JPS6212729A - Production of isopropyl alcohol - Google Patents

Production of isopropyl alcohol

Info

Publication number
JPS6212729A
JPS6212729A JP60151413A JP15141385A JPS6212729A JP S6212729 A JPS6212729 A JP S6212729A JP 60151413 A JP60151413 A JP 60151413A JP 15141385 A JP15141385 A JP 15141385A JP S6212729 A JPS6212729 A JP S6212729A
Authority
JP
Japan
Prior art keywords
acetone
reaction
catalyst
amount
isopropyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60151413A
Other languages
Japanese (ja)
Inventor
Hisaya Miki
三木 久也
Yoshiyuki Iwase
岩瀬 慶幸
Tatsuo Shirahata
辰夫 白幡
Masanobu Watanabe
正信 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP60151413A priority Critical patent/JPS6212729A/en
Publication of JPS6212729A publication Critical patent/JPS6212729A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To produce isopropyl alcohol useful as a raw material in improved yield, without producing by-products, by reacting acetone with hydrogen in the presence of a catalyst while controlling the pH of the catalyst, the water- content of the reaction system and the unreacted amount of acetone at a specific temperature to respective specific levels. CONSTITUTION:The objective compound is produced by reacting acetone with hydrogen in the presence of a Raney-Ni catalyst containing an alkali in an amount to give an aqueous solution of 7.0-8.2pH when the catalyst is immersed in water, in a reaction system having a water-content of <=5wt%, preferably <=1.0wt% at a reaction temperature of 100-160 deg.C, preferably 105-150 deg.C while controlling the amount of unreacted acetone to >=0.5wt%, preferably 2-15wt%. The unreacted amount of acetone is the acetone content in the reaction mixture discharged from the reactor, and can be controlled within the above range by keeping the reaction temperature within the above range and selecting the reaction time and the hydrogen pressure.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はアセトンと水素を反応させて各種の工業用原料
や溶媒等に有用なイソプロピルアルコールを製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for producing isopropyl alcohol, which is useful as various industrial raw materials and solvents, by reacting acetone and hydrogen.

〔従来の技術〕[Conventional technology]

アセトンを水素で還元してイソプロピルアルコールを得
る従来の方法としては、例えば工業化学雑誌、第54巻
、第1冊、第27頁(昭和26年)に、触媒としてN1
−Al(1: 1 )合金から常法により      
j調製、た、ネーユッヶ7.を用い、アヤF7を水素 
     :添加してイソプロピルアルコールを得る方
法が記載されている。しかし、該文献に示されたイソプ
ロピルアルコールの収率は93.3%であり、イソプロ
ピルアルコール製造の工業化を考える場合、更に該収率
を高めることが必要である。しかし従来知られている方
法゛においては、イソプロピルアル      1コー
ルの収率を高くしようとしてアセトンの添加率を高める
と、通常はジイソプロピルエーテル、プロパン、エタン
、メタン等の副生物の量が増し反応混合物からイソプロ
ピルアルコールを分離する場合に問題となる。また前記
文献にはイソプロピルアルコールの収率を高める方法と
して、水を添加すると該収率が98.7%と高く水素添
加が促進されることが記されているが、該方法をアセト
ンの水素添加によるイソプロピルアルコールの工業的製
造法に採用することには問題がある。というのは反応混
合物からイソプロピルアルコールを分離する場合、イソ
プロピルアルコールと水が共沸混合物を形成するために
分離プロセスが複雑となりコストが高くつくのでこの方
法は経済的でないからである。
A conventional method for obtaining isopropyl alcohol by reducing acetone with hydrogen is described in, for example, Industrial Chemistry Magazine, Volume 54, Book 1, Page 27 (1952), using N1 as a catalyst.
- From Al(1:1) alloy by conventional method
j preparation, ta, nayuga 7. Aya F7 is hydrogenated using
: A method for obtaining isopropyl alcohol by adding is described. However, the yield of isopropyl alcohol shown in this document is 93.3%, and when considering industrialization of isopropyl alcohol production, it is necessary to further increase the yield. However, in conventionally known methods, when the addition rate of acetone is increased in an attempt to increase the yield of isopropyl alcohol, the amount of by-products such as diisopropyl ether, propane, ethane, and methane increases, which increases the amount of by-products in the reaction mixture. This becomes a problem when separating isopropyl alcohol from In addition, the above-mentioned literature describes that as a method for increasing the yield of isopropyl alcohol, adding water increases the yield as high as 98.7% and promotes hydrogenation. There are problems in adopting this method for the industrial production of isopropyl alcohol. This is because when separating isopropyl alcohol from the reaction mixture, this method is not economical since isopropyl alcohol and water form an azeotrope, making the separation process complicated and expensive.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等は従来のラネーニッケル触媒の存在下にアセ
トンを水素添加してイソプロピルアルコールを得る方法
には前記した問題点のあることを認めた。また本発明者
等は該反応に対してラネーニッケルを用いる場合、Nt
−A lt合金からAffiをアルカリによって溶出す
る展開操作と展開後の触媒の洗浄操作を含めた触媒の調
製方法の違いによつ(MIBK )やメチルイソブチル
カルビノール(?11BC)の副生量が増大することを
見出した。かかる背景のもとに本発明者等は前記した種
々の副生成物の量が少なく高い選択率でもってアセトン
を水素添加して、しかも経済的に効率良くイソプロピル
アルコールを工業的に製造する方法について検討した。
The present inventors have recognized that the conventional method of hydrogenating acetone to obtain isopropyl alcohol in the presence of a Raney nickel catalyst has the above-mentioned problems. The inventors also found that when using Raney nickel for the reaction, Nt
- The amount of by-products of (MIBK) and methyl isobutyl carbinol (?11BC) may vary due to differences in catalyst preparation methods, including the development operation in which Affi is eluted from the Alt alloy with alkali and the catalyst washing operation after development. found that it increases. Against this background, the present inventors have developed a method for industrially producing isopropyl alcohol economically and efficiently by hydrogenating acetone with a high selectivity and with a small amount of the various by-products mentioned above. investigated.

〔問題点を解決するための手段・作用〕その結果、下記
方法を採用すれば前記目的を達成できることを見出し本
発明を完成するに到った。
[Means and actions for solving the problems] As a result, the inventors discovered that the above object could be achieved by employing the following method, and completed the present invention.

すなわち本発明の方法によれば、アセトンをラネーニッ
ケル触媒の存在下に水素と反応させてイソプロピルアル
コールを得るに当たって、該触媒に存在するアルカリの
量が触媒を浸漬した水溶液のpH値で表わして7.0な
いし8.2の範囲にある触媒を用いて、反応系の水分含
有率が5重量%以下、反応温度100ないし160℃で
アセトンの未反応量が0.5重量%以上になるようにし
て該反応を行うことを特徴とするイソプロピルアルコー
ルの製造法、が提供される。
That is, according to the method of the present invention, when acetone is reacted with hydrogen in the presence of a Raney nickel catalyst to obtain isopropyl alcohol, the amount of alkali present in the catalyst is expressed as the pH value of the aqueous solution in which the catalyst is immersed. Using a catalyst in the range of 0 to 8.2, the moisture content of the reaction system is 5% by weight or less, the reaction temperature is 100 to 160°C, and the unreacted amount of acetone is 0.5% by weight or more. A method for producing isopropyl alcohol, which is characterized by carrying out the reaction, is provided.

本発明で用いられるラネーニッケル触媒は、該触媒に存
在するアルカリの量が触媒を浸漬した水で 溶液のpH値−表わして7.0ないし8.2の範囲にあ
る触媒が使用される。この場合の触媒に存在するアルカ
リ量に対応すると考えられる、本発明において採用され
る水溶液のpH値は以下の方法によって求めた値である
。すなわち、N1−A I!合金をアルカリによってA
lを溶出する通常の展開操作を行って、次にこれを水で
洗浄して、又洗浄後必要に応じて前記範囲内のpH値を
有する溶液で触媒を処理してラネーニッケル触媒を調製
する方法において、この洗浄後又は処理後の触媒の約1
0g(湿潤状態)を水501!に常温で浸漬し通常1h
r放置した後の水溶液のpHを電極法によるペーハーメ
ーターで測定して得られる値である。本発明では該pH
の値が7.0未満の場合にはラネーニッケルを保存する
媒体が酸性を意味し、保存中に表面を変質して、好まし
い活性を維持することが出来ないので好ましくなく、又
該pHの値が8.2を越える場合には、このような触媒
を用いて反応を行った場合には旧BKやMIBC等の副
生物が生成しその量が増大するので好ましくない。本発
明では反応に供するラネーニッケルとして、前記した展
開後に最後の洗浄操作が終ったラネーニッケルにおいて
、該ラネーニッケルを必要に応じてアルカリ含有水溶液
に浸漬して処理したものを触媒として使用することがで
きる。この場合の浸漬処理としては、洗浄後のラネーニ
ッケルをアルカリ含有水溶液で適宜の温度で通常1時間
以上浸漬処理が行われるが、該処理後のアルカリ含有水
溶液のpH値が前記範囲内にあるアルカリ含有水溶液が
使用される。またこの場合のアルカリ含有水溶液として
はLi5K、 Rbs Csの水酸化物の水溶液、Be
、 Mg、、 Ca5Sr、 Ba等のアルカリ土類金
属の水酸化物の水溶液のように水溶液の状態でアルカリ
性を示す化合物の水溶液を示すことができる。
The Raney nickel catalyst used in the present invention is a catalyst in which the amount of alkali present in the catalyst is in the range of 7.0 to 8.2, expressed as the pH value of the solution in water in which the catalyst is immersed. The pH value of the aqueous solution employed in the present invention, which is considered to correspond to the amount of alkali present in the catalyst in this case, is a value determined by the following method. That is, N1-A I! Alloy A by alkali
A method for preparing a Raney nickel catalyst by carrying out a normal development operation to elute 1, then washing it with water, and after washing, optionally treating the catalyst with a solution having a pH value within the above range. About 1% of the catalyst after this washing or treatment in
0g (wet state) to 501 parts water! Soak at room temperature for usually 1 hour.
This is the value obtained by measuring the pH of the aqueous solution after it has been left standing with a pH meter using an electrode method. In the present invention, the pH
If the pH value is less than 7.0, it means that the medium in which Raney nickel is stored is acidic, and the surface is altered during storage, making it impossible to maintain the desired activity. If it exceeds 8.2, it is not preferable because by-products such as old BK and MIBC will be produced and their amounts will increase when such a catalyst is used for the reaction. In the present invention, as the Raney nickel to be subjected to the reaction, a Raney nickel that has been subjected to the final washing operation after the development described above, and which has been treated by immersing the Raney nickel in an alkali-containing aqueous solution as necessary, can be used as a catalyst. In this case, the Raney nickel after washing is immersed in an alkali-containing aqueous solution at an appropriate temperature for usually 1 hour or more. Aqueous solutions are used. In this case, alkali-containing aqueous solutions include Li5K, RbsCs hydroxide aqueous solution, Be
, Mg, , Ca5Sr, Ba, and other alkaline earth metal hydroxides.

本発明ではアセトンと水素を反応させてイソプロピルア
ルコールを製造する場合、反応系の水分含有率が5.0
重量%以下、好ましくは1.0重量%以下となるように
して反応が行われる。この場合の水分含有率とは反応系
に存在する反応混合物中の水の含有率であって、該水分
含有率が5重量%を越えて大きくなると反応混合物から
水を含まない高純度のイソプロピルアルコールを分離す
るのに複雑な工程を要しコストが高くつ(ので好ましく
ない。本発明では反応系の水分含有率を前記範囲にする
ためにも原料として用いるアセトンは水分の含有率を5
重量%以下にしたものが好ましい。
In the present invention, when producing isopropyl alcohol by reacting acetone and hydrogen, the water content of the reaction system is 5.0.
The reaction is carried out in such a way that the amount is less than 1.0% by weight, preferably less than 1.0% by weight. The water content in this case is the content of water in the reaction mixture present in the reaction system, and if the water content exceeds 5% by weight, high purity isopropyl alcohol that does not contain water is removed from the reaction mixture. It is not preferable because it requires a complicated process to separate and is expensive. In the present invention, in order to bring the water content of the reaction system into the above range, the acetone used as a raw material has a water content of 5.
It is preferable that the amount is less than % by weight.

このように反応系の水分含有率を小さくした場合には反
応混合物からイソプロピルアルコールを分離精製する操
作において脱水操作を省くこともできるので好都合であ
る。
When the water content of the reaction system is reduced in this way, it is advantageous because the dehydration operation can be omitted in the operation of separating and purifying isopropyl alcohol from the reaction mixture.

本発明ではアセトンと水素との反応は、反応温度が10
0ないし160℃、好ましくは105ないし150℃で
行われる。反応温度が160℃を越える場合にはジイソ
プロピルエーテル、プロパン、エタン、メタン等の副生
物が生成し、その量が増大するので好ましくない。又反
応温度が100℃未満の場合には反応速度が低下しイソ
プロピルアルコールの収量を高くするためには反応時間
を著しく長くしなければならず、このときには副生物の
量も増すので好ましくない。
In the present invention, the reaction temperature of acetone and hydrogen is 10
It is carried out at a temperature of 0 to 160°C, preferably 105 to 150°C. If the reaction temperature exceeds 160°C, by-products such as diisopropyl ether, propane, ethane, methane, etc. will be produced and their amounts will increase, which is not preferable. Furthermore, if the reaction temperature is less than 100° C., the reaction rate decreases, and in order to increase the yield of isopropyl alcohol, the reaction time must be significantly lengthened, and in this case, the amount of by-products also increases, which is not preferable.

本発明ではアセトンと水素との反応は回分式、あるいは
流通法等で行うことができる。流通法の場合には未反応
のアセトンを反応系にリサイクルして反応が行われる。
In the present invention, the reaction between acetone and hydrogen can be carried out by a batch method, a flow method, or the like. In the case of the distribution method, unreacted acetone is recycled to the reaction system to carry out the reaction.

本発明ではアセトンと水素の反応は、アセトンの未反応
量が0.5重量%以上、好ましくは2ないし15重量%
となるようにして行われる。この場合のアセトンの未反
応量とは反応器を出てきた反応混合物中のアセトン含有
割合である。アセトンの未反応量を上記範囲にするため
には、反応温度を前記範囲にした上で、例えば反応時間
、水素圧力などを適宜選ぶことによって行うことができ
る。
In the present invention, in the reaction between acetone and hydrogen, the amount of unreacted acetone is 0.5% by weight or more, preferably 2 to 15% by weight.
This is done as follows. In this case, the unreacted amount of acetone is the acetone content ratio in the reaction mixture coming out of the reactor. In order to keep the unreacted amount of acetone within the above range, it can be carried out by adjusting the reaction temperature within the above range and, for example, appropriately selecting the reaction time, hydrogen pressure, etc.

反応時間としては回分法を用いた液相法の場合には通常
10分ないし1.5時間程度であり、水素分圧としては
通常5ないし40kg/colG程度である。本反応量
が0,5重量%以下と小さくアセトンの転化率を高くし
た場合には、前記したジイソプロピルエーテル、)−ロ
パン等の副生物が増すので好ましくない。
In the case of a liquid phase method using a batch method, the reaction time is usually about 10 minutes to 1.5 hours, and the hydrogen partial pressure is usually about 5 to 40 kg/colG. If the reaction amount is as low as 0.5% by weight or less and the conversion rate of acetone is increased, this is not preferable because by-products such as diisopropyl ether and )-ropane described above will increase.

本発明ではアセトン、水素および触媒の使用量は、回分
法を用いた場合には、触媒はアセトンの100重量部に
対して通常lないし30重量部であり、水素の使用量は
アセトンに対して通常0.8ないし10倍モルである。
In the present invention, when a batch method is used, the amount of acetone, hydrogen and catalyst used is usually 1 to 30 parts by weight per 100 parts by weight of acetone, and the amount of hydrogen used is 1 to 30 parts by weight per 100 parts by weight of acetone. It is usually 0.8 to 10 times the molar amount.

本発明では、反応終了後反応混合物を通常知られている
蒸留方法、および必要に応じて脱水操作を施すことによ
って高純度のイソプロピルアルコールが得られる。
In the present invention, highly pure isopropyl alcohol can be obtained by subjecting the reaction mixture to a commonly known distillation method and, if necessary, dehydration operation after completion of the reaction.

〔発明の効果〕〔Effect of the invention〕

本発明の方法を採用すれば、反応の副生物の量が少ない
高い選択率で水分をほとんど含まない高純度のイソプロ
ピルアルコールを効率良く製造することができる。
By employing the method of the present invention, highly pure isopropyl alcohol containing almost no water can be efficiently produced with a high selectivity and a small amount of reaction by-products.

〔実施例〕 以下、本発明の方法を実施例によって具体的に説明する
[Example] Hereinafter, the method of the present invention will be specifically explained with reference to Examples.

実施例1 (反応) アセトン66.4i1t%、イソプロピルアルコール(
IPA ) 33.3wt%、水分0.3wt%のアセ
トン溶液300 mlとラネーニッケル(8揮製、よく
水洗してpH7,6に調製し、その後IPAで置換して
、実質的に水を含まない状態にして摂取したものを窒素
中で乾燥した) 15.7 gを11のオートクレーブ
に加      :え、室温下、水素で常圧封入し、1
50℃に加熱した。150℃に達した後、水素を圧入し
て全圧を26kg / cJ Gとした。攪拌開始とと
もに、圧力コントロールバルブを通して、この圧力を保
つように水素を供給し、この間反応温度を150℃に維
持した。
Example 1 (Reaction) Acetone 66.4i1t%, isopropyl alcohol (
IPA) 33.3 wt%, moisture 0.3 wt% acetone solution (300 ml) and Raney nickel (8 volatile, thoroughly washed with water to adjust pH to 7.6, then replaced with IPA to make a state substantially free of water) 15.7 g (15.7 g of the ingested material was dried in nitrogen) was added to the autoclave No. 11, and the autoclave was sealed with hydrogen at room temperature under normal pressure.
Heated to 50°C. After reaching 150°C, hydrogen was injected to make the total pressure 26 kg/cJ G. At the start of stirring, hydrogen was supplied through a pressure control valve to maintain this pressure, and during this period the reaction temperature was maintained at 150°C.

30分後に反応を停止した。生成物組成はアセトン  
    10.7%、IPA 99.0%、水0.3w
t%であった。
The reaction was stopped after 30 minutes. Product composition is acetone
10.7%, IPA 99.0%, water 0.3w
It was t%.

触媒を沈降させた後、反応液200mfを抜き出し、沈
降分離した触媒に含水率0.3%のアセトンを 200
 d加えて同じようにして反応を14回繰返した。一連
の反応を通して、ジイソプロピルエーテルは検出されず
、触媒活性の低下は認められなかった。
After settling the catalyst, 200 mf of the reaction liquid was extracted, and 200 mf of acetone with a water content of 0.3% was added to the precipitated and separated catalyst.
d and the reaction was repeated 14 times in the same manner. Throughout the series of reactions, no diisopropyl ether was detected and no decrease in catalyst activity was observed.

このようにして得られた生成物の組成は、アセトン0.
8wt%、IPA 98.9i1t%、水0.3%1t
%となった。
The composition of the product thus obtained was 0.0% acetone.
8wt%, IPA 98.9i1t%, water 0.3%1t
%.

反応生成物1000部を50段オルダーショー型蒸留塔
に仕込み、還流比2.0の条件で、常圧回分蒸留を行っ
た。75部を抜き出した時点で未反応のアセトンは全量
回収され、釜残部には検出されなかった。(釜残部の含
水率は0.11wt%となった。)更に、蒸留を続は沸
点83℃のIPA 910部を得た。
1000 parts of the reaction product was charged into a 50-stage Oldershaw type distillation column, and atmospheric pressure batch distillation was carried out under conditions of a reflux ratio of 2.0. When 75 parts were withdrawn, all unreacted acetone was recovered and was not detected in the remainder of the pot. (The water content of the remainder of the pot was 0.11 wt%.) Further distillation was performed to obtain 910 parts of IPA with a boiling point of 83°C.

この m IPAにはメチルイソブチルケトン、メチルイソブ
チルカルビノールは検出されず、含水率は0.11%で
あった。
Methyl isobutyl ketone and methyl isobutyl carbinol were not detected in this m IPA, and the water content was 0.11%.

比較例1 反応温度を175℃にした以外は、実施例1と同様にし
て反応を繰返した。
Comparative Example 1 The reaction was repeated in the same manner as in Example 1 except that the reaction temperature was 175°C.

生成物組成は、アセトン0.7%、イソプロピン16.
3%、エタン0.8%、プロパン4.3%が検出された
Product composition: 0.7% acetone, 16% isopropyne.
3%, ethane 0.8%, and propane 4.3%.

比較例2 反応温度130℃でアセトンの未反応量が0.5%以下
となるようにして実施例1と同様にして反応を繰返した
。このときの反応時間は約2時間でビルアルコール98
.8%、水分0.5%、ジイソプロピルエーテル0.6
%であり、ジイソプロピルエーテルの副生量が増した。
Comparative Example 2 The reaction was repeated in the same manner as in Example 1 at a reaction temperature of 130° C. so that the amount of unreacted acetone was 0.5% or less. The reaction time at this time was about 2 hours, and the building alcohol 98
.. 8%, water 0.5%, diisopropyl ether 0.6
%, and the amount of diisopropyl ether by-product increased.

比較例3 ラネーニッケルのpH(を9.5に調整し、反応温度1
20℃とした以外は、実施例1の最初の実験を繰返した
Comparative Example 3 The pH of Raney nickel was adjusted to 9.5, and the reaction temperature was 1.
The first experiment of Example 1 was repeated except that the temperature was 20°C.

生成物組成は、アセトン2.7%、イソプロパツール9
6.5%、水0.4%、メチルイソブチルケトン0.1
%、メチルイソブチルカルビノール0.3%であった。
Product composition: 2.7% acetone, 9% isopropanol
6.5%, water 0.4%, methyl isobutyl ketone 0.1
%, methyl isobutyl carbinol 0.3%.

Claims (1)

【特許請求の範囲】[Claims] (1)アセトンをラネーニツケル触媒の存在下に水素と
反応させてイソプロピルアルコールを得るに当たつて、
該触媒に存在するアルカリの量が触媒を浸漬した水溶液
のpH値で表わして7.0ないし8.2の範囲にある触
媒を用いて、反応系の水分含有率が5重量%以下、反応
温度100ないし160℃の範囲でアセトンの未反応量
が0.5重量%以上になるようにして該反応を行うこと
を特徴とするイソプロピルアルコールの製造法。
(1) In obtaining isopropyl alcohol by reacting acetone with hydrogen in the presence of a Raney-nickel catalyst,
Using a catalyst in which the amount of alkali present in the catalyst is in the range of 7.0 to 8.2 expressed as the pH value of the aqueous solution in which the catalyst is immersed, the water content of the reaction system is 5% by weight or less, and the reaction temperature is A method for producing isopropyl alcohol, characterized in that the reaction is carried out at a temperature in the range of 100 to 160°C such that the amount of unreacted acetone is 0.5% by weight or more.
JP60151413A 1985-07-11 1985-07-11 Production of isopropyl alcohol Pending JPS6212729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60151413A JPS6212729A (en) 1985-07-11 1985-07-11 Production of isopropyl alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60151413A JPS6212729A (en) 1985-07-11 1985-07-11 Production of isopropyl alcohol

Publications (1)

Publication Number Publication Date
JPS6212729A true JPS6212729A (en) 1987-01-21

Family

ID=15518061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60151413A Pending JPS6212729A (en) 1985-07-11 1985-07-11 Production of isopropyl alcohol

Country Status (1)

Country Link
JP (1) JPS6212729A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361755A2 (en) * 1988-09-30 1990-04-04 Mitsui Petrochemical Industries, Ltd. Phenol preparation process and propylene recovery therefrom
JPH03141235A (en) * 1989-10-24 1991-06-17 Mitsui Petrochem Ind Ltd Production of isopropanol
US5081321A (en) * 1989-01-17 1992-01-14 Mitsui Petrochemical Industries, Ltd. Preparation of isopropanol
JP2001039910A (en) * 1999-07-17 2001-02-13 Phenolchemie Verwaltungs Gmbh Hydrogenation of acetone
JP2002121160A (en) * 2000-10-16 2002-04-23 Mitsui Chemicals Inc Method for producing isopropyl alcohol
US7041857B1 (en) 2005-09-07 2006-05-09 Air Products And Chemicals, Inc. Hydrogenation of acetone
JP2008007583A (en) * 2006-06-28 2008-01-17 Corona Corp Method for filling sponge metal catalyst into reactor
WO2009104597A1 (en) 2008-02-21 2009-08-27 三井化学株式会社 Process for production of 2-propanol
CN102746113A (en) * 2011-04-20 2012-10-24 中国石油化工股份有限公司 Preparation method of isopropanol
CN107952468A (en) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 Preparing isopropyl alcohol by acetone hydrogenation catalyst and method
CN113024351A (en) * 2021-03-24 2021-06-25 西南化工研究设计院有限公司 Production method of isopropanol

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5017729A (en) * 1988-09-30 1991-05-21 Mitsui Petrochemical Industries, Ltd. Phenol preparation process and propylene recovery therefrom
EP0361755A2 (en) * 1988-09-30 1990-04-04 Mitsui Petrochemical Industries, Ltd. Phenol preparation process and propylene recovery therefrom
US5081321A (en) * 1989-01-17 1992-01-14 Mitsui Petrochemical Industries, Ltd. Preparation of isopropanol
JPH03141235A (en) * 1989-10-24 1991-06-17 Mitsui Petrochem Ind Ltd Production of isopropanol
JP4571732B2 (en) * 1999-07-17 2010-10-27 フェノールヒェミー フェルヴァルトゥングスゲゼルシャフト ミット ベシュレンクテル ハフツング Acetone hydrogenation
JP2001039910A (en) * 1999-07-17 2001-02-13 Phenolchemie Verwaltungs Gmbh Hydrogenation of acetone
JP2002121160A (en) * 2000-10-16 2002-04-23 Mitsui Chemicals Inc Method for producing isopropyl alcohol
US7041857B1 (en) 2005-09-07 2006-05-09 Air Products And Chemicals, Inc. Hydrogenation of acetone
EP1762554A1 (en) 2005-09-07 2007-03-14 Air Products and Chemicals, Inc. Hydrogenation of acetone
JP2008007583A (en) * 2006-06-28 2008-01-17 Corona Corp Method for filling sponge metal catalyst into reactor
WO2009104597A1 (en) 2008-02-21 2009-08-27 三井化学株式会社 Process for production of 2-propanol
KR101150101B1 (en) 2008-02-21 2012-06-11 미쓰이 가가쿠 가부시키가이샤 Process for production of 2-propanol
US8283504B2 (en) 2008-02-21 2012-10-09 Mitsui Chemicals, Inc. Process for producing 2-propanol
JP5197637B2 (en) * 2008-02-21 2013-05-15 三井化学株式会社 Method for producing 2-propanol
TWI421234B (en) * 2008-02-21 2014-01-01 Mitsui Chemicals Inc Method for producing 2-propanol
CN102746113A (en) * 2011-04-20 2012-10-24 中国石油化工股份有限公司 Preparation method of isopropanol
CN107952468A (en) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 Preparing isopropyl alcohol by acetone hydrogenation catalyst and method
CN113024351A (en) * 2021-03-24 2021-06-25 西南化工研究设计院有限公司 Production method of isopropanol

Similar Documents

Publication Publication Date Title
RU2282624C2 (en) Oxirane compounds preparing
JPS6212729A (en) Production of isopropyl alcohol
US4359587A (en) Method for preparing carbonyl compounds
EP0227868B1 (en) Process for production of methyl isobutyl ketone
CA1274546A (en) Process for production of methyl isobutyl ketone
CN107778141B (en) Purification method of 1, 4-butanediol
JP2573687B2 (en) Method for producing isopropyl alcohol
US5900482A (en) Process for the preparation of ε-caprolactam
US5118883A (en) Preparation of glycols from formaldehyde
US4611069A (en) Process for preparing gamma-caprolactone by isomerization of epsilon-caprolactone
JPH0341035A (en) Production of propylene
EP0482607B1 (en) Process of producing 2-aminothiazole
JP2544745B2 (en) Method for producing α-methylstyrene
WO1999016762A1 (en) Process for purifying tetrahydrofurans used as starting material for polyether polyols
US2971980A (en) Preparation of para-nitrobenzaldehyde and para-nitrobenzoic acid
JPH1149733A (en) Production of anhydrous 2-amino-1-methoxypropane
JP2737295B2 (en) Method for producing methyl isobutyl ketone
US3385896A (en) Production of mesityl oxide
GB2051805A (en) Isomerizing diacetoxybutenes
JPH055820B2 (en)
JPH0273033A (en) Production of 4, 4-dimethyl-1-(p-chlorophenyl) pentane-3-one
US6995270B2 (en) Hydrogenation process
JPH0597778A (en) Production of 2-aminoindane and its salts
JPH0229067B2 (en)
JPH072714A (en) Production of dihydric phenol compounds