JP2002121160A - Method for producing isopropyl alcohol - Google Patents

Method for producing isopropyl alcohol

Info

Publication number
JP2002121160A
JP2002121160A JP2000315056A JP2000315056A JP2002121160A JP 2002121160 A JP2002121160 A JP 2002121160A JP 2000315056 A JP2000315056 A JP 2000315056A JP 2000315056 A JP2000315056 A JP 2000315056A JP 2002121160 A JP2002121160 A JP 2002121160A
Authority
JP
Japan
Prior art keywords
acetone
isopropyl alcohol
weight
reactor
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000315056A
Other languages
Japanese (ja)
Other versions
JP4754058B2 (en
Inventor
Yuzo Ono
有三 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2000315056A priority Critical patent/JP4754058B2/en
Publication of JP2002121160A publication Critical patent/JP2002121160A/en
Application granted granted Critical
Publication of JP4754058B2 publication Critical patent/JP4754058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing isopropyl alcohol, comprising obtaining the isopropyl alcohol from acetone and hydrogen, by which the highly pure isopropyl alcohol can be produced using crude acetone, a process liquid of an acetone production process, without positively using highly purified acetone. SOLUTION: This method for producing the isopropyl alcohol, comprising reacting the acetone with the hydrogen, characterized in that the total amount of aldehydes, alcohols and ketones (excluding the acetone) in the acetone of raw material is <=0.3 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イソプロピルアル
コールの製造方法に関し、詳しくは、アセトンと水素を
反応させてなる高純度のイソプロピルアルコールの製造
方法に関する。イソプロピルアルコールは有機合成の重
要な中間体であり、また、工業上重要な溶媒でもある。
The present invention relates to a method for producing isopropyl alcohol, and more particularly to a method for producing high-purity isopropyl alcohol by reacting acetone with hydrogen. Isopropyl alcohol is an important intermediate in organic synthesis and an industrially important solvent.

【0002】[0002]

【従来の技術】イソプロピルアルコールは、一般溶剤と
しても使われるが、IC基盤の洗浄剤や、消毒液として
も多く使われており、高純度品が要求されている。製品
純度としては、一般的には99.9重量%以上の物が市
販されており、中でも、微妙な臭気の違いが問題となる
消毒液用途やIC基板の洗浄剤用途では、微量の不純物
でも悪影響を与える事になる。よって、メタノール、エ
タノール、n−プロパノールをはじめとするアルコール
類やアルデヒド類のような不純物の混入は極力避ける必
要がある。
2. Description of the Related Art Isopropyl alcohol is used as a general solvent, but is often used as a cleaning agent for IC substrates and a disinfectant, and high purity products are required. In general, products having a product purity of 99.9% by weight or more are commercially available. In particular, in a disinfectant solution or a cleaning agent for an IC substrate where a slight difference in odor is a problem, even a trace amount of impurities is used. It will have an adverse effect. Accordingly, it is necessary to minimize contamination of impurities such as alcohols and aldehydes such as methanol, ethanol and n-propanol.

【0003】イソプロピルアルコールを製造する方法と
して濃硫酸によりプロピレンをエステル化して後に加水
分解する間接水和法やヘテロポリ酸等を触媒としてプロ
ピレンを直接水和する直接水和法が広く利用されてい
る。この場合には触媒である硫酸やヘテロポリ酸による
装置の腐食という問題がある。また、これらプロピレン
水和法では、n−プロピルアルコール、ter−ブチル
アルコール、2−メチル−2−ペンテン、2−メチル−
1−ペンテン、ジイソプロピルエーテルをはじめ各種不
純物が副生しており、このため、多くの段数を有する多
数の蒸留塔で、多大のエネルギーをかけて蒸留精製して
いるにも関わらず、n-プロピルアルコール、t-ブチルア
ルコールをはじめ多くの不純物が製品中に混入して、純
度低下や臭気悪化の原因となっている。中でもIC基板
の洗浄剤等の電子材料分野の用途では、更に還流比を上
げたり、蒸留段数を増やしたりしての蒸留にて製造され
ている。
As a method for producing isopropyl alcohol, an indirect hydration method in which propylene is esterified with concentrated sulfuric acid followed by hydrolysis and a direct hydration method in which propylene is directly hydrated using a heteropoly acid or the like as a catalyst are widely used. In this case, there is a problem that the apparatus is corroded by the sulfuric acid or heteropolyacid as a catalyst. Further, in these propylene hydration methods, n-propyl alcohol, ter-butyl alcohol, 2-methyl-2-pentene, 2-methyl-
Various impurities such as 1-pentene and diisopropyl ether are produced as by-products. For this reason, despite the fact that distillation and purification are carried out with a large amount of energy in many distillation columns having many stages, n-propyl Many impurities such as alcohol and t-butyl alcohol are mixed into the product, causing the purity to deteriorate and the odor to deteriorate. Above all, for applications in the field of electronic materials such as cleaning agents for IC substrates, they are manufactured by distillation by further increasing the reflux ratio or increasing the number of distillation stages.

【0004】イソプロピルアルコールを製造する方法と
して古くからアセトンのカルボニル基を水添する方法も
知られている。例えば、水素化アルミニウムリチウム、
水素化ホウ素ナトリウム等の試薬を用いた還元方法、あ
るいは水素ガスを用いた接触還元方法である。
[0004] As a method for producing isopropyl alcohol, a method of hydrogenating the carbonyl group of acetone has been known for a long time. For example, lithium aluminum hydride,
This is a reduction method using a reagent such as sodium borohydride or a catalytic reduction method using hydrogen gas.

【0005】水素ガスを用いる方法としては、例えば、
触媒として塊状のラネーニッケルを用いる方法(特開平
3−141235号公報)、気・液・固の3相からなる
トリクルベッド方式で反応を行う方法(特開平2−27
0829号公報)、また、反応収率向上の為に反応混合
物の一部を循環する方法(特開平3−133941号公
報)が提案されている。
As a method using hydrogen gas, for example,
A method using bulk Raney nickel as a catalyst (Japanese Patent Application Laid-Open No. 3-141235), a method using a trickle bed system comprising three phases of gas, liquid and solid (Japanese Patent Application Laid-Open No. 2-27)
No. 0829), and a method of circulating a part of the reaction mixture to improve the reaction yield (Japanese Patent Application Laid-Open No. H3-133941).

【0006】しかし、これらの方法はいずれも反応成績
向上のための方法を提供するものであり、中でも特開平
3−141235号、特開平3−133941号公報に
は、原料アセトン中には、水、アセトアルデヒド等のア
ルデヒド類、メタノール、エタノール等のアルコール
類、さらには、クメン、α−メチルスチレン等の芳香族
炭化水素類などがふくまれていても差し支えないとさえ
記載され、生成したイソプロピルアルコールの品質向上
には言及されていない。
However, all of these methods provide a method for improving the reaction results. Among them, JP-A-3-141235 and JP-A-3-133941 disclose that the raw material acetone contains water. It is described that aldehydes such as acetaldehyde, alcohols such as methanol and ethanol, and furthermore, cumene and aromatic hydrocarbons such as α-methylstyrene may be included. No mention is made of quality improvement.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
問題に鑑み、アセトンと水素を反応させてイソプロピル
アルコールを製造するに際し、敢えて精製された高純度
のアセトンを用いることなく、アセトン製造プロセスの
工程液である粗アセトンを原料としても高純度のイソプ
ロピルアルコールが製造できる方法を提供することにあ
る。
SUMMARY OF THE INVENTION In view of the above problems, it is an object of the present invention to prepare an isopropyl alcohol by reacting acetone with hydrogen without using a purified high-purity acetone. It is an object of the present invention to provide a method for producing high-purity isopropyl alcohol using crude acetone as a process liquid as a raw material.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく原料アセトン中の不純物について鋭意検討
した結果、アセトン製造工程に多く含まれ、かつアセト
ンとの分離が困難なアルデヒド類、アルコール類及びケ
トン類を十分分離除去する前の粗アセトンを原料として
用いるに際し、これらの不純物の含有量を規定すること
により、製造されたイソプロピルアルコールの品質に悪
影響を与えることなく、高品質のイソプロピルアルコー
ルが得られることを見出し、本発明を完成させるに至っ
たものである。すなわち、本発明は、アセトンと水素を
反応させてイソプロピルアルコールを製造する方法にお
いて、原料アセトン中のアルデヒド類、アルコール類及
びケトン類(アセトンを除く)の合計が、0.3重量%
以下であることを特徴とするイソプロピルアルコールの
製造方法である。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on impurities in the raw material acetone in order to solve the above-mentioned problems. As a result, aldehydes which are contained in a large amount in the acetone production process and are difficult to separate from acetone are found. When using crude acetone as a raw material before sufficiently separating and removing alcohols and ketones, by defining the content of these impurities, high-quality isopropyl alcohol can be produced without adversely affecting the quality of the produced isopropyl alcohol. The inventors have found that isopropyl alcohol can be obtained, and have completed the present invention. That is, the present invention relates to a method for producing isopropyl alcohol by reacting acetone and hydrogen, wherein the total of aldehydes, alcohols and ketones (excluding acetone) in the raw material acetone is 0.3% by weight.
A method for producing isopropyl alcohol, characterized in that:

【0009】[0009]

【発明の実施の形態】イソプロピルアルコールは一般に
蒸留精製されて製品となる。アセトンと水素を原料とす
る場合の例としては、まず得られた反応混合物より未反
応の水素とアセトンを分離する。続いて水分の除去、さ
らには近沸点化合物や高沸点化合物を分離する事によ
り、高純度のイソプロピルアルコールが得られる。本発
明でいう高純度のイソプロピルアルコールとは、その純
度が99.9%以上を言う。
DETAILED DESCRIPTION OF THE INVENTION Isopropyl alcohol is generally purified by distillation to obtain a product. As an example of using acetone and hydrogen as raw materials, first, unreacted hydrogen and acetone are separated from the obtained reaction mixture. Subsequently, high-purity isopropyl alcohol can be obtained by removing water and separating a near-boiling compound or a high-boiling compound. The high-purity isopropyl alcohol referred to in the present invention has a purity of 99.9% or more.

【0010】本発明で用いられる原料アセトンは、クメ
ン法フェノールプラントによる副生やプロピレンの直接
酸化法等により製造されるものが用いられる。しかし、
これらのプロセスでは、メタノール、アセトアルデヒ
ド、プロピオアルデヒド、メチルエチルケトン等の低沸
点のアルコール類やアルデヒド類及びケトン類が副生さ
れ、アセトンとの精製において留意すべき不純物となっ
ている。
As the raw material acetone used in the present invention, one produced by a by-product of a cumene phenol plant or a direct oxidation method of propylene is used. But,
In these processes, low-boiling alcohols, aldehydes, and ketones such as methanol, acetaldehyde, propioaldehyde, and methyl ethyl ketone are by-produced, and are impurities to be noted in purification with acetone.

【0011】たとえば、クメン法の場合は、クメンの酸
化で得られたクメンハイドロパーオキサイドを酸分解し
てフェノールとアセトンが生成するが、こうして得られ
た合成液は各種の不純物を含んでおり、アセトンを精製
する場合は、例えば30〜60段ものトレイを装備した
数本の蒸留塔にて順次精製されて製品となる。一例とし
て次の様な方法がとられている。まず、粗アセトン塔に
てフェノールやクメンを主成分とする沸点の高い成分を
蒸留分離する。次に低沸分離塔にてメタノールやアセト
アルデヒド等の低沸点物質を除去する。続いて、アセト
ン精製塔にて、アセトンより沸点高い物質を分離して初
めて、高純度のアセトンが得られる事になる。アルデヒ
ドの分離に当たっては、苛性ソーダ等のアルカリを蒸留
塔に供給して、高沸化する事で分離し易くする工夫をさ
れている場合もある。このようにして、市販されている
製品アセトンが製造されるが、多くの設備と大きなエネ
ルギーが必要とされている。
[0011] For example, in the case of the cumene method, cumene hydroperoxide obtained by oxidizing cumene is acid-decomposed to produce phenol and acetone. The synthesis solution thus obtained contains various impurities. In the case of purifying acetone, for example, it is sequentially purified in several distillation columns equipped with 30 to 60 trays to obtain a product. As an example, the following method is used. First, a high boiling component mainly composed of phenol or cumene is separated by distillation in a crude acetone tower. Next, low boiling substances such as methanol and acetaldehyde are removed in a low boiling separation column. Subsequently, high-purity acetone can be obtained only by separating a substance having a boiling point higher than that of acetone in the acetone purification tower. In the separation of the aldehyde, there is a case in which an alkali such as caustic soda is supplied to the distillation column to make it easier to separate by increasing the boiling point. In this way, the commercial product acetone is produced, but requires a lot of equipment and a lot of energy.

【0012】そこで本発明に用いる粗アセトンとは、上
述の様なアセトン製造プロセスでの工程液が利用でき、
例えば、上述のクメン法フェノールプロセスでは、アセ
トン精製塔の前工程にある粗アセトン塔や低沸分離塔よ
り得られる粗アセトンの使用が考えられる。因みにアセ
トン精製系の各蒸留塔は還流比2〜6もかけており多大
のエネルギーを消費している。故に、途中の塔から抜き
出したり、蒸留塔の還流比を下げたりして、これら粗ア
セトン中のアルデヒド類、アルコール類及びケトン類
(アセトンを除く)の合計量が0.3重量%以下になる
ように調整した粗アセトンを用いることで大きなエネル
ギーの削減となる。
Therefore, the crude acetone used in the present invention can be used as a process liquid in the above-mentioned acetone production process.
For example, in the above-mentioned cumene phenol process, use of crude acetone obtained from a crude acetone column or a low-boiling separation column in a previous step of an acetone purification column may be considered. Incidentally, each distillation column of the acetone purification system consumes a large amount of energy because the reflux ratio is as high as 2 to 6. Therefore, the total amount of the aldehydes, alcohols, and ketones (excluding acetone) in the crude acetone is reduced to 0.3% by weight or less by withdrawing from the middle column or reducing the reflux ratio of the distillation column. By using the crude acetone adjusted as described above, a large amount of energy can be saved.

【0013】ここでアルデヒド類とは、特に炭素数が1
〜5の例えば、ホルムアルデヒド、アセトアルデヒド、
プロピオンアルデヒド、ブチルアルデヒド、イソブチル
アルデヒド、バレルアルデヒド等が挙げられる。これら
のアルデヒド類が存在すると、水素化反応にて還元され
て対応する炭素数が1〜5のアルコールとなる。
Here, aldehydes are particularly those having 1 carbon atom.
For example, formaldehyde, acetaldehyde,
Examples include propionaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde and the like. When these aldehydes are present, they are reduced in the hydrogenation reaction to form the corresponding alcohol having 1 to 5 carbon atoms.

【0014】また、アルコール類とは、イソプロピルア
ルコールを除く炭素数が1〜5の例えば、メタノール、
エタノール、n−プロパノール、n−ブタノール、se
c−ブタノール、iso−ブタノール、2−ペンタノー
ル等が挙げられ、これらアルコール類はイソプロピルア
ルコールと沸点が近いため蒸留分離が困難である。
Alcohols include those having 1 to 5 carbon atoms excluding isopropyl alcohol, such as methanol,
Ethanol, n-propanol, n-butanol, se
Examples thereof include c-butanol, iso-butanol, and 2-pentanol. These alcohols have a boiling point close to that of isopropyl alcohol, and thus are difficult to separate by distillation.

【0015】さらにケトン類とは、炭素数が4と5の例
えば、メチルエチルケトン、ジエチルケトンなどが挙げ
られるが、アルデヒド類と同様に水素化反応により還元
されて対応のアルコールとなる。
Further, ketones include those having 4 and 5 carbon atoms, such as methyl ethyl ketone and diethyl ketone, and like the aldehydes, are reduced by hydrogenation to form the corresponding alcohols.

【0016】何れにしてもこれらアルデヒド類、ケトン
類は、そのままでも分離困難な場合もあるが、合成反応
により対応するアルコールになるためイソプロピルアル
コールとの分離が困難となる。よってアルコール類と共
に反応に先立って、その合計量が0.3重量%以下にな
るように除去しておくことが望ましい。
In any case, these aldehydes and ketones are sometimes difficult to separate as they are, but since they are converted into corresponding alcohols by a synthesis reaction, separation from isopropyl alcohol becomes difficult. Therefore, prior to the reaction with alcohols, it is desirable to remove them so that the total amount is 0.3% by weight or less.

【0017】本発明で用いる水素としては、純度は特に
規定しないが、一般的にいって90容積%以上の物が好
ましい。含有不純物としては、窒素、アルゴン、メタ
ン、エタン等の反応に大きな支障がなければ、問題なく
使用可能である。
The purity of the hydrogen used in the present invention is not particularly limited, but is generally preferably 90% by volume or more. As the contained impurities, they can be used without any problem as long as the reaction of nitrogen, argon, methane, ethane or the like is not seriously affected.

【0018】本発明における水添反応に使用する触媒と
しては、Cu−Cr系の酸化物触媒、ラネーNi触媒、ラネ
ーCu触媒、Pt、Pd、Ru等の貴金属触媒が挙げら
れ、一般的に用いられているものがそのまま適用でき
る。
Examples of the catalyst used in the hydrogenation reaction of the present invention include noble metal catalysts such as Cu-Cr based oxide catalysts, Raney Ni catalysts, Raney Cu catalysts, Pt, Pd and Ru. What has been applied can be applied as it is.

【0019】反応器としては、充填層反応器、トリクル
ベッド方式の反応器、多管式反応器、移動床反応器、懸
濁気泡塔反応器、攪拌槽式懸濁反応器等が挙げられる。
Examples of the reactor include a packed bed reactor, a trickle bed reactor, a multitubular reactor, a moving bed reactor, a suspended bubble column reactor, and a stirred tank suspension reactor.

【0020】また、反応温度および反応圧力は、特に規
定はしないが一般的には反応器内の雰囲気により異な
り、例えば、液相反応においては130℃以下、1〜4
MPa−Gであり、気相反応では60〜200℃、1M
Pa−G以下の条件で行われる。
The reaction temperature and the reaction pressure are not particularly limited, but generally differ depending on the atmosphere in the reactor.
MPa-G, 60-200 ° C, 1M in gas phase reaction
It is performed under the condition of Pa-G or less.

【0021】上述した条件の下、アセトンと水素を原料
とした本発明の方法によれば、副生する不純物の量と数
が大きく減少し、特に、純度が99.9重量%以上のア
セトン、即ちイソプロピルアルコール以外の炭素数が1
〜5のアルコール、炭素数が1〜5のアセトアルデヒド
及び炭素数が4及び5のケトンの全合計が0.1重量%
以下のアセトンを用いた場合には、製品に含まれる不純
物数が大きく減少すると共に臭気の改善が著しく発現す
る。
According to the method of the present invention using acetone and hydrogen as the raw materials under the above-mentioned conditions, the amount and number of by-produced impurities are greatly reduced, and in particular, acetone having a purity of 99.9% by weight or more, That is, the carbon number other than isopropyl alcohol is 1
0.1 to 5% by weight of the alcohol having 1 to 5 carbon atoms, the acetaldehyde having 1 to 5 carbon atoms and the ketone having 4 and 5 carbon atoms.
When the following acetone is used, the number of impurities contained in the product is greatly reduced and the odor is significantly improved.

【0022】[0022]

【実施例】以下に本発明を実施例により更に詳細に説明
する。尚、実施例に記載した組成分析は次の方法により
実施した。
The present invention will be described in more detail with reference to the following examples. The composition analysis described in the examples was performed by the following method.

【0023】・組成分析は、島津製作所製GC−14A
(検出器:FID、カラム:DB−WAX)ガスクロマ
トグラフィーを使用し、Heをキャリアガスとして測定
した。なお、水分はカールフィッシャー水分計にて測定
した。
The composition was analyzed by GC-14A manufactured by Shimadzu Corporation.
(Detector: FID, column: DB-WAX) Gas chromatography was used to measure He as a carrier gas. The water content was measured with a Karl Fischer moisture meter.

【0024】実施例1 [触媒の調整]内径50mm、長さ100mmのステン
レス製反応器の中程に、塊状のニッケルアルミニウム合
金(日興リカ製、R−20L、粒径;4〜5mm、Ni
/Alの重量比:50/50)200g(100ml)
を充填して固定触媒層を形成し、反応器内に水を満たし
た。次に容量3000mlの水槽と反応器下部とを送液
ポンプを介して接続した。反応器内を通液した液が反応
器上部から水槽へ戻る経路を設けた。次に、送液ポンプ
を駆動させて、反応器内に0.25L/分の流速で水を
循環させながら、別に調整しておいた40%水酸化ナト
リウム水溶液を水槽へ滴下し、アルカリ性水溶液が反応
系内を循環するようにした。
Example 1 [Preparation of catalyst] In the middle of a stainless steel reactor having an inner diameter of 50 mm and a length of 100 mm, a massive nickel aluminum alloy (R-20L, manufactured by Nikko Rica, particle size: 4-5 mm, Ni
/ Al weight ratio: 50/50) 200 g (100 ml)
To form a fixed catalyst layer, and the reactor was filled with water. Next, a 3000 ml water tank and the lower part of the reactor were connected via a liquid sending pump. A path was provided for returning the liquid passed through the reactor from the upper part of the reactor to the water tank. Next, while driving the liquid feed pump and circulating water in the reactor at a flow rate of 0.25 L / min, a separately prepared 40% aqueous sodium hydroxide solution was dropped into the water tank, and the alkaline aqueous solution was discharged. The reaction system was circulated.

【0025】アルカリ性水溶液の循環によって、ラネー
ニッケル触媒が展開された。このとき、触媒の展開に伴
なって反応熱が発生し、反応器内温が上昇するため、内
温が50℃を超えないように水酸化ナトリウム水溶液の
滴下速度を調節した。水酸化ナトリウム水溶液は、全量
で水酸化ナトリウムの270gに相当する量を滴下し
た。滴下終了後もアルカリ性水溶液の循環を継続し、全
体で20時間展開処理を行った。展開処理終了後、反応
器内に純水を流し、固定触媒層の洗浄を行った。洗浄は
排出される洗浄液のpHが11以下となるまで続けた。
The Raney nickel catalyst was developed by circulation of the alkaline aqueous solution. At this time, the reaction heat was generated with the development of the catalyst, and the internal temperature of the reactor increased. Therefore, the dropping rate of the aqueous sodium hydroxide solution was adjusted so that the internal temperature did not exceed 50 ° C. The aqueous sodium hydroxide solution was added dropwise in an amount corresponding to 270 g of sodium hydroxide in total. After the completion of the dropwise addition, the circulation of the alkaline aqueous solution was continued, and the developing treatment was performed for a total of 20 hours. After the completion of the developing process, pure water was flowed into the reactor to wash the fixed catalyst layer. The washing was continued until the pH of the discharged washing liquid became 11 or less.

【0026】その後、アルカリ性水溶液および洗浄液を
全て集め、この中に溶出しているアルミニウム量をキレ
ート滴定法で測定し、次式の、展開率=アルミニウム溶
出量/ニッケルアルミニウム合金中のアルミニウム量×
100に従って、得られたラネーニッケル触媒の展開率
を求めた。その結果、展開率54%のラネーニッケル触
媒が調整されたことがわかった。
After that, the alkaline aqueous solution and the washing solution were all collected, and the amount of aluminum eluted therein was measured by a chelate titration method. The expansion ratio = aluminum elution amount / aluminum amount in nickel-aluminum alloy ×
According to 100, the expansion rate of the obtained Raney nickel catalyst was determined. As a result, it was found that a Raney nickel catalyst having an expansion rate of 54% was adjusted.

【0027】[イソプロピルアルコールの合成]内径2
5.4mm、長さ500mmのステンレス製縦型反応器
内に蒸留水を満たした。次に、反応器内の中程に上述の
触媒の調整で得られたラネーニッケル触媒25mLを充
填した後、反応器内を窒素雰囲気に保ちながら水を抜き
出した。
[Synthesis of isopropyl alcohol] Inner diameter 2
A 5.4 mm, 500 mm long vertical stainless steel reactor was filled with distilled water. Next, 25 mL of the Raney nickel catalyst obtained by adjusting the above catalyst was filled in the middle of the reactor, and water was extracted while keeping the inside of the reactor under a nitrogen atmosphere.

【0028】次に、反応器の上部からイソプロピルアル
コールを供給し、反応器内に残存している水をイソプロ
ピルアルコールで置換した。続いて、反応器上部からイ
ソプロピルアルコールと水素を連続的に供給しながら反
応器を昇温させた。反応器の内温が50℃に達した時点
で、イソプロピルアルコールの代わりにアセトンを供給
して、アセトンの水添反応を開始させた。ここで、用い
たアセトンの純度は99.9重量%で、イソプロピルア
ルコール以外の炭素数が1〜5(以下、C1〜C5と記
す。)のアルコール0.02重量%、C1〜C5のアセ
トアルデヒド0.01重量%、炭素数が4及び5(以
下、C4&C5と記す。)のケトンは不検出、などの不
純物を含んでいた。アセトン及び水素の供給量を、それ
ぞれ40g/hr、37L/hrに、また反応圧力を2
MPa−Gとなる様に調整した。反応温度は、反応熱除
去の為に反応器を冷却して内温が100℃となる様に調
整した。
Next, isopropyl alcohol was supplied from the upper part of the reactor, and water remaining in the reactor was replaced with isopropyl alcohol. Subsequently, the reactor was heated while continuously supplying isopropyl alcohol and hydrogen from the upper portion of the reactor. When the internal temperature of the reactor reached 50 ° C., acetone was supplied instead of isopropyl alcohol to start the hydrogenation reaction of acetone. Here, the purity of the acetone used was 99.9% by weight, 0.02% by weight of an alcohol having 1 to 5 carbon atoms (hereinafter referred to as C1 to C5) other than isopropyl alcohol, and 0% of acetaldehyde of C1 to C5. The ketone containing 0.011% by weight and having 4 and 5 carbon atoms (hereinafter referred to as C4 & C5) contained impurities such as not detected. The feed rates of acetone and hydrogen were 40 g / hr and 37 L / hr, respectively, and the reaction pressure was 2
It adjusted so that it might be set to MPa-G. The reaction temperature was adjusted so that the reactor temperature was cooled to 100 ° C. to remove the reaction heat.

【0029】反応の進行に伴って、反応器の下部から液
状の反応生成物と水素ガスからなる気液混合物が排出さ
れてくる。これを、気液分離させる事で液状の反応生成
物が得られる。アセトンと水素の供給を続け、反応が安
定した10時間後より、液状の反応生成物の採取を始め
た。採取した反応生成物の組成をガスクロマトグラフィ
ーで分析したところ、未反応アセトンが0.8重量%存
在し、イソプロピルアルコール濃度は99.08重量%
であった。また、イソプロピルアルコールを除くC1〜
C5のアルコール0.02重量%、C1〜C5のアルデ
ヒドとC4&C5のケトンは共にアルコールに変化した
ためと思われ不検出であった。原料アセトンの組成を表
1に、反応生成物の組成は表2に示す。
As the reaction proceeds, a gas-liquid mixture comprising a liquid reaction product and hydrogen gas is discharged from the lower part of the reactor. This is subjected to gas-liquid separation to obtain a liquid reaction product. The supply of acetone and hydrogen was continued, and 10 hours after the reaction was stabilized, collection of a liquid reaction product was started. When the composition of the collected reaction product was analyzed by gas chromatography, 0.8% by weight of unreacted acetone was present and the concentration of isopropyl alcohol was 99.08% by weight.
Met. In addition, C1 excluding isopropyl alcohol
Alcohol of C5 0.02% by weight, aldehydes of C1 to C5 and ketones of C4 & C5 were not detected, presumably because they were both converted to alcohols. The composition of the raw material acetone is shown in Table 1, and the composition of the reaction product is shown in Table 2.

【0030】[反応生成物の蒸留精製]上記方法で製造
された反応生成物を、次の方法で蒸留精製した。即ち、
ヘリパック♯2(東京特殊金網製)を0.4m充填した
1.5インチの蒸留塔にて、還流比4の条件でバッチ蒸
留した。塔頂よりの留出率が、30〜90%の留分を混
合してガスクロマトグラフィーで分析した結果、イソプ
ロピルアルコールの純度は99.99重量%で、イソプ
ロピルアルコールを除くC1〜C5のアルコールの含有
量も0.001重量%と少量であった。また、C1〜C
5のアルデヒドとC4&C5のケトンは不検出であっ
た。精製イソプロピルアルコールの分析結果を表3に示
す。得られたイソプロピルアルコールは、ガスクロ上検
出された不純物の数も少なく、かつ臭気も現行の水和法
で得られた従来品よりも良好な結果を示した。
[Distillation Purification of Reaction Product] The reaction product produced by the above method was purified by distillation in the following manner. That is,
Batch distillation was performed under a reflux ratio of 4 in a 1.5-inch distillation column filled with 0.4 m of Helipack # 2 (manufactured by Tokyo Specialty Wire Mesh). As a result of mixing the fractions having a distilling rate of 30 to 90% from the top of the column and analyzing the mixture by gas chromatography, the purity of isopropyl alcohol was 99.99% by weight. The content was as small as 0.001% by weight. Also, C1 to C
No aldehyde of 5 and ketone of C4 & C5 were detected. Table 3 shows the analysis results of the purified isopropyl alcohol. The obtained isopropyl alcohol showed a small number of impurities detected on gas chromatography and also showed a better odor than the conventional product obtained by the current hydration method.

【0031】なお、実施例1における蒸留塔の還流比及
び留出率は次の様に定義される。還流比=塔頂蒸気凝縮
液の内、蒸留塔に還流する液重量/系外に抜き出す液重
量で示され、留出率(%)=蒸留塔の塔頂より系外に抜
き出した留分の積算量/蒸留塔に仕込んだ液重量×10
0で示される。
The reflux ratio and the distillation rate of the distillation column in Example 1 are defined as follows. Reflux ratio = (weight of liquid refluxed to distillation column out of vapor condensate at the top / weight of liquid extracted outside system) Distillation rate (%) = fraction extracted from system top of distillation column to outside Integrated amount / weight of liquid charged in distillation column x 10
Indicated by 0.

【0032】実施例2 クメン法フェノールプラントの副生として得られた粗ア
セトンを原料として、その純度97.68重量%、C1
〜C5のアルコール0.031重量%、C1〜C5のア
ルデヒド0.037重量%、C4&C5のケトン0.0
5重量%、その他不純物2.202重量%を含んだもの
を用いた以外は、実施例1と同様に行った。結果は表1
〜3に示す様に、未反応アセトンが0.9重量%と若干
増加したが、精製されたイソプロピルアルコールは純度
99.97重量%であり、イソプロピルアルコールを除
くC1〜C5のアルコールの含有量は0.018重量
%、C1〜C5のアルデヒドおよびC4&C5のケトン
は検出されなかった。また、臭気も現行の水和法で得ら
れた製品並の良好な結果を示した。
Example 2 Using crude acetone obtained as a by-product of a cumene phenol plant as a raw material, its purity was 97.68% by weight, C1
0.031% by weight of C5 to C5 alcohol, 0.037% by weight of C1 to C5 aldehyde, 0.04% of C4 & C5 ketone
The same procedure as in Example 1 was carried out except that a substance containing 5% by weight and 2.202% by weight of other impurities was used. Table 1 shows the results
As shown in FIGS. 3 to 3, the unreacted acetone slightly increased to 0.9% by weight, but the purified isopropyl alcohol had a purity of 99.97% by weight, and the content of alcohols C1 to C5 excluding isopropyl alcohol was 0.018% by weight, C1-C5 aldehyde and C4 & C5 ketone were not detected. In addition, the odor showed good results comparable to products obtained by the current hydration method.

【0033】実施例3 原料アセトンとして、純度が97.49重量%、C1〜
C5のアルコール0.053重量%、C1〜C5のアル
デヒド0.102重量%、C4&C5のケトン0.11
重量%、その他不純物2.245重量%を含んだ粗アセ
トンを用いた以外は、実施例2と同様に行った。結果は
表1〜3に示す様に、未反応アセトンが1.0重量%と
若干増加したが、精製されたイソプロピルアルコールの
純度は99.93重量%であり、イソプロピルアルコー
ルを除くC1〜C5のアルコールの含有量は0.061
重量%、C1〜C5のアルデヒドおよびC4&C5のケ
トンは検出されなかった。また、臭気も現行の水和法で
得られた製品並の良好な結果を示した。
Example 3 The raw material acetone had a purity of 97.49% by weight and C1 to C1.
C5 alcohol 0.053% by weight, C1 to C5 aldehyde 0.102% by weight, C4 & C5 ketone 0.11
The procedure was performed in the same manner as in Example 2 except that crude acetone containing 2.245% by weight and 2.245% by weight of other impurities was used. As shown in Tables 1 to 3, the unreacted acetone slightly increased to 1.0% by weight, but the purity of the purified isopropyl alcohol was 99.93% by weight. 0.061 alcohol content
Weight%, C1-C5 aldehydes and C4 & C5 ketones were not detected. In addition, the odor showed good results comparable to products obtained by the current hydration method.

【0034】比較例−1 原料アセトンが、純度97.21重量%、C1〜C5の
アルコール0.055重量%、C1〜C5のアルデヒド
0.37重量%、C4&C5のケトン0.12重量%、
その他不純物2.245重量%を含んだ租アセトンを用
いた以外は、実施例1と同様に行った。結果は表1〜3
に示す様に、未反応アセトンが1.20重量%と増加
し、且つ精製されたイソプロピルアルコール純度も9
9.74重量%であり、現行品(99.9重量%以上)
より低純度となった。不純物としては、イソプロピルア
ルコールを除くC1〜C5のアルコール0.25重量
%、C1〜C5のアルデヒドおよびC4&C5のケトン
は不検出であった。また、臭気も現行の水和法で得られ
た製品より不快を与える臭いを示し、規格外の物となっ
た。
Comparative Example 1 Raw material acetone was 97.21% by weight in purity, 0.055% by weight of C1-C5 alcohol, 0.37% by weight of C1-C5 aldehyde, 0.12% by weight of C4 & C5 ketone,
Others Example 2 was repeated except that acetone containing 2.245% by weight of impurities was used. The results are shown in Tables 1 to 3.
As shown in the figure, the unreacted acetone increased to 1.20% by weight, and the purity of the purified isopropyl alcohol was 9%.
9.74% by weight, current product (99.9% by weight or more)
It became lower purity. As impurities, 0.25% by weight of C1-C5 alcohol except isopropyl alcohol, C1-C5 aldehyde and C4 & C5 ketone were not detected. In addition, the odor showed a more unpleasant odor than the product obtained by the current hydration method, and was out of specification.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【発明の効果】本発明は、精製された高純度のアセトン
は勿論のこと、アセトン製造プロセスの工程液である粗
アセトンを原料として、これらに含まれる不純物を特定
し、含有量を規定することにより、原料アセトンの精製
に要するエネルギーの低減が計れることでイソプロピル
アルコールの製造コストが低下でき、しかも高純度のイ
ソプロピルアルコールを製造することができて産業上優
位である。
According to the present invention, the impurities contained in crude acetone, which is a process liquid of the acetone production process, as well as purified high-purity acetone are specified and the content thereof is specified. As a result, the energy required for the purification of the raw material acetone can be reduced, so that the production cost of isopropyl alcohol can be reduced, and high-purity isopropyl alcohol can be produced, which is industrially superior.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アセトンと水素を反応させてイソプロピル
アルコールを製造する方法において、原料アセトン中の
アルデヒド類、アルコール類及びケトン類(アセトンを
除く)の合計が、0.3重量%以下であることを特徴と
するイソプロピルアルコールの製造方法。
1. A method for producing isopropyl alcohol by reacting acetone and hydrogen, wherein the total of aldehydes, alcohols and ketones (excluding acetone) in the raw material acetone is 0.3% by weight or less. A method for producing isopropyl alcohol.
【請求項2】アルデヒド類が、炭素数1〜5のアルデヒ
ドである請求項1記載の方法。
2. The method according to claim 1, wherein the aldehyde is an aldehyde having 1 to 5 carbon atoms.
【請求項3】アルコール類が、炭素数が1〜5のアルコ
ールである請求項1記載の方法。
3. The method according to claim 1, wherein the alcohol is an alcohol having 1 to 5 carbon atoms.
【請求項4】ケトン類が、炭素数が4及び5のケトンで
ある請求項1記載の方法。
4. The method according to claim 1, wherein the ketone is a ketone having 4 or 5 carbon atoms.
JP2000315056A 2000-10-16 2000-10-16 Method for producing isopropyl alcohol Expired - Lifetime JP4754058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315056A JP4754058B2 (en) 2000-10-16 2000-10-16 Method for producing isopropyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315056A JP4754058B2 (en) 2000-10-16 2000-10-16 Method for producing isopropyl alcohol

Publications (2)

Publication Number Publication Date
JP2002121160A true JP2002121160A (en) 2002-04-23
JP4754058B2 JP4754058B2 (en) 2011-08-24

Family

ID=18794216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315056A Expired - Lifetime JP4754058B2 (en) 2000-10-16 2000-10-16 Method for producing isopropyl alcohol

Country Status (1)

Country Link
JP (1) JP4754058B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536147A (en) * 2001-11-16 2004-12-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing isopropanol
WO2009037953A1 (en) 2007-09-19 2009-03-26 Mitsui Chemicals, Inc. Method for producing alcohol and acid-treated raney catalyst
JP2013060387A (en) * 2011-09-13 2013-04-04 Sumitomo Chemical Co Ltd Method for producing aluminum alkoxide
CN103539635A (en) * 2012-07-12 2014-01-29 中国石油化工股份有限公司 Method for preparing isopropanol through acetone hydrogenation
WO2020071307A1 (en) * 2018-10-03 2020-04-09 株式会社トクヤマ High-purity isopropyl alcohol and method for manufacturing same
WO2021200936A1 (en) * 2020-04-02 2021-10-07 株式会社トクヤマ Semiconductor treatment liquid and method for manufacturing same
US11372331B2 (en) 2016-03-31 2022-06-28 Fujifilm Corporation Treatment liquid for manufacturing semiconductor, method of manufacturing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device
WO2023176192A1 (en) * 2022-03-16 2023-09-21 株式会社トクヤマ Semiconductor cleaning liquid and method for producing semiconductor cleaning liquid

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212729A (en) * 1985-07-11 1987-01-21 Mitsui Petrochem Ind Ltd Production of isopropyl alcohol
JPS6277338A (en) * 1985-09-30 1987-04-09 Ishikawajima Harima Heavy Ind Co Ltd Production unit for isopropanol
JPH02174737A (en) * 1988-09-30 1990-07-06 Mitsui Petrochem Ind Ltd Production of phenol and method for obtaining propylene from acetone of by-product in production thereof
JPH02270829A (en) * 1989-01-17 1990-11-05 Mitsui Petrochem Ind Ltd Production of isopropanol
JPH02279643A (en) * 1989-04-18 1990-11-15 Mitsubishi Petrochem Co Ltd Production of isopropyl alcohol
JPH0341038A (en) * 1989-07-10 1991-02-21 Mitsui Toatsu Chem Inc Production of isopropyl alcohol
JPH03120234A (en) * 1989-09-28 1991-05-22 Hoechst Ag Method for two stage preparation of alcohol
JPH03133941A (en) * 1989-10-20 1991-06-07 Mitsui Petrochem Ind Ltd Production of isopropanol and apparatus therefor
JPH03141235A (en) * 1989-10-24 1991-06-17 Mitsui Petrochem Ind Ltd Production of isopropanol
JPH03291248A (en) * 1989-12-21 1991-12-20 Inst Fr Petrole Preparation of phenol
JPH07196569A (en) * 1993-11-08 1995-08-01 Texaco Dev Corp Synthesis of ether from acetone
JPH07252173A (en) * 1994-01-27 1995-10-03 Texaco Dev Corp Production of isopropanol and ether from acetone

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6212729A (en) * 1985-07-11 1987-01-21 Mitsui Petrochem Ind Ltd Production of isopropyl alcohol
JPS6277338A (en) * 1985-09-30 1987-04-09 Ishikawajima Harima Heavy Ind Co Ltd Production unit for isopropanol
JPH02174737A (en) * 1988-09-30 1990-07-06 Mitsui Petrochem Ind Ltd Production of phenol and method for obtaining propylene from acetone of by-product in production thereof
JPH02270829A (en) * 1989-01-17 1990-11-05 Mitsui Petrochem Ind Ltd Production of isopropanol
JPH02279643A (en) * 1989-04-18 1990-11-15 Mitsubishi Petrochem Co Ltd Production of isopropyl alcohol
JPH0341038A (en) * 1989-07-10 1991-02-21 Mitsui Toatsu Chem Inc Production of isopropyl alcohol
JPH03120234A (en) * 1989-09-28 1991-05-22 Hoechst Ag Method for two stage preparation of alcohol
JPH03133941A (en) * 1989-10-20 1991-06-07 Mitsui Petrochem Ind Ltd Production of isopropanol and apparatus therefor
JPH03141235A (en) * 1989-10-24 1991-06-17 Mitsui Petrochem Ind Ltd Production of isopropanol
JPH03291248A (en) * 1989-12-21 1991-12-20 Inst Fr Petrole Preparation of phenol
JPH07196569A (en) * 1993-11-08 1995-08-01 Texaco Dev Corp Synthesis of ether from acetone
JPH07252173A (en) * 1994-01-27 1995-10-03 Texaco Dev Corp Production of isopropanol and ether from acetone

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004536147A (en) * 2001-11-16 2004-12-02 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Method for producing isopropanol
WO2009037953A1 (en) 2007-09-19 2009-03-26 Mitsui Chemicals, Inc. Method for producing alcohol and acid-treated raney catalyst
JP2013060387A (en) * 2011-09-13 2013-04-04 Sumitomo Chemical Co Ltd Method for producing aluminum alkoxide
CN103539635A (en) * 2012-07-12 2014-01-29 中国石油化工股份有限公司 Method for preparing isopropanol through acetone hydrogenation
CN103539635B (en) * 2012-07-12 2016-07-13 中国石油化工股份有限公司 Method for preparing isopropyl alcohol by acetone hydrogenation
US11372331B2 (en) 2016-03-31 2022-06-28 Fujifilm Corporation Treatment liquid for manufacturing semiconductor, method of manufacturing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device
JPWO2020071307A1 (en) * 2018-10-03 2021-02-15 株式会社トクヤマ Method for producing cleaning solution and high-purity isopropyl alcohol
WO2020071307A1 (en) * 2018-10-03 2020-04-09 株式会社トクヤマ High-purity isopropyl alcohol and method for manufacturing same
US11905499B2 (en) 2018-10-03 2024-02-20 Tokuyama Corporation High-purity isopropyl alcohol and method for manufacturing same
WO2021200936A1 (en) * 2020-04-02 2021-10-07 株式会社トクヤマ Semiconductor treatment liquid and method for manufacturing same
JP6980952B1 (en) * 2020-04-02 2021-12-15 株式会社トクヤマ Semiconductor processing liquid and its manufacturing method
KR20220139401A (en) * 2020-04-02 2022-10-14 가부시키가이샤 도쿠야마 Semiconductor processing liquid and manufacturing method thereof
KR102471394B1 (en) 2020-04-02 2022-11-28 가부시키가이샤 도쿠야마 Semiconductor processing liquid and its manufacturing method
WO2023176192A1 (en) * 2022-03-16 2023-09-21 株式会社トクヤマ Semiconductor cleaning liquid and method for producing semiconductor cleaning liquid
JP7402385B1 (en) 2022-03-16 2023-12-20 株式会社トクヤマ Semiconductor cleaning liquid and method for manufacturing semiconductor cleaning liquid

Also Published As

Publication number Publication date
JP4754058B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
TWI324991B (en) Process for producing alcohol
JP5396470B2 (en) Method for producing neopentyl glycol
US7321068B2 (en) Method for producing tricyclodecandialdehyde
TWI403496B (en) Process for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the secondary streams of trimethylolpropane preparation
US7663006B2 (en) Process for production of purified alcohols
CN101903366B (en) Method for producing cis-rose oxide
JP5101495B2 (en) Method for producing 3-methyl-1,5-pentanediol
JP2774607B2 (en) Method for producing phenol and method for obtaining propylene from by-product acetone during production
JP4571732B2 (en) Acetone hydrogenation
JP2013526506A (en) Method for producing neopentyl glycol
JP4754058B2 (en) Method for producing isopropyl alcohol
JPH02231442A (en) Production of phenol
CA2395396C (en) Colour number improvement in polyhydric alcohols by hydrogenation
KR100659913B1 (en) Alcohol production method
EP2240429B1 (en) Method of producing lower alcohols from glycerol
TW201900587A (en) Hydroformylation method for industrial manufacture of aldehydes and/or alcohols
JP4826709B2 (en) Method for producing purified alcohol
KR20050088204A (en) Process for synthesis of methanol
JP2003026622A (en) Method for producing 1,4-butanediol
JP5969047B2 (en) A process for obtaining a product stream enriched in trimethylolpropane from a side stream of trimethylolpropane production.
KR20160063124A (en) Process for production of unsaturated alcohol
JPH06122638A (en) Method for purifying alcohol
TW201335123A (en) Process for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the secondary streams of trimethylolpropane preparation
JP4321838B2 (en) Method for producing isopropyl alcohol
JP7419646B2 (en) Manufacturing method of neopentyl glycol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070911

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4754058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250