JP2002139539A - Power-supply current measuring method and power- supply current measuring device for semiconductor device - Google Patents
Power-supply current measuring method and power- supply current measuring device for semiconductor deviceInfo
- Publication number
- JP2002139539A JP2002139539A JP2000330290A JP2000330290A JP2002139539A JP 2002139539 A JP2002139539 A JP 2002139539A JP 2000330290 A JP2000330290 A JP 2000330290A JP 2000330290 A JP2000330290 A JP 2000330290A JP 2002139539 A JP2002139539 A JP 2002139539A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- current
- semiconductor device
- current measuring
- under test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は半導体デバイスに
流れる電源電流を試験中の試験装置以外の他の試験装置
が安定に測定することができる半導体デバイスの電源電
流測定方法及びこの測定方法を用いて構成した電源電流
測定装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a power supply current of a semiconductor device and a method of measuring the power supply current flowing through the semiconductor device, which can be stably measured by a test apparatus other than the test apparatus under test. The present invention relates to a configured power supply current measuring device.
【0002】[0002]
【従来の技術】従来より半導体デバイスの試験は半導体
デバイスの機能を試験する機能試験と、各端子の直流特
性が予定した特性で製造されているか否かを試験する直
流試験とに大別される。機能試験は被試験半導体デバイ
スに所定のパターン信号を印加し、そのパターン信号に
対する応答と、期待値を比較して被試験半導体デバイス
が正しく動作しているか否かを判定して試験が行われ
る。2. Description of the Related Art Conventionally, semiconductor device tests are roughly classified into a function test for testing the function of the semiconductor device and a DC test for testing whether or not the DC characteristics of each terminal are manufactured with predetermined characteristics. . In the functional test, a test is performed by applying a predetermined pattern signal to the semiconductor device under test and comparing the response to the pattern signal with an expected value to determine whether the semiconductor device under test is operating properly.
【0003】直流試験は被試験半導体デバイスの各端子
(入出力端子及び電源端子を含む)に所定の電圧を印加
し、この電圧印加状態で予定した電流を端子から引き出
せるか、或いは所定の電流を端子に吸い込ませることが
できるかを試験する電圧印加電流測定試験と、端子に所
定の電流を流している状態でその端子に所定の電圧が発
生するか否かを試験する電流印加電圧測定試験とが行わ
れている。図5に電圧印加電流測定試験の概要を示す。
図中100はテストシステム、200はテストヘッドを
示す。ここではテストシステム100とテストヘッド2
00を含めて半導体デバイス試験装置と称することにす
る。図5に示す例では被試験半導体デバイスDUTの電
源端子VTにテストシステム100に設けた直流電源1
0から電源供給線路401を通じて所定の電源電圧VDD
を印加し、この電圧VDDの印加状態で被試験半導体デバ
イスDUTに所定の電源電流Idが流れるか否かを試験
している状態を示す。In a DC test, a predetermined voltage is applied to each terminal (including an input / output terminal and a power supply terminal) of a semiconductor device under test, and a predetermined current can be extracted from the terminal in this voltage applied state, or a predetermined current can be applied. A voltage applied current measurement test that tests whether a terminal can be sucked, and a current applied voltage measurement test that tests whether a predetermined voltage is generated at a terminal while a predetermined current is flowing through the terminal. Has been done. FIG. 5 shows the outline of the voltage application current measurement test.
In the figure, 100 indicates a test system, and 200 indicates a test head. Here, the test system 100 and the test head 2
Here, the semiconductor device test apparatus will be referred to as “00”. In the example shown in FIG. 5, the DC power supply 1 provided in the test system 100 is connected to the power supply terminal VT of the semiconductor device under test DUT.
0 through the power supply line 401 to a predetermined power supply voltage V DD
Is applied to test the semiconductor device DUT under the application of the voltage V DD to determine whether or not a predetermined power supply current Id flows.
【0004】直流電源10はオペアンプ11と、このオ
ペアンプ11の非反転入力端子に被試験半導体デバイス
DUTの端子(この場合は電源端子VT)に印加すべき
電圧VDDを与える直流電圧源12と、オペアンプ11か
ら被試験半導体デバイスDUTに供給される電流(この
場合は電源電流Id)を測定するための電流検出用抵抗
器13と、この電流検出用抵抗器13に発生する電圧を
取り込んで電流Idを測定する電流測定手段14とを装
備し、直流電圧源12の電圧を変化させることにより、
被試験半導体デバイスDUTの端子VTに印加する電圧
を変化させ、各電圧毎に電流値を測定する。A DC power supply 10 includes an operational amplifier 11, a DC voltage source 12 that supplies a non-inverting input terminal of the operational amplifier 11 with a voltage V DD to be applied to a terminal of the semiconductor device under test DUT (in this case, a power supply terminal VT), A current detection resistor 13 for measuring a current (in this case, a power supply current Id) supplied from the operational amplifier 11 to the semiconductor device DUT under test, and a voltage generated in the current detection resistor 13 is taken in to obtain a current Id. By measuring the voltage of the DC voltage source 12
The voltage applied to the terminal VT of the semiconductor device under test DUT is changed, and the current value is measured for each voltage.
【0005】オペアンプ11の反転入力端子にはセンス
ライン402を通じて被試験半導体デバイスDUTの電
源端子に印加する電圧VDDを帰還させ、電源端子VTに
直流電圧源に供給する電圧VDDと同じ電圧が正確に印加
される構成としている。機能試験は図5には特に示して
いないが、パターン発生器からパターン信号を発生さ
せ、このパターン信号を被試験半導体デバイスDUTに
印加し、その応答信号を被試験デバイスDUTから取り
出し、この応答信号とパターン発生器が出力する期待値
とを比較し、その比較結果に不一致を検出することによ
り不良個所を検出している。The voltage V DD applied to the power supply terminal of the semiconductor device under test DUT is fed back to the inverting input terminal of the operational amplifier 11 through the sense line 402, and the same voltage as the voltage V DD supplied to the DC voltage source is supplied to the power supply terminal VT. It is configured to be applied accurately. Although not particularly shown in FIG. 5, the functional test generates a pattern signal from the pattern generator, applies the pattern signal to the semiconductor device under test DUT, extracts the response signal from the device under test DUT, Is compared with the expected value output by the pattern generator, and a mismatch is detected in the comparison result to detect a defective portion.
【0006】テストシステム100ではこの不一致の検
出により不良発生個所を検出することができるが、その
発生個所の検出は例えば被試験半導体デバイスDUTが
メモリの場合は不良を発生したアドレス(仮想空間)が
特定されるだけで、半導体チップ内の不良位置(場所)
特定することはできない。このため、不良の配線部分を
チップ上の位置として特定しようとする各種の試みがな
されている。その一つの方法として被試験半導体デバイ
スDUTをテストシステム100により機能試験を実行
し、不良動作を検出する毎に半導体デバイスを不良発生
状態に維持させ、この状態で例えば被試験半導体デバイ
スDUTの半導体チップに対して微小直径を持つレーザ
ービームを照射し、そのレーザービームを半導体チップ
に対して面走査させ、この面走査によりレーザービーム
が不良個所をヒットすることにより電源電流が正又は負
に変動することを検出して不良個所を直接位置として特
定する不良個所の検索方法が考えられている。In the test system 100, a location where a failure has occurred can be detected by detecting this mismatch. For example, when the semiconductor device under test DUT is a memory, the location (virtual space) where the failure occurred is detected when the semiconductor device under test DUT is a memory. Defect position (location) in semiconductor chip just by being specified
It cannot be specified. For this reason, various attempts have been made to specify a defective wiring portion as a position on a chip. As one of the methods, a functional test is performed on the semiconductor device under test DUT by the test system 100, and the semiconductor device is maintained in a failure occurrence state each time a defective operation is detected. Irradiates a laser beam with a very small diameter to the surface of the semiconductor chip, and scans the surface of the semiconductor chip with the laser beam. There has been proposed a method of searching for a defective portion by detecting a defective portion as a direct position.
【0007】図6はその不良個所検索装置を併設した使
用状況を示す。テストシステム100は被試験半導体デ
バイスDUTの機能試験を実行し、不良個所を検出する
ために被試験半導体デバイスDUTに接続される。被試
験半導体デバイスDUTの不良動作部分が検出される
と、その不良動作部分で機能試験を一時中断し、不良個
所検索装置のような他の試験装置300に継ぎ替える。
他の試験装置300にも直流電源30が設けられ、この
直流電源30から被試験半導体デバイスDUTに電源電
圧VDDを印加すると共に、電流測定手段34で被試験半
導体デバイスDUTに流れる電源電流Idを測定し電源
電流Idが変動することを検出する。FIG. 6 shows a state of use in which the defective portion searching device is provided. The test system 100 is connected to the semiconductor device under test DUT in order to execute a function test of the semiconductor device under test DUT and detect a defective portion. When a malfunctioning part of the semiconductor device under test DUT is detected, the function test is temporarily interrupted at the malfunctioning part, and the test is replaced with another test apparatus 300 such as a malfunctioning location search apparatus.
The other test apparatus 300 is also provided with a DC power supply 30. The DC power supply 30 applies the power supply voltage V DD to the semiconductor device DUT under test, and the current measuring means 34 detects the power supply current Id flowing through the semiconductor device DUT under test. It measures and detects that the power supply current Id fluctuates.
【0008】テストシステム100から他の試験装置3
00への継ぎ替えはスイッチ35をオフにすることによ
って行われる。尚、ダイオード36は他の試験装置30
0側の直流電源30のオペアンプ31を保護するための
逆流阻止用のダイオードである。[0008] From the test system 100 to another test apparatus 3
The switching to 00 is performed by turning off the switch 35. The diode 36 is connected to the other test equipment 30
This is a diode for preventing backflow for protecting the operational amplifier 31 of the DC power supply 30 on the 0 side.
【0009】[0009]
【発明が解決しようとする課題】図6に示した他の試験
装置300はその一例として上述したように被試験半導
体デバイスDUTに流れる電源電流Idの変動を検出し
て不良個所を特定しようとする試験装置とした場合、ス
イッチ35をオフに開く際に電源電圧VDDを変動させて
しまい、この電源電圧の変動により電源電流Idを変動
させ誤った判定を下すおそれがあることと、被試験半導
体デバイスDUTの状態が変化し、不良発生状態から状
態が遷移してしまう恐れがある。As another example, the other test apparatus 300 shown in FIG. 6 detects a variation in the power supply current Id flowing through the semiconductor device under test DUT and specifies a defective portion as described above. In the case of a test apparatus, when the switch 35 is turned off, the power supply voltage VDD fluctuates, and the fluctuation of the power supply voltage may fluctuate the power supply current Id to make an erroneous determination. There is a possibility that the state of the device DUT changes and the state transitions from the failure occurrence state.
【0010】また、テストシステム100及び他の試験
装置300と被試験半導体デバイスDUTとの間を接続
する電源供給線路401及びセンスライン402にノイ
ズが重畳すると、このノイズを電源電流の変動として捕
らえてしまう不都合が生じる。つまり、他の試験装置3
00に搭載されている直流電源30は電源電流Idの変
動を感度良く検出するように作られている。このため
に、電源供給線路401或いはセンスライン402にノ
イズが重畳されると、そのノイズを電源電流の変動とし
て誤って検出してしまう恐れがある。When noise is superimposed on the power supply line 401 and the sense line 402 connecting the test system 100 and another test apparatus 300 to the semiconductor device under test DUT, the noise is captured as a fluctuation in the power supply current. This causes inconvenience. That is, the other test devices 3
The DC power supply 30 mounted on the power supply 00 is configured to detect a change in the power supply current Id with high sensitivity. For this reason, when noise is superimposed on the power supply line 401 or the sense line 402, the noise may be erroneously detected as a fluctuation in the power supply current.
【0011】この欠点を解決する方法としては図6に点
線で示すように被試験半導体デバイスDUTの電源端子
VTの近傍にノイズ除去用のバイパスコンデンサCPを
接続することが考えられる。然し乍ら、このバイパスコ
ンデンサCPを接続した場合にはバイパスコンデンサC
Pを流れるリーク電流Irも電流測定手段34で測定さ
れてしまう欠点がある。つまり、被試験半導体デバイス
DUTがCMOS構造の半導体デバイスであった場合、
この半導体デバイスが静止している状態(ここでは不良
発生個所で静止させている)では電源電流Idは微小値
となる。更にノイズ除去用のバイパスコンデンサCPを
接続すると、バイパスコンデンサCPに流れるリーク電
流Irが被試験半導体デバイスDUTに流れる電源電流
に重畳して流れる。電源電流Idは上述のように微少で
あることから、リーク電流Irが占める割合が高くな
り、電源電流が変動することを検出するための分解能が
低下し、測定精度を低下させる要因となる。また、バイ
パスコンデンサCPを接続することにより、電源電流の
変動を平滑してしまう方向に動作することにより、電源
電流が変動する様子を検出することが難しくなる欠点も
生じる。As a method for solving this drawback, it is conceivable to connect a bypass capacitor CP for removing noise near the power supply terminal VT of the semiconductor device under test DUT as shown by a dotted line in FIG. However, when this bypass capacitor CP is connected, the bypass capacitor C
There is a disadvantage that the leak current Ir flowing through P is also measured by the current measuring means 34. That is, if the semiconductor device under test DUT is a semiconductor device having a CMOS structure,
In a state where the semiconductor device is at rest (here, at the place where the failure occurs), the power supply current Id has a small value. When a noise removing bypass capacitor CP is further connected, a leak current Ir flowing through the bypass capacitor CP is superimposed on a power supply current flowing through the semiconductor device DUT under test and flows. Since the power supply current Id is very small as described above, the ratio occupied by the leak current Ir increases, and the resolution for detecting the fluctuation of the power supply current decreases, which causes a reduction in measurement accuracy. Further, by connecting the bypass capacitor CP, the power supply current operates in a direction in which the fluctuation of the power supply current is smoothed, so that there is a disadvantage that it is difficult to detect the fluctuation of the power supply current.
【0012】また、従来は他の試験装置300にも直流
電源30を搭載しなければならないため、コストが高く
なる欠点もある。この発明の目的は他の試験装置に直流
電源30を搭載しなくてもよく、然もノイズ除去用のバ
イパスコンデンサを接続し、ノイズを除去した状態でも
正確に電源電流の測定を行うことができる半導体デバイ
スの電源電流測定方法と、この電源電流測定方法を用い
た電源電流測定装置を提供しようとするものである。Further, conventionally, the DC power supply 30 must also be mounted on another test apparatus 300, so that there is a disadvantage that the cost is increased. An object of the present invention is that the DC power supply 30 does not need to be mounted on another test apparatus, and a bypass capacitor for noise removal is connected, and the power supply current can be accurately measured even in a state where the noise is removed. It is an object of the present invention to provide a power supply current measurement method for a semiconductor device and a power supply current measurement device using the power supply current measurement method.
【0013】[0013]
【課題を解決するための手段】この発明の請求項1で
は、被試験半導体デバイスに所定の電源電圧を印加し、
被試験半導体デバイスを動作状態に維持する被試験半導
体デバイス用の直流電源を装備した半導体デバイス試験
装置において、被試験半導体デバイスへの電源供給系路
に間接型電流測定手段を介挿し、この間接型電流測定手
段により被試験半導体デバイスに流れる電流を間接的に
測定して被試験半導体デバイスに流れる電源電流を測定
する半導体デバイスの電源電流測定方法を提案する。According to a first aspect of the present invention, a predetermined power supply voltage is applied to a semiconductor device under test.
In a semiconductor device test apparatus equipped with a DC power supply for a semiconductor device under test for maintaining the semiconductor device under test in an operating state, an indirect type current measuring means is inserted into a power supply line to the semiconductor device under test, and A method of measuring a power supply current of a semiconductor device in which a current flowing through a semiconductor device under test is indirectly measured by a current measuring means to measure a power supply current flowing through the semiconductor device under test.
【0014】この発明の請求項2では、被試験半導体デ
バイスに所定の電源電圧を印加し、被試験半導体デバイ
スを動作状態に維持する直流電源を装備した半導体デバ
イス試験装置において、直流電源から被試験半導体デバ
イスに電源電流を供給する電源供給線路を流れる電源電
流を電源供給線路から分離された回路で間接的に測定す
る間接型電流測定手段と、この間接型電流測定手段が測
定した測定値を電圧として出力する電圧出力回路と、を
付加して構成した電源電流測定装置を提案する。According to a second aspect of the present invention, in a semiconductor device test apparatus equipped with a DC power supply for applying a predetermined power supply voltage to a semiconductor device under test and maintaining the semiconductor device under test in an operating state, An indirect current measuring means for indirectly measuring a power supply current flowing through a power supply line for supplying a power supply current to a semiconductor device by a circuit separated from the power supply line; and a voltage value measured by the indirect type current measuring means. The present invention proposes a power supply current measuring device that is configured by adding a voltage output circuit that outputs a power supply current.
【0015】この発明の請求項3では、請求項2記載の
電源電流測定装置において、間接型電流測定手段をカレ
ントミラー回路によって構成し、電圧出力回路はカレン
トミラー回路の二次電流回路に接続した電流検出用抵抗
器によって構成した電源電流測定装置を提案する。この
発明の請求項4では、請求項2記載の電源電流測定装置
において、間接型電流測定手段は電源供給線路から発生
する磁界を検出する磁界検出器によって構成し、この磁
界検出器が検出した測定値を電圧として出力する構成と
した電源電流測定装置を提案する。According to a third aspect of the present invention, in the power supply current measuring device according to the second aspect, the indirect type current measuring means is constituted by a current mirror circuit, and the voltage output circuit is connected to a secondary current circuit of the current mirror circuit. We propose a power supply current measurement device composed of current detection resistors. According to a fourth aspect of the present invention, in the power supply current measuring apparatus according to the second aspect, the indirect type current measuring means comprises a magnetic field detector for detecting a magnetic field generated from the power supply line, and the measurement detected by the magnetic field detector. A power supply current measuring device configured to output a value as a voltage is proposed.
【0016】この発明の請求項5では、請求項3記載の
電源電流測定装置において、間接型電流測定手段は、電
源供給線路を流れる電流をこの電流に対応した電界に変
換する電流−電界変換器と、この電流−電界変換器で変
換した電界により光信号を変調する光変調器と、この光
変調器が変調した光信号から電流に対応した電圧信号を
出力する光−電気変換器とによって構成した電源電流測
定装置を提案する。この発明の請求項6では、請求項
2、3、4、5記載の電源電流測定装置において、間接
型電流測定手段を被試験半導体デバイスの電源端子に可
及的に近づけて配置すると共に、間接型電流測定手段の
直流電源側にノイズ除去用のバイパスコンデンサを接続
した構成とした電源電流測定装置を提案する。According to a fifth aspect of the present invention, in the power supply current measuring device according to the third aspect, the indirect type current measuring means converts a current flowing through the power supply line into an electric field corresponding to the current. An optical modulator that modulates an optical signal with an electric field converted by the current-electric field converter, and an optical-electrical converter that outputs a voltage signal corresponding to a current from the optical signal modulated by the optical modulator. The proposed power supply current measuring device is proposed. According to a sixth aspect of the present invention, in the power supply current measuring device according to the second, third, fourth, and fifth aspects, the indirect type current measuring means is arranged as close as possible to a power supply terminal of the semiconductor device under test. The present invention proposes a power supply current measuring device having a configuration in which a bypass capacitor for noise removal is connected to the DC power supply side of the mold current measuring means.
【0017】[0017]
【作用】この発明の構成によれば、被試験半導体デバイ
スの電源供給線路から分離した回路で間接的に被試験半
導体デバイスに供給される電源電流を測定し、その測定
結果を電圧値として出力するから、他の試験装置はこの
電圧値を測定するだけで被試験半導体デバイスに流れる
電源電流が変動する現象を検出することができる。この
結果、他の試験装置には被試験半導体デバイスを動作状
態に維持させるための直流電源を設ける必要がない。ま
た、直流電源から被試験半導体デバイスに供給する電流
測定手段を設ける必要がなく、単に精度の良い電圧測定
器だけを設ければよく、他の試験装置の製造コストを低
減することができる。According to the structure of the present invention, the power supply current supplied indirectly to the semiconductor device under test is measured by a circuit separated from the power supply line of the semiconductor device under test, and the measurement result is output as a voltage value. Therefore, another test apparatus can detect a phenomenon in which the power supply current flowing through the semiconductor device under test varies only by measuring the voltage value. As a result, it is not necessary to provide a DC power supply for maintaining the semiconductor device under test in an operating state in another test apparatus. Further, there is no need to provide a current measuring means for supplying a semiconductor device under test from a DC power supply, and only a high-accuracy voltage measuring device needs to be provided, and the manufacturing cost of another test apparatus can be reduced.
【0018】また、請求項6で提案するバイパスコンデ
ンサを設けた構成とした場合には、電源供給線路に重畳
したノイズは開接型電流測定手段の手前でバイパスコン
デンサで側路され間接型電流測定手段には流れない。従
って、ノイズによる影響は軽減され精度の良い測定を行
うことができる。Further, in the case where the bypass capacitor proposed in claim 6 is provided, the noise superimposed on the power supply line is bypassed by the bypass capacitor before the open-type current measuring means, and the indirect current measurement is performed. Does not flow to the means. Therefore, the influence of noise is reduced and accurate measurement can be performed.
【0019】[0019]
【発明の実施の形態】図1にこの発明による半導体デバ
イスの電源電流測定方法及びこの電源電流測定方法を適
用した電源電流測定装置の一実施例を示す。図6と対応
する部分には同一符号を付して示す。この発明では被試
験半導体デバイスDUTの電源端子VTの可及的近くに
電源供給線路401を流れる電流を測定する間接型電流
測定手段20を設けた構成を特徴とするものである。図
1に示す実施例ではこの間接型電流測定手段20として
カレントミラー回路を用いた場合を示す。FIG. 1 shows an embodiment of a power supply current measuring method for a semiconductor device according to the present invention and a power supply current measuring apparatus to which the power supply current measuring method is applied. Parts corresponding to those in FIG. 6 are denoted by the same reference numerals. The present invention is characterized in that an indirect current measuring means 20 for measuring a current flowing through a power supply line 401 is provided as close as possible to a power supply terminal VT of a semiconductor device under test DUT. In the embodiment shown in FIG. 1, a case where a current mirror circuit is used as the indirect type current measuring means 20 is shown.
【0020】カレントミラー回路は周知のように、一対
のトランジスタQ1とQ2によって構成される、ここで
はトランジスタQ1側を一次電流回路、Q2側を二次電
流回路と称することにする。つまり、トランジスタQ1
とQ2のベースを共通接続し、このベースの共通接続点
をトランジスタQ1のコレクタに接続し、トランジスタ
Q1のコレクタ電流IC2の電流変化をベースに帰還さ
せ、この帰還電圧によってトランジスタQ2のコレクタ
電流IC2を制御する構成とした場合を示す。この構成に
よりトランジスタQ1とQ2を流れるコレクタ電流IC1
とIC2はIC1=IC2の関係に維持される。As is well known, the current mirror circuit includes a pair of transistors Q1 and Q2. Here, the transistor Q1 side is referred to as a primary current circuit, and the transistor Q2 side is referred to as a secondary current circuit. That is, the transistor Q1
And the base of Q2 are connected in common, the common connection point of this base is connected to the collector of transistor Q1, and the current change in the collector current I C2 of transistor Q1 is fed back to the base. The case where C2 is controlled is shown. With this configuration, the collector current I C1 flowing through the transistors Q1 and Q2
And I C2 are maintained in a relationship of I C1 = I C2 .
【0021】トランジスタQ2のコレクタと共通電位と
の間に電圧出力回路21を接続し、電流IC2の変化を電
圧信号として出力端子22から発信させる構成としたも
のである。電圧出力回路21はこの例では電流検出用抵
抗器R1によって構成した場合を示す。この電流検出用
抵抗器R1に電流IC2を流すことにより、この電流検出
用抵抗器R1には電流IC2の変化に追従して変化する電
圧信号VCCが発生し、この電圧信号VCCを出力端子22
に出力する。出力端子22には他の試験装置300に設
けた電圧測定手段37を接続し、この電圧測定手段37
で電圧信号VCCが変化するか否かを監視する。A voltage output circuit 21 is connected between the collector of the transistor Q2 and the common potential, and a change in the current I C2 is transmitted from the output terminal 22 as a voltage signal. In this example, the voltage output circuit 21 includes a current detection resistor R1. By passing the current I C2 through the current detection resistor R1, a voltage signal V CC that changes following the change of the current I C2 is generated in the current detection resistor R1, and this voltage signal V CC is generated. Output terminal 22
Output to The output terminal 22 is connected to a voltage measuring means 37 provided in another test apparatus 300.
Monitor whether the voltage signal V CC changes.
【0022】この発明では更に間接型電流測定手段20
の直流電源10側にバイパスコンデンサCPを接続す
る。このバイパスコンデンサCPは可及的に間接型電流
測定手段20に近い位置で電源供給線路401と共通電
位との間に接続する。このバイパスコンデンサCPを接
続することにより被試験半導体デバイスDUTに印加さ
れる電源電圧VDDに重畳するノイズ成分を共通電位に側
路させることができ、間接型電流測定手段20をノイズ
成分が通過し、出力端子22に印加されることを阻止す
ることができる。また、バイパスコンデンサCPを間接
型電流測定手段20により直流電源10側に設けたか
ら、このバイパスコンデンサCPに流れるリーク電流I
rは間接型電流測定手段20を流れることはない。従っ
て、電圧出力回路21を流れる電流IC2にもバイパスコ
ンデンサCPを流れるリーク電流Irの成分が出力端子
22から出力される電圧信号VCCに含まれることはな
い。In the present invention, the indirect current measuring means 20
Is connected to a bypass capacitor CP. This bypass capacitor CP is connected between the power supply line 401 and the common potential at a position as close to the indirect type current measuring means 20 as possible. By connecting this bypass capacitor CP, a noise component superimposed on the power supply voltage V DD applied to the semiconductor device under test DUT can be bypassed to the common potential, and the noise component passes through the indirect type current measuring means 20. , Output terminal 22 can be prevented. Further, since the bypass capacitor CP is provided on the DC power supply 10 side by the indirect type current measuring means 20, the leakage current I
r does not flow through the indirect current measuring means 20. Therefore, the component of the leak current Ir flowing through the bypass capacitor CP is not included in the voltage signal V CC output from the output terminal 22 even in the current I C2 flowing through the voltage output circuit 21.
【0023】従って、他の試験装置300は電圧信号V
CCのみを監視すればよく、例えば自己が制御しているレ
ーザービームにより被試験半導体デバイスDUTを構成
する半導体チップの表面を面走査させ、その面走査する
レーザービームが不良個所をヒットした場合に電圧信号
VCCが増加又は減少する方向に変動する現象を電圧信号
VCCの変化から検出することにより、そのレーザービー
ムの走査位置から、被試験半導体デバイスDUTの不良
個所を知ることができる。図2は間接型電流測定手段2
0の他の実施例を示す。この実施例では電源供給線路4
01に発生する磁界を検出し、この磁界の量により電流
量を測定する構造の間接型電流測定手段の実施例を示
す。つまり、図2に示す間接型電流測定手段20は筒状
コア23と、この筒状コア23の一部を切欠いて形成し
たギャップ(間隙)に挿入した例えばホール素子のよう
な感磁性素子24とによって構成した場合を示す。Therefore, another test apparatus 300 outputs the voltage signal V
Only the CC needs to be monitored.For example, the surface of the semiconductor chip constituting the semiconductor device under test DUT is scanned by a laser beam controlled by itself, and the voltage is applied when the laser beam scanned on the surface hits a defective portion. by detecting the phenomenon that varies in a direction signal V CC is increased or decreased from the change of the voltage signal V CC, from the scanning position of the laser beam, it is possible to know the failed portion of the semiconductor device under test DUT. FIG. 2 shows an indirect type current measuring means 2
0 shows another embodiment. In this embodiment, the power supply line 4
An embodiment of an indirect type current measuring means having a structure for detecting a magnetic field generated at the position 01 and measuring the amount of current based on the amount of the magnetic field will be described. In other words, the indirect current measuring means 20 shown in FIG. 2 includes a cylindrical core 23 and a magnetic-sensitive element 24 such as a Hall element inserted in a gap formed by cutting out a part of the cylindrical core 23. An example is shown below.
【0024】筒状コア23の貫通孔には電源供給線路4
01を貫通させる。この構造において電源供給線路40
1に電流が流れることにより、筒状コア23には周方向
に磁束が環流する。この磁束の環流量は電源供給線路4
01を流れる電流に比例し、磁束の環流量に比例してギ
ャップ部分に磁界が発生する。この磁界を感磁性素子2
4によって電圧に変換して取り出し、この電圧を必要に
応じて増幅器25で所望の電圧レベルに増幅して抵抗器
R1に取り出すことにより出力端子22には電源供給線
路401に流れる電流に比例して変化する電圧信号VCC
を取り出すことができる。尚、この磁界方式で電流を測
定方法を採る商品としては例えばソニーテクトロニクス
株式会社殿が製造し、販売している商品名A6312型
・A6302型DC/AC電流プローブがある。これら
の商品によれば直流から100MHz乃至直流から50
MHzの範囲で電流を測定することができる。The power supply line 4 is provided in the through hole of the cylindrical core 23.
01 through. In this structure, the power supply line 40
When a current flows through the cylindrical core 23, magnetic flux circulates in the cylindrical core 23 in the circumferential direction. The flow rate of this magnetic flux is determined by the power supply line 4
A magnetic field is generated in the gap portion in proportion to the current flowing through the gap 01 and in proportion to the flow rate of the magnetic flux. This magnetic field is applied to the magnetic sensing element 2
The voltage is converted to a voltage by 4 and the voltage is taken out, and if necessary, the voltage is amplified to a desired voltage level by the amplifier 25 and taken out to the resistor R1, so that the output terminal 22 is in proportion to the current flowing through the power supply line 401. Changing voltage signal V CC
Can be taken out. As a product adopting the method of measuring current by the magnetic field method, there is, for example, a DC / AC current probe manufactured by Sony Tektronix Co., Ltd., whose product name is A6312 / A6302. According to these products, 100 MHz from DC to 50 from DC
The current can be measured in the range of MHz.
【0025】図3は電界検出方式の間接型電流測定手段
の実施例を示す。図3に示す間接型電流測定手段20で
は電源供給線路401に流れる電流Idを電流−電界変
換器26に与え、この電流−電界変換器26に発生する
電界信号VSを光変調器27に入力し、電界信号VSを
干渉光に変換し、干渉光の強度を電気信号に変換して電
源電流Idを測定する構造としたものである。つまり、
電流−電界変換器26は抵抗器によって構成することが
でき、この抵抗器に電源電流Idを流すことにより、電
界信号VSを発生させる。この電界信号VSを光変調器
27に印加することにより、光変調器27を通過する光
信号を変調する。FIG. 3 shows an embodiment of the indirect type current measuring means of the electric field detecting method. In the indirect type current measuring means 20 shown in FIG. 3, the current Id flowing through the power supply line 401 is supplied to the current-to-electric field converter 26, and the electric field signal VS generated in the current-to-electric field converter 26 is inputted to the optical modulator 27. The electric field signal VS is converted into interference light, the intensity of the interference light is converted into an electric signal, and the power supply current Id is measured. That is,
The current-electric field converter 26 can be constituted by a resistor, and the electric field signal VS is generated by supplying a power supply current Id to the resistor. By applying the electric field signal VS to the optical modulator 27, the optical signal passing through the optical modulator 27 is modulated.
【0026】光変調器27としては例えば分岐干渉型の
光変調器を用いることができる。分岐干渉型の光変調器
27は光導波路を分岐する光分岐部Aと、光合波部B
と、これら光分岐部Aと、光合波部Bの間に形成した2
本の光導波路C1、C2と、この2本の光導波路C1、
C2のそれぞれの両側に形成した電界印加電極27A、
27B、27Cとによって構成される。光分岐部A、光
合波部B、光導波路C1、C2はそれぞれ例えばニオブ
酸リチウム(Li Nb O3)等によって構成される誘電
体基板に、例えばチタン等を拡散させて形成することが
できる。誘電体基板の端面に露出して形成される光の入
射端と出射端に例えば光ファイバのような光導波路を入
力用光導波路28A、出力用光導波路28Bとして光学
的に結合し、入射端に結合した入力用光導波路28Aの
他端側に例えばレーザーダイオードのような光源51を
結合する。光源51は光源駆動回路52によって点灯状
態に駆動する。この例では直流電源によって駆動させた
場合を示す。従って、光源51は一定光量のレーザー光
を入力用光導波路28Aに入射する。光検出器53には
検出回路54を接続し、出力用光導波路28Bから出射
される光の強度を電気信号に変換して取り出す。As the optical modulator 27, for example, a branch interference type optical modulator can be used. An optical modulator 27 of a branching interference type includes an optical branching section A for branching an optical waveguide and an optical multiplexing section B.
Formed between the optical branching section A and the optical multiplexing section B.
The two optical waveguides C1, C2, and the two optical waveguides C1,
Electric field applying electrodes 27A formed on both sides of each of C2,
27B and 27C. Optical branching section A, an optical multiplexing unit B, and a dielectric substrate constituted by an optical waveguide C1, C2 respectively, for example lithium niobate (L i N b O 3), etc., be formed by diffusing, for example, titanium it can. An optical waveguide such as an optical fiber is optically coupled as an input optical waveguide 28A and an output optical waveguide 28B to an incident end and an outgoing end of light formed by exposing the end surface of the dielectric substrate. A light source 51 such as a laser diode is coupled to the other end of the coupled input optical waveguide 28A. The light source 51 is driven to a lighting state by a light source driving circuit 52. In this example, a case where the motor is driven by a DC power supply is shown. Therefore, the light source 51 enters a constant amount of laser light into the input optical waveguide 28A. The photodetector 53 is connected to a detection circuit 54, which converts the intensity of light emitted from the output optical waveguide 28B into an electric signal and extracts the signal.
【0027】電界印加電極27A、27B、27Cの一
方の対に電流−電界変換器26に発生する電界信号VS
を印加する。図3に示す例では、電界印加電極27Aと
27Bの間に電流−電界変換器26に発生する電界信号
VSを印加し、他方の電界印加電極27Bと27Cの対
にはこれらの電極27Bと27Cの間を共通接続して無
電界を与えた場合を示す。このように2分岐した光の一
方の光導波路C1に電界を印加し、他方の光導波路C2
には無電界を印加することにより、電界が与えられた光
導波路C1側では光に位相変調が与えられ、他方の無電
界側の光導波路C2を通過する光は無変調で通過する。
光導波路C1側で受けた光の位相変調により光合波部B
で光の干渉が発生し、出力用光導波路28Bに出射され
る光の強度が変化する。An electric field signal VS generated in the current-electric field converter 26 is applied to one pair of the electric field applying electrodes 27A, 27B, 27C.
Is applied. In the example shown in FIG. 3, an electric field signal VS generated in the current-to-electric field converter 26 is applied between the electric field applying electrodes 27A and 27B, and the other electric field applying electrodes 27B and 27C are paired with these electrodes 27B and 27C. Are connected in common to give a no-electric field. An electric field is applied to one optical waveguide C1 of the light branched into two as described above, and the other optical waveguide C2 is applied.
Is applied with no electric field, so that the light is phase-modulated on the optical waveguide C1 side to which the electric field is applied, and the light passing through the other electric field-free optical waveguide C2 passes without modulation.
The optical multiplexing part B is obtained by the phase modulation of the light received on the optical waveguide C1 side.
Then, light interference occurs, and the intensity of light emitted to the output optical waveguide 28B changes.
【0028】この光の強度を検出回路54で検出し、そ
の検出結果を出力回路21に出力することにより、出力
端子22に電圧信号VCCを出力することができる。尚、
この電界検出方式の間接型電流測定手段20の詳細は本
出願人が出願した特願平11−540227号明細書を
参照されたい。この図3に示した間接型電流測定手段に
よれば、測定レンジが広いため、特にCMOS構造の半
導体デバイスに流れる電源電流Id(図4参照)のよう
に数アンペア程度の大電流と数マイクロアンペア程度の
微小電流とが交互に流れる電流を再現性良く測定するこ
とができる利点が得られる。The intensity of the light is detected by the detection circuit 54, and the detection result is output to the output circuit 21, so that the voltage signal V CC can be output to the output terminal 22. still,
For details of the indirect type current measuring means 20 of the electric field detecting method, refer to Japanese Patent Application No. 11-540227 filed by the present applicant. According to the indirect type current measuring means shown in FIG. 3, since the measuring range is wide, a large current of about several amperes and a few microamperes such as a power supply current Id (see FIG. 4) flowing through a semiconductor device having a CMOS structure in particular. An advantage is obtained in that a current that alternates with a very small current can be measured with good reproducibility.
【0029】[0029]
【発明の効果】以上説明したようにこの発明によれば、
間接型電流測定手段20により被試験半導体デバイスD
UTへ電源電流Idを供給する電源供給線路401から
分離した回路で電源供給線路401を流れる電源電流I
dの値を測定する構造としたから被試験半導体デバイス
DUTに供給する電源電流に全く影響を与えることな
く、電源電流を測定することができる。特にテストシス
テム100で被試験半導体デバイスの不良の発生状態を
検出し、その状態を維持した状態で電源電流を測定する
場合、電源電流を測定するために電源電流供給線路を全
く切り替える必要がないから、電源電流又は電源電圧を
変動させる恐れは全くない。従って、不良の発生状態に
安定して維持することができる利点が得られる。As described above, according to the present invention,
The semiconductor device D under test is measured by the indirect type current measuring means 20.
The power supply current I flowing through the power supply line 401 in a circuit separated from the power supply line 401 that supplies the power supply current Id to the UT
Since the structure for measuring the value of d is adopted, the power supply current can be measured without affecting the power supply current supplied to the semiconductor device under test DUT at all. In particular, when the test system 100 detects the occurrence state of the defect of the semiconductor device under test and measures the power supply current while maintaining the state, it is not necessary to switch the power supply line at all to measure the power supply current. In addition, there is no possibility that the power supply current or the power supply voltage fluctuates. Therefore, there is obtained an advantage that it is possible to stably maintain the state of occurrence of a defect.
【0030】また、この発明によれば間接電流測定装置
20によって測定した結果を電圧出力回路21により電
圧信号VCCとして出力する構成としたから、他の試験装
置300は電圧測定手段37を装備すればよい。また他
の試験装置300は被試験半導体デバイスDUTへ電源
電圧を供給する直流電源を設けなくて済むため、他の試
験装置はその分コストの低減を期待することができる。
更に、この発明では間接型電流測定手段20を可及的に
被試験半導体デバイスDUTに近づけて配置すると共
に、間接型電流測定手段20の直流電源10側にバイパ
スコンデンサCPを接続する構造を提案した。この構造
をとることによりバイパスコンデンサCPにより電源供
給線路401に重畳されるノイズ成分を側路することが
できるから、ノイズ成分の少ない、つまりSN比のよい
電圧信号V CCを得ることができる。この結果、他の試験
装置300は被試験半導体デバイスDUTに流れる電流
Idが変化する現象を正確に捉えることができる結果が
得られる。Further, according to the present invention, an indirect current measuring device
The result measured by 20 is output by the voltage output circuit 21.
Pressure signal VCCOutput from other test equipment.
The device 300 may be provided with the voltage measuring means 37. Another
Test equipment 300 supplies power to semiconductor device under test DUT
Since there is no need to provide a DC power supply for supplying voltage,
The test equipment can be expected to reduce costs accordingly.
Further, in the present invention, the indirect type current measuring means 20 is used as much as possible.
When placed close to the DUT under test,
In addition, a bypass is connected to the DC power supply 10 side of the indirect type current measuring means 20.
A structure for connecting the capacitor CP has been proposed. This structure
Power supply by bypass capacitor CP.
Bypassing noise components superimposed on the supply line 401
It has a small noise component, that is, a good SN ratio
Voltage signal V CCCan be obtained. As a result, other tests
The device 300 is a device for measuring the current flowing through the semiconductor device under test DUT.
The result that can accurately capture the phenomenon that Id changes
can get.
【0031】然も、この発明によればバイパスコンデン
サCPを流れるリーク電流Irは間接型電流測定手段2
0には全く流れないから、測定結果として得られる電圧
信号VCCにはバイパスコンデンサCPを流れるリーク電
流成分を全く含まないことになる。この結果、被試験半
導体デバイスDUTに流れる電流Idの測定を分解能よ
く測定することができる利点も得られる。According to the present invention, the leak current Ir flowing through the bypass capacitor CP can be measured by the indirect type current measuring means 2.
Since it does not flow at 0, the voltage signal V CC obtained as a result of the measurement does not include any leak current component flowing through the bypass capacitor CP. As a result, there is obtained an advantage that the measurement of the current Id flowing through the semiconductor device under test DUT can be measured with high resolution.
【図1】この発明による半導体デバイスの電源電流測定
方法とこの電源電流測定方法で動作する電源電流測定装
置の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of a power supply current measuring method for a semiconductor device according to the present invention and a power supply current measuring device which operates by the power supply current measuring method.
【図2】この発明の変形実施例を説明するためのブロッ
ク図。FIG. 2 is a block diagram for explaining a modified embodiment of the present invention.
【図3】この発明の更に他の変形実施例を説明するため
のブロック図。FIG. 3 is a block diagram for explaining still another modified embodiment of the present invention.
【図4】図3に示した実施例の効果を説明するための波
形図。FIG. 4 is a waveform chart for explaining the effect of the embodiment shown in FIG. 3;
【図5】一般的な直流試験を説明するためのブロック
図。FIG. 5 is a block diagram for explaining a general DC test.
【図6】従来の技術を説明するためのブロック図。FIG. 6 is a block diagram for explaining a conventional technique.
100 テストシステム 10 直流電源 11 オペアンプ 12 直流電圧源 13 電流検出用抵抗器 14 電流測定手段 200 テストヘッド 20 間接型電流測定手段 21 電圧出力回路 22 出力端子 CP バイパスコンデンサ DUT 被試験半導体デバイス 300 他の試験装置 30 直流電源 31 オペアンプ 32 直流電圧源 33 電流検出用抵抗器 34 電流測定手段 35 スイッチ 36 ダイオード 401 電源供給線路 402 センスライン REFERENCE SIGNS LIST 100 Test system 10 DC power supply 11 Operational amplifier 12 DC voltage source 13 Current detection resistor 14 Current measuring means 200 Test head 20 Indirect type current measuring means 21 Voltage output circuit 22 Output terminal CP Bypass capacitor DUT Semiconductor device under test 300 Other tests Device 30 DC power supply 31 Operational amplifier 32 DC voltage source 33 Current detecting resistor 34 Current measuring means 35 Switch 36 Diode 401 Power supply line 402 Sense line
Claims (6)
印加し、被試験半導体デバイスを動作状態に維持する被
試験半導体デバイス用の直流電源を装備した半導体デバ
イス試験装置において、 上記被試験半導体デバイスへの電源供給系路に間接型電
流測定手段を介挿し、この間接型電流測定手段により上
記被試験半導体デバイスに流れる電流を間接的に測定し
て被試験半導体デバイスに流れる電源電流を測定するこ
とを特徴とする半導体デバイスの電源電流測定方法。1. A semiconductor device test apparatus equipped with a DC power supply for a semiconductor device under test for applying a predetermined power supply voltage to the semiconductor device under test and maintaining the semiconductor device under test in an operating state. Indirect current measuring means is interposed in a power supply path to the semiconductor device under test, and the current flowing through the semiconductor device under test is indirectly measured by the indirect current measuring means to measure the power supply current flowing through the semiconductor device under test. A method for measuring a power supply current of a semiconductor device, comprising:
圧を印加し、被試験半導体デバイスを動作状態に維持す
る直流電源を装備した半導体デバイス試験装置におい
て、 B、上記直流電源から被試験半導体デバイスに電源電流
を供給する電源供給線路を流れる電源電流を上記電源供
給線路から分離された回路で間接的に測定する間接型電
流測定手段と、 C、この間接型電流測定手段が測定した測定値を電圧と
して出力する電圧出力回路と、 を付加して構成したことを特徴とする電源電流測定装
置。2. A semiconductor device test apparatus equipped with a DC power supply for applying a predetermined power supply voltage to a semiconductor device under test and maintaining the semiconductor device under test in an operating state. An indirect type current measuring means for indirectly measuring a power supply current flowing through a power supply line for supplying a power supply current to a device by a circuit separated from the power supply line; C, a measurement value measured by the indirect type current measurement means A power supply current measuring device comprising: a voltage output circuit that outputs a voltage as a voltage;
て、上記間接型電流測定手段はカレントミラー回路によ
って構成され、上記電圧出力回路は上記カレントミラー
回路の二次電流回路に接続した電流検出用抵抗器によっ
て構成したことを特徴とする電源電流測定装置。3. The power supply current measuring device according to claim 2, wherein said indirect type current measuring means comprises a current mirror circuit, and said voltage output circuit is a current detecting circuit connected to a secondary current circuit of said current mirror circuit. A power supply current measuring device comprising a resistor.
て、上記間接型電流測定手段は上記電源供給線路から発
生する磁界を検出する磁界検出器によって構成し、この
磁界検出器が検出した測定値を電圧として出力する構成
としたことを特徴とする電源電流測定装置。4. The power supply current measuring device according to claim 2, wherein said indirect type current measuring means comprises a magnetic field detector for detecting a magnetic field generated from said power supply line, and said measured value detected by said magnetic field detector. A power supply current measuring device, characterized in that the power supply current is output as a voltage.
て、上記間接型電流測定手段は、上記電源供給線路を流
れる電流をこの電流に対応した電界に変換する電流−電
界変換器と、この電流−電界変換器で変換した電界によ
り光信号を変調する光変調器と、この光変調器が変調し
た光信号から上記電流に対応した電圧信号を出力する光
−電気変換器とによって構成したことを特徴とする電源
電流測定装置。5. The power supply current measuring device according to claim 2, wherein the indirect type current measuring means converts a current flowing through the power supply line into an electric field corresponding to the current, and a current-to-electric field converter. An optical modulator that modulates an optical signal with an electric field converted by an electric field converter, and an optical-electrical converter that outputs a voltage signal corresponding to the current from the optical signal modulated by the optical modulator. Power supply current measurement device.
装置において、上記間接型電流測定手段を上記被試験半
導体デバイスの電源端子に可及的に近づけて配置すると
共に、上記間接型電流測定手段の上記直流電源側にノイ
ズ除去用のバイパスコンデンサを接続した構成としたこ
とを特徴とする電源電流測定装置。6. The power supply current measuring device according to claim 2, wherein said indirect type current measuring means is arranged as close as possible to a power supply terminal of said semiconductor device under test, and A power supply current measuring device, wherein a bypass capacitor for removing noise is connected to the DC power supply side of the mold current measuring means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000330290A JP2002139539A (en) | 2000-10-30 | 2000-10-30 | Power-supply current measuring method and power- supply current measuring device for semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000330290A JP2002139539A (en) | 2000-10-30 | 2000-10-30 | Power-supply current measuring method and power- supply current measuring device for semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002139539A true JP2002139539A (en) | 2002-05-17 |
Family
ID=18806839
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000330290A Withdrawn JP2002139539A (en) | 2000-10-30 | 2000-10-30 | Power-supply current measuring method and power- supply current measuring device for semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002139539A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007127568A (en) * | 2005-11-07 | 2007-05-24 | Advantest Corp | Measuring instrument and measuring method |
JP2007523518A (en) * | 2003-12-10 | 2007-08-16 | クウォリタウ・インコーポレーテッド | Pulse current source circuit with charge booster |
JP2011075308A (en) * | 2009-09-29 | 2011-04-14 | Ricoh Co Ltd | Semiconductor test apparatus, control method thereof, program, and storage medium |
WO2020044707A1 (en) * | 2018-08-30 | 2020-03-05 | 浜松ホトニクス株式会社 | Semiconductor sample inspection device and inspection method |
-
2000
- 2000-10-30 JP JP2000330290A patent/JP2002139539A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007523518A (en) * | 2003-12-10 | 2007-08-16 | クウォリタウ・インコーポレーテッド | Pulse current source circuit with charge booster |
JP2007127568A (en) * | 2005-11-07 | 2007-05-24 | Advantest Corp | Measuring instrument and measuring method |
JP2011075308A (en) * | 2009-09-29 | 2011-04-14 | Ricoh Co Ltd | Semiconductor test apparatus, control method thereof, program, and storage medium |
WO2020044707A1 (en) * | 2018-08-30 | 2020-03-05 | 浜松ホトニクス株式会社 | Semiconductor sample inspection device and inspection method |
US11573251B2 (en) | 2018-08-30 | 2023-02-07 | Hamamatsu Photonics K.K. | Semiconductor sample inspection device and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2783243B2 (en) | Method and apparatus for detecting failure of CMOS integrated circuit | |
US5057774A (en) | Apparatus for measuring the quiescent current of an integrated monolithic digital circuit | |
CN113466650B (en) | Positioning device and method for detecting hard defect fault point of semiconductor device | |
KR100401347B1 (en) | Optically driven driver, optical output type voltage sensor, and ic testing equipment using these devices | |
US5905381A (en) | Functional OBIC analysis | |
TWI655441B (en) | Image generation apparatus and image generation method | |
US7433793B2 (en) | Error detection apparatus and method and signal extractor | |
JP2002139539A (en) | Power-supply current measuring method and power- supply current measuring device for semiconductor device | |
WO1999040446A1 (en) | Current measuring method, current sensor, and ic tester using the same current sensor | |
US6690454B2 (en) | Method, apparatus and system for testing one or more waveguides of an optical device | |
US20170176520A1 (en) | Tunable wavelength electro-optical analyzer | |
JP4409039B2 (en) | Path fault diagnostic device, path fault diagnostic method, and semiconductor integrated circuit device having self-diagnosis function | |
JP3267869B2 (en) | Test method of light receiving device | |
JP2730504B2 (en) | Test probe pin contact failure judgment method and in-circuit tester | |
US12007432B2 (en) | Enhanced direct current (DC) built-in-self-test (BIST) coverage for optical engines and advanced packaging | |
TWI801557B (en) | Optical difference detector and inspection device | |
US6771089B1 (en) | Test fixture having an adjustable capacitance and method for testing a semiconductor component | |
JP2002057454A (en) | Method for judging and device for inspecting junction state of integrated circuit | |
JPH09243693A (en) | Leakage current measuring method and device of condenser | |
JPH0574911A (en) | Tester and testing method for integrated circuit | |
KR200175367Y1 (en) | Circuit for checking normality/ abnormality of a power amplifier | |
US6859061B2 (en) | Device for analyzing failure in semiconductor device provided with internal voltage generating circuit | |
JP2648947B2 (en) | Inspection equipment for semiconductor devices | |
JPH0737954A (en) | Detecting device for defect in contact | |
JPH07218598A (en) | Oscillation detecting circuit for ic tester |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20060329 |
|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080108 |