また、逆スピンホール効果部材としては、Pt、Au、Pd、Ag、Bi、或いは、f軌道或いは3d軌道を有する遷移金属元素、若しくはそれらの合金のいずれかを有する元素のいずれか、或いは、これらの材料とCu、Al、或いは、Siの合金を用いることが望ましい。前者の元素はスピン軌道相互作用が大きいので、磁性誘電体との界面において、熱スピン波スピン流と純スピン流の交換を高効率で行うことができる。但し、コストの観点からは、前者の材料とCu、Al、或いは、Siの合金が望ましい。
Further, as the reverse spin Hall effect member, any one of Pt, Au, Pd, Ag, Bi, a transition metal element having f or 3d orbital, or an element having any of these alloys, or these It is desirable to use a material of the above and an alloy of Cu, Al, or Si. Since the former element has a large spin orbit interaction, it is possible to exchange heat spin wave spin current and pure spin current with high efficiency at the interface with the magnetic dielectric. However, from the viewpoint of cost, the former material and an alloy of Cu, Al, or Si are desirable.

ここで、図3乃至図5を参照して、本発明の実施例1の熱電変換装置を説明する。図3は、逆スピンホール効果部材であるPt電極側を高温側とした場合の構成説明図であり、図3(a)は概略的正面図であり、図3(b)は概略的側面図であり、図3(c)は、熱電変換素子近傍の要部上面図である。   Here, with reference to FIG. 3 thru | or FIG. 5, the thermoelectric conversion apparatus of Example 1 of this invention is demonstrated. FIG. 3 is an explanatory diagram of the configuration when the Pt electrode side that is the reverse spin Hall effect member is the high temperature side, FIG. 3 (a) is a schematic front view, and FIG. 3 (b) is a schematic side view. FIG. 3C is a top view of the main part in the vicinity of the thermoelectric conversion element.

Cuブロック41上に単結晶のYIG板21とPt電極22とからなる熱電変換素子20を固着し、熱源に接触するCuブロック42との間を真鍮製のコ字状の熱伝搬部材43で熱的に接続する。従って、温度勾配▽Tは上向きとなる。ここで、外部磁場HをPt電極の長手方向と垂直方向で且つ温度勾配▽Tと垂直方向(図において左向き)に印加する。   A thermoelectric conversion element 20 composed of a single crystal YIG plate 21 and a Pt electrode 22 is fixed on the Cu block 41, and heat is transferred between the Cu block 42 contacting the heat source by a U-shaped heat propagation member 43 made of brass. Connect. Therefore, the temperature gradient ▽ T is upward. Here, the external magnetic field H is applied in the direction perpendicular to the longitudinal direction of the Pt electrode and in the direction perpendicular to the temperature gradient TT (leftward in the figure).

なお、YIG板21のサイズは、厚さ1mm×幅2mm×長さ6mmであり、Pt電極22のサイズは、厚さ15nm、幅0.5mm、長さ6mmである。この時、温度差ΔTを熱電対44で測定するとともに、Pt電極22の長手方向で発生する熱起電力を電圧計45で測定する。   The size of the YIG plate 21 is 1 mm thick × 2 mm wide × 6 mm long, and the size of the Pt electrode 22 is 15 nm thick, 0.5 mm wide, and 6 mm long. At this time, the temperature difference ΔT is measured by the thermocouple 44, and the thermoelectromotive force generated in the longitudinal direction of the Pt electrode 22 is measured by the voltmeter 45.

図4は逆スピンホール効果部材であるPt電極側を低温側とした場合の構成説明図であり、図4(a)は概略的正面図であり、図4(b)は概略的側面図であり、図4(c)は、熱電変換素子近傍の要部上面図である。   FIG. 4 is an explanatory diagram of the configuration when the Pt electrode side, which is an inverse spin Hall effect member, is a low temperature side, FIG. 4 (a) is a schematic front view, and FIG. 4 (b) is a schematic side view. FIG. 4C is a top view of the main part in the vicinity of the thermoelectric conversion element.

熱源に接触するCuブロック42上に単結晶のYIG板21とPt電極22とからなる熱電変換素子20を固着し、Cuブロック41との間を真鍮製のコ字状の熱伝搬部材43で熱的に接続する。従って、温度勾配▽Tは下向きとなる。ここで、図3の場合と同様に、外部磁場HをPt電極の長手方向と垂直方向で且つ温度勾配▽Tと垂直方向(図において左向き)に印加し、温度差ΔTを熱電対44で測定するとともに、Pt電極22の長手方向で発生する熱起電力を電圧計45で測定する。   A thermoelectric conversion element 20 composed of a single crystal YIG plate 21 and a Pt electrode 22 is fixed on a Cu block 42 that is in contact with a heat source, and heat is transferred between the Cu block 41 and a U-shaped heat propagation member 43 made of brass. Connect. Therefore, the temperature gradient ▽ T is downward. Here, as in the case of FIG. 3, the external magnetic field H is applied in the direction perpendicular to the longitudinal direction of the Pt electrode and in the direction perpendicular to the temperature gradient ▽ T (leftward in the figure), and the temperature difference ΔT is measured by the thermocouple 44. At the same time, the thermoelectromotive force generated in the longitudinal direction of the Pt electrode 22 is measured by the voltmeter 45.

図5は、測定結果の説明図であり、図5(a)は図3の構成の測定結果であり、図5(b)は図4の構成の測定結果である。図5に示すように、いずれの場合にも、H=1000〔Oe〕とした条件で、温度差ΔT=20℃で、約15μVの起電力が得られた。なお、外部磁場HをPt電極22の長手方向に印加した場合、即ち、θ=0°の場合には、起電力はPt電極22の幅方向に発生するので、図に示した構成では起電力は取り出すことができない。   FIG. 5 is an explanatory diagram of measurement results, FIG. 5 (a) is a measurement result of the configuration of FIG. 3, and FIG. 5 (b) is a measurement result of the configuration of FIG. As shown in FIG. 5, in each case, an electromotive force of about 15 μV was obtained at a temperature difference ΔT = 20 ° C. under the condition of H = 1000 [Oe]. When the external magnetic field H is applied in the longitudinal direction of the Pt electrode 22, that is, when θ = 0 °, the electromotive force is generated in the width direction of the Pt electrode 22. Can not be taken out.

次に、図6を参照して、本発明の実施例2の熱電変換装置を説明する。図6は本発明の実施例2の熱電変換装置の概念的構成図であり、図6(a)は概念的平面図であり、図6(b)は図6(a)におけるA−A′を結ぶ一点鎖線に沿った概念的断面図である。上述のYIG板21とPt電極22からなる熱電変換素子20のYIG板21の裏面に磁化方向を付与したIrMn反強磁性体板23を貼りつける。この時、IrMn反強磁性体板23の磁化方向MがPt電極22の長手方向と直交するように磁化方向を付与しておく。   Next, with reference to FIG. 6, the thermoelectric conversion apparatus of Example 2 of this invention is demonstrated. 6 is a conceptual configuration diagram of a thermoelectric conversion device according to a second embodiment of the present invention, FIG. 6 (a) is a conceptual plan view, and FIG. 6 (b) is an AA ′ diagram in FIG. 6 (a). It is a conceptual sectional view along an alternate long and short dash line connecting. An IrMn antiferromagnetic plate 23 having a magnetization direction is attached to the back surface of the YIG plate 21 of the thermoelectric conversion element 20 including the YIG plate 21 and the Pt electrode 22 described above. At this time, the magnetization direction is given so that the magnetization direction M of the IrMn antiferromagnetic plate 23 is orthogonal to the longitudinal direction of the Pt electrode 22.

この熱電変換素子20を磁化方向Mが互いに反対になるように交互にPETシート等の可撓性シート24上に配置して固着し、それぞれ隣接する熱電変換素子20のPt電極22を隣の熱電変換素子20のPt電極22とCu接続導体25を用いて順次接続する。   The thermoelectric conversion elements 20 are alternately arranged and fixed on the flexible sheet 24 such as a PET sheet so that the magnetization directions M are opposite to each other, and the Pt electrodes 22 of the adjacent thermoelectric conversion elements 20 are connected to the adjacent thermoelectric elements. The Pt electrode 22 and the Cu connection conductor 25 of the conversion element 20 are sequentially connected.

可撓性シート24を熱源に密着させ、Pt電極22側を空冷或いは水冷により冷却することによって、熱起電力を取り出すことができる。この時の熱起電力Vtotは、熱電変換素子20の数をn、一個の熱電変換素子20の熱起電力をVとすると、
tot=n×V
となる。
The thermoelectromotive force can be taken out by bringing the flexible sheet 24 into close contact with the heat source and cooling the Pt electrode 22 side by air cooling or water cooling. The thermoelectromotive force V tot at this time is expressed as follows, where n is the number of thermoelectric conversion elements 20 and V is the thermoelectromotive force of one thermoelectric conversion element 20.
V tot = n × V
It becomes.

次に、図7を参照して、本発明の実施例3の熱電変換装置を説明する。図7は本発明の実施例2の熱電変換装置の概念的構成図であり、図7(a)は概念的平面図であり、図7(b)は図7(a)におけるA−A′を結ぶ一点鎖線に沿った概念的断面図である。   Next, with reference to FIG. 7, the thermoelectric conversion apparatus of Example 3 of this invention is demonstrated. FIG. 7 is a conceptual configuration diagram of a thermoelectric conversion device according to a second embodiment of the present invention, FIG. 7 (a) is a conceptual plan view, and FIG. 7 (b) is an AA ′ in FIG. 7 (a). It is a conceptual sectional view along an alternate long and short dash line connecting.

耐熱性ガラス繊維シート等の耐熱性可撓性シート31上にマスクスパッタ法を用いてIrMn反強磁性体層32をラインアンドスペース状に堆積する。この時、外部磁場を印加しておき、IrMn反強磁性体層32を外部磁場の方向に磁化する。   An IrMn antiferromagnetic layer 32 is deposited in a line-and-space manner on a heat-resistant flexible sheet 31 such as a heat-resistant glass fiber sheet by using a mask sputtering method. At this time, an external magnetic field is applied, and the IrMn antiferromagnetic material layer 32 is magnetized in the direction of the external magnetic field.

次いで、IrMn反強磁性体層32上に、エアロゾルデポジション法を用いてFeを選択的に堆積させて磁性誘電体層33を形成する。次いで、マスク蒸着法を用いて磁性誘電体層33上にPt電極34を形成することによって熱電変換素子30とする。 Next, the magnetic dielectric layer 33 is formed by selectively depositing Fe 3 O 4 on the IrMn antiferromagnetic layer 32 by using an aerosol deposition method. Next, the Pt electrode 34 is formed on the magnetic dielectric layer 33 by using a mask vapor deposition method to obtain the thermoelectric conversion element 30.

次いで、それぞれ隣接する熱電変換素子30のPt電極34の一方の端部を隣の熱電変換素子30のPt電極34の反対側の端部とCu接続導体35を用いて順次接続する。耐熱性可撓性シート31を熱源に密着させ、Pt電極34側を空冷或いは水冷により冷却することによって、熱起電力を取り出すことができる。この時の熱起電力Vtotも、熱電変換素子30の数をn、一個の熱電変換素子30の熱起電力をVとすると、
tot=n×V
となる。この場合、各熱電変換素子30における磁性誘電体層33は一様な方向に磁化しているため、IrMn反強磁性体層32を用いず、外部磁場によって磁性誘電体層33を磁化させても良い。
Next, one end of the Pt electrode 34 of each adjacent thermoelectric conversion element 30 is sequentially connected to the opposite end of the Pt electrode 34 of the adjacent thermoelectric conversion element 30 using the Cu connection conductor 35. The thermoelectromotive force can be taken out by bringing the heat-resistant flexible sheet 31 into close contact with the heat source and cooling the Pt electrode 34 side by air cooling or water cooling. The thermoelectromotive force V tot at this time is also assumed that the number of thermoelectric conversion elements 30 is n and the thermoelectromotive force of one thermoelectric conversion element 30 is V.
V tot = n × V
It becomes. In this case, since the magnetic dielectric layer 33 in each thermoelectric conversion element 30 is magnetized in a uniform direction, the magnetic dielectric layer 33 can be magnetized by an external magnetic field without using the IrMn antiferromagnetic layer 32. good.

次に、図8を参照して、本発明の実施例4の熱電変換装置を説明する。図8は本発明の実施例4の熱電変換装置の概念的構成図であり、図8(a)は概念的側面図であり、図8(b)は図8(a)におけるA−A′を結ぶ一点鎖線に沿った概念的断面図である。上述のYIG板21の対向する一対の主面にPt電極22,22をマスク蒸着して熱電変換要素26を形成する。 Next, with reference to FIG. 8, the thermoelectric conversion apparatus of Example 4 of this invention is demonstrated. FIG. 8 is a conceptual configuration diagram of a thermoelectric conversion device according to a fourth embodiment of the present invention, FIG. 8A is a conceptual side view, and FIG. 8B is AA ′ in FIG. It is a conceptual sectional view along an alternate long and short dash line connecting. Pt electrodes 22 1 and 22 2 are mask-deposited on a pair of opposing main surfaces of the YIG plate 21 to form the thermoelectric conversion element 26.

この熱電変換要素26をSiOや絶縁性樹脂等の非磁性絶縁体27を介して積層し、Pt電極22の一方の端部とその上に位置するPt電極22の他方の端部をCu接続導体28により順次接続することによって熱電変換装置を作製する。 The thermoelectric conversion element 26 are laminated with a nonmagnetic insulator 27 such as a SiO 2 or an insulating resin, one end of the Pt electrode 22 1 and the Pt electrode 22 2 of the other end located on the The thermoelectric conversion device is manufactured by sequentially connecting with the Cu connection conductor 28.

この熱電変換装置の積層方向に温度勾配▽Tを設けるとともに、外部磁界HをPt電極22,22の長手方向と温度勾配▽Tに対して直交するように印加すると一つのYIG板21と両側のPt電極22,22との界面から2つのPt電極22,22に図において矢印で示す方向に純スピン電流Jが注入され、Pt電極22,22中の逆スピンホール効果によって起電力に変換される。 When a temperature gradient ▽ T is provided in the stacking direction of this thermoelectric converter, and an external magnetic field H is applied so as to be orthogonal to the longitudinal direction of the Pt electrodes 22 1 and 22 2 and the temperature gradient ▽ T, one YIG plate 21 Pure spin current Js is injected into the two Pt electrodes 22 1 , 22 2 from the interfaces with the Pt electrodes 22 1 , 22 2 on both sides in the direction indicated by the arrows in the figure, and the reverse spin in the Pt electrodes 22 1 , 22 2 It is converted into electromotive force by the Hall effect.

したがって、熱電変換要素一個当たり発生する熱起電力は、図1の熱起変換素子の熱起電力の2倍になるので、熱起電力Vtotは、熱電変換要素26の数をnとすると、
tot=n×(2×V)
となる。
Therefore, since the thermoelectromotive force generated per thermoelectric conversion element is twice the thermoelectromotive force of the thermoelectric conversion element of FIG. 1, the thermoelectromotive force V tot is n, where n is the number of thermoelectric conversion elements 26.
V tot = n × (2 × V)
It becomes.

次に、図9を参照して、本発明の実施例5の熱電変換装置を説明する。図9は本発明の実施例5の熱電変換装置の概念的構成図である。Pt電極22とCu等のスピン軌道相互作用の小さな常磁性導体29とでYIG板21を挟持した積層体をSiOや絶縁性樹脂等の非磁性絶縁体27を介して積層し、Pt電極22の端部をその上に位置する常磁性導体29の端部とをCu接続導体28により順次接続することによって熱電変換装置を作製する。 Next, with reference to FIG. 9, the thermoelectric conversion apparatus of Example 5 of this invention is demonstrated. FIG. 9 is a conceptual configuration diagram of a thermoelectric conversion apparatus according to Embodiment 5 of the present invention. A laminate in which the YIG plate 21 is sandwiched between a Pt electrode 22 and a paramagnetic conductor 29 having a small spin orbit interaction such as Cu is laminated via a nonmagnetic insulator 27 such as SiO 2 or an insulating resin. The thermoelectric conversion device is manufactured by sequentially connecting the end of the paramagnetic conductor 29 to the end of the paramagnetic conductor 29 by the Cu connecting conductor 28.

この熱電変換装置の積層方向に温度勾配▽Tを設けるとともに、外部磁界HをPt電極22の長手方向と温度勾配▽Tに対して直交するように印加すると一つのYIG板21とPt電極22との界面から図において矢印で示す方向に純スピン電流Jが注入され、Pt電極22,22中の逆スピンホール効果によって起電力に変換される。常磁性導体29にはスピン軌道相互作用の小さな物質を用いているので、常磁性導体29中には逆スピンホール効果による熱起電力は発生しない。 When a temperature gradient ▽ T is provided in the stacking direction of the thermoelectric converter, and an external magnetic field H is applied so as to be orthogonal to the longitudinal direction of the Pt electrode 22 and the temperature gradient ▽ T, one YIG plate 21 and Pt electrode 22 A pure spin current J s is injected from the interface in the direction indicated by the arrow in the figure, and converted into an electromotive force by the reverse spin Hall effect in the Pt electrodes 22 1 and 22 2 . Since the paramagnetic conductor 29 is made of a material having a small spin orbit interaction, no thermoelectromotive force is generated in the paramagnetic conductor 29 due to the reverse spin Hall effect.

したがって、熱電変換要素一個当たり発生する熱起電力は、図1の熱起変換素子の熱起電力と同じになるので、熱起電力Vtotは、積層体の数をnとすると、
tot=n×V
となる。この場合、上述の実施例4と比較すると熱起電力は半分になるものの、積層体の電気的相互接続が容易になる。
Therefore, since the thermoelectromotive force generated per thermoelectric conversion element is the same as the thermoelectromotive force of the thermoelectric conversion element in FIG. 1, the thermoelectromotive force V tot is expressed as follows:
V tot = n × V
It becomes. In this case, although the thermoelectromotive force is halved compared with the above-mentioned Example 4, the electrical interconnection of the laminate is facilitated.

次に、図10及び図11を参照して、本発明の実施例6の熱電変換装置を説明する。図10は、本発明の実施例6の熱電変換装置の構成説明図であり、図10(a)は概略的正面図であり、図10(b)は概略的側面図であり、図10(c)は、熱電変換素子近傍の要部上面図である。ここでは、図4と同様に逆スピンホール効果部材であるPt電極側を低温側とした場合を説明しているが、図3と同様に、逆スピンホール効果部材であるPt電極側を高温側としても良い。   Next, with reference to FIG.10 and FIG.11, the thermoelectric conversion apparatus of Example 6 of this invention is demonstrated. FIG. 10 is a configuration explanatory view of a thermoelectric conversion device according to a sixth embodiment of the present invention, FIG. 10 (a) is a schematic front view, FIG. 10 (b) is a schematic side view, and FIG. c) is a top view of the main part in the vicinity of the thermoelectric conversion element. Here, the case where the Pt electrode side that is the reverse spin Hall effect member is set to the low temperature side as in FIG. 4 is described, but the Pt electrode side that is the reverse spin Hall effect member is set to the high temperature side as in FIG. It is also good.

熱源に接触するCuブロック42上に焼結体からなるMn0.75Zn0.25Fe板61とPt電極62とからなる熱電変換素子60を固着し、Cuブロック41との間を真鍮製のコ字状の熱伝搬部材43によりAl板63を介して熱的に接続する。従って、温度勾配▽Tは下向きとなる。 A thermoelectric conversion element 60 composed of a Mn 0.75 Zn 0.25 Fe 2 O 4 plate 61 composed of a sintered body and a Pt electrode 62 is fixed on the Cu block 42 that is in contact with the heat source. It is thermally connected through an Al 2 O 3 plate 63 by a U-shaped heat propagation member 43 made of brass. Therefore, the temperature gradient ▽ T is downward.

ここで、図4の場合と同様に、外部磁場HをPt電極62の長手方向と垂直方向で且つ温度勾配▽Tと垂直方向(図において左向き)に印加し、温度差ΔTを熱電対44で測定するとともに、Pt電極62の長手方向で発生する熱起電力を電圧計45で測定する。   Here, as in the case of FIG. 4, the external magnetic field H is applied in the direction perpendicular to the longitudinal direction of the Pt electrode 62 and in the direction perpendicular to the temperature gradient ▽ T (leftward in the figure), and the temperature difference ΔT is applied by the thermocouple 44. While measuring, the thermoelectromotive force generated in the longitudinal direction of the Pt electrode 62 is measured by the voltmeter 45.

なお、Mn0.75Zn0.25Fe板61のサイズは、厚さ1mm×幅2mm×長さ6mmであり、Pt電極62のサイズは、厚さ15nm×幅0.5mm×長さ6mmである。また、Al板63のサイズは、厚さ0.5mm×幅5mm×長さ5mmであり、起電力測定時に熱電変換素子60を熱伝搬部材43から電気的に絶縁するために介在させており、熱伝導率の高い絶縁体であれば、Alでなくても良い。 The size of the Mn 0.75 Zn 0.25 Fe 2 O 4 plate 61 is 1 mm thick × 2 mm wide × 6 mm long, and the size of the Pt electrode 62 is 15 nm thick × 0.5 mm wide × long. The length is 6 mm. The size of the Al 2 O 3 plate 63 is 0.5 mm thick × 5 mm wide × 5 mm long, and is interposed in order to electrically insulate the thermoelectric conversion element 60 from the heat propagation member 43 during electromotive force measurement. As long as the insulator has a high thermal conductivity, it may not be Al 2 O 3 .

図11は、測定結果の説明図であり、図11(a)は熱起電力Vと温度差ΔTの相関図であり、ここでも、H=1000〔Oe〕とした条件で、温度差ΔT=15℃で、約2μVの起電力が得られた。なお、外部磁場HをPt電極62の長手方向に印加した場合、即ち、θ=0°の場合には、起電力はPt電極22の幅方向に発生するので、図に示した構成では起電力は取り出すことができない。   FIG. 11 is an explanatory diagram of the measurement results, and FIG. 11A is a correlation diagram of the thermoelectromotive force V and the temperature difference ΔT. Here, the temperature difference ΔT = under the condition of H = 1000 [Oe]. An electromotive force of about 2 μV was obtained at 15 ° C. When the external magnetic field H is applied in the longitudinal direction of the Pt electrode 62, that is, when θ = 0 °, the electromotive force is generated in the width direction of the Pt electrode 22. Can not be taken out.

図11(b)は、外部磁場を掃引した場合の熱起電力の温度差依存性の説明図であり、下側の線は外部磁場をマイナスからプラスに掃引した場合の特性曲線であり、下側の線は外部磁場をプラスからマイナスにした場合の特性曲線である。   FIG. 11B is an explanatory diagram of the temperature difference dependence of the thermoelectromotive force when the external magnetic field is swept, and the lower line is a characteristic curve when the external magnetic field is swept from minus to plus. The side line is a characteristic curve when the external magnetic field is changed from plus to minus.

図から明らかなように、いずれの温度差ΔTにおいても明瞭なヒステリシスループが表れているので、観測された起電力がMn0.75Zn0.25Fe板61の磁化反転に由来して反転すること、即ち、逆スピンホール効果の対称性に整合することがわかる。 As is clear from the figure, since a clear hysteresis loop appears at any temperature difference ΔT, the observed electromotive force is derived from the magnetization reversal of the Mn 0.75 Zn 0.25 Fe 2 O 4 plate 61. It can be seen that the inversion, that is, the symmetry of the inverse spin Hall effect is matched.

なお、この実施例6のMn0.75Zn0.25Fe板は、YIGに比べて熱起電力が小さいが、これは、焼結体、即ち、微結晶界面でマグノンが散乱されるとともに、磁気損失(緩和定数α)がYIGよりはるかに大きいためと考えられる。なお、実施例6においては、Mn:Zn=3:1の組成比の(MnZn)Feを用いているが、組成比は任意である。 The Mn 0.75 Zn 0.25 Fe 2 O 4 plate of Example 6 has a smaller thermoelectromotive force than YIG, but this is because magnon is scattered at the sintered body, that is, the microcrystalline interface. In addition, it is considered that the magnetic loss (relaxation constant α) is much larger than YIG. In Example 6, (MnZn) Fe 2 O 4 having a composition ratio of Mn: Zn = 3: 1 is used, but the composition ratio is arbitrary.

11 熱スピン波スピン流発生部材
12,12,12 逆スピンホール効果部材
20,60 熱電変換素子
21 YIG板
22,22,22 ,62 Pt電極
23 IrMn反強磁性体板
24 可撓性シート
25,28 Cu接続導体
26 熱電変換要素
27 非磁性絶縁体
29 常磁性導体
30 熱電変換素子
31 耐熱性可撓性シート
32 IrMn反強磁性体層
33 磁性誘電体層
34 Pt電極
35 Cu接続導体
41,42 Cuブロック
43 熱伝搬部材
44 熱電対
45 電圧計
51 磁性誘電体層
52,53 非磁性導電体
61 Mn0.75Zn0.25Fe
63 Al
11 Thermal spin wave spin current generating member 12, 12 1 , 12 2 Reverse spin Hall effect member 20, 60 Thermoelectric conversion element 21 YIG plate 22, 22 1 , 22 2 , 62 Pt electrode 23 IrMn antiferromagnetic material plate 24 Flexible Sheet 25, 28 Cu connection conductor 26 thermoelectric conversion element 27 nonmagnetic insulator 29 paramagnetic conductor 30 thermoelectric conversion element 31 heat resistant flexible sheet 32 IrMn antiferromagnetic layer 33 magnetic dielectric layer 34 Pt electrode 35 Cu connection Conductor 41, 42 Cu block 43 Heat propagation member 44 Thermocouple 45 Voltmeter 51 Magnetic dielectric layer 52, 53 Nonmagnetic conductor 61 Mn 0.75 Zn 0.25 Fe 2 O 4 plate 63 Al 2 O 3 plate

Claims (10)

磁性誘電体からなる熱スピン波スピン流発生部材に逆スピンホール効果部材を設け、前記熱スピン波スピン流発生部材の厚さ方向に温度勾配を設けるとともに、磁場印加手段により前記逆スピンホール効果部材の長手方向と直交する方向且つ前記温度勾配と直交する方向に磁場を印加して前記逆スピンホール効果部材において熱スピン波スピン流を電圧に変換して取り出す熱電変換素子。   A reverse spin Hall effect member is provided in a thermal spin wave spin current generating member made of a magnetic dielectric, a temperature gradient is provided in the thickness direction of the thermal spin wave spin current generation member, and the reverse spin Hall effect member is provided by a magnetic field applying means. A thermoelectric conversion element in which a magnetic field is applied in a direction perpendicular to the longitudinal direction of the material and in a direction perpendicular to the temperature gradient, and the thermal spin wave spin current is converted into a voltage and extracted by the inverse spin Hall effect member. 前記磁性誘電体が、フェリ磁性誘電体、強磁性誘電体或いは反強磁性誘電体のいずれかからなる請求項1記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the magnetic dielectric is one of a ferrimagnetic dielectric, a ferromagnetic dielectric, and an antiferromagnetic dielectric. 前記磁性誘電体がフェリ磁性誘電体或いは強磁性誘電体からなるとともに、前記磁場印加手段が前記磁性誘電体に接してその磁化方向を固定する反強磁性層である請求項1または2に記載の熱電変換素子。   The magnetic dielectric is made of a ferrimagnetic dielectric or a ferromagnetic dielectric, and the magnetic field applying means is an antiferromagnetic layer that is in contact with the magnetic dielectric and fixes its magnetization direction. Thermoelectric conversion element. 前記磁性誘電体が、ガーネットフェライト、スピネルフェライト、或いは、六方晶フェライトのいずれかからなる請求項1乃至3のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 3, wherein the magnetic dielectric is made of garnet ferrite, spinel ferrite, or hexagonal ferrite. 前記磁性誘電体が、YFe5-xGa12(但し、0≦x<5)からなるガーネットフェライトである請求項4に記載の熱電変換素子。 The thermoelectric conversion element according to claim 4, wherein the magnetic dielectric is garnet ferrite made of Y 3 Fe 5 -x Ga x O 12 (where 0 ≦ x <5). 前記磁性誘電体が、MnZn1−xFe(但し、0<x<1)からなるスピネルフェライトである請求項4に記載の熱電変換素子。 The thermoelectric conversion element according to claim 4, wherein the magnetic dielectric is spinel ferrite made of Mn x Zn 1-x Fe 2 O 4 (where 0 <x <1). 前記逆スピンホール効果部材が、Pt、Au、Pd、Ag、Bi、f軌道或いは3d軌道を有する遷移金属元素、若しくはそれらの合金のいずれか、または、前記各材料とCu、Al、或いは、Siとの合金のいずれかからなる請求項1乃至6のいずれか1項に記載の熱電変換素子。 The reverse spin Hall effect member is a transition metal element having Pt, Au, Pd, Ag, Bi, f orbit, or 3d orbit, or an alloy thereof, or each material and Cu, Al, or Si. The thermoelectric conversion element according to any one of claims 1 to 6, wherein the thermoelectric conversion element is made of any one of the alloys. 請求項1乃至請求項7のいずれか1項に記載の熱電変換素子を複数個、磁化方向が互いに反対になるように交互に配置するとともに、熱起電力が直列接続になるように前記逆スピンホール効果部材の端部を互いに接続した熱電変換装置。   A plurality of thermoelectric conversion elements according to any one of claims 1 to 7 are alternately arranged so that the magnetization directions are opposite to each other, and the reverse spin is performed so that the thermoelectromotive force is connected in series. A thermoelectric conversion device in which end portions of Hall effect members are connected to each other. 請求項1乃至請求項7のいずれか1項に記載の熱電変換素子を複数個、磁化方向が互いに同じ向きになるように配置するとともに、熱起電力が直列接続になるように前記逆スピンホール効果部材の端部を互いに接続した熱電変換装置。   A plurality of the thermoelectric conversion elements according to any one of claims 1 to 7 are arranged so that the magnetization directions are the same as each other, and the reverse spin hole so that the thermoelectromotive force is connected in series. The thermoelectric conversion apparatus which connected the edge part of the effect member mutually. 磁性誘電体からなる熱スピン波スピン流発生部材の両面もしくは片面に逆スピンホール効果部材を設けて熱電変換要素を構成し、複数の前記熱電変換要素を非磁性絶縁体を介して積層するとともに、熱起電力が直列接続になるように前記逆スピンホール効果部材の端部を互いに接続し、前記熱電変換要素の積層方向に温度勾配を設けるとともに、磁場印加手段により前記逆スピンホール効果部材の長手方向と直交する方向且つ前記温度勾配と直交する方向に磁場を印加して前記逆スピンホール効果部材において熱スピン波スピン流を電圧に変換して取り出す熱電変換装置。

A reverse spin Hall effect member is provided on both sides or one side of a thermal spin wave spin current generating member made of a magnetic dielectric material to constitute a thermoelectric conversion element, and a plurality of the thermoelectric conversion elements are laminated via a nonmagnetic insulator, The ends of the reverse spin Hall effect members are connected to each other so that the thermoelectromotive force is connected in series, a temperature gradient is provided in the stacking direction of the thermoelectric conversion elements, and the length of the reverse spin Hall effect member is increased by a magnetic field applying means. A thermoelectric conversion device that applies a magnetic field in a direction orthogonal to a direction and in a direction orthogonal to the temperature gradient, and converts a thermal spin wave spin current into a voltage at the inverse spin Hall effect member to extract the voltage.

JP2010195508A 2010-04-30 2010-09-01 Thermoelectric conversion element and thermoelectric conversion device Active JP5585314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010195508A JP5585314B2 (en) 2010-04-30 2010-09-01 Thermoelectric conversion element and thermoelectric conversion device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010104804 2010-04-30
JP2010104804 2010-04-30
JP2010195508A JP5585314B2 (en) 2010-04-30 2010-09-01 Thermoelectric conversion element and thermoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2011249746A JP2011249746A (en) 2011-12-08
JP5585314B2 true JP5585314B2 (en) 2014-09-10

Family

ID=45414589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010195508A Active JP5585314B2 (en) 2010-04-30 2010-09-01 Thermoelectric conversion element and thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP5585314B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630230B2 (en) * 2010-11-17 2014-11-26 日本電気株式会社 Thermoelectric conversion element
CN103370793B (en) 2011-02-09 2016-08-17 日本电气株式会社 Thermoelectric conversion element, the manufacture method of thermoelectric conversion element and thermoelectric conversion method
JP5987242B2 (en) * 2011-05-23 2016-09-07 日本電気株式会社 Thermoelectric conversion element and thermoelectric conversion method
US9224936B2 (en) * 2011-06-07 2015-12-29 Nec Corporation Thermoelectric conversion device
JP5987835B2 (en) * 2011-09-26 2016-09-07 日本電気株式会社 Thermoelectric conversion element
WO2013153949A1 (en) * 2012-04-11 2013-10-17 日本電気株式会社 Magnetic field measurement device and magnetic field measurement method
JPWO2014010286A1 (en) * 2012-07-09 2016-06-20 日本電気株式会社 Thermoelectric conversion element and manufacturing method thereof
JP6164217B2 (en) * 2012-07-19 2017-07-19 日本電気株式会社 Thermoelectric conversion element and manufacturing method thereof
JP6241951B2 (en) * 2012-12-06 2017-12-06 日本電気株式会社 Thermoelectric conversion element, method of use thereof, and method of manufacture thereof
JP6191620B2 (en) 2012-12-19 2017-09-06 日本電気株式会社 Thermoelectric conversion element and manufacturing method thereof
WO2014115518A1 (en) 2013-01-24 2014-07-31 日本電気株式会社 Thermoelectric transducer and method for manufacturing same
JP6299237B2 (en) * 2014-01-29 2018-03-28 日本電気株式会社 Thermoelectric conversion element and manufacturing method thereof
JP6349863B2 (en) * 2014-03-28 2018-07-04 日本電気株式会社 Spin current thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion device
JP6311487B2 (en) 2014-06-26 2018-04-18 日本電気株式会社 Thermoelectric conversion structure and manufacturing method thereof
JP6611167B2 (en) * 2015-10-23 2019-11-27 国立大学法人 東京大学 Thermoelectric conversion device and thermoelectric conversion element
CN111220357B (en) * 2018-11-23 2023-04-25 中国科学院物理研究所 Light spot uniformity detection device and manufacturing method and application thereof
JP7385260B2 (en) * 2019-11-28 2023-11-22 国立研究開発法人日本原子力研究開発機構 Nuclear battery, nuclear battery system
JP2021086942A (en) * 2019-11-28 2021-06-03 国立研究開発法人日本原子力研究開発機構 Thermoelectric conversion system and thermoelectric conversion method
CN118555839A (en) * 2023-02-24 2024-08-27 华为技术有限公司 Memory array, preparation method thereof, memory and electronic equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5267967B2 (en) * 2007-11-22 2013-08-21 国立大学法人東北大学 Spin current heat conversion element and thermoelectric conversion element
WO2009151000A1 (en) * 2008-06-12 2009-12-17 学校法人 慶應義塾 Thermoelectric conversion element

Also Published As

Publication number Publication date
JP2011249746A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP5585314B2 (en) Thermoelectric conversion element and thermoelectric conversion device
JP5424273B2 (en) Thermoelectric conversion element
Wu et al. Room-temperature spin-orbit torque from topological surface states
US9647193B2 (en) Thermoelectric conversion element and thermoelectric conversion device
Uchida et al. Thermoelectric generation based on spin Seebeck effects
JP5267967B2 (en) Spin current heat conversion element and thermoelectric conversion element
JP5339272B2 (en) Spintronic device and information transmission method
JP6143051B2 (en) Spintronics device
JP6398573B2 (en) Spin heat flow sensor and manufacturing method thereof
US10326069B2 (en) Thermoelectric conversion element and method for making the same
WO2013035148A1 (en) Thermoelectric conversion element and thermoelectric conversion module using same
Aravindan et al. Transport properties of novel LaCoTiIn equiatomic quaternary heusler alloy for thermoelectric energy conversion
JP6233311B2 (en) Thermoelectric conversion element and manufacturing method thereof
US20180331273A1 (en) Electromotive film for thermoelectric conversion element, and thermoelectric conversion element
Zhou et al. Seebeck-driven transverse thermoelectric generation in on-chip devices
JP2014072250A (en) Thermoelectric transducer and method for manufacturing the same
Tomita et al. Large Nernst effect and thermodynamics properties in Weyl antiferromagnet
Wang et al. Antiferromagnetic-metal/ferromagnetic-metal periodic multilayers for on-chip thermoelectric generation
Kraft et al. Anomalous Nernst effect in ferromagnetic Mn5Ge3Cx thin films on insulating sapphire
JP2022024463A (en) Thermoelectric conversion material
Otsuki et al. Carrier filtering effect for enhanced thermopower in a body-centered tetragonal ruthenate
JP6172439B2 (en) Spin current thermoelectric transducer
US20230270009A1 (en) Thermoelectric conversion element
Kirihara et al. Spin-Seebeck thermoelectric converter
Ramos et al. Observation of huge thermal spin currents in magnetic multilayers

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R150 Certificate of patent or registration of utility model

Ref document number: 5585314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350