JP2001094162A - Method for using thermoelectric conversion material and thermoelectric conversion element - Google Patents

Method for using thermoelectric conversion material and thermoelectric conversion element

Info

Publication number
JP2001094162A
JP2001094162A JP26983299A JP26983299A JP2001094162A JP 2001094162 A JP2001094162 A JP 2001094162A JP 26983299 A JP26983299 A JP 26983299A JP 26983299 A JP26983299 A JP 26983299A JP 2001094162 A JP2001094162 A JP 2001094162A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
magnetic field
conversion element
temperature gradient
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26983299A
Other languages
Japanese (ja)
Inventor
Osamu Yamashita
治 山下
Yasuyuki Nakamura
恭之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP26983299A priority Critical patent/JP2001094162A/en
Publication of JP2001094162A publication Critical patent/JP2001094162A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for using a thermoelectric conversion element with improved Seebeck coefficient by applying magnetic field to a thermoelectric conversion material, and provide a high-performance thermoelectric element with a large thermoelectric conversion efficiency. SOLUTION: While a magnetic field (x-axial direction) is applied to a thermoelectric conversion material, temperature gradient in the given direction (z-axial direction) is generated to cause a difference in temperatures between electrodes 2 and 3. By using a synergistic effect of the Seebeck effect and the Nernst effect, characteristics in thermoelectric conversion element can be improved by leaps in a simple way.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、熱電変換材料の
性能を飛躍的に高めるた熱電変換素子に係り、熱電変換
材料に磁場を印加し、所要方向の温度勾配を与えて、ゼ
ーベック効果とネルスト(Nernst)効果との相乗効果を利
用して当該材料の熱起電力を向上させた熱電変換材料の
使用方法と熱電変換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion element which dramatically improves the performance of a thermoelectric conversion material, and applies a magnetic field to the thermoelectric conversion material to give a temperature gradient in a required direction, thereby achieving a Seebeck effect and a Nelst effect. The present invention relates to a method of using a thermoelectric conversion material in which the thermoelectric power of the material is improved by utilizing a synergistic effect with the (Nernst) effect, and a thermoelectric conversion element.

【0002】[0002]

【従来の技術】熱電変換素子は、最近の産業界において
要求の高い熱エネルギーの有効活用の観点から実用化が
期待されているデバイスであり、例えば、排熱を利用し
電気エネルギーに変換するシステムや、屋外で簡単に電
気を得るための小型携帯用発電装置、ガス機器の炎セン
サー等、非常に広範囲の用途が検討されている。
2. Description of the Related Art Thermoelectric conversion elements are devices that are expected to be put to practical use from the viewpoint of effective use of thermal energy, which is required in recent industries, and for example, a system that converts waste heat into electric energy. Also, a very wide range of applications such as a small portable power generator for easily obtaining electricity outdoors and a flame sensor for gas appliances are being studied.

【0003】熱電変換素子は、例えば、p型とn型半導体を粉
末冶金的に直接接合して素子となした構成、あるいはp
型とn型半導体を銀ろう等の金属でpn接合して素子とな
した構成などがある。
[0003] A thermoelectric conversion element has, for example, a structure in which a p-type and an n-type semiconductor are directly joined by powder metallurgy to form an element, or
There is a configuration in which a device and an n-type semiconductor are formed as a device by pn junction with a metal such as silver solder.

【0004】前記素子を形成するための熱電変換材料とし
て、高性能を有するIrSb3、Bi2Te 3、PbTe等のカルコゲ
ン系化合物のほか、熱電特性は低いが資源的に豊富なFe
Si2、SiGe等のケイ化物が知られている。
[0004] As a thermoelectric conversion material for forming the element,
IrSb with high performanceThree, BiTwoTe ThreeChalcogen such as PbTe
Fe-based compounds with low thermoelectric properties but abundant resources
SiTwoAnd silicides such as SiGe are known.

【0005】従来の熱電変換素子は、材料に与えた温度勾配
を利用して熱起電力を発生させているが、熱電変換素子
の性能指数(ZT=S2/ρκ、ここでSはゼーベック係数、ρ
は電気抵抗率、κは熱伝導率)は、高いものでも1前後で
あり、十分とは言えないものであった。
[0005] The conventional thermoelectric conversion element generates a thermoelectromotive force by using a temperature gradient given to a material, and the figure of merit of the thermoelectric conversion element (ZT = S2 / ρκ, where S is a Seebeck coefficient, ρ
Is an electrical resistivity, and κ is a thermal conductivity), which is about 1 even at a high level, which is not sufficient.

【0006】[0006]

【発明が解決しようとする課題】すなわち、熱電変換素
子の変換効率は、火力発電の変換効率(約50%)や太陽電
池のそれ(約20%)等に比べて非常に低く、わずか数%にす
ぎず、これが熱電変換素子の実用化を遅らせている主な
原因であるとされている。
That is, the conversion efficiency of a thermoelectric conversion element is very low compared with that of a thermal power generation (about 50%) or that of a solar cell (about 20%), and is only a few percent. It is said that this is the main reason that delays the practical use of thermoelectric conversion elements.

【0007】一方、温度勾配のある熱電材料に磁場を印加す
ると電場が発生することは、Nernst効果(L.D.Landau,E.
M.Lifslitz and L.P.Pitaevskli “Electodynamics ofC
ontinuous Media” ,2nd Edition,pergamon press,P.10
1(1984))として知られている。しかし、従来の熱電変換
素子では、磁場を印加して材料の変換効率を向上させた
構成は提案されていなかった。
On the other hand, the generation of an electric field when a magnetic field is applied to a thermoelectric material having a temperature gradient is due to the Nernst effect (LD Landau, E.
M. Lifslitz and LPPitaevskli “Electodynamics of C
ontinuous Media ”, 2nd Edition, pergamon press, P.10
1 (1984)). However, in a conventional thermoelectric conversion element, a configuration in which a magnetic field is applied to improve material conversion efficiency has not been proposed.

【0008】この発明は、熱電変換材料の性能指数を向上さ
せるための材料研究は現在も活発に行われているが、材
料特性の向上だけでは熱電変換効率の向上には限界があ
ることに鑑み、熱電変換材料に磁場を印加して、ゼーベ
ック係数を向上させた熱電変換材料の使用方法の提供
と、熱電変換効率を大きく向上させた高性能熱電変換素
子の提供を目的としている。
[0008] Although the present invention has been actively researched for improving the figure of merit of thermoelectric conversion materials, the present invention has been considered in that the improvement of thermoelectric conversion efficiency is limited only by the improvement of material properties. Another object of the present invention is to provide a method of using a thermoelectric conversion material in which a Seebeck coefficient is improved by applying a magnetic field to the thermoelectric conversion material, and to provide a high-performance thermoelectric conversion element in which thermoelectric conversion efficiency is greatly improved.

【0009】[0009]

【課題を解決するための手段】発明者らは、高性能熱電
変換素子の提供を目的に、温度勾配のある熱電変換材料
に磁場を印加する方法を種々研究した結果、温度勾配の
方向と直角に磁場を印加し、しかも温度勾配と磁場の両
方向と直角方向に温度勾配が与えられるように電極を配
置した構成を採用することにより、ゼーベック係数が著
しく向上することを知見し、この発明を完成した。
Means for Solving the Problems The inventors of the present invention have studied various methods of applying a magnetic field to a thermoelectric conversion material having a temperature gradient in order to provide a high-performance thermoelectric conversion element. Completed the present invention by finding that the Seebeck coefficient was significantly improved by applying a magnetic field to the electrodes and adopting a configuration in which the electrodes were arranged so that a temperature gradient was applied in the direction perpendicular to both the temperature gradient and the magnetic field. did.

【0010】従来の熱電変換素子の構成では、熱電材料に取
り付けた正負の電極間に温度差が生じさせない方法であ
ったが、この発明では、正負の電極間に温度差を設ける
ことを特徴とし、かかる構成によって印加する磁場が低
くても、熱電変換材料のゼーベック係数が飛躍的に向上
すること利用し、熱電変換素子の変換効率を大きく向上
させたものである。
[0010] In the conventional configuration of the thermoelectric conversion element, there is a method in which a temperature difference is not generated between the positive and negative electrodes attached to the thermoelectric material. However, the present invention is characterized in that a temperature difference is provided between the positive and negative electrodes. With such a configuration, even when the applied magnetic field is low, the Seebeck coefficient of the thermoelectric conversion material is dramatically improved, and the conversion efficiency of the thermoelectric conversion element is greatly improved.

【0011】すなわち、この発明は、熱電変換材料の所要方
向(x軸方向)に磁場Hを印加し、これに直交する方向(z軸
方向)に温度勾配ΔTを付与し、前記二方向に直交する方
向(y軸方向)で温度勾配の高低の各々側から熱起電力を
導出することにより、材料のゼーベック係数を大幅に向
上させることを特徴とする熱電変換材料の使用方法であ
る。
That is, according to the present invention, a magnetic field H is applied in a required direction (x-axis direction) of the thermoelectric conversion material, and a temperature gradient ΔT is given in a direction perpendicular to the direction (z-axis direction). This is a method of using a thermoelectric conversion material characterized in that the thermoelectric power is derived from each side of the temperature gradient in the direction (y-axis direction) to greatly improve the Seebeck coefficient of the material.

【0012】また、この発明は、p型及びn型の熱電変換材料
の所要方向(x軸方向)に磁場Hを印加する手段と、これに
直交する方向(z軸方向)に温度勾配ΔTを付与する手段
と、前記二方向に直交する方向(y軸方向)にpn接続しか
つ温度勾配の高低の各々側から熱起電力を導出する手段
を有する熱電変換素子である。
Also, the present invention provides a means for applying a magnetic field H in a required direction (x-axis direction) of a p-type and n-type thermoelectric conversion material, and a temperature gradient ΔT in a direction perpendicular to the direction (z-axis direction). A thermoelectric conversion element having means for applying and a means for conducting pn connection in a direction (y-axis direction) orthogonal to the two directions and for deriving a thermoelectromotive force from each side of the temperature gradient.

【0013】さらに、この発明は、磁場Hを印加する手段に
永久磁石を用いた熱電変換素子を提案するもので、磁場
Hの印加方向に永久磁石と熱電変換材料が交互に配列さ
れる構成、厚み方向に磁場を発生する板状の永久磁石の
平面上にp型とn型の熱電変換材料を交互に配列した構
成、上記の構成において、p型とn型の熱電変換材料がシ
リコン基板上に交互に配列された構成、板状の永久磁石
とその上に配置される熱電変換材料が、磁場Hの印加方
向に複数対積層配置された構成によって、変換効率を大
きく向上させることが可能である。
[0013] Further, the present invention proposes a thermoelectric conversion element using a permanent magnet as a means for applying a magnetic field H.
A configuration in which permanent magnets and thermoelectric conversion materials are alternately arranged in the direction of application of H, and a configuration in which p-type and n-type thermoelectric conversion materials are alternately arranged on the plane of a plate-shaped permanent magnet that generates a magnetic field in the thickness direction In the above configuration, a configuration in which p-type and n-type thermoelectric conversion materials are alternately arranged on a silicon substrate, a plate-shaped permanent magnet and a thermoelectric conversion material disposed thereon are arranged in a direction in which a magnetic field H is applied. With a configuration in which a plurality of pairs are stacked, conversion efficiency can be greatly improved.

【0014】[0014]

【発明の実施の形態】図1Aに示す直方体の熱電変換材料
1を熱源上に載置したと仮定すると、温度勾配Tは図で下
から上側へのz軸方向に与えられる。ここで図の手前か
ら奥側へのx軸方向に磁場Hを印加する。さらに、温度勾
配Tと磁場Hの両方向に直交する図で左右のy軸方向の熱
電変換材料1の両端面で、かつ正負の電極間に温度差が
生じるように、図で熱電変換材料1の左側面下側の温度
勾配Tの高い側と、右側面上側の温度勾配Tの低い側の各
々に電極2,3を設け、それぞれリードを接続して熱起電
力を導出する構成とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A rectangular parallelepiped thermoelectric conversion material shown in FIG. 1A
Assuming that 1 is placed on the heat source, the temperature gradient T is given in the figure from the bottom to the top in the z-axis direction. Here, a magnetic field H is applied in the x-axis direction from the front to the back of the drawing. Further, in the figure orthogonal to both directions of the temperature gradient T and the magnetic field H, at both end faces of the thermoelectric conversion material 1 in the left and right y-axis directions, and so that a temperature difference occurs between the positive and negative electrodes, Electrodes 2 and 3 are provided on the lower side of the temperature gradient T on the lower left side and on the lower side of the temperature gradient T on the upper side of the right side, respectively. Leads are connected to each other to derive the thermoelectromotive force.

【0015】この発明は、温度勾配Tの方向と直角方向に磁
場Hを印加し、しかも温度勾配Tと磁場Hの両方向と直角
方向に温度勾配Tが与えられるように電極を配置する、
すなわち、正負の電極間に温度差を設けることを特徴と
する。かかる構成によって印加する磁場Hが低くても、
熱電変換材料1のゼーベック係数が飛躍的に向上する。
[0015] According to the present invention, the magnetic field H is applied in a direction perpendicular to the direction of the temperature gradient T, and the electrodes are arranged so that the temperature gradient T is given in a direction perpendicular to both directions of the temperature gradient T and the magnetic field H.
That is, a temperature difference is provided between the positive and negative electrodes. Even if the magnetic field H applied by such a configuration is low,
The Seebeck coefficient of the thermoelectric conversion material 1 is dramatically improved.

【0016】この発明において、電極2,3の間の温度差を小
さくすると、発生する起電力は磁場HによるNernst効果
だけになるため,大きな起電力は得られない。従って、
電極2,3間の温度差を1℃以上にすると、熱電効果とNern
st効果の相乗効果でゼーベック係数が飛躍的に向上す
る。この温度差は5℃を越えるとそれ以上温度差を与え
てもほとんど同じある。好ましい温度差は、50〜100℃
であるが、なお、数百℃となっても磁場効果は十分に発
揮される。
In the present invention, when the temperature difference between the electrodes 2 and 3 is reduced, the generated electromotive force is only the Nernst effect due to the magnetic field H, so that a large electromotive force cannot be obtained. Therefore,
When the temperature difference between the electrodes 2 and 3 is 1 ° C or more, the thermoelectric effect and Nern
The Seebeck coefficient is dramatically improved by the synergistic effect of the st effect. When this temperature difference exceeds 5 ° C., it is almost the same even if a temperature difference is given. Preferred temperature difference is 50-100 ° C
However, the magnetic field effect is sufficiently exhibited even at a temperature of several hundred degrees Celsius.

【0017】この発明において、磁場Hの大きさは特に限定
しないが、1kOe以上とすることにより、前記の相乗効果
が有効に機能する。好ましい磁場強度は、3kOe以上であ
る。
In the present invention, the magnitude of the magnetic field H is not particularly limited, but by setting it to 1 kOe or more, the above-mentioned synergistic effect functions effectively. A preferred magnetic field strength is 3 kOe or more.

【0018】印加する磁場は、いずれの材質、形状の永久磁
石で得られる磁場強度であっても十分である。例えば、
Sm-Co系あるいはNd-Fe-B系の希土類永久磁石で発生する
磁場は、永久磁石を組み込んだ熱電変換素子として実用
化する上で非常に好都合である。特に300℃以上の高温
で熱電変換を行う場合には、磁場発生用磁石としてキュ
リー点の高いSm-Co系(Tc-900℃)永久磁石が好ましく、3
00℃未満ではNd-Fe-B系の永久磁石が好ましい。
The magnetic field to be applied is sufficient even if the magnetic field strength can be obtained from a permanent magnet of any material and shape. For example,
A magnetic field generated by a Sm-Co-based or Nd-Fe-B-based rare earth permanent magnet is very convenient for practical use as a thermoelectric conversion element incorporating a permanent magnet. In particular, when performing thermoelectric conversion at a high temperature of 300 ° C. or higher, a Sm-Co-based (Tc-900 ° C.) permanent magnet having a high Curie point is preferable as a magnet for generating a magnetic field.
When the temperature is lower than 00 ° C., Nd—Fe—B permanent magnets are preferable.

【0019】なお、磁場の印加手段は、上記の永久磁石に限
定されることはなく、電磁コイルなどいずれの磁場発生
装置を用いることが可能である。
The means for applying a magnetic field is not limited to the above-described permanent magnet, and any magnetic field generating device such as an electromagnetic coil can be used.

【0020】この発明において、温度勾配の付与手段は、前
述のごとく大きな温度差を特に必要としないため、熱電
変換材料の一方を加熱あるいは冷却したり、加熱源や冷
却源に接触させるなど、公知のいかなる方法でも良く、
後述の熱電変換素子のモジュール化とともに適宜選定す
ると良い。
In the present invention, since the means for imparting a temperature gradient does not particularly require a large temperature difference as described above, it is known to heat or cool one of the thermoelectric conversion materials, or to contact one of a heating source and a cooling source. Any method of
It may be appropriately selected along with the modularization of the thermoelectric conversion element described later.

【0021】図1Aに示す構成となしたp型熱電変換材料とn型
熱電変換材料を用いて種々構成の熱電変換素子を組み立
てるることができる。また、磁場を印加した熱電変換素
子をモジュール化するには、図1Bに示すように、永久磁
石6の磁場H方向(x軸方向)を温度勾配Tの方向(z軸方向)
と直角でしかも平行に揃えて、p型熱電変換材料4とn型
熱電変換材料5を永久磁石6を挟んで交互に配置すること
により、p/n接合のリード線7,8を高温側、低温側で別々
に接続できる利点がある。またこの配置を採用すること
により、各熱電変換材料4,5の電極間に温度差を自動的
に与えることができる。なお、リード線の方向は、図1B
に3軸方向を示すごとく、図の左端のp型熱電変換材料4
の場合は、高温側のリード線8は図の奥側端面に、低温
側リード線7は手前側端面に接続され、図1Aと同様にy軸
方向となる。
Using the p-type thermoelectric conversion material and the n-type thermoelectric conversion material having the configuration shown in FIG. 1A, various types of thermoelectric conversion elements can be assembled. In addition, in order to modularize the thermoelectric conversion element to which a magnetic field is applied, as shown in FIG.1B, the magnetic field H direction (x-axis direction) of the permanent magnet 6 is changed in the direction of the temperature gradient T (z-axis direction).
And the p-type thermoelectric conversion material 4 and the n-type thermoelectric conversion material 5 are alternately arranged with the permanent magnet 6 interposed therebetween, so that the lead wires 7 and 8 of the p / n junction are on the high temperature side, There is an advantage that it can be connected separately on the low temperature side. Further, by employing this arrangement, a temperature difference can be automatically given between the electrodes of the thermoelectric conversion materials 4 and 5. Note that the direction of the lead wire is
The p-type thermoelectric conversion material 4 at the left end of the figure
In this case, the high-temperature side lead wire 8 is connected to the rear end face in the figure, and the low-temperature side lead wire 7 is connected to the front end face in the drawing, as in FIG. 1A.

【0022】出願人は、先に生産性が良く品質が安定した安
価な熱電変換材料として、例えば、Si半導体中のキャリ
アー濃度が1017〜1021(M/m3)になるようにP,B,Alなど種
々の添加元素の単独又は複合添加とその添加量を調整す
ることにより、ゼーベック係数が極めて大きく、熱電変
換効率を著しく高めたSi基熱電変換材料を提案(WO99/22
410)した。
[0022] The applicant has previously proposed, as an inexpensive thermoelectric conversion material with good productivity and stable quality, for example, P, so that the carrier concentration in a Si semiconductor is 10 17 to 10 21 (M / m 3 ). By adding single or composite additions of various additional elements such as B and Al and adjusting the amounts thereof, the Seebeck coefficient is extremely large, and a Si-based thermoelectric conversion material with significantly improved thermoelectric conversion efficiency is proposed (WO99 / 22
410).

【0023】このSi基材料は、種々の添加元素によって熱伝
導率を下げることが可能で、また従来から知られるSi-G
e系、Fe-Si系に比べ、所定のキャリアー濃度でゼーベッ
ク係数が同等あるいはそれ以上に高くなり、熱電変換材
料として大きな性能指数を示し高性能化できる。
[0023] This Si-based material can reduce the thermal conductivity by various additive elements, and can be formed by a conventionally known Si-G
The Seebeck coefficient becomes equal to or higher than the e-type and Fe-Si-type at a predetermined carrier concentration, and shows a large figure of merit as a thermoelectric conversion material and can achieve high performance.

【0024】また、このSi基材料は図2に示すように、シリ
コン基板10に種々の添加元素を含浸させて所要部をSi基
熱電変換材料とすることが可能である。そこで図2Aに示
すごとく、温度勾配Tを与える基板10の短辺方向(z軸方
向)に短冊状の熱電変換材料を形成して基板10の長辺方
向にp型熱電変換材料11とn型熱電変換材料12を交互に配
置して、p/n接合を該長辺方向(y軸方向)のワイヤー13を
用いて、前記温度勾配Tの高温側、低温側で別々に接続
する。
Further, as shown in FIG. 2, the silicon substrate 10 can be impregnated with various additional elements to make a necessary portion of the Si-based material a Si-based thermoelectric conversion material. Therefore, as shown in FIG.2A, a strip-shaped thermoelectric conversion material is formed in the short side direction (z-axis direction) of the substrate 10 giving the temperature gradient T, and the p-type thermoelectric conversion material 11 and the n-type The thermoelectric conversion materials 12 are alternately arranged, and p / n junctions are separately connected on the high temperature side and the low temperature side of the temperature gradient T using the wires 13 in the long side direction (y-axis direction).

【0025】前記の熱電変換材料を形成したシリコン基板10
と厚み方向(x軸方向)に磁化した板状永久磁石14を所要
パターンで交互に積層して熱電変換素子ユニットを作製
する。
The silicon substrate 10 on which the above-mentioned thermoelectric conversion material is formed
Then, plate-like permanent magnets 14 magnetized in the thickness direction (x-axis direction) are alternately laminated in a required pattern to produce a thermoelectric conversion element unit.

【0026】図2Bに示すごとくシリコン基板10の一方端面側
を、例えば所要の熱源15上に載置する構成により、p型
及びn型の熱電変換材料11,12の厚み方向(x軸方向)に磁
場Hを印加し、これに直交する基板10の載置方向(z軸方
向)に温度勾配ΔTが付与され、前記二方向に直交する図
で前後方向(y軸方向)にpn接続しかつ温度勾配Tの高低の
各々側から熱起電力を導出する構成の熱電変換素子が得
られる。
As shown in FIG. 2B, one end face side of the silicon substrate 10 is placed on a required heat source 15, for example, so that the thickness direction (x-axis direction) of the p-type and n-type thermoelectric conversion materials 11, 12 A magnetic field H is applied to the substrate, and a temperature gradient ΔT is provided in the mounting direction of the substrate 10 (z-axis direction) perpendicular to the magnetic field H, and a pn connection is made in the front-rear direction (y-axis direction) in the drawing orthogonal to the two directions. A thermoelectric conversion element configured to derive a thermoelectromotive force from each of the high and low sides of the temperature gradient T is obtained.

【0027】なお、上記の熱電変換素子は、図2Bに示すごと
く、板状永久磁石14が熱源15に直接接触しないように温
度勾配T方向の寸法を規制してあるが、必要に応じて非
磁性の断熱材を熱源15あるいはシリコン基板10との間に
介在させることが可能であり、寸法規制自体を施すこと
が不要になる場合がある。
As shown in FIG. 2B, the size of the thermoelectric conversion element in the direction of the temperature gradient T is regulated so that the plate-like permanent magnet 14 does not directly contact the heat source 15, but if necessary, Since a magnetic heat insulating material can be interposed between the heat source 15 and the silicon substrate 10, it may not be necessary to perform dimensional control itself.

【0028】また、Si基熱電変換材料は、上記の構成の他、
棒状の材料としても作製可能であり、図3に示すごと
く、板状永久磁石20上の短辺方向に棒状の熱電変換材料
の長手方向を配置し、板状永久磁石20上の長辺方向にp
型熱電変換材料21とn型熱電変換材料22を交互に配置し
て、p/n接合を該長辺方向(y軸方向)のワイヤー23を用い
て、前記温度勾配T(z軸方向)の高温側、低温側で別々に
接続し、さらに熱電変換材料21,22を載置して厚み方向
(x軸方向)に磁化された板状永久磁石20を複数対積層
し、また板状永久磁石20上の熱電変換材料を他の板状永
久磁石20上の熱電変換材料とpn接続することにより、所
要数の熱電変換素子を接続したユニットを作製すること
ができる。
Further, the Si-based thermoelectric conversion material has the above-described structure,
It can also be manufactured as a rod-shaped material, and as shown in FIG. 3, the longitudinal direction of the rod-shaped thermoelectric conversion material is arranged in the short side direction on the plate-shaped permanent magnet 20, and p
Type thermoelectric conversion material 21 and n-type thermoelectric conversion material 22 are alternately arranged, and the p / n junction is formed by using the wire 23 in the long side direction (y-axis direction), and the temperature gradient T (z-axis direction). Connect separately on the high-temperature side and low-temperature side, and place thermoelectric conversion materials 21 and 22 in the thickness direction.
By laminating a plurality of pairs of plate-like permanent magnets 20 magnetized in the (x-axis direction), and connecting the thermoelectric conversion material on the plate-like permanent magnet 20 with the thermoelectric conversion material on the other plate-like permanent magnets 20 by pn connection. A unit to which a required number of thermoelectric conversion elements are connected can be manufactured.

【0029】これも図3Bに示すごとく、各熱電変換材料21,2
2の長手方向の一方端面を熱源25上に載置するように配
置することにより、p型及びn型の熱電変換材料21,22の
厚み方向に磁場Hを印加し、これに直交する各材料の長
手方向に温度勾配ΔTが付与され、前記二方向に直交す
る図で前後方向にpn接続しかつ温度勾配Tの高低の各々
側から熱起電力を導出する構成の熱電変換素子が得られ
る。
As shown in FIG. 3B, each of the thermoelectric conversion materials 21 and 2
By arranging one end face in the longitudinal direction of 2 on the heat source 25, a magnetic field H is applied in the thickness direction of the p-type and n-type thermoelectric conversion materials 21 and 22, and each material orthogonal to this is applied. A temperature gradient ΔT is provided in the longitudinal direction, and a thermoelectric conversion element having a configuration in which the pn connection is made in the front-rear direction in the drawing orthogonal to the two directions and the thermoelectromotive force is derived from each of the high and low sides of the temperature gradient T is obtained.

【0030】この発明において、熱電変換材料は、前記した
新規のSi基熱電変換材料の他、公知のいずれの材質も採
用可能である。特に、Bi2Te3系の他、Siに、Ge,C,Snの
うち少なくとも1種を5〜10原子%、SiをP型半導体または
N型半導体となすための添加元素のうち少なくとも1種を
0.001原子%〜20原子%含有し、多結晶Siの粒界部に前記G
e,C,Snの1種以上あるいはさらに添加元素の1種以上が析
出した結晶組織を有するSi基熱電変換材料などの、Geを
20原子%以下含有するSi基熱電変換材料は熱電変換効率
が著しく高く好ましい。また、公知のSi-Ge合金で、従
来よりGeの含有量が少なく20原子%以下含有するSi-Ge合
金からなる熱電変換材料もゼーベック係数が向上し好適
である。
[0030] In the present invention, as the thermoelectric conversion material, any known material can be adopted in addition to the above-mentioned novel Si-based thermoelectric conversion material. In particular, in addition to Bi 2 Te 3 system, Si, at least one of Ge, C, Sn is 5 to 10 atomic%, Si is a P-type semiconductor or
At least one of the additional elements for forming an N-type semiconductor
0.001 atomic% to 20 atomic%, and the G
Ge, such as a Si-based thermoelectric conversion material having a crystal structure in which one or more of e, C, and Sn or one or more of additional elements are precipitated.
A Si-based thermoelectric conversion material containing not more than 20 atomic% is preferable because of its extremely high thermoelectric conversion efficiency. Also, a thermoelectric conversion material made of a known Si-Ge alloy, which has a Ge content lower than that of the conventional Si-Ge alloy and has a content of 20 atomic% or less, is preferable because the Seebeck coefficient is improved.

【0031】[0031]

【実施例】N型、P型のSi基熱電変換材料を作製するため
に、高純度Si(10N)、Ge(4N)を表1に示すような割合で配
合した後、Arガス雰囲気中でアーク溶解した。得られた
ボタン状のインゴットを5×5×15mmの形状に切断加工
し、ゼーベック係数を測定した。また、Bi2Te3系試料
は、表2に示す組成の市販のサンプルを用いてゼーベッ
ク係数を測定した。
EXAMPLE In order to prepare N-type and P-type Si-based thermoelectric conversion materials, high-purity Si (10N) and Ge (4N) were blended at the ratios shown in Table 1, and then mixed in an Ar gas atmosphere. Arc melted. The obtained button-shaped ingot was cut into a shape of 5 × 5 × 15 mm, and the Seebeck coefficient was measured. For the Bi 2 Te 3 sample, a commercially available sample having the composition shown in Table 2 was used to measure the Seebeck coefficient.

【0032】試料のゼーベック係数は、両端の電極をPtにし
て、高温部と低温部の平均温度を50℃一定にして、熱電
材料にかかる磁場と温度差を変えて測定した。磁場強度
はNd-Fe-B永久磁石間の距離を変えることにより調整し
た。また、その時発生した電力は、電圧(mv/K)と電流値
(mA/K)を測定することにより行った。測定結果を表3、
表4に示す。
The Seebeck coefficient of the sample was measured by setting the electrodes at both ends to Pt, keeping the average temperature of the high temperature part and the low temperature part constant at 50 ° C., and changing the magnetic field and the temperature difference applied to the thermoelectric material. The magnetic field strength was adjusted by changing the distance between the Nd-Fe-B permanent magnets. The power generated at that time is the voltage (mv / K) and the current value
(mA / K) was measured. Table 3 shows the measurement results.
It is shown in Table 4.

【0033】[0033]

【表1】 【table 1】

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】この発明は、熱電変換材料に磁場を印加
し、所要方向の温度勾配を与えてかつ電極間に温度差を
つけ、ゼーベック効果とネルスト(Nernst)効果との相乗
効果を利用することにより、簡単に熱電変換材料の特性
を飛躍的に向上させることができる。また、この発明に
よって熱電変換素子を構成する際に、永久磁石により磁
場を発生させる構成を採用することから、比較的簡単な
構造で容易に作製でき、また使用時もメインテナンスフ
リーで使用できる利点がある。
The present invention utilizes a synergistic effect of the Seebeck effect and the Nernst effect by applying a magnetic field to the thermoelectric conversion material, giving a temperature gradient in a required direction and providing a temperature difference between the electrodes. Thereby, the characteristics of the thermoelectric conversion material can be dramatically improved. In addition, when a thermoelectric conversion element is configured according to the present invention, a configuration in which a magnetic field is generated by a permanent magnet is employed, so that the thermoelectric conversion element can be easily manufactured with a relatively simple structure, and can be used without any maintenance during use. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aはこの発明による熱電変換材料の使用方法を示
す該材料の斜視説明図、Bはこの発明による熱電変換素
子の構成例を示す斜視説明図である。
FIG. 1A is an explanatory perspective view of a thermoelectric conversion material according to the present invention, showing a method of using the material, and FIG. 1B is an explanatory perspective view showing a configuration example of a thermoelectric conversion element according to the present invention.

【図2】Aはこの発明による熱電変換素子の他の構成例を
示す斜視説明図、Bは正面説明図である。
FIG. 2A is a perspective explanatory view showing another configuration example of the thermoelectric conversion element according to the present invention, and B is a front explanatory view.

【図3】Aはこの発明による熱電変換素子の他の構成例を
示す斜視説明図、Bは正面説明図である。
FIG. 3A is a perspective explanatory view showing another configuration example of the thermoelectric conversion element according to the present invention, and FIG. 3B is a front explanatory view.

【符号の説明】[Explanation of symbols]

1 熱電変換材料 2,3 電極 4,11,21 p型熱電変換材料 5,12,22 n型熱電変換材料 6 永久磁石 7,8 リード線 10 シリコン基板 13,23 ワイヤー 14,20 板状永久磁石 15,25 熱源 1 Thermoelectric conversion material 2,3 Electrode 4,11,21 p-type thermoelectric conversion material 5,12,22 n-type thermoelectric conversion material 6 Permanent magnet 7,8 Lead wire 10 Silicon substrate 13,23 Wire 14,20 Plate permanent magnet 15,25 heat source

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 熱電変換材料の所要方向(x軸方向)に磁場
Hを印加し、これに直交する方向(z軸方向)に温度勾配Δ
Tを付与し、前記二方向に直交する方向(y軸方向)で温度
勾配の高低の各々側から熱起電力を導出する熱電変換材
料の使用方法。
1. A magnetic field in a required direction (x-axis direction) of a thermoelectric conversion material.
H, and the temperature gradient Δ in the direction (z-axis direction)
A method for using a thermoelectric conversion material that gives T and derives thermoelectromotive force from each side of a temperature gradient in a direction orthogonal to the two directions (y-axis direction).
【請求項2】 p型及びn型の熱電変換材料の所要方向(x
軸方向)に磁場Hを印加する手段と、これに直交する方向
(z軸方向)に温度勾配ΔTを付与する手段と、前記二方向
に直交する方向(y軸方向)で温度勾配の高低の各々側か
ら熱起電力を導出する手段を有する熱電変換素子。
2. The required direction of the p-type and n-type thermoelectric conversion materials (x
A means for applying a magnetic field H in the (axial direction) and a direction orthogonal to this
A thermoelectric conversion element having means for imparting a temperature gradient ΔT in the (z-axis direction) and means for deriving thermoelectromotive force from each of the high and low sides of the temperature gradient in a direction (y-axis direction) orthogonal to the two directions.
【請求項3】 p型及びn型の熱電変換材料の所要方向(x
軸方向)に磁場Hを印加する手段と、これに直交する方向
(z軸方向)に温度勾配ΔTを付与する手段と、前記二方向
に直交する方向(y軸方向)にpn接続しかつ温度勾配の高
低の各々側から熱起電力を導出する手段を有する熱電変
換素子。
3. The required direction of the p-type and n-type thermoelectric conversion materials (x
A means for applying a magnetic field H in the (axial direction) and a direction orthogonal to this
(Z-axis direction) a means for imparting a temperature gradient ΔT, and a thermoelectric device having a pn connection in a direction (y-axis direction) orthogonal to the two directions and a means for deriving a thermoelectromotive force from each side of the temperature gradient. Conversion element.
【請求項4】 熱起電力を導出するために材料端面に設
けた電極間方向の温度勾配ΔTを1℃以上にした請求項2
又は請求項3に記載の熱電変換素子。
4. A temperature gradient ΔT in a direction between electrodes provided on a material end face for deriving a thermoelectromotive force is set to 1 ° C. or more.
Or the thermoelectric conversion element according to claim 3.
【請求項5】 磁場Hの大きさを1kOe以上とする請求項2
又は請求項3に記載の熱電変換素子。
5. The magnetic field H having a magnitude of 1 kOe or more.
Or the thermoelectric conversion element according to claim 3.
【請求項6】 磁場Hを印加する手段が永久磁石である請
求項2又は請求項3に記載の熱電変換素子。
6. The thermoelectric conversion element according to claim 2, wherein the means for applying the magnetic field H is a permanent magnet.
【請求項7】 熱電変換材料がBi2Te3系あるいはGeを20
原子%以下含有するSi基材料またはSi-Ge合金である請求
項2又は請求項3に記載の熱電変換素子。
7. The thermoelectric conversion material is a Bi 2 Te 3 system or Ge
4. The thermoelectric conversion element according to claim 2, wherein the thermoelectric conversion element is a Si-based material or a Si-Ge alloy containing at most atomic%.
【請求項8】 磁場Hの印加方向に永久磁石と熱電変換材
料が交互に配列される請求項6に記載の熱電変換素子。
8. The thermoelectric conversion element according to claim 6, wherein permanent magnets and thermoelectric conversion materials are alternately arranged in a direction in which the magnetic field H is applied.
【請求項9】 厚み方向に磁場を発生する板状の永久磁
石の平面上にp型とn型の熱電変換材料を交互に配列した
請求項6に記載の熱電変換素子。
9. The thermoelectric conversion element according to claim 6, wherein p-type and n-type thermoelectric conversion materials are alternately arranged on a plane of a plate-shaped permanent magnet that generates a magnetic field in a thickness direction.
【請求項10】 p型とn型の熱電変換材料がシリコン基板
上に交互に配列された請求項9に記載の熱電変換素子。
10. The thermoelectric conversion element according to claim 9, wherein p-type and n-type thermoelectric conversion materials are alternately arranged on a silicon substrate.
【請求項11】 板状の永久磁石とその上に配置される熱
電変換材料が、磁場Hの印加方向に複数対積層配置され
た請求項9に記載の熱電変換素子。
11. The thermoelectric conversion element according to claim 9, wherein a plurality of plate-shaped permanent magnets and thermoelectric conversion materials disposed thereon are laminated in a direction in which the magnetic field H is applied.
JP26983299A 1999-09-24 1999-09-24 Method for using thermoelectric conversion material and thermoelectric conversion element Pending JP2001094162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26983299A JP2001094162A (en) 1999-09-24 1999-09-24 Method for using thermoelectric conversion material and thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26983299A JP2001094162A (en) 1999-09-24 1999-09-24 Method for using thermoelectric conversion material and thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2001094162A true JP2001094162A (en) 2001-04-06

Family

ID=17477811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26983299A Pending JP2001094162A (en) 1999-09-24 1999-09-24 Method for using thermoelectric conversion material and thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2001094162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017406A1 (en) * 2000-08-24 2002-02-28 Sumitomo Special Metals Co., Ltd. Bi GROUP THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002017406A1 (en) * 2000-08-24 2002-02-28 Sumitomo Special Metals Co., Ltd. Bi GROUP THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT

Similar Documents

Publication Publication Date Title
Tritt et al. Thermoelectric materials, phenomena, and applications: a bird's eye view
US6653548B2 (en) Thermoelectric conversion material, method for manufacturing same, and thermoelectric conversion element
Nemoto et al. Development of an Mg 2 Si unileg thermoelectric module using durable Sb-doped Mg 2 Si legs
RU2008148931A (en) LOW SIZED THERMOELECTRICS MADE BY ETCHING SEMICONDUCTOR PLATES
US20140209140A1 (en) Stacked thermoelectric conversion module
Hung et al. Segmented thermoelectric oxide‐based module for high‐temperature waste heat harvesting
KR20130071531A (en) Manufacturing method of thermoelectric device and cooling thermoelectric moudule using the same
Murata et al. Prototype fabrication and performance evaluation of a thermoelectric module operating with the Nernst effect
Nemoto et al. Characteristics of a pin–fin structure thermoelectric uni-leg device using a commercial n-type Mg 2 Si source
US10177296B2 (en) Thermoelectric conversion element and thermoelectric conversion module using same
Nemoto et al. Improvement in the durability and heat conduction of uni-leg thermoelectric modules using n-type Mg 2 Si legs
CN106062978A (en) Fabrication of stable electrode/diffusion barrier layers for thermoelectric filled skutterudite devices
US20230102920A1 (en) Vertical thermoelectric conversion element and device with thermoelectric power generation application or heat flow sensor using same
JP2002084005A (en) Thermoelectric module
JP2001217469A (en) Thermoelectric conversion element and its manufacturing method
JP4167761B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2001094162A (en) Method for using thermoelectric conversion material and thermoelectric conversion element
JP2001168403A (en) Thermoelectric conversion element
JP2002064228A (en) Bi-BASED THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC TRANSDUCER
Lee Thermoelectric Generators
JP2003060244A (en) Cooling element and thermoelectric conversion element
WO2002017406A1 (en) Bi GROUP THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT
US9761779B2 (en) Thermoelectric conversion material
JPH11195817A (en) Thermoelectric conversion element
US3664881A (en) Thermomagnetic device