JP2002111176A - Method of forming conduction path and substrate - Google Patents

Method of forming conduction path and substrate

Info

Publication number
JP2002111176A
JP2002111176A JP2000292381A JP2000292381A JP2002111176A JP 2002111176 A JP2002111176 A JP 2002111176A JP 2000292381 A JP2000292381 A JP 2000292381A JP 2000292381 A JP2000292381 A JP 2000292381A JP 2002111176 A JP2002111176 A JP 2002111176A
Authority
JP
Japan
Prior art keywords
layer
insulating substrate
conductive path
mask member
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000292381A
Other languages
Japanese (ja)
Inventor
Shinji Isokawa
慎二 磯川
Tomomi Yamaguchi
委巳 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2000292381A priority Critical patent/JP2002111176A/en
Publication of JP2002111176A publication Critical patent/JP2002111176A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a conduction path on an insulating substrate efficiently without employing etching, which requires wastewater treatment equipment. SOLUTION: A mask member 2 having an opening 21 in a conduction path pattern is allowed to adhere to a surface of an insulating substrate 1. After a conductive layer 3 is formed in the opening 21 by vapor deposition or sputtering, the mask member 2 is removed from the insulating substrate 1 to form a conduction path 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電路の形成方法に
関し、より詳細にはエッチングを用いないで導電路を形
成する方法に関するものである。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for forming a conductive path, and more particularly to a method for forming a conductive path without using etching.

【0002】[0002]

【従来の技術】導電路を表面に形成した基板の大半はお
およそ次のようにして製造されていた。その製造の概略
工程図を図2に示す。絶縁性基板1の表面に銅箔101
を貼着し(図2(a))、銅箔101の表面にフォトレ
ジスト104を塗布し、露光・現像を行って導電路パタ
ーン部分をフォトレジスト104で被覆する(同図
(b))。そして導電路パターン以外の銅箔101をエ
ッチングにより除去する(同図(c))。さらにフォト
レジスト104も除去することにより導電路パターンを
銅箔101に転写する(同図(d))。つぎに、電解メ
ッキまたは無電解メッキによりニッケル102および金
103を銅箔101の上に積層形成し導電路4を完成さ
せる(同図(e))。
2. Description of the Related Art Most of substrates on which conductive paths are formed on the surface are generally manufactured as follows. FIG. 2 shows a schematic process diagram of the production. Copper foil 101 on the surface of the insulating substrate 1
(FIG. 2A), a photoresist 104 is applied to the surface of the copper foil 101, and exposure and development are performed to cover the conductive path pattern portion with the photoresist 104 (FIG. 2B). Then, the copper foil 101 other than the conductive path pattern is removed by etching (FIG. 3C). Further, by removing the photoresist 104, the conductive path pattern is transferred to the copper foil 101 (FIG. 4D). Next, nickel 102 and gold 103 are laminated on the copper foil 101 by electrolytic plating or electroless plating to complete the conductive path 4 (FIG. 3E).

【0003】[0003]

【発明が解決しようとする課題】このような導電路の形
成方法では、導電路パターン以外の銅箔101を除去す
るために、塩化第二鉄と塩化第二銅の水溶液などがエッ
チング液として一般に用いられている。このエッチング
液を再生利用あるいは廃棄するためには廃水処理設備が
不可欠であるため製造設備が大型化していた。また製造
工程の簡略化の妨げともなっていた。
In such a method for forming a conductive path, in order to remove the copper foil 101 other than the conductive path pattern, an aqueous solution of ferric chloride and cupric chloride is generally used as an etching solution. Used. Since wastewater treatment equipment is indispensable for recycling or discarding this etching solution, manufacturing equipment has been increased in size. In addition, this has hindered simplification of the manufacturing process.

【0004】本発明はこのような従来の問題に鑑みてな
されたものであり、廃水処理設備が必要となるエッチン
グを用いないで、導電路を効率的に形成する方法を提供
することをその目的とするものである。また本発明の目
的はエッチングを用いないで導電路が形成された基板を
提供することにある。
[0004] The present invention has been made in view of such conventional problems, and has as its object to provide a method for efficiently forming a conductive path without using etching which requires wastewater treatment equipment. It is assumed that. Another object of the present invention is to provide a substrate on which a conductive path is formed without using etching.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明の導電路の形成方法では、導電路パターン形
状の開口部を有するマスク部材を絶縁性基板の表面に被
着し、真空蒸着又はスパッタリングにより前記開口部に
導電層を形成した後、前記マスク部材を前記絶縁性基板
から取り除き導電路を形成するようにした。
In order to achieve the above object, in the method of forming a conductive path according to the present invention, a mask member having an opening in the form of a conductive path pattern is attached to the surface of an insulating substrate, and the vacuum deposition is performed. Alternatively, after forming a conductive layer in the opening by sputtering, the mask member is removed from the insulating substrate to form a conductive path.

【0006】また本発明の基板では、前記形成方法によ
り形成した導電路を絶縁性基板の表面に有する構成とし
た。
In the substrate of the present invention, the conductive path formed by the above-described forming method is provided on the surface of the insulating substrate.

【0007】[0007]

【発明の実施の形態】本発明者等は、廃水処理設備が必
要となるエッチングを用いないで、絶縁性基板上に導電
路を効率的に形成できないか鋭意検討を重ねた結果、絶
縁性基板の表面全体を覆った導電層を削り取って導電路
とするのではなく、絶縁性基板表面の導電路の形成部分
にのみ導電層を形成すればよい、という一見単純な着想
ながらこれまでまったく試みられていなかった着想に基
づき本発明をなすに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have conducted intensive studies as to whether or not conductive paths can be efficiently formed on an insulating substrate without using etching which requires wastewater treatment equipment. There has been no attempt at all with the seemingly simple idea that instead of shaping the conductive layer covering the entire surface of the surface of the conductive substrate to form a conductive path, the conductive layer only needs to be formed on the conductive path forming portion of the insulating substrate surface. The present invention has been accomplished based on the idea which has not been achieved.

【0008】すなわち、本発明の形成方法の大きな特徴
は、導電路パターン形状の開口部を有するマスク部材を
絶縁性基板の表面に被着し、真空蒸着又はスパッタリン
グにより前記開口部に導電層を形成する点にある。
That is, a major feature of the forming method of the present invention is that a mask member having an opening in the form of a conductive path pattern is applied to the surface of an insulating substrate, and a conductive layer is formed in the opening by vacuum evaporation or sputtering. Is to do.

【0009】以下、本発明の形成方法を図1の概略工程
図に基づき説明する。もちろん、本発明の形成方法はこ
れに限定されるものではない。まず、絶縁性基板1の表
面に、導電路パターン形状の開口部21を有するマスク
部材2を被着する(図1(a))。ここで使用する絶縁
性基板1としては、絶縁性を有するものであれば特に限
定はなく、従来公知のものが使用できる。例えばエポキ
シ・ガラス材やポリイミド・アミド材、アルミナなどの
セラミック材などが好適に使用できる。
Hereinafter, the forming method of the present invention will be described with reference to the schematic process chart of FIG. Of course, the forming method of the present invention is not limited to this. First, a mask member 2 having an opening 21 in a conductive path pattern shape is attached to the surface of an insulating substrate 1 (FIG. 1A). The insulating substrate 1 used here is not particularly limited as long as it has an insulating property, and a conventionally known one can be used. For example, an epoxy glass material, a polyimide amide material, a ceramic material such as alumina, or the like can be suitably used.

【0010】また使用するマスク部材2としては、真空
蒸着やスパッタリングに耐えるものであれば特に限定は
なく、例えばガラス材、アルミナなどのセラミック材、
フォトレジストなどが挙げられる。導電路パターン形状
の開口部21をマスク部材1に形成するには従来公知の
方法を用いることができ、マスク部材としてガラス材や
セラミック材を用いる場合には、例えばルーターで導電
路パターン部分を削り取って開口部を形成すればよい。
またマスク部材としてフォトレジストを用いる場合に
は、導電路パターンを露光・現像して導電路パターン形
状の開口部を形成すればよい。マスク部材の厚さは、導
電層の厚さ以上である必要があり、0.5mm以上の厚
さであれば実用上問題はない。
The mask member 2 to be used is not particularly limited as long as it can withstand vacuum deposition or sputtering. For example, a glass material, a ceramic material such as alumina,
Photoresist is exemplified. A conventionally known method can be used to form the opening 21 having the conductive path pattern shape in the mask member 1. When a glass material or a ceramic material is used as the mask member, the conductive path pattern portion is scraped off using, for example, a router. The opening may be formed by pressing.
When a photoresist is used as a mask member, the conductive path pattern may be exposed and developed to form an opening having a conductive path pattern shape. The thickness of the mask member needs to be equal to or greater than the thickness of the conductive layer. If the thickness is 0.5 mm or more, there is no practical problem.

【0011】マスク部材2を絶縁性基板1の表面に被着
する手段としては特に限定はなく、例えば接着剤により
貼着してもよいし、固定治具により周縁を固定して被着
してもよい。最終段階でマスク部材2は絶縁性基板から
除去しなければならないことを考慮すれば、取り外し容
易な固定治具による被着が望ましい。
The means for attaching the mask member 2 to the surface of the insulating substrate 1 is not particularly limited. For example, the mask member 2 may be attached with an adhesive, or may be attached with the periphery fixed with a fixing jig. Is also good. Considering that the mask member 2 must be removed from the insulating substrate at the final stage, it is desirable to apply the mask member 2 with an easily removable fixing jig.

【0012】次に、真空蒸着またはスパッタリングによ
りマスク部材2の開口部21に導電層3を形成する(同
図(b))。マスク部材2の開口部21から露出する絶
縁性基板1の表面に導電性を有する材料を真空蒸着また
はスパッタリングにより堆積・付着させるので、層厚お
よび組成が均一で、しかも高精度の導電層3が形成され
る。導電層3を構成する材料としては銅、ニッケル、
金、銀、チタン、モリブデン、亜鉛、鉄などの金属材料
が好適である。導電層3上には、半導体素子が半田付け
されたり、あるいは金線ワイヤがボンディングされたり
するので、導電層の材料としては半田付け特性およびボ
ンディング性の優れたものが望ましく、このような観点
からは前記材料の中でも金、銀が特に好ましい。したが
って導電層を金又は銀の単層構造としてもよいが、導電
層にはある程度の層厚が必要であるため金、銀を用いる
と製造コストが格段に高くなる。また絶縁性基板の種類
によっては金、銀では基板との充分な密着性を確保でき
ないことがある。そこで、導電層を積層化し、機能分離
することが推奨される。例えば、半田付け特性およびボ
ンディング性に優れた金又は銀を最表層に用い、絶縁性
基板との密着性が優れた銅を最下層に用いる。これら2
層構造でも構わないが、半田付けの際に溶融半田に銅が
溶解し導電路パターンが崩れるおそれがあるので、金属
間化合物を形成しにくく、溶融半田に溶融・溶解しない
ニッケルからなる層を金層又は銀層と銅層との間に形成
し、銅層への金、銀の拡散防止を図るのがよい。図1
(b)はこのような層構成、すなわち銅層31、ニッケ
ル層32,金層33の3層構造からなる導電層3を示し
ている。なお、導電層3を積層にする場合、各層は真空
蒸着およびスパッタリングのいずれを用いて形成しても
よい。
Next, the conductive layer 3 is formed in the opening 21 of the mask member 2 by vacuum evaporation or sputtering (FIG. 2B). Since a conductive material is deposited and deposited on the surface of the insulating substrate 1 exposed from the opening 21 of the mask member 2 by vacuum evaporation or sputtering, the conductive layer 3 having a uniform thickness and composition and having a high precision is formed. It is formed. The material forming the conductive layer 3 is copper, nickel,
Metal materials such as gold, silver, titanium, molybdenum, zinc, and iron are suitable. Since a semiconductor element is soldered or a gold wire is bonded on the conductive layer 3, a material having excellent soldering characteristics and bonding properties is desirable as the material of the conductive layer. Is particularly preferably gold or silver among the above materials. Therefore, the conductive layer may have a single-layer structure of gold or silver. However, since the conductive layer requires a certain thickness, the use of gold or silver significantly increases the manufacturing cost. Further, depending on the type of the insulating substrate, gold or silver may not be able to secure sufficient adhesion to the substrate. Therefore, it is recommended to stack the conductive layers and separate the functions. For example, gold or silver having excellent soldering characteristics and bonding properties is used for the outermost layer, and copper having excellent adhesion to the insulating substrate is used for the lowermost layer. These two
Although a layer structure may be used, copper may be dissolved in the molten solder during soldering and the conductive path pattern may be destroyed.Therefore, it is difficult to form an intermetallic compound and a nickel layer that does not melt and dissolve in the molten solder is formed of gold. It is preferable to form between the layer or the silver layer and the copper layer to prevent diffusion of gold and silver into the copper layer. FIG.
(B) shows such a layer structure, that is, the conductive layer 3 having a three-layer structure of the copper layer 31, the nickel layer 32, and the gold layer 33. When the conductive layers 3 are stacked, each layer may be formed by any of vacuum evaporation and sputtering.

【0013】図1(b)の層構成からなる導電層の場合
には、銅層:10〜20μmの範囲、ニッケル層:1〜
10μmの範囲、金層:0.1〜0.5μmの範囲が好
ましい。層厚の制御は、真空蒸着およびスパッタリング
の処理時間により行うことができる。上記層厚の場合、
処理時間は一般に数分〜30分間程度である。
In the case of a conductive layer having the layer structure shown in FIG. 1B, a copper layer: 10 to 20 μm, a nickel layer: 1 to 20 μm.
The range is preferably 10 μm, and the gold layer is preferably in the range of 0.1 to 0.5 μm. The control of the layer thickness can be performed by the processing time of vacuum evaporation and sputtering. For the above layer thickness,
The processing time is generally about several minutes to 30 minutes.

【0014】本発明において導電層を形成する一つの手
段である真空蒸着は、真空中で蒸着材料を加熱し、発生
した蒸気を基板上に凝集・付着させて薄層を形成する方
法である。真空度が低いと、残留ガスや残留ガスとの反
応物が形成される層中に混入し、さらには蒸発分子の基
板への到達を妨げるため層形成速度が遅くなる。このた
め真空度は10-2Pa以下とするのが好ましい。
In the present invention, vacuum deposition, which is one means for forming a conductive layer, is a method in which a deposition material is heated in a vacuum and the generated vapor is condensed and adhered on a substrate to form a thin layer. If the degree of vacuum is low, the residual gas or a reaction product with the residual gas is mixed into the layer to be formed, and furthermore, the vaporized molecules are prevented from reaching the substrate, so that the layer forming speed is reduced. Therefore, the degree of vacuum is preferably set to 10 −2 Pa or less.

【0015】導電層を形成する蒸着材料の加熱方法とし
ては、抵抗加熱、外熱ルツボ、電子ビーム、高周波、レ
ーザーなどが挙げられるが、前記好適に使用できる蒸着
材料の場合には、この中でも電子ビームによる加熱が好
ましい。
Examples of the method of heating the vapor deposition material for forming the conductive layer include resistance heating, external heating crucible, electron beam, high frequency, laser, and the like. Beam heating is preferred.

【0016】真空蒸着における層形成速度は蒸発速度に
比例し、蒸着材料と基板との距離の自乗に比例して減少
する。したがって速やかな層形成を図るためには、蒸着
材料と基板との距離をできる限り近くするのがよい。
The layer forming speed in vacuum evaporation is proportional to the evaporation speed, and decreases in proportion to the square of the distance between the evaporation material and the substrate. Therefore, in order to form a layer quickly, the distance between the deposition material and the substrate should be as short as possible.

【0017】導電層を形成するもう一つの手段であるス
パッタリングは、高いエネルギーを持った粒子を固体材
料に衝突にさせ、固体材料からたたき出された原子、分
子を基板上に堆積させて薄層を形成する方法である。具
体的には、真空槽内を一度高真空に排気した後、10-1
〜102Paのアルゴンを導入し、電極間に直流高電圧
(1〜5kV)を印加してグロー放電を起こす。グロー
放電の結果生じたアルゴンの正イオンは電界によりター
ゲット(陰極)に向かって加速され、ターゲット表面に
衝突してターゲット物質をたたき出す。たたき出された
原子、原子団が基板に堆積して薄層が形成されるのであ
る。ターゲット材料としては、前記の蒸着材料がここで
も使用できる。
[0017] Sputtering, another means of forming a conductive layer, causes particles having high energy to collide with a solid material and deposits atoms and molecules struck out of the solid material on a substrate to form a thin layer. It is a method of forming. Specifically, once the inside of the vacuum chamber is evacuated to a high vacuum, 10 -1
Glow discharge is caused by introducing argon of 10 2 Pa and applying a high DC voltage (1 to 5 kV) between the electrodes. The positive ions of argon generated as a result of the glow discharge are accelerated toward the target (cathode) by the electric field, collide with the target surface, and strike the target material. The ejected atoms and atomic groups accumulate on the substrate to form a thin layer. As the target material, the above-described deposition material can be used here.

【0018】スパッタリングを行う装置としては従来公
知のものが使用でき、例えば直流スパッタリング装置、
マグネトロンスパッタリング装置、対向ターゲット式ス
パッタリング装置、イオンビームスパッタリング装置、
ECRスパッタリング装置などが挙げられる。
As the apparatus for performing sputtering, a conventionally known apparatus can be used. For example, a DC sputtering apparatus,
Magnetron sputtering device, facing target type sputtering device, ion beam sputtering device,
An ECR sputtering device may be used.

【0019】図1(c)において、開口部21に導電層
3が形成されると、マスク部材2を絶縁性基板1から取
り除く。取り除く手段に特に限定はないが、製造工程の
簡略化の観点からドライプロセスによる除去が望まし
く、より望ましくは前述のようにマスク部材2が貼着さ
れている場合にはマスク部材2を剥がし、固定治具で固
定されている場合には固定治具を解放してマスク部材2
を取り除けばよい。これにより絶縁性基板1上に導電路
4が形成される。製造効率や資源の有効活用の観点から
取り除かれたマスク部材2は再使用するのが望ましい。
In FIG. 1C, when the conductive layer 3 is formed in the opening 21, the mask member 2 is removed from the insulating substrate 1. Although there is no particular limitation on the removing means, removal by a dry process is desirable from the viewpoint of simplification of the manufacturing process. More preferably, when the mask member 2 is adhered as described above, the mask member 2 is peeled off and fixed. When fixed with a jig, release the fixing jig to release the mask member 2
Should be removed. Thereby, the conductive path 4 is formed on the insulating substrate 1. It is desirable to reuse the mask member 2 removed from the viewpoint of manufacturing efficiency and effective use of resources.

【0020】このようにして絶縁性基板1の表面に形成
された導電路4を有する基板は、例えばプリント配線回
路基板や半導体チップ基板などとして用いることができ
る。
The substrate having the conductive path 4 formed on the surface of the insulating substrate 1 in this manner can be used as, for example, a printed circuit board or a semiconductor chip substrate.

【0021】[0021]

【発明の効果】本発明の導電路の形成方法では、導電路
パターン形状の開口部を有するマスク部材を絶縁性基板
の表面に被着し、真空蒸着又はスパッタリングにより前
記開口部に導電層を形成した後、マスク部材を絶縁性基
板から取り除き導電路を形成するようにしたので、廃水
処理設備が必要なエッチングを用いることなく絶縁性基
板上に導電路を効率的に形成でき、製造設備の小型化お
よび簡略化が図れる。また本発明の基板は、絶縁性基板
上にエッチングを用いないで形成された導電路を有する
ので、小型化および簡略化された製造設備で効率的に製
造することができる。
According to the method of forming a conductive path of the present invention, a mask member having a conductive path pattern-shaped opening is applied to the surface of an insulating substrate, and a conductive layer is formed in the opening by vacuum evaporation or sputtering. After that, the mask member is removed from the insulating substrate to form a conductive path, so that the conductive path can be efficiently formed on the insulating substrate without using the etching required for wastewater treatment equipment, and the size of the manufacturing equipment can be reduced. And simplification. Further, since the substrate of the present invention has the conductive path formed on the insulating substrate without using the etching, the substrate can be efficiently manufactured with the downsized and simplified manufacturing equipment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る導電路の形成方法の一実施態様
を示す工程図である。
FIG. 1 is a process chart showing one embodiment of a method for forming a conductive path according to the present invention.

【図2】 従来の導電路の形成方法を示す工程図であるFIG. 2 is a process chart showing a conventional method for forming a conductive path.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 2 マスク部材 3 導電層 4 導電路 31 銅層 32,102 ニッケル層 33,103 金層 101 銅箔 104 フォトレジスト DESCRIPTION OF SYMBOLS 1 Insulating substrate 2 Mask member 3 Conductive layer 4 Conductive path 31 Copper layer 32,102 Nickel layer 33,103 Gold layer 101 Copper foil 104 Photoresist

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/88 T Fターム(参考) 4K029 AA07 AA09 AA11 BA04 BA05 BA08 BA12 BB02 BC03 BD01 CA01 CA05 DB21 DC34 HA01 HA02 5E343 AA15 AA17 AA18 AA24 BB17 BB22 BB23 BB24 BB25 BB35 BB39 BB43 BB44 BB54 DD23 DD25 ER18 GG11 5F033 HH07 HH11 HH13 HH14 HH16 HH18 HH20 MM08 PP15 PP19 QQ42 QQ43 VV07 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) H01L 21/88 TF term (Reference) 4K029 AA07 AA09 AA11 BA04 BA05 BA08 BA12 BB02 BC03 BD01 CA01 CA05 DB21 DC34 HA01 HA02 5E343 AA15 AA17 AA18 AA24 BB17 BB22 BB23 BB24 BB25 BB35 BB39 BB43 BB44 BB54 DD23 DD25 ER18 GG11 5F033 HH07 HH11 HH13 HH14 HH16 HH18 HH20 MM08 PP15 PP19 QQ42 QQ43 VV07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板の表面に導電路を形成する方
法であって、 導電路パターン形状の開口部を有するマスク部材を絶縁
性基板の表面に被着し、真空蒸着又はスパッタリングに
より前記開口部に導電層を形成した後、前記マスク部材
を前記絶縁性基板から取り除き導電路を形成することを
特徴とする導電路の形成方法。
1. A method for forming a conductive path on a surface of an insulating substrate, comprising: applying a mask member having an opening in the form of a conductive path on the surface of the insulating substrate; Forming a conductive layer on the portion, removing the mask member from the insulating substrate, and forming a conductive path.
【請求項2】 請求項1記載の形成方法により形成した
導電路を絶縁性基板の表面に有することを特徴とする基
板。
2. A substrate having a conductive path formed by the method according to claim 1 on a surface of an insulating substrate.
JP2000292381A 2000-09-26 2000-09-26 Method of forming conduction path and substrate Pending JP2002111176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000292381A JP2002111176A (en) 2000-09-26 2000-09-26 Method of forming conduction path and substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000292381A JP2002111176A (en) 2000-09-26 2000-09-26 Method of forming conduction path and substrate

Publications (1)

Publication Number Publication Date
JP2002111176A true JP2002111176A (en) 2002-04-12

Family

ID=18775331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000292381A Pending JP2002111176A (en) 2000-09-26 2000-09-26 Method of forming conduction path and substrate

Country Status (1)

Country Link
JP (1) JP2002111176A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253275A (en) * 2008-04-03 2009-10-29 Xi Max Co Ltd Original plate of ceramic printed circuit board, and method of manufacturing original plate
JP2010010447A (en) * 2008-06-27 2010-01-14 Disco Abrasive Syst Ltd Method for forming electrode of semiconductor device
CN104244596A (en) * 2014-09-09 2014-12-24 浙江经立五金机械有限公司 PCB manufacturing process
CN106231807A (en) * 2016-08-06 2016-12-14 深圳市博敏电子有限公司 A kind of printing line circuit pattern-producing method based on magnetron sputtering technique
CN106455349A (en) * 2016-08-06 2017-02-22 深圳市博敏电子有限公司 Printed circuit board preparation method based on magnetron sputtering technology
JP2018152579A (en) * 2008-02-22 2018-09-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Silver reflectors for semiconductor processing chambers
CN115220607A (en) * 2022-07-27 2022-10-21 四川省利任元创新科技有限责任公司 OGS capacitive touch screen and manufacturing method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018152579A (en) * 2008-02-22 2018-09-27 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Silver reflectors for semiconductor processing chambers
JP2009253275A (en) * 2008-04-03 2009-10-29 Xi Max Co Ltd Original plate of ceramic printed circuit board, and method of manufacturing original plate
JP2010010447A (en) * 2008-06-27 2010-01-14 Disco Abrasive Syst Ltd Method for forming electrode of semiconductor device
CN104244596A (en) * 2014-09-09 2014-12-24 浙江经立五金机械有限公司 PCB manufacturing process
CN106231807A (en) * 2016-08-06 2016-12-14 深圳市博敏电子有限公司 A kind of printing line circuit pattern-producing method based on magnetron sputtering technique
CN106455349A (en) * 2016-08-06 2017-02-22 深圳市博敏电子有限公司 Printed circuit board preparation method based on magnetron sputtering technology
CN106455349B (en) * 2016-08-06 2019-01-22 深圳市博敏电子有限公司 A kind of printed wiring board preparation method based on magnetic control sputtering plating technology
CN115220607A (en) * 2022-07-27 2022-10-21 四川省利任元创新科技有限责任公司 OGS capacitive touch screen and manufacturing method thereof
CN115220607B (en) * 2022-07-27 2022-11-29 四川省利任元创新科技有限责任公司 OGS capacitive touch screen and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN101682982B (en) Wiring member and process for producing the same
JPH10513314A (en) Method for selectively removing a metal layer from a non-metal substrate
US5217589A (en) Method of adherent metal coating for aluminum nitride surfaces
JPH07258828A (en) Film formation
JP2002111176A (en) Method of forming conduction path and substrate
US20120067623A1 (en) Heat-radiating substrate and method for manufacturing the same
JP4048811B2 (en) Three-dimensional circuit board and manufacturing method thereof
KR100642201B1 (en) Method for manufacturing flexible printed circuit boards
CN101998778A (en) Method of manufacturing flexible printed circuit board
JPH0247257A (en) Method for coating a substrate with a metal layer
US5028306A (en) Process for forming a ceramic-metal adduct
US10785878B2 (en) Circuit board and method of forming same
JPH01215986A (en) Dry etching method
JP2802181B2 (en) Method of forming conductive film on ceramic circuit board
JPH03173195A (en) Formation of conductor circuit in aluminum nitride substrate
KR100585032B1 (en) Electrode of plasma processing apparatus and manufacturing method thereof
KR20130050056A (en) Printed circuit board and method for manufacturing the same
JP3945008B2 (en) Circuit board manufacturing method
JPH05132758A (en) Manufacture of metallic thin film excellent in transferrability
JP2986948B2 (en) AlN circuit board
JP4030784B2 (en) Interlayer connection method and apparatus and multilayer substrate
JP2007217778A (en) Plasma treatment method, method for producing copper clad laminate, method for producing printed circuit board, copper clad laminate and printed circuit board
JP2008118105A (en) Ion gun treatment method, copper clad laminate manufactured by using the same method, and printed circuit board
JP2003332713A (en) Adhesive-free flexible metal laminate, flexible wiring board using the same, and method of manufacturing same
JPH10183340A (en) Method for metallizing ceramic member for semiconductor power device