JP2002113813A - Composite laminate - Google Patents
Composite laminateInfo
- Publication number
- JP2002113813A JP2002113813A JP2000310833A JP2000310833A JP2002113813A JP 2002113813 A JP2002113813 A JP 2002113813A JP 2000310833 A JP2000310833 A JP 2000310833A JP 2000310833 A JP2000310833 A JP 2000310833A JP 2002113813 A JP2002113813 A JP 2002113813A
- Authority
- JP
- Japan
- Prior art keywords
- core layer
- transition temperature
- glass transition
- surface layer
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、打ち抜き加工性が
良好であるコンポジット積層板に関する。TECHNICAL FIELD The present invention relates to a composite laminate having good punching workability.
【0002】[0002]
【従来の技術】コンポジット積層板は、熱硬化性樹脂含
浸ガラス繊維織布の表面層と熱硬化性樹脂含浸ガラス繊
維不織布の芯層が加熱加圧成形により一体化された構成
を有する。必要に応じて片面又は両面に銅箔等の金属箔
も一体化される。コンポジット積層板は、安価で加工性
が良好であるため、プリント配線板材料として広く一般
に使用されている。特に、片面金属張りコンポジット積
層板を使用するプリント配線板の製造では、打ち抜きプ
レスによる部品穴形成が主流となっている。しかし、I
Cチップを搭載する部品穴は穴間隔は狭くなってきてお
り、狭い間隔で隣接する部品穴群を打ち抜きプレスで形
成すると、穴間の表面あるいは表面層と芯層の間にクラ
ックが発生しやすい。このため、部品穴の間隔が狭い箇
所だけはドリルによって部品穴形成を行なうことにな
り、加工工程が一工程増えるので、コストアップにつな
がる。2. Description of the Related Art A composite laminate has a structure in which a surface layer of a thermosetting resin impregnated glass fiber woven fabric and a core layer of a thermosetting resin impregnated glass fiber nonwoven fabric are integrated by heating and pressing. If necessary, a metal foil such as a copper foil is also integrated on one or both sides. Composite laminates are widely and generally used as printed wiring board materials because they are inexpensive and have good workability. In particular, in the production of printed wiring boards using a single-sided metal-clad composite laminate, the formation of component holes by a punching press has become mainstream. But I
The component holes for mounting the C chip are becoming narrower between the holes, and if a group of adjacent component holes is formed at a small interval by a punching press, cracks are easily generated on the surface between the holes or between the surface layer and the core layer. . For this reason, a part hole is formed by a drill only in a part where the interval between the part holes is narrow, and the number of processing steps is increased by one, leading to an increase in cost.
【0003】[0003]
【発明が解決しようとする課題】本発明は、上記の点に
鑑み、狭い間隔の穴群を打ち抜き加工で形成する場合に
も十分対応できる打ち抜き加工性良好なコンポジット積
層板を提供することを課題とする。SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide a composite laminate having good punching workability which can sufficiently cope with a case where holes at narrow intervals are formed by punching. And
【0004】[0004]
【課題を解決するための手段】上記の課題を達成するた
めに、第一の発明は、熱硬化性樹脂含浸ガラス繊維織布
の表面層と熱硬化性樹脂含浸ガラス繊維不織布の芯層が
加熱加圧成形により一体化されたコンポジット積層板に
おいて、芯層のガラス転移温度を表面層のガラス転移温
度と同等かそれより低くし、積層板としてのガラス転移
温度を115℃以下にしたことを特徴とする。Means for Solving the Problems In order to achieve the above-mentioned object, a first invention is directed to a method in which a surface layer of a thermosetting resin impregnated glass fiber woven fabric and a core layer of a thermosetting resin impregnated glass fiber nonwoven fabric are heated. In a composite laminate integrated by pressure molding, the glass transition temperature of the core layer is equal to or lower than the glass transition temperature of the surface layer, and the glass transition temperature of the laminate is 115 ° C. or less. And
【0005】また、第二の発明は、芯層のガラス転移温
度を表面層のガラス転移温度より低くし、芯層のガラス
転移温度を115℃以下にしたことを特徴とする。The second invention is characterized in that the glass transition temperature of the core layer is lower than the glass transition temperature of the surface layer, and the glass transition temperature of the core layer is 115 ° C. or lower.
【0006】上記ガラス転移温度は、TMA法により測
定したガラス転移温度を示し、測定方法は、JIS−C
−6481 5.17.1に準拠する。The above-mentioned glass transition temperature indicates a glass transition temperature measured by a TMA method.
-6481 Complies with 5.17.1.
【0007】コンポジット積層板の打ち抜き加工におい
ては、積層板表面にポンチが当たった瞬間に、二種類の
応力が発生する。第一の応力は、打ち抜き方向の応力で
ある。第二の応力は、打ち抜き方向に対して垂直方向
(ガラス繊維織布を構成するガラス糸の方向)の応力で
ある。打ち抜き加工性を改善するためには、第二の応力
を緩和する必要がある。第一の発明のように積層板とし
てのガラス転移温度が115℃以下であると、樹脂同士
の結び付きが比較的小さく柔軟性があるため、打ち抜き
の衝撃によって発生する応力を分子運動や熱に変換する
作用が大きく、上記第二の応力が十分に分散される。こ
の結果、クラックや目白は発生しない、若しくは、発生
し難くなる。第一の発明では、積層板としてのガラス転
移温度を115℃以下にするために、芯層のガラス転移
温度を表面層のガラス転移温度と同等かそれより低くし
ているが、これは表面層のガラス転移温度を高くし、積
層板の熱時剛性を確保するためである。プリント配線板
に部品を実装するための半田付け作業時に、プリント配
線板の熱による撓みを抑制することができる。In the punching process of a composite laminate, two types of stress are generated at the moment when a punch hits the surface of the laminate. The first stress is a stress in the punching direction. The second stress is a stress in a direction perpendicular to the punching direction (the direction of the glass thread constituting the glass fiber woven fabric). In order to improve the punching workability, it is necessary to relieve the second stress. When the glass transition temperature of the laminated board is 115 ° C. or lower as in the first invention, since the bonding between the resins is relatively small and the resin is flexible, the stress generated by the impact of punching is converted into molecular motion and heat. And the second stress is sufficiently dispersed. As a result, cracks and white spots do not occur or hardly occur. In the first invention, the glass transition temperature of the core layer is set to be equal to or lower than the glass transition temperature of the surface layer in order to keep the glass transition temperature of the laminated board at 115 ° C. or lower. Is to increase the glass transition temperature of the laminate and to secure the rigidity of the laminate when heated. At the time of soldering work for mounting a component on a printed wiring board, bending of the printed wiring board due to heat can be suppressed.
【0008】一方、積層板としてのガラス転移温度が1
15℃より高いと、樹脂同士の結び付きは大きいがその
分脆いため、打ち抜きの衝撃によって発生する応力を分
子運動や熱に変換する作用が小さく、第二の応力が十分
に分散されない。その結果、打ち抜きの応力が集中する
箇所が現われ、この箇所にクラックや目白が発生するこ
とになる。また、表面層のガラス転移温度を芯層のガラ
ス転移温度より低くすることにより、積層板としてのガ
ラス転移温度を115℃以下にすることに対応すると、
積層板の熱時剛性が低下してしまう。On the other hand, the glass transition temperature of the laminate is 1
If the temperature is higher than 15 ° C., the bonding between the resins is large, but the resin is brittle. Accordingly, the effect of converting the stress generated by the impact of punching into molecular motion and heat is small, and the second stress is not sufficiently dispersed. As a result, a portion where the stress of punching is concentrated appears, and cracks and white spots occur at this portion. Further, when the glass transition temperature of the surface layer is made lower than the glass transition temperature of the core layer, the glass transition temperature of the laminate becomes 115 ° C. or less.
The rigidity of the laminate when heated is reduced.
【0009】第二の発明においても、上記と同様のこと
が言える。この場合、表面層のガラス転移温度が115
℃より高くても、芯層のガラス転移温度が115℃以下
であれば、第二の応力を十分に緩和することができる。The same can be said for the second invention. In this case, the glass transition temperature of the surface layer is 115
Even if it is higher than ℃, if the glass transition temperature of the core layer is 115 ℃ or less, the second stress can be sufficiently relaxed.
【0010】上記第一ならびに第二の発明において、芯
層の熱硬化性樹脂中に無機充填材を含有させる場合、平
均粒子径の異なる無機充填材を含有させ、平均粒子径5
μm以下の無機充填材と前記無機充填材の5倍以上の平
均粒子径の無機充填材を含有させる構成が好ましい。充
填材の配置が均一になりやすいため、充填材粒子同士の
接触が少なくなり、打ち抜きの応力が集中する箇所を最
小限にすることができる。In the first and second inventions, when an inorganic filler is contained in the thermosetting resin of the core layer, an inorganic filler having a different average particle diameter is contained, and
It is preferable to include an inorganic filler having a particle size of not more than μm and an inorganic filler having an average particle diameter of at least 5 times the inorganic filler. Since the arrangement of the filler is likely to be uniform, contact between the filler particles is reduced, and the location where punching stress is concentrated can be minimized.
【0011】[0011]
【発明の実施の形態】本発明に係るコンポジット積層板
は、熱硬化性樹脂をガラス繊維織布に含浸し加熱乾燥し
て得たプリプレグを表面層とし、熱硬化性樹脂をガラス
繊維不織布に含浸し加熱乾燥して得たプリプレグを芯層
とし、これらを加熱加圧成形により一体化して製造す
る。前記熱硬化性樹脂は、エポキシ樹脂、フェノール樹
脂、メラミン樹脂、ケイ素樹脂などの通常使用されてい
るものであり、特に限定しない。積層板を難燃化するた
めに、ブロム化合物や、三酸化アンチモン、五酸化アン
チモン、リン化合物などの難燃剤を配合してもよい。芯
層の熱硬化性樹脂には、通常無機充填材を含有させる。
無機充填材は、タルク、水酸化アルミニウム、水酸化マ
グネシウム等である。必要に応じて、表面層の熱硬化性
樹脂にも無機充填材を含有させる。加熱加圧成形に際
し、必要に応じ、両面又は片面に金属箔を一体に成形し
て貼り付ける。前記金属箔は、銅箔、ニッケル箔、アル
ミニウム箔などであるが、特に限定しない。BEST MODE FOR CARRYING OUT THE INVENTION The composite laminate according to the present invention has a prepreg obtained by impregnating a thermosetting resin into a glass fiber woven fabric and drying by heating, and impregnating the thermosetting resin into a glass fiber nonwoven fabric. Then, a prepreg obtained by heating and drying is used as a core layer, and these are integrated by heating and pressing to produce. The thermosetting resin is a commonly used resin such as an epoxy resin, a phenol resin, a melamine resin, and a silicon resin, and is not particularly limited. A flame retardant such as a bromo compound, antimony trioxide, antimony pentoxide, or a phosphorus compound may be blended to make the laminate flame-retardant. The thermosetting resin of the core layer usually contains an inorganic filler.
The inorganic filler is talc, aluminum hydroxide, magnesium hydroxide or the like. If necessary, the thermosetting resin of the surface layer may contain an inorganic filler. At the time of heat-press molding, a metal foil is integrally formed on both surfaces or one surface and adhered as necessary. The metal foil is a copper foil, a nickel foil, an aluminum foil or the like, but is not particularly limited.
【0012】本発明に係るコンポジット積層板は、表面
層と芯層のガラス転移温度を調整する点に特徴がある。
ガラス転移温度の調整は、熱硬化性樹脂としてエポキシ
樹脂を使用する場合には、表面層と中心層のエポキシ樹
脂の架橋密度を変えることにより行なう。架橋密度を変
えるには、表面層と中心層のそれぞれに使用するエポキ
シ樹脂の間でエポキシ当量を変える方法がある。また、
エポキシ樹脂の硬化剤としてフェノール類ノボラック樹
脂を使用する場合には、ビスフェノールA類を併用し
て、これをエポキシ樹脂と予備反応させることにより架
橋密度を変える方法もある。以下の実施例では、ビスフ
ェノールA類を併用して架橋密度を調整した例をあげ
る。The composite laminate according to the present invention is characterized in that the glass transition temperature of the surface layer and the core layer is adjusted.
When an epoxy resin is used as the thermosetting resin, the glass transition temperature is adjusted by changing the crosslink density of the epoxy resin in the surface layer and the epoxy resin in the center layer. To change the crosslink density, there is a method of changing the epoxy equivalent between the epoxy resins used for the surface layer and the center layer. Also,
When a phenolic novolak resin is used as a curing agent for an epoxy resin, there is a method in which bisphenol A is used in combination, and this is preliminarily reacted with the epoxy resin to change the crosslink density. In the following examples, examples are given in which the crosslink density is adjusted by using bisphenol A in combination.
【0013】[0013]
【実施例】実施例1 (表面層用プリプレグの準備) ビスフェノールA型エポキシ樹脂(エポキシ当量19
0)57質量部 テトラブロモビスフェノールA(OH当量272)16
質量部 フェノールノボラック樹脂(OH当量105)12質量
部 ビスフェノールA(OH当量114)15質量部 触媒として2−エチル4−メチルイミダゾール0.2質
量部 を溶剤に均一に溶かし、ワニス(1)を得た。このワニ
ス(1)を、単位質量210g/m2のガラス繊維織布
に含浸し、加熱乾燥して表面層用プリプレグを得た。含
浸樹脂量は、成形した積層板における当該層の厚みが
0.2mmになるように調整した。 (芯層用プリプレグの準備)上記のワニス(1)に水酸
化アルミニウム(平均粒子径5μm)を100質量部添
加しワニス(2)を得た。このワニス(2)を、単位質
量100g/m2のガラス繊維不織布に含浸し、加熱乾
燥して芯層用プリプレグを得た。含浸樹脂量は、成形し
た積層板における当該層の厚みが0.6mmになるように
調整した。 (積層板の製造)上記の芯層用プリプレグ2枚の両側に
表面層用プリプレグを各1枚を重ね、その両側に18μ
m厚銅箔を載置し、これを鏡面板に挟んで、温度150
℃、圧力4MPaの条件で60分間加熱加圧成形し、1.
6mm厚の銅張りコンポジット積層板を得た。Example 1 (Preparation of prepreg for surface layer) Bisphenol A type epoxy resin (epoxy equivalent 19
0) 57 parts by mass tetrabromobisphenol A (OH equivalent 272) 16
Parts by mass Phenol novolak resin (OH equivalent: 105) 12 parts by mass Bisphenol A (OH equivalent: 114) 15 parts by mass 0.2 parts by mass of 2-ethyl 4-methylimidazole as a catalyst is uniformly dissolved in a solvent to obtain a varnish (1). Was. This varnish (1) was impregnated into a glass fiber woven fabric having a unit mass of 210 g / m 2 and dried by heating to obtain a prepreg for a surface layer. The amount of the impregnated resin was adjusted so that the thickness of the layer in the formed laminate was 0.2 mm. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (average particle size: 5 μm) was added to the above varnish (1) to obtain a varnish (2). The varnish (2) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin was adjusted such that the thickness of the layer in the formed laminated plate was 0.6 mm. (Manufacture of laminated board) One prepreg for the surface layer was placed on both sides of the two prepregs for the core layer, and 18 μm was placed on both sides.
m thick copper foil is placed on it and sandwiched between
Heat and pressure molding for 60 minutes at a temperature of 4 ° C. and a pressure of 4 MPa.
A 6 mm thick copper-clad composite laminate was obtained.
【0014】実施例2 (表面層用プリプレグの準備) ビスフェノールA型エポキシ樹脂(エポキシ当量19
0)60質量部 テトラブロモビスフェノールA(OH当量272)10
質量部 フェノールノボラック樹脂(OH当量105)30質量
部 触媒として2−エチル4−メチルイミダゾール0.2質
量部 を溶剤に均一に溶かし、ワニス(3)を得た。このワニ
ス(3)を、単位質量210g/m2のガラス繊維織布
に含浸し、加熱乾燥して表面層用プリプレグを得た。含
浸樹脂量は、成形した積層板における当該層の厚みが
0.2mmになるように調整した。 (芯層用プリプレグの準備) ビスフェノールA型エポキシ樹脂(エポキシ当量19
0)57質量部 テトラブロモビスフェノールA(OH当量272)16
質量部 フェノールノボラック樹脂(OH当量105)6質量部 ビスフェノールA(OH当量114)21質量部 触媒として2−エチル4−メチルイミダゾール0.2質
量部 を溶剤に均一に溶かし、ワニス(4)を得た。ワニス
(4)に水酸化アルミニウム(平均粒子径5μm)を1
00質量部添加しワニス(5)を得た。このワニス
(5)を、単位質量100g/m2のガラス繊維不織布
に含浸し、加熱乾燥して芯層用プリプレグを得た。含浸
樹脂量は、成形した積層板における当該層の厚みが0.
6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Example 2 (Preparation of prepreg for surface layer) Bisphenol A type epoxy resin (epoxy equivalent 19
0) 60 parts by mass tetrabromobisphenol A (OH equivalent 272) 10
30 parts by mass of phenol novolak resin (OH equivalent weight: 105) 0.2 parts by mass of 2-ethyl 4-methylimidazole as a catalyst were uniformly dissolved in a solvent to obtain a varnish (3). The varnish (3) was impregnated into a glass fiber woven fabric having a unit mass of 210 g / m 2 and dried by heating to obtain a prepreg for a surface layer. The amount of the impregnated resin was adjusted so that the thickness of the layer in the formed laminate was 0.2 mm. (Preparation of core layer prepreg) Bisphenol A type epoxy resin (epoxy equivalent 19
0) 57 parts by mass tetrabromobisphenol A (OH equivalent 272) 16
Parts by mass Phenol novolak resin (OH equivalent: 105) 6 parts by mass Bisphenol A (OH equivalent: 114) 21 parts by mass 0.2 parts by mass of 2-ethyl 4-methylimidazole as a catalyst is uniformly dissolved in a solvent to obtain a varnish (4). Was. Aluminum hydroxide (average particle size: 5 μm) was added to the varnish (4).
The varnish (5) was obtained by adding 00 parts by mass. The varnish (5) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin is such that the thickness of the layer in the formed laminated board is 0.1 mm.
Adjusted to 6 mm. (Production of Laminated Plate) A 1.6 mm-thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0015】実施例3 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(4)に水酸化アルミニウムを100質量部(平均粒子
径5μmのもの90質量部と平均粒子径50μmのもの
10質量部)添加しワニス(6)を得た。このワニス
(6)を、単位質量100g/m2のガラス繊維不織布
に含浸し、加熱乾燥して芯層用プリプレグを得た。含浸
樹脂量は、成形した積層板における当該層の厚みが0.
6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Example 3 (Preparation of prepreg for surface layer) The same as in Example 2. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (90 parts by mass with an average particle size of 5 μm and 10 parts by mass with an average particle size of 50 μm) were added to the varnish (4) in Example 2 to prepare a varnish (6). ) Got. This varnish (6) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin is such that the thickness of the layer in the formed laminated board is 0.1 mm.
Adjusted to 6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0016】実施例4 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(4)に水酸化アルミニウムを100質量部(平均粒子
径5μmのもの50質量部と平均粒子径50μmのもの
50質量部)添加しワニス(7)を得た。このワニス
(7)を、単位質量100g/m2のガラス繊維不織布
に含浸し、加熱乾燥して芯層用プリプレグを得た。含浸
樹脂量は、成形した積層板における当該層の厚みが0.
6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Example 4 (Preparation of prepreg for surface layer) The same as in Example 2. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (50 parts by mass with an average particle size of 5 μm and 50 parts by mass with an average particle size of 50 μm) were added to the varnish (4) in Example 2 to prepare a varnish (7). ) Got. This varnish (7) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin is such that the thickness of the layer in the formed laminated board is 0.1 mm.
Adjusted to 6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0017】実施例5 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(4)に水酸化アルミニウムを100質量部(平均粒子
径3.5μmのもの90質量部と平均粒子径35μmの
もの10質量部)添加しワニス(8)を得た。このワニ
ス(8)を、単位質量100g/m2のガラス繊維不織
布に含浸し、加熱乾燥して芯層用プリプレグを得た。含
浸樹脂量は、成形した積層板における当該層の厚みが
0.6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Example 5 (Preparation of prepreg for surface layer) The same as in Example 2. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (90 parts by mass with an average particle size of 3.5 μm and 10 parts by mass with an average particle size of 35 μm) were added to varnish (4) in Example 2 to form a varnish. (8) was obtained. This varnish (8) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin was adjusted such that the thickness of the layer in the formed laminated plate was 0.6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0018】実施例6 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(4)に水酸化アルミニウムを100質量部(平均粒子
径5μmのもの90質量部と平均粒子径10μmのもの
10質量部)添加しワニス(9)を得た。このワニス
(9)を、単位質量100g/m2のガラス繊維不織布
に含浸し、加熱乾燥して芯層用プリプレグを得た。含浸
樹脂量は、成形した積層板における当該層の厚みが0.
6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Example 6 (Preparation of prepreg for surface layer) The same as in Example 2. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (90 parts by mass with an average particle size of 5 μm and 10 parts by mass with an average particle size of 10 μm) were added to the varnish (4) in Example 2 to prepare a varnish (9). ) Got. This varnish (9) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin is such that the thickness of the layer in the formed laminated board is 0.1 mm.
Adjusted to 6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0019】実施例7 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(4)に水酸化アルミニウムを100質量部(平均粒子
径6μmのもの90質量部と平均粒子径60μmのもの
10質量部)添加しワニス(10)を得た。このワニス
(10)を、単位質量100g/m2のガラス繊維不織
布に含浸し、加熱乾燥して芯層用プリプレグを得た。含
浸樹脂量は、成形した積層板における当該層の厚みが
0.6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Example 7 (Preparation of prepreg for surface layer) The same as in Example 2. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (90 parts by mass with an average particle diameter of 6 μm and 10 parts by mass with an average particle diameter of 60 μm) were added to the varnish (4) in Example 2 to prepare a varnish (10). ) Got. The varnish (10) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin was adjusted such that the thickness of the layer in the formed laminated plate was 0.6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0020】実施例8 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(4)に水酸化アルミニウムを100質量部(平均粒子
径5μmのもの90質量部と平均粒子径25μmのもの
10質量部)添加しワニス(11)を得た。このワニス
(11)を、単位質量100g/m2のガラス繊維不織
布に含浸し、加熱乾燥して芯層用プリプレグを得た。含
浸樹脂量は、成形した積層板における当該層の厚みが
0.6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Example 8 (Preparation of prepreg for surface layer) The same as in Example 2. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (90 parts by mass with an average particle size of 5 μm and 10 parts by mass with an average particle size of 25 μm) were added to the varnish (4) in Example 2 to prepare a varnish (11). ) Got. The varnish (11) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin was adjusted such that the thickness of the layer in the formed laminated plate was 0.6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0021】実施例9 実施例2における表面層用プリプレグと実施例1におけ
る芯層用プリプレグを用い、実施例1と同様にして1.
6mm厚銅張りコンポジット積層板を得た。Example 9 The same procedure as in Example 1 was repeated except that the prepreg for the surface layer in Example 2 and the prepreg for the core layer in Example 1 were used.
A 6 mm thick copper-clad composite laminate was obtained.
【0022】比較例1 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(3)に水酸化アルミニウム(平均粒子径5μm)を1
00質量部添加しワニス(12)を得た。このワニス
(12)を、単位質量100g/m2のガラス繊維不織
布に含浸し、加熱乾燥して芯層用プリプレグを得た。含
浸樹脂量は、成形した積層板における当該層の厚みが
0.6mmになるように調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Comparative Example 1 (Preparation of prepreg for surface layer) The same as in Example 2. (Preparation of prepreg for core layer) Aluminum hydroxide (average particle diameter: 5 μm) was added to varnish (3) in Example 2
The varnish (12) was obtained by adding 00 parts by mass. The varnish (12) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin was adjusted such that the thickness of the layer in the formed laminated plate was 0.6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0023】比較例2 (表面層用プリプレグの準備)実施例2と同様である。 (芯層用プリプレグの準備)実施例2におけるワニス
(3)に水酸化アルミニウムを100質量部(平均粒子
径5μmのもの90質量部と平均粒子径50μmのもの
10質量部)添加しワニス(13)を得た。このワニス
(13)を、単位質量100g/m2のガラス繊維不織
布に含浸し、加熱乾燥して芯層用プリプレグを得た。含
浸樹脂量は、成形した積層板における当該層の厚みが
0.6mmになるように調整した。Comparative Example 2 (Preparation of prepreg for surface layer) Same as in Example 2. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (90 parts by mass with an average particle size of 5 μm and 10 parts by mass with an average particle size of 50 μm) were added to the varnish (3) in Example 2 to prepare a varnish (13). ) Got. This varnish (13) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin was adjusted such that the thickness of the layer in the formed laminated plate was 0.6 mm.
【0024】比較例3 (表面層用プリプレグの準備) ビスフェノールA型エポキシ樹脂(エポキシ当量19
0)57質量部 テトラブロモビスフェノールA(OH当量272)16
質量部 フェノールノボラック樹脂(OH当量105)18質量
部 ビスフェノールA(OH当量114)9質量部 触媒として2−エチル4−メチルイミダゾール0.2質
量部 を溶剤に均一に溶かし、ワニス(14)を得た。このワ
ニス(14)を、単位質量210g/m2のガラス繊維
織布に含浸し、加熱乾燥して表面層用プリプレグを得
た。含浸樹脂量は、成形した積層板における当該層の厚
みが0.2mmになるように調整した。 (芯層用プリプレグの準備)上記ワニス(14)に水酸
化アルミニウム(平均粒子径5μm)を100質量部添
加しワニス(15)を得た。このワニス(15)を、単
位質量100g/m2のガラス繊維不織布に含浸し、加
熱乾燥して芯層用プリプレグを得た。含浸樹脂量は、成
形した積層板における当該層の厚みが0.6mmになるよ
うに調整した。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Comparative Example 3 (Preparation of prepreg for surface layer) Bisphenol A type epoxy resin (epoxy equivalent 19
0) 57 parts by mass tetrabromobisphenol A (OH equivalent 272) 16
Parts by mass Phenol novolak resin (OH equivalent 105) 18 parts by mass Bisphenol A (OH equivalent 114) 9 parts by mass 0.2 parts by mass of 2-ethyl 4-methylimidazole as a catalyst is uniformly dissolved in a solvent to obtain a varnish (14). Was. This varnish (14) was impregnated into a glass fiber woven fabric having a unit mass of 210 g / m 2 and dried by heating to obtain a prepreg for a surface layer. The amount of the impregnated resin was adjusted so that the thickness of the layer in the formed laminate was 0.2 mm. (Preparation of core layer prepreg) 100 parts by mass of aluminum hydroxide (average particle size: 5 μm) was added to the varnish (14) to obtain a varnish (15). The varnish (15) was impregnated into a glass fiber nonwoven fabric having a unit mass of 100 g / m 2 and dried by heating to obtain a prepreg for a core layer. The amount of the impregnated resin was adjusted such that the thickness of the layer in the formed laminated plate was 0.6 mm. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0025】比較例4 (表面層用プリプレグの準備)実施例2におけるワニス
(4)を、単位質量210g/m2のガラス繊維織布に
含浸し、加熱乾燥して表面層用プリプレグを得た。含浸
樹脂量は、成形した積層板における当該層の厚みが0.
2mmになるように調整した。 (芯層用プリプレグの準備)比較例1と同様である。 (積層板の製造)上記表面層用と芯層用のプリプレグを
用い、実施例1と同様にして1.6mm厚銅張りコンポジ
ット積層板を得た。Comparative Example 4 (Preparation of prepreg for surface layer) The varnish (4) in Example 2 was impregnated in a glass fiber woven fabric having a unit mass of 210 g / m 2 and dried by heating to obtain a prepreg for a surface layer. . The amount of the impregnated resin is such that the thickness of the layer in the formed laminated board is 0.1 mm.
Adjusted to 2 mm. (Preparation of core layer prepreg) Same as Comparative Example 1. (Production of Laminated Plate) A 1.6 mm thick copper-clad composite laminated plate was obtained in the same manner as in Example 1 using the prepregs for the surface layer and the core layer.
【0026】上記各例における銅張りコンポジット積層
板について、積層板としてのガラス転移温度、表面層の
ガラス転移温度、芯層のガラス転移温度、および打ち抜
き加工性の評価結果を表1に示す。ガラス転移温度はT
MA法による測定値であり、測定方法は、JIS−C−
6481 5.17.1に準拠する。尚、表面層と芯層
のガラス転移温度は、それぞれの層を構成するプリプレ
グを単独で加熱加圧成形して板状体とし、そのガラス転
移温度を測定したものである。打ち抜き加工性は、評価
試験金型(ポンチ径:φ1.0mm、穴間ピッチ:2.5
mm)で積層板を打ち抜いて、打ち抜き穴間のクラック有
無および打ち抜き穴回りの目白の発生の有無を確認し
た。評価方法は、各例毎に10枚の試料を打ち抜いて、
打抜いた試料1枚にクラックおよび目白の発生がない場
合は1点、クラックまたは目白が発生した場合は0点と
し、試料10枚の点数を合計して10点満点で数値が大
きいほど打抜き加工性が良いとした。Table 1 shows the evaluation results of the glass transition temperature, the glass transition temperature of the surface layer, the glass transition temperature of the core layer, and the punching workability of the copper-clad composite laminate in each of the above examples. The glass transition temperature is T
It is a value measured by the MA method.
6481 5.17.1. In addition, the glass transition temperature of the surface layer and the core layer is obtained by measuring the glass transition temperature of a plate-shaped body by heating and pressing the prepreg constituting each layer independently. The punching workability was evaluated by an evaluation test die (punch diameter: φ1.0 mm, pitch between holes: 2.5).
mm), the laminate was punched out, and the presence or absence of cracks between the punched holes and the occurrence of white spots around the punched holes were confirmed. The evaluation method is to punch out 10 samples for each case,
If no cracks or white spots were found on one punched sample, 1 point, and if cracks or white spots were found, 0 point. Good and good.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【発明の効果】表1から明らかなように、本発明に係る
コンポジット積層板は打ち抜き加工性が良い。特に、芯
層の熱硬化性樹脂中に無機充填材を含有させる場合に平
均粒子径の異なる無機充填材を含有させ、平均粒子径5
μm以下の無機充填材と前記無機充填材の5倍以上の平
均粒子径の無機充填材を含有させると、打ち抜き加工性
は極めて良好となる。本発明に係るコンポジット積層板
をプリント配線板材料とすることにより、ドリルによる
部品穴の形成工程を必要としなくなり、大幅な加工コス
ト低減が可能となる。As is clear from Table 1, the composite laminate according to the present invention has good punching workability. In particular, when an inorganic filler is contained in the thermosetting resin of the core layer, inorganic fillers having different average particle diameters are contained, and the average particle diameter is 5%.
When an inorganic filler having a particle size of not more than μm and an inorganic filler having an average particle diameter of 5 times or more of the inorganic filler are contained, the punching workability becomes extremely good. By using the printed wiring board material for the composite laminate according to the present invention, a step of forming a component hole by a drill is not required, and a great reduction in processing cost can be achieved.
フロントページの続き Fターム(参考) 4F072 AA07 AB09 AB28 AB29 AD13 AD21 AD23 AD47 AE07 AG03 AH02 AK14 AL09 4F100 AA01C AA01H AA19H AB17 AB33 AG00A AG00B AG00C AK01A AK01B AK01C AK33 AK53 AL05 BA03 BA05 BA06 BA10A BA10B BA13 CA23C DG12A DG12B DG15C DH01A DH01B DH01C EJ17 EJ42 EJ82A EJ82B EJ82C GB43 JA05 JA05A JA05B JA05C JB13A JB13B JB13C JL01 YY00 YY00C YY00H Continued on the front page F-term (reference) 4F072 AA07 AB09 AB28 AB29 AD13 AD21 AD23 AD47 AE07 AG03 AH02 AK14 AL09 4F100 AA01C AA01H AA19H AB17 AB33 AG00A AG00B AG00C AK01A AK01B AK01C AK33 BA10B01 KA53 BA05B03A05 DH01C EJ17 EJ42 EJ82A EJ82B EJ82C GB43 JA05 JA05A JA05B JA05C JB13A JB13B JB13C JL01 YY00 YY00C YY00H
Claims (3)
と熱硬化性樹脂含浸ガラス繊維不織布の芯層が加熱加圧
成形により一体化されたコンポジット積層板において、 芯層のガラス転移温度が表面層のガラス転移温度と同等
かそれより低く、積層板としてのガラス転移温度が11
5℃以下であることを特徴とするコンポジット積層板。A composite laminate in which a surface layer of a thermosetting resin-impregnated glass fiber woven fabric and a core layer of a thermosetting resin-impregnated glass fiber nonwoven fabric are integrated by heating and pressing, wherein a glass transition temperature of the core layer is obtained. Is equal to or lower than the glass transition temperature of the surface layer, and the glass transition temperature of the laminate is 11
A composite laminate having a temperature of 5 ° C. or lower.
と熱硬化性樹脂含浸ガラス繊維不織布の芯層が加熱加圧
成形により一体化されたコンポジット積層板において、 芯層のガラス転移温度が表面層のガラス転移温度より低
く、芯層のガラス転移温度が115℃以下であることを
特徴とするコンポジット積層板。2. A composite laminate in which a surface layer of a thermosetting resin impregnated glass fiber woven fabric and a core layer of a thermosetting resin impregnated glass fiber nonwoven fabric are integrated by heat and pressure molding, wherein the glass transition temperature of the core layer is Is lower than the glass transition temperature of the surface layer, and the glass transition temperature of the core layer is 115 ° C. or lower.
る無機充填材を含有し、平均粒子径5μm以下の無機充
填材と前記無機充填材の5倍以上の平均粒子径の無機充
填材を含有することを特徴とする請求項1又は2記載の
コンポジット積層板。3. The thermosetting resin of the core layer contains an inorganic filler having a different average particle diameter, and an inorganic filler having an average particle diameter of 5 μm or less and an inorganic filler having an average particle diameter of 5 times or more of the inorganic filler The composite laminate according to claim 1 or 2, further comprising a filler.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000310833A JP2002113813A (en) | 2000-10-11 | 2000-10-11 | Composite laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000310833A JP2002113813A (en) | 2000-10-11 | 2000-10-11 | Composite laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002113813A true JP2002113813A (en) | 2002-04-16 |
Family
ID=18790706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000310833A Pending JP2002113813A (en) | 2000-10-11 | 2000-10-11 | Composite laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002113813A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1500494A3 (en) * | 2003-07-15 | 2005-02-02 | The Boeing Company | Composite material with improved damping characteristics and method of making same |
-
2000
- 2000-10-11 JP JP2000310833A patent/JP2002113813A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1500494A3 (en) * | 2003-07-15 | 2005-02-02 | The Boeing Company | Composite material with improved damping characteristics and method of making same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6512521B2 (en) | Laminated board, metal-clad laminated board, printed wiring board, multilayer printed wiring board | |
JP6624545B2 (en) | Thermosetting resin composition, metal-clad laminate, insulating sheet, printed wiring board, method for manufacturing printed wiring board, and package substrate | |
JP2007128955A (en) | Printed wiring board and its manufacturing method | |
JP2692508B2 (en) | Manufacturing method of laminated board | |
JP6015303B2 (en) | Prepreg, laminated board and printed wiring board | |
JP2002113813A (en) | Composite laminate | |
JP2007277463A (en) | Low dielectric prepreg, and metal foil clad laminate and multilayer printed wiring board using the same | |
JP2015076589A (en) | Laminate sheet | |
CN109757023B (en) | Printed circuit board and manufacturing method thereof | |
JP4178796B2 (en) | Method for producing metal-clad laminate | |
JP4207282B2 (en) | Manufacturing method of multilayer printed wiring board | |
JP2003031957A (en) | Manufacturing method of multilayer printed wiring board | |
JP5275533B2 (en) | Metal foil laminate and prepreg | |
JP2002088175A (en) | Prepreg and laminate | |
JPS60203642A (en) | Manufacture of composite laminate board | |
JP2006315392A (en) | Method for manufacturing metal foil-clad laminate | |
JPS62169828A (en) | Production of substrate for printed circuit | |
JPH03227332A (en) | Production of laminated board | |
JPS6365091B2 (en) | ||
JPH09293971A (en) | Manufacture of multilayer board | |
JP2006316171A (en) | Prepreg, laminated plate, and multi-ply laminated plate | |
JP2008037881A (en) | Prepreg, metallic foil-clad laminated plate using prepreg and multi-layer printed wiring board | |
JP2000133893A (en) | Printed wiring board | |
JP2002265634A (en) | Glass fiber nonwoven fabric for electric insulation, composite laminate and printed circuit board | |
JP2006224587A (en) | Manufacturing process of metal foil stretched laminate |