JP2002129262A - Extra-fine copper alloy wire and its production method - Google Patents

Extra-fine copper alloy wire and its production method

Info

Publication number
JP2002129262A
JP2002129262A JP2000329807A JP2000329807A JP2002129262A JP 2002129262 A JP2002129262 A JP 2002129262A JP 2000329807 A JP2000329807 A JP 2000329807A JP 2000329807 A JP2000329807 A JP 2000329807A JP 2002129262 A JP2002129262 A JP 2002129262A
Authority
JP
Japan
Prior art keywords
wire
copper alloy
ultrafine
alloy wire
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000329807A
Other languages
Japanese (ja)
Other versions
JP4288844B2 (en
Inventor
Takao Ichikawa
貴朗 市川
Ryo Matsui
量 松井
Masayoshi Aoyama
正義 青山
Osamu Seya
修 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2000329807A priority Critical patent/JP4288844B2/en
Publication of JP2002129262A publication Critical patent/JP2002129262A/en
Application granted granted Critical
Publication of JP4288844B2 publication Critical patent/JP4288844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide extra-fine copper alloy wire having high tensile strength, excellent in bending resistance and also having high electric conductivity and to provide its production method. SOLUTION: This extra-fine copper alloy wire is composed of a copper alloy having a wire diameter of 0.01 to 0.1 mm and having a composition containing, by mass, 0.05 to 0.9% Mg or In, and the balance copper with inevitable impurities, and also, its tensile strength is controlled to >=343 MPa, elongation to >=5%, and electric conductivity to >=80% IACS by heat treating the wire after formation of its final diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、極細銅合金線及び
その製造方法に係り、特に、電子機器の電線・ケーブル
導体に用いられる極細銅合金線及びその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine copper alloy wire and a method for manufacturing the same, and more particularly, to an ultrafine copper alloy wire used for electric wires and cable conductors of electronic equipment and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器、例えば、ノートパソコ
ン、携帯電話、デジタルビデオカメラなどの携帯型の情
報・通信・記録端末においては、より一層の小型化、薄
型化、及び軽量化が進められており、それらの電子機器
に用いられる電線(ケーブル)において極細化の要求が
高まっている。また、これらのケーブルは、狭隘なスペ
ースに配線され、過酷な曲げや捻り回しを受けることか
ら、耐屈曲性の要求も高まっている。
2. Description of the Related Art In recent years, electronic devices, for example, portable information / communication / recording terminals such as notebook personal computers, mobile phones, and digital video cameras, have been further reduced in size, thickness, and weight. As a result, there is an increasing demand for finer wires (cables) used in such electronic devices. Further, since these cables are wired in a narrow space and are subjected to severe bending and twisting, demands for bending resistance are also increasing.

【0003】極細のケーブル導体としては、一般的に、
線径が0.02〜0.1mm程度の素線(極細線)を数
本から数十本撚り合わせたもの、又は、この素線を可撓
性を有した線状或いは帯状の絶縁体に巻き付けたもの等
が挙げられる。
[0003] As a very fine cable conductor, generally,
Twisted or tens of strands (extremely thin wires) having a wire diameter of about 0.02 to 0.1 mm, or this strand is formed into a flexible linear or band-shaped insulator Wound material and the like can be mentioned.

【0004】また、耐屈曲性の良好なケーブル導体とし
ては、従来から、硬質の銅合金線(以下、硬銅線と示
す)が使用されてきた。この硬銅線は、引張強さが約6
86MPa(70kgf/mm2 )前後と非常に高く、曲げ歪
みが小さい場合(例えば、曲げ歪みが1%以下)には非
常に有用である。しかし、硬銅線は、伸びが小さいこと
から、曲げ歪みが大きい場合(例えば、曲げ歪みが1%
超)には十分な屈曲寿命が得られないという問題があっ
た。また、硬銅線は、端末加工時に素線が“ばらける”
といった不具合があった。
[0004] Hard copper alloy wires (hereinafter referred to as hard copper wires) have been used as cable conductors having good bending resistance. This hard copper wire has a tensile strength of about 6
It is very high, around 86 MPa (70 kgf / mm 2 ), and is very useful when the bending strain is small (for example, the bending strain is 1% or less). However, since hard copper wire has a small elongation, it has a large bending strain (for example, a bending strain of 1%
Super) had a problem that a sufficient flex life could not be obtained. In addition, the hard copper wire is "split" when the terminal is processed.
There was such a problem.

【0005】そこで、曲げ歪みが大きい場合には、硬銅
線の代わりに、伸びが良好(20%前後)で、曲げ歪み
(塑性歪み)の吸収能が高く、耐屈曲性が良好な軟質の
銅合金線(以下、軟銅線と示す)を用いることが検討さ
れてきた。しかし、軟銅線からなる導体に絶縁体を押出
被覆してケーブルを形成する際に、強度不足により導体
に断線が生じるという問題があった。
Therefore, when the bending strain is large, instead of the hard copper wire, a soft material having good elongation (around 20%), high absorption capacity for bending strain (plastic strain) and good bending resistance is used. The use of a copper alloy wire (hereinafter referred to as a soft copper wire) has been studied. However, when a conductor made of a soft copper wire is extrusion-coated with an insulator to form a cable, there is a problem that the conductor is disconnected due to insufficient strength.

【0006】よって、広い歪み範囲(小さな歪みから大
きな歪み)に亘って、ケーブル導体の耐屈曲性の信頼性
を高めるには、引張強さ及び伸びに優れたケーブル導体
が必要であり、硬銅線と軟銅線の特性を併せ持つ半硬質
材からなる極細銅合金線が求められている。
Accordingly, in order to increase the reliability of the flex resistance of a cable conductor over a wide strain range (from a small strain to a large strain), a cable conductor having excellent tensile strength and elongation is required. An ultrafine copper alloy wire made of a semi-hard material having both the characteristics of a wire and an annealed copper wire is required.

【0007】しかし、引張強さが硬銅線と同程度で、か
つ、伸びが軟銅線と同程度の極細銅合金線は、現状では
見出されていない。このため、引張強さの減少を最低限
に抑え、かつ、伸びを高めた極細銅合金線が、電子機器
用のケーブル導体として、ニーズが高まっている。この
極細銅合金線として、半硬質のCu−Sn系合金線が挙
げられる(実願昭63−61703号参照)。
However, an ultrafine copper alloy wire having a tensile strength comparable to that of a hard copper wire and an elongation comparable to that of a soft copper wire has not been found at present. For this reason, there is an increasing need for ultrafine copper alloy wires with a minimum decrease in tensile strength and enhanced elongation as cable conductors for electronic devices. An example of the ultrafine copper alloy wire is a semi-hard Cu-Sn-based alloy wire (see Japanese Utility Model Application No. 63-61703).

【0008】[0008]

【発明が解決しようとする課題】しかしながら、電子機
器用のケーブル導体としては、引張強さが高く、かつ、
耐屈曲性が良好である他に、純銅に近い高導電率を有し
ていることが望まれる。ここで、Cu−Sn系合金線の
合金構成元素であるSnは、純銅の電気比抵抗の増加に
寄与する度合いが2.88(10-8Ω・m/原子%)と比
較的大きいため、Cu−Sn系合金においては、Snの
含有量が少量であっても、Snの含有により導電率が大
幅に低下してしまう(Cu−0.30質量%Snの導電率は
80%IACS前後)という問題があった。
However, a cable conductor for electronic equipment has a high tensile strength and
In addition to having good bending resistance, it is desired to have a high electrical conductivity close to that of pure copper. Here, Sn, which is an alloy constituent element of the Cu—Sn-based alloy wire, contributes to an increase in the electrical resistivity of pure copper to a relatively large degree of 2.88 (10 −8 Ω · m / at.%). In a Cu-Sn based alloy, even if the Sn content is small, the conductivity is significantly reduced by the Sn content (the conductivity of Cu-0.30 mass% Sn is around 80% IACS). was there.

【0009】以上の事情を考慮して創案された本発明の
目的は、引張強さが高く、耐屈曲性が良好で、かつ、導
電率の高い極細銅合金線及びその製造方法を提供するこ
とにある。
An object of the present invention, which has been made in view of the above circumstances, is to provide an ultrafine copper alloy wire having high tensile strength, good bending resistance, and high electrical conductivity, and a method of manufacturing the same. It is in.

【0010】[0010]

【課題を解決するための手段】上記目的を達成すべく本
発明に係る極細銅合金線は、線径が0.01〜0.1m
mの極細銅合金線において、Mg又はInを0.05〜
0.9質量%含有し、銅及び不可避不純物を残部とする
銅合金からなり、かつ、最終線径形成後の熱処理によ
り、引張強さを343MPa(35kgf/mm2 )以上、伸
びを5%以上、導電率を80%IACS以上としたもの
である。
In order to achieve the above object, the ultrafine copper alloy wire according to the present invention has a wire diameter of 0.01 to 0.1 m.
m or ultrafine copper alloy wire, Mg or In
0.9% by mass, made of a copper alloy containing copper and unavoidable impurities as the balance, and having a tensile strength of 343 MPa (35 kgf / mm 2 ) or more and an elongation of 5% or more by heat treatment after forming the final wire diameter. , With a conductivity of 80% IACS or more.

【0011】以上の構成によれば、銅合金の合金構成元
素としてMg又はInを用いることで、従来の極細銅合
金線であるCu−Sn系合金線と同等又はそれ以上の特
性を有する銅合金線を得ることができる。
[0011] According to the above structure, by using Mg or In as an alloy constituent element of the copper alloy, a copper alloy having characteristics equal to or better than that of a conventional ultrafine copper alloy wire, a Cu-Sn alloy wire. You can get a line.

【0012】一方、本発明に係る極細銅合金線の製造方
法は、線径が0.01〜0.1mmの極細銅合金線の製
造方法において、Mg又はInを0.05〜0.9質量
%含有し、銅及び不可避不純物を残部とする銅合金に伸
線加工を施して極細線を形成し、最終線径形成後の極細
線に連続的に熱処理を施して、引張強さを343MPa
(35kgf/mm2 )以上、伸びを5%以上、導電率を80
%IACS以上に調質するものである。
On the other hand, the method for producing an ultrafine copper alloy wire according to the present invention is a method for producing an ultrafine copper alloy wire having a wire diameter of 0.01 to 0.1 mm. %, Copper and a copper alloy having the unavoidable impurities as the balance are subjected to wire drawing to form an ultrafine wire, and the ultrafine wire after the final wire diameter is formed is continuously subjected to heat treatment to have a tensile strength of 343 MPa.
(35 kgf / mm 2 ) or more, elongation 5% or more, conductivity 80
It is tempered to at least% IACS.

【0013】以上の方法によれば、Mg又はInを0.
05〜0.9質量%含有し、銅及び不可避不純物を残部
とする銅合金を用いて形成した線材を最終線径に形成し
た後、この線材に連続的に熱処理を施すことで、線材の
特性を、従来の極細銅合金線であるCu−Sn系合金線
と同等又はそれ以上に調質することができる。
According to the above-described method, Mg or In is added to 0.1%.
After forming a wire having a final diameter of 0.5 to 0.9% by mass and using a copper alloy containing copper and unavoidable impurities as a balance, the wire is continuously subjected to a heat treatment to obtain a characteristic of the wire. Can be refined to a level equal to or higher than that of a Cu-Sn-based alloy wire, which is a conventional ultrafine copper alloy wire.

【0014】また、上記極細線に、管状炉による焼鈍、
通電加熱装置による通電抵抗加熱、又は誘導コイル等に
よる誘導加熱により、連続的に熱処理を施すことが好ま
しい。
[0014] The ultrafine wire may be annealed in a tubular furnace,
It is preferable to continuously perform the heat treatment by means of electric resistance heating by an electric heating device or induction heating by an induction coil or the like.

【0015】上記のように数値範囲を限定した理由を以
下に述べる。
The reason for limiting the numerical range as described above will be described below.

【0016】銅合金をCu−Mg系又はCu−In系と
した理由は、前述したCu−Sn系の銅合金と比較し
て、導電性が優れるためである。具体的には、Mg又は
Inを含有させたことによる導電性の低下は、Snを含
有させた場合の1/3に抑えることができる。
The reason why the copper alloy is made of Cu-Mg type or Cu-In type is that the conductivity is superior to that of the above-mentioned Cu-Sn type copper alloy. Specifically, the decrease in conductivity due to the inclusion of Mg or In can be suppressed to 1/3 of that in the case of including Sn.

【0017】ここで、Mg又はInの含有量を0.05
〜0.9mass%としたのは、含有量が0.05ma
ss%未満だと、所望の強度を得ることができないと共
に、良好な耐屈曲性が得られず、また、含有量が0.9
mass%を越えると、導電率が80%IACS未満に
低下してしまうためである。
Here, the content of Mg or In is set to 0.05
The reason why the content is set to 0.9 mass% is that the content is 0.05 ma.
If it is less than ss%, the desired strength cannot be obtained, good bending resistance cannot be obtained, and the content is 0.9% or less.
If it exceeds mass%, the conductivity will be reduced to less than 80% IACS.

【0018】引張強さを343MPa(35kgf/mm2
以上とした理由は、配線作業時(又は供用時)における
断線を防ぐと共に、良好な耐屈曲性を得るためである。
The tensile strength is 343 MPa (35 kgf / mm 2 )
The reason for this is to prevent disconnection during wiring work (or during operation) and to obtain good bending resistance.

【0019】伸びを5%以上とした理由は、撚線の端末
加工時における“ばらけ”を防ぐと共に、伸びが1〜3
%程度の硬銅線と比較して、大きな歪みの屈曲を受ける
際の耐屈曲性を良好とするためである。
The reason why the elongation is set to 5% or more is that "split" at the time of processing the end of the stranded wire is prevented, and the elongation is 1 to 3%.
% As compared with a hard copper wire of about%.

【0020】導電率を80%IACS以上とした理由
は、信号線として使用するだけではなく、電源線として
も使用可能とするためである。
The reason why the conductivity is set to 80% IACS or more is that it can be used not only as a signal line but also as a power supply line.

【0021】[0021]

【発明の実施の形態】以下、本発明の好適一実施の形態
を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described.

【0022】本発明に係る極細銅合金線は、線径が0.
01〜0.1mmの極細線であって、Mg(又はIn)
を0.05〜0.9質量%、好ましくは0.05〜0.
8質量%含有し、銅及び不可避不純物を残部とする銅合
金からなり、かつ、最終線径形成後の熱処理により、引
張強さを343MPa(35kgf/mm2 )以上、伸びを5
%以上、導電率を80%IACS以上、好ましくは85
%IACS以上としたものである。
The ultrafine copper alloy wire according to the present invention has a wire diameter of 0.1 mm.
An ultrafine wire of 01 to 0.1 mm, which is made of Mg (or In)
From 0.05 to 0.9% by mass, preferably from 0.05 to 0.9% by mass.
It is composed of a copper alloy containing 8% by mass, copper and unavoidable impurities, and has a tensile strength of 343 MPa (35 kgf / mm 2 ) or more and an elongation of 5 by heat treatment after forming a final wire diameter.
%, Conductivity of 80% IACS or more, preferably 85% or more.
% IACS or more.

【0023】次に、本発明に係る極細銅合金線の製造方
法を説明する。
Next, a method for manufacturing an ultrafine copper alloy wire according to the present invention will be described.

【0024】先ず、無酸素銅の溶湯にMg(又はIn)
を添加して銅合金溶湯を形成すると共に、連続鋳造によ
り、Mg(又はIn)0.05〜0.9質量%、好まし
くは0.05〜0.8質量%含有し、銅及び不可避不純
物を残部とする銅合金荒引線を形成する。この荒引線に
伸線加工(冷間加工)を施して、最終的に、線径が0.
01〜0.1mmの極細線を形成する。
First, Mg (or In) is added to the molten oxygen-free copper.
To form a molten copper alloy and, by continuous casting, contain 0.05 to 0.9% by mass, preferably 0.05 to 0.8% by mass of Mg (or In) to contain copper and unavoidable impurities. A copper alloy rough drawn wire to be the remainder is formed. This rough drawing is subjected to wire drawing (cold working), and finally the wire diameter is reduced to 0.
An ultrafine line of 01 to 0.1 mm is formed.

【0025】その後、この極細線に、管状炉による焼
鈍、通電加熱装置による通電抵抗加熱、又は誘導コイル
等による誘導加熱により連続的に熱処理を施して、引張
強さを343MPa(35kgf/mm2 )以上、伸びを5%
以上、導電率を80%IACS以上、好ましくは85%
IACS以上に調質し、極細銅合金線を得る。
Thereafter, the ultrafine wire is continuously subjected to heat treatment by annealing in a tubular furnace, resistance heating by a current heating device, or induction heating by an induction coil or the like, so that the tensile strength is 343 MPa (35 kgf / mm 2 ). Above, the growth is 5%
As described above, the conductivity is 80% IACS or more, preferably 85%
Temper to IACS or higher to obtain extra fine copper alloy wire.

【0026】このようにして得られた極細銅合金線の単
線又は極細銅合金線を複数本撚り合わせてなる撚線が、
ケーブル導体として用いられる。また、この極細銅合金
線の外周に、必要に応じてAgメッキ、Snメッキ、N
iメッキ等の各種メッキを施し、メッキ被覆された極細
銅合金線をケーブル導体として用いてもよい。
A stranded wire obtained by twisting a plurality of single wires or ultrafine copper alloy wires of the thus obtained ultrafine copper alloy wire is as follows:
Used as a cable conductor. Further, if necessary, Ag plating, Sn plating, N
Various types of plating such as i-plating may be performed, and a plated ultrafine copper alloy wire may be used as a cable conductor.

【0027】次に、本発明の作用を説明する。Next, the operation of the present invention will be described.

【0028】伸線加工まま(熱処理なし)の線材は、引
張強さが735MPa(75kgf/mm2 )以上と硬銅線並
みの強度を有しているものの、合金構成元素の含有量に
よっては伸びが1%未満及び/又は導電率が80%IA
CS未満となるため、その特性を調質すべく、線材に対
して熱処理(焼鈍処理)を行なう必要がある。
The as-drawn wire material (without heat treatment) has a tensile strength of 735 MPa (75 kgf / mm 2 ) or more, which is comparable to that of hard copper wire, but it has an elongation depending on the content of alloying elements. Less than 1% and / or conductivity 80% IA
Since it is less than CS, it is necessary to perform a heat treatment (annealing treatment) on the wire in order to refine its characteristics.

【0029】この際、線径が0.1mm以下の線材をボ
ビンに巻き付け、焼鈍炉内でバッチ式に熱処理を行なう
と、線材同士が粘着してしまうことから、次工程で巻き
替える際、断線したり、線材の表面に傷が付いてしま
う。線材表面に傷が付くと、屈曲寿命、即ち耐屈曲性に
悪影響を及ぼすことから、本発明に係る極細銅合金線材
の製造方法においては、伸線加工後の線材に連続的に熱
処理を施している。これによって、熱処理後の線材の表
面に傷が付くおそれがなくなり、延いては線材の耐屈曲
性が更に良好となる。
At this time, if a wire having a wire diameter of 0.1 mm or less is wound around a bobbin and heat-treated in a batch manner in an annealing furnace, the wires will stick to each other. Or the surface of the wire is scratched. If the surface of the wire is scratched, the bending life, that is, the bending resistance is adversely affected, and therefore, in the method for manufacturing the ultrafine copper alloy wire according to the present invention, the wire after the drawing process is continuously subjected to heat treatment. I have. Thereby, there is no possibility that the surface of the wire after the heat treatment is scratched, and the bending resistance of the wire further improves.

【0030】また、本発明に係る極細銅合金線材の製造
方法においては、連続的な熱処理における各種の熱処理
条件(例えば、ライン速度、炉内温度、通電加熱装置の
電圧値、及び誘導コイル等の誘導電流値)を適宜調整す
ることにより、極細銅合金線の各特性の調質を行なうこ
とができる。
Further, in the method for producing a microfine copper alloy wire according to the present invention, various heat treatment conditions in continuous heat treatment (for example, line speed, furnace temperature, voltage value of current heating device, induction coil, etc. By appropriately adjusting the value of the induced current, it is possible to refine the properties of the ultrafine copper alloy wire.

【0031】さらに、前述した従来のCu−Sn系合金
線の合金構成元素であるSnは、純銅の電気比抵抗の増
加に寄与する度合いが2.88(10-8Ω・m/原子%)
と比較的大きかった。これに対して、本発明に係る極細
銅合金線は、合金構成元素としてMg又はInを含有さ
せており、Mg又はInは、純銅の電気比抵抗の増加に
寄与する度合いが、それぞれ0.65、1.06(10-8
Ω・m/原子%)と非常に小さい。この結果、Cu−M
g系又はCu−In系合金線におけるMg又はInによ
る導電率の低下は、Cu−Sn系合金線におけるSnの
場合の約1/3となるため、導電性に優れた銅合金線を
得ることができる。
Further, Sn, which is an alloy constituent element of the above-mentioned conventional Cu-Sn alloy wire, contributes to an increase in the electrical resistivity of pure copper at 2.88 (10 -8 Ω · m / at.%).
Was relatively large. In contrast, the ultrafine copper alloy wire according to the present invention contains Mg or In as an alloy constituent element, and the degree of Mg or In contributing to an increase in the electrical resistivity of pure copper is 0.65 or more, respectively. , 1.06 (10 -8
Ω · m / atomic%). As a result, Cu-M
Since the decrease in conductivity due to Mg or In in a g-based or Cu-In-based alloy wire is about 1/3 of that in the case of Sn in a Cu-Sn-based alloy wire, a copper alloy wire excellent in conductivity is obtained. Can be.

【0032】また、本発明に係る極細銅合金線は、主に
信号線として使用されるが、合金構成元素(Mg又はI
n)の含有量又は熱処理条件によっては、純銅と同程度
の導電率を有することから、電源線としても利用可能と
なる。
Although the ultrafine copper alloy wire according to the present invention is mainly used as a signal line, the alloy constituent element (Mg or I) is used.
Depending on the content of n) or the heat treatment conditions, it can be used as a power supply line because it has the same conductivity as pure copper.

【0033】[0033]

【実施例】(実施例1〜5)小型連続鋳造機を用い、純
度99.9999%の無酸素銅の溶湯にMgを添加して
銅合金溶湯を形成すると共に、Mgを0.07〜0.9
質量%の範囲で含有し、銅及び不可避不純物を残部とす
るφ8mmの銅合金荒引線を5種類形成する。各銅合金
荒引線の化学組成は、それぞれ、Cu-0.07mass%Mg、Cu-
0.15mass%Mg、Cu-0.30mass%Mg、Cu-0.70mass%Mg、Cu-0.
90mass%Mgである。
EXAMPLES (Examples 1 to 5) Using a small-sized continuous casting machine, Mg was added to a 99.9999% pure oxygen-free copper melt to form a copper alloy melt, and Mg was added to 0.07-0. .9
Five kinds of copper alloy rough drawn wires of φ8 mm, which are contained in the range of mass% and the balance is copper and unavoidable impurities, are formed. The chemical composition of each copper alloy rough wire is Cu-0.07mass% Mg, Cu-
0.15mass% Mg, Cu-0.30mass% Mg, Cu-0.70mass% Mg, Cu-0.
It is 90 mass% Mg.

【0034】次に、これらの各荒引線に冷間伸線加工を
施して、φ0.08mmの極細線を形成する。
Next, each of these rough drawn wires is subjected to cold drawing to form an extra fine wire of φ0.08 mm.

【0035】その後、これらの各極細線を、ライン速度
が500m/min、電圧が34Vに調整された通電加
熱装置に通し、通電抵抗加熱により連続的に熱処理を施
し、5種類の極細銅合金線を得る。
Thereafter, each of these ultrafine wires was passed through an electric heating device adjusted to a line speed of 500 m / min and a voltage of 34 V, and was continuously subjected to heat treatment by electric resistance heating to obtain five types of ultrafine copper alloy wires. Get.

【0036】(実施例6〜10)小型連続鋳造機を用
い、純度99.9999%の無酸素銅の溶湯にInを添
加して銅合金溶湯を形成すると共に、Inを0.07〜
0.9質量%の範囲で含有し、銅及び不可避不純物を残
部とするφ8mmの銅合金荒引線を5種類形成する。各
銅合金荒引線の化学組成は、それぞれ、Cu-0.07mass%I
n、Cu-0.15mass%In、Cu-0.30mass%In、Cu-0.70mass%I
n、Cu-0.90mass%Inである。
(Examples 6 to 10) Using a small-sized continuous caster, In was added to a molten metal of oxygen-free copper having a purity of 99.9999% to form a molten copper alloy, and 0.07 to 10% of In was added.
Five types of copper alloy rough drawn wires of φ8 mm containing 0.9% by mass and remaining copper and unavoidable impurities are formed. The chemical composition of each copper alloy rough wire is Cu-0.07mass% I
n, Cu-0.15mass% In, Cu-0.30mass% In, Cu-0.70mass% I
n, Cu-0.90mass% In.

【0037】次に、これらの各荒引線に冷間伸線加工を
施して、φ0.08mmの極細線を形成する。
Next, each of these rough drawn wires is subjected to cold drawing to form an extra fine wire of φ0.08 mm.

【0038】その後、これらの各極細線を、ライン速度
が500m/min、電圧が34Vに調整された通電加
熱装置に通し、通電抵抗加熱により連続的に熱処理を施
し、5種類の極細銅合金線を得る。
Thereafter, each of these ultrafine wires was passed through an electric heating device adjusted to a line speed of 500 m / min and a voltage of 34 V, and continuously subjected to heat treatment by electric current resistance heating to obtain five types of ultrafine copper alloy wires. Get.

【0039】(比較例1)化学組成が、Cu-0.01mass%Mg
の銅合金荒引線を用いる以外は、実施例1〜5と同様に
して極細銅合金線を得る。
(Comparative Example 1) The chemical composition is Cu-0.01 mass% Mg
An ultrafine copper alloy wire is obtained in the same manner as in Examples 1 to 5, except that the copper alloy rough drawn wire is used.

【0040】(比較例2)化学組成が、Cu-1.20mass%Mg
の銅合金荒引線を用いる以外は、実施例1〜5と同様に
して極細銅合金線を得る。
Comparative Example 2 The chemical composition was Cu-1.20 mass% Mg
An ultrafine copper alloy wire is obtained in the same manner as in Examples 1 to 5, except that the copper alloy rough drawn wire is used.

【0041】(比較例3)実施例3と同じ化学組成の銅
合金荒引線(Cu-0.01mass%Mg)に、冷間伸線加工を施し
て、φ0.08mmの極細線を形成する。この極細線に
対しては熱処理を施さなかった。
(Comparative Example 3) A copper alloy rough drawn wire (Cu-0.01 mass% Mg) having the same chemical composition as in Example 3 is subjected to cold drawing to form an extra fine wire of φ0.08 mm. No heat treatment was applied to this ultrafine wire.

【0042】(比較例4)化学組成が、Cu-0.01mass%In
の銅合金荒引線を用いる以外は、実施例6〜10と同様
にして極細銅合金線を得る。
(Comparative Example 4) The chemical composition was Cu-0.01mass% In.
An ultrafine copper alloy wire is obtained in the same manner as in Examples 6 to 10 except that the copper alloy rough drawn wire is used.

【0043】(比較例5)化学組成が、Cu-1.20mass%In
の銅合金荒引線を用いる以外は、実施例6〜10と同様
にして極細銅合金線を得る。
(Comparative Example 5) The chemical composition was Cu-1.20mass% In.
An ultrafine copper alloy wire is obtained in the same manner as in Examples 6 to 10 except that the copper alloy rough drawn wire is used.

【0044】(比較例6)実施例8と同じ化学組成の銅
合金荒引線(Cu-0.01mass%In)に、冷間伸線加工を施し
て、φ0.08mmの極細線を形成する。この極細線に
対しては熱処理を施さなかった。
Comparative Example 6 A copper alloy rough drawn wire (Cu-0.01 mass% In) having the same chemical composition as in Example 8 is subjected to cold drawing to form a fine wire of φ0.08 mm. No heat treatment was applied to this ultrafine wire.

【0045】(比較例7)小型連続鋳造機を用い、純度
99.9999%の無酸素銅の溶湯にSnを添加して銅
合金溶湯を形成すると共に、Snを0.30質量%の範
囲で含有し、銅及び不可避不純物を残部とするφ8mm
の銅合金荒引線を形成する。
Comparative Example 7 A small continuous caster was used to form a copper alloy melt by adding Sn to an oxygen-free copper melt having a purity of 99.9999%, and Sn was added in a range of 0.30% by mass. 8mm with copper and inevitable impurities remaining
To form a copper alloy rough wire.

【0046】次に、この荒引線に冷間伸線加工を施し
て、φ0.08mmの極細線を形成する。
Next, the rough drawn wire is subjected to cold drawing to form a fine wire having a diameter of 0.08 mm.

【0047】その後、この極細線を、ライン速度が50
0m/min、電圧が34Vに調整された通電加熱装置
に通し、通電抵抗加熱により連続的に熱処理を施し、極
細銅合金線を得る。
Thereafter, this ultra-fine line is drawn at a line speed of 50
It is passed through an electric heating device whose voltage is adjusted to 34 V at 0 m / min and continuously heat-treated by electric resistance heating to obtain an ultrafine copper alloy wire.

【0048】実施例1〜10及び比較例1〜7の各極細
銅合金線の、化学組成及び各種特性(引張強さ(MP
a)、伸び(%)、導電率(%IACS)、及び耐屈曲
性)を表1に示す。
The chemical composition and various characteristics (tensile strength (MP) of each of the ultrafine copper alloy wires of Examples 1 to 10 and Comparative Examples 1 to 7
a), elongation (%), conductivity (% IACS), and flex resistance) are shown in Table 1.

【0049】ここで、耐屈曲性は、屈曲試験における屈
曲寿命により評価を行なった。尚、屈曲試験は、極細銅
合金線を半径1mmの曲げ治具で挾持すると共に、30
gの重りを吊り下げて、90°の屈曲を左右に繰り返し
行い、破断するまでの曲げ回数を測定した。耐屈曲性
は、屈曲寿命が50回以上と良好なものを○、30〜5
0回とやや難があるものを△、30回未満と難があるも
のを×とした。
Here, the bending resistance was evaluated based on the bending life in a bending test. In the bending test, the ultrafine copper alloy wire was clamped by a bending jig having a radius of 1 mm,
g was suspended and 90 ° bending was repeated right and left, and the number of bendings before breaking was measured. The flexing resistance was evaluated as "good" when the flex life was 50 times or more.
A sample having a difficulty of 0 times was rated as “△”, and a sample having a difficulty of less than 30 times was rated “x”.

【0050】[0050]

【表1】 [Table 1]

【0051】表1に示すように、従来のCu−Sn系合
金線である比較例7の極細銅合金線は、引張強さが37
4MPa(38.1kgf/mm2 )、伸びが8.7%、導電
率は80.1%IACSであった。また、耐屈曲性は良
好であった。一方、実施例1〜10の各極細銅合金線
は、引張強さが348〜402MPa(35.5〜4
1.0kgf/mm2 )、伸びが5.5〜8.6%、導電率が
80.1〜98.0%IACSであった。また、いずれ
も耐屈曲性は良好であった。
As shown in Table 1, the ultrafine copper alloy wire of Comparative Example 7, which is a conventional Cu-Sn alloy wire, has a tensile strength of 37.
4 MPa (38.1 kgf / mm 2 ), elongation was 8.7%, and conductivity was 80.1% IACS. Further, the bending resistance was good. On the other hand, each of the ultrafine copper alloy wires of Examples 1 to 10 has a tensile strength of 348 to 402 MPa (35.5 to 4 MPa).
1.0 kgf / mm 2 ), elongation was 5.5 to 8.6%, and conductivity was 80.1 to 98.0% IACS. Moreover, the bending resistance was good in each case.

【0052】このことから、実施例1〜10の各極細銅
合金線は、従来のCu−Sn系銅合金線と同等の特性を
有していることが確認できる。ここで、合金構成元素の
含有量が同じである実施例3,8及び比較例7を比較す
ると、実施例3,8の極細銅合金線の方が、比較例7の
極細銅合金線よりも導電率が高くなっている。よって、
実施例1〜10の各極細銅合金線は、従来のCu−Sn
系銅合金線と同等又はそれ以上の特性を有していること
が確認できる。
From this, it can be confirmed that each of the ultrafine copper alloy wires of Examples 1 to 10 has the same characteristics as the conventional Cu-Sn based copper alloy wire. Here, comparing Examples 3 and 8 and Comparative Example 7 in which the contents of the alloy constituent elements are the same, the ultrafine copper alloy wires of Examples 3 and 8 are better than the ultrafine copper alloy wires of Comparative Example 7. The conductivity is high. Therefore,
Each of the ultrafine copper alloy wires of Examples 1 to 10 is a conventional Cu-Sn
It can be confirmed that it has the same or better characteristics as the system copper alloy wire.

【0053】これに対して、比較例1,4の各極細銅合
金線は、伸びがそれぞれ11.3%、導電率が98.5
%IACS、98.8%IACSと、いずれも例中で最
高の値を示した。しかし、合金構成元素であるMg,I
nの含有量がそれぞれ0.01質量%であり、規定範囲
(0.05〜0.9質量%)より少ないため、引張強さ
がそれぞれ295MPa(30.1kgf/mm2 )と低くな
っており、その結果、耐屈曲性にやや難があった。
On the other hand, each of the ultrafine copper alloy wires of Comparative Examples 1 and 4 has an elongation of 11.3% and an electric conductivity of 98.5.
% IACS, 98.8% IACS, all showed the highest values in the examples. However, the alloy constituent elements Mg, I
Since the content of n is 0.01% by mass and less than the specified range (0.05 to 0.9% by mass), the tensile strength is as low as 295 MPa (30.1 kgf / mm 2 ). As a result, the bending resistance was somewhat difficult.

【0054】また、比較例2,5の各極細銅合金線は、
引張強さはそれぞれ404MPa(41.2kgf/m
m2 )、伸びはそれぞれ5.5%と良好であると共に、
耐屈曲性も良好であった。しかし、合金構成元素である
Mg,Inの含有量がそれぞれ1.20質量%であり、
規定範囲(0.05〜0.9質量%)より多いため、導
電率がそれぞれ75.8%IACSと低くなっている。
The ultrafine copper alloy wires of Comparative Examples 2 and 5
Tensile strength was 404 MPa (41.2 kgf / m
m 2 ), elongation is as good as 5.5% each,
The bending resistance was also good. However, the contents of the alloy constituent elements Mg and In are 1.20% by mass, respectively.
Since it is larger than the specified range (0.05 to 0.9% by mass), the conductivity is as low as 75.8% IACS.

【0055】さらに、比較例3,6の各極細銅合金線
は、引張強さは807MPa(82.3kgf/mm2 )、7
87MPa(80.3kgf/mm2 )と、例中で最高の値を
示し、また、導電率は87.8%IACS、88.2%
IACSと良好であった。しかし、伸線後の熱処理を施
していないため、伸びがそれぞれ2.1%、2.3%と
低くなっており、その結果、耐屈曲性に難があった。
Further, each of the ultrafine copper alloy wires of Comparative Examples 3 and 6 has a tensile strength of 807 MPa (82.3 kgf / mm 2 ),
87 MPa (80.3 kgf / mm 2 ), the highest value in the examples, and the conductivity was 87.8% IACS, 88.2%
Good with IACS. However, since the heat treatment after the drawing was not performed, the elongation was as low as 2.1% and 2.3%, respectively. As a result, there was a difficulty in bending resistance.

【0056】以上、本発明の実施の形態は、上述した実
施の形態に限定されるものではなく、他にも種々のもの
が想定されることは言うまでもない。
As described above, the embodiments of the present invention are not limited to the above-described embodiments, and it is needless to say that various other embodiments are also conceivable.

【0057】[0057]

【発明の効果】以上要するに本発明によれば、Cu−M
g系又はCu−In系合金を用いて形成した線材を最終
線径に形成した後、この線材に連続的に熱処理を施すこ
とで、線材の特性を、従来の極細銅合金線であるCu−
Sn系合金線と同等又はそれ以上に調質することができ
るという優れた効果を発揮する。
In summary, according to the present invention, Cu-M
After forming a wire formed using a g-based or Cu-In-based alloy to a final wire diameter, by continuously performing a heat treatment on the wire, the characteristics of the wire can be reduced to Cu-, a conventional ultrafine copper alloy wire.
An excellent effect of being able to be refined to the same level as or more than the Sn-based alloy wire is exhibited.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 13/00 501 H01B 13/00 501D 501B // C22F 1/00 625 C22F 1/00 625 630 630A 630K 661 661A 685 685Z 686 686A (72)発明者 青山 正義 茨城県日立市日高町5丁目1番1号 日立 電線株式会社総合技術研究所内 (72)発明者 瀬谷 修 茨城県日立市日高町5丁目1番1号 日立 電線株式会社日高工場内 Fターム(参考) 5G301 AA08 AA11 AA12 AB02 AB05 AD01 AE10 5G307 CA04 CB01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01B 13/00 501 H01B 13/00 501D 501B // C22F 1/00 625 C22F 1/00 625 630 630A 630K 661K 661 661A 685 685Z 686 686A (72) Inventor Masayoshi Aoyama 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Cable Research Institute, Ltd. (72) Inventor Osamu Seya 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture No. 1 F-term in the Hidaka Plant of Hitachi Cable, Ltd. (reference) 5G301 AA08 AA11 AA12 AB02 AB05 AD01 AE10 5G307 CA04 CB01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 線径が0.01〜0.1mmの極細銅合
金線において、Mg又はInを0.05〜0.9質量%
含有し、銅及び不可避不純物を残部とする銅合金からな
り、かつ、最終線径形成後の熱処理により、引張強さを
343MPa以上、伸びを5%以上、導電率を80%I
ACS以上としたことを特徴とする極細銅合金線。
An ultrafine copper alloy wire having a wire diameter of 0.01 to 0.1 mm, wherein Mg or In is contained in an amount of 0.05 to 0.9% by mass.
And a copper alloy containing copper and unavoidable impurities as the balance, and having a tensile strength of 343 MPa or more, an elongation of 5% or more, and a conductivity of 80% I by heat treatment after forming the final wire diameter.
An ultrafine copper alloy wire, characterized in that it has an ACS or higher.
【請求項2】 線径が0.01〜0.1mmの極細銅合
金線の製造方法において、Mg又はInを0.05〜
0.9質量%含有し、銅及び不可避不純物を残部とする
銅合金に伸線加工を施して極細線を形成し、最終線径形
成後の極細線に連続的に熱処理を施して、引張強さを3
43MPa以上、伸びを5%以上、導電率を80%IA
CS以上に調質することを特徴とする極細銅合金線の製
造方法。
2. A method for producing an ultrafine copper alloy wire having a wire diameter of 0.01 to 0.1 mm, wherein Mg or In is contained in an amount of 0.05 to 0.1 mm.
0.9% by mass, copper and copper alloy with unavoidable impurities as the balance are subjected to wire drawing to form an ultrafine wire, and the ultrafine wire after the final wire diameter is formed is continuously subjected to heat treatment to obtain a tensile strength. 3
43 MPa or more, elongation of 5% or more, conductivity of 80% IA
A method for producing an ultrafine copper alloy wire, characterized by tempering to a level higher than CS.
【請求項3】 上記極細線に、管状炉による焼鈍、通電
加熱装置による通電抵抗加熱、又は誘導コイル等による
誘導加熱により、連続的に熱処理を施す請求項2記載の
極細銅合金線の製造方法。
3. The method for producing an ultrafine copper alloy wire according to claim 2, wherein the ultrafine wire is continuously heat-treated by annealing in a tubular furnace, resistance heating by an electric heating device, or induction heating by an induction coil or the like. .
JP2000329807A 2000-10-24 2000-10-24 Extra fine copper alloy wire Expired - Fee Related JP4288844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000329807A JP4288844B2 (en) 2000-10-24 2000-10-24 Extra fine copper alloy wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000329807A JP4288844B2 (en) 2000-10-24 2000-10-24 Extra fine copper alloy wire

Publications (2)

Publication Number Publication Date
JP2002129262A true JP2002129262A (en) 2002-05-09
JP4288844B2 JP4288844B2 (en) 2009-07-01

Family

ID=18806424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000329807A Expired - Fee Related JP4288844B2 (en) 2000-10-24 2000-10-24 Extra fine copper alloy wire

Country Status (1)

Country Link
JP (1) JP4288844B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090645A1 (en) 2004-03-22 2005-09-29 Luzcom Inc. Electrocast tube producing method, electrocast tube, and thin wire material for production of electrocast tubes
KR100849158B1 (en) * 2006-09-29 2008-07-30 가부시키가이샤 루스ㆍ콤 Electrocast tube producing method, electrocast tube, and thin wire material for production of electrocast tubes
JP2009174038A (en) * 2008-01-28 2009-08-06 Hitachi Cable Ltd Method for producing copper alloy conductor, copper alloy conductor, cable, and trolley wire
WO2010147018A1 (en) * 2009-06-16 2010-12-23 株式会社オートネットワーク技術研究所 Electrical wire conductor and electrical wire for automobile
US20110247857A1 (en) * 2006-12-28 2011-10-13 Autonetworks Technologies, Ltd. Conductor of an electric wire, and an insulated wire
CN102751050A (en) * 2012-07-26 2012-10-24 衡阳三三融信电工有限公司 Production method of superfine copper clad aluminum magnet wire with high dielectric strength
WO2014050284A1 (en) * 2012-09-27 2014-04-03 株式会社日立製作所 Electric rotating machine
CN104018023A (en) * 2014-05-06 2014-09-03 阜阳市光普照明科技有限公司 Method for preparing copper alloy bonding wire for light-emitting diode (LED) encapsulation
CN104637580A (en) * 2013-11-07 2015-05-20 上海裕生特种线材有限公司 High temperature-resisting aluminum electromagnetic wire and manufacturing method thereof
CN107475554A (en) * 2017-08-15 2017-12-15 徐高杰 A kind of production technology of microalloy copper busbar
JP2018507326A (en) * 2015-02-02 2018-03-15 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト Connecting elements, especially screws or nuts
US20220223313A1 (en) * 2021-01-14 2022-07-14 Hitachi Metals, Ltd. Copper alloy wire, plated wire, electric wire and cable using these
US20220344071A1 (en) * 2021-04-22 2022-10-27 Hitachi Metals, Ltd. Cable

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090645A1 (en) 2004-03-22 2005-09-29 Luzcom Inc. Electrocast tube producing method, electrocast tube, and thin wire material for production of electrocast tubes
KR100849158B1 (en) * 2006-09-29 2008-07-30 가부시키가이샤 루스ㆍ콤 Electrocast tube producing method, electrocast tube, and thin wire material for production of electrocast tubes
US20110247857A1 (en) * 2006-12-28 2011-10-13 Autonetworks Technologies, Ltd. Conductor of an electric wire, and an insulated wire
US8519269B2 (en) * 2006-12-28 2013-08-27 Autonetworks Technologies, Ltd. Conductor of an electric wire, and an insulated wire
JP2009174038A (en) * 2008-01-28 2009-08-06 Hitachi Cable Ltd Method for producing copper alloy conductor, copper alloy conductor, cable, and trolley wire
JP2011001566A (en) * 2009-06-16 2011-01-06 Autonetworks Technologies Ltd Electrical wire conductor and electrical wire for automobile
CN102459669A (en) * 2009-06-16 2012-05-16 株式会社自动网络技术研究所 Electrical wire conductor and electrical wire for automobile
WO2010147018A1 (en) * 2009-06-16 2010-12-23 株式会社オートネットワーク技術研究所 Electrical wire conductor and electrical wire for automobile
CN102751050A (en) * 2012-07-26 2012-10-24 衡阳三三融信电工有限公司 Production method of superfine copper clad aluminum magnet wire with high dielectric strength
WO2014050284A1 (en) * 2012-09-27 2014-04-03 株式会社日立製作所 Electric rotating machine
CN104637580A (en) * 2013-11-07 2015-05-20 上海裕生特种线材有限公司 High temperature-resisting aluminum electromagnetic wire and manufacturing method thereof
CN104018023A (en) * 2014-05-06 2014-09-03 阜阳市光普照明科技有限公司 Method for preparing copper alloy bonding wire for light-emitting diode (LED) encapsulation
JP2018507326A (en) * 2015-02-02 2018-03-15 イザベレンヒュッテ ホイスラー ゲー・エム・ベー・ハー ウント コンパニー コマンデイトゲゼルシャフト Connecting elements, especially screws or nuts
CN107475554A (en) * 2017-08-15 2017-12-15 徐高杰 A kind of production technology of microalloy copper busbar
US20220223313A1 (en) * 2021-01-14 2022-07-14 Hitachi Metals, Ltd. Copper alloy wire, plated wire, electric wire and cable using these
US20220344071A1 (en) * 2021-04-22 2022-10-27 Hitachi Metals, Ltd. Cable

Also Published As

Publication number Publication date
JP4288844B2 (en) 2009-07-01

Similar Documents

Publication Publication Date Title
JP4143086B2 (en) Extra-fine copper alloy wire, extra-fine copper alloy twisted wire, and manufacturing method thereof
JP4143087B2 (en) Ultra-fine insulated wire and coaxial cable, manufacturing method thereof, and multi-core cable using the same
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
US7560649B2 (en) Conductor of electric cable for wiring, electric cable for wiring, and methods of producing them
JPWO2009057697A1 (en) Conductor wire for electronic equipment and wiring wire using the same
JP2001148206A (en) Material for ultra thin copper alloy wire and its method of manufacturing
JP2002129262A (en) Extra-fine copper alloy wire and its production method
JP2000199042A (en) PRODUCTION OF Cu-Ag ALLOY WIRE ROD AND Cu-Ag ALLOY WIRE ROD
JPS633936B2 (en)
JP4143088B2 (en) Coaxial cable, manufacturing method thereof, and multicore cable using the same
JP2006307307A (en) Wiring cable for moving part in robot
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JP2001234309A (en) Method for producing extra-fine copper alloy stranded wire
JP4973437B2 (en) Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method
JP2005174554A (en) Aluminum conductive wire
JPS6164834A (en) Copper alloy having high strength, heat resistance and electric conductivity
JP2020009629A (en) Twisted wire conductor and cable
CN113299421B (en) Copper alloy wire, plated wire, wire and cable
JP3050554B2 (en) Magnet wire
JPH0689621A (en) Manufacture of high conductivity and high strength stranded wire
JP3376672B2 (en) Conductors for electrical and electronic equipment with excellent flex resistance
JP4501922B2 (en) Cu-Ag alloy wire for coaxial cable
JP2000160311A (en) Copper-zirconium alloy wire and its production
JPS63243240A (en) High electroconductive and high strength copper alloy
JP2021123794A (en) Copper alloy wire, plated wire, electric wire, and cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees