JPH05132758A - Manufacture of metallic thin film excellent in transferrability - Google Patents

Manufacture of metallic thin film excellent in transferrability

Info

Publication number
JPH05132758A
JPH05132758A JP29425191A JP29425191A JPH05132758A JP H05132758 A JPH05132758 A JP H05132758A JP 29425191 A JP29425191 A JP 29425191A JP 29425191 A JP29425191 A JP 29425191A JP H05132758 A JPH05132758 A JP H05132758A
Authority
JP
Japan
Prior art keywords
film
thin film
vapor deposition
metal thin
metallic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29425191A
Other languages
Japanese (ja)
Inventor
Noriyuki Kubodera
紀之 久保寺
Yoshiaki Kono
芳明 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP29425191A priority Critical patent/JPH05132758A/en
Publication of JPH05132758A publication Critical patent/JPH05132758A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To manufacture a metallic thin film excellent in transferrability by forming a metallic thin film on a film in a state in which oxygen partial pressure or steam partial pressure is specified. CONSTITUTION:In a state in which oxygen partial pressure or steam partial pressure is controlled to 2X10<-4> to 2X10<-3>Torr, a metallic thin film 2 (such as Ni, Cu and Ag) is formed on a film 1 (such as polyethylene phthalate) by vapor deposition. At this time, as for the vapor deposition, any of resistance heating vapor deposition, induction heating vapor deposition and electron beam vapor deposition may be executed. In this way, the metallic thin film 2 excellent in transferrability can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、転写性に優れた金属
薄膜の製造方法に関するものである。この発明によって
得られた金属薄膜は、転写することによって、たとえ
ば、基板上の回路とされたり、電子部品の電極とされた
り、表示用の金属箔とされたりすることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a metal thin film having excellent transferability. The metal thin film obtained by the present invention can be formed into a circuit on a substrate, an electrode of an electronic component, or a metal foil for display by transferring.

【0002】[0002]

【従来の技術】従来から、たとえば、ホットスタンピン
グ用の金属薄膜のように、フィルム上に形成した金属薄
膜を対象物の上に転写する技術が用いられている。転写
する目的で金属薄膜をフィルム上に形成する場合、当
然、剥れやすい金属薄膜をフィルム上に形成する必要が
ある。
2. Description of the Related Art Conventionally, a technique of transferring a metal thin film formed on a film onto an object, such as a metal thin film for hot stamping, has been used. When the metal thin film is formed on the film for the purpose of transfer, it is naturally necessary to form the metal thin film which is easily peeled off.

【0003】上述のように、フィルム上の金属薄膜が剥
れやすいようにするため、通常、フィルム上に、たとえ
ば加熱する等の方法によって破壊する下地層を形成し、
この上に、蒸着またはスパッタ等の方法によって金属薄
膜を形成することが行なわれている。金属薄膜を形成し
た後に、金属薄膜とともにフィルムを加熱し、フィルム
と金属薄膜との間の下地層を破壊し、それによって、金
属薄膜が転写のためフィルムから剥される。なお、下地
層は、上述のように、加熱によって破壊される場合のほ
か、放射線によって破壊される場合もある。
As described above, in order to facilitate the peeling of the metal thin film on the film, an underlayer which is destroyed by a method such as heating is usually formed on the film,
On this, a metal thin film is formed by a method such as vapor deposition or sputtering. After forming the metal film, the film is heated with the metal film to destroy the underlying layer between the film and the metal film, thereby peeling the metal film from the film for transfer. The underlayer may be destroyed by radiation as well as being destroyed by heating as described above.

【0004】[0004]

【発明が解決しようとする課題】上述したように、フィ
ルム上に破壊が予定された下地層を形成しておくことに
よって、その上に形成された金属薄膜の転写を可能とし
た方法によれば、金属薄膜とともに、破壊された下地層
の一部が対象物上に転写されることになる。たとえば、
装飾用などの目的に金属薄膜を使う場合には、下地層が
透明であり、かつ下地層の転写される量が微量であれ
ば、ほとんど問題とならない。
As described above, according to the method capable of transferring the metal thin film formed on the underlayer, which is scheduled to be destroyed, is formed on the film. In addition to the metal thin film, a part of the destroyed underlayer is transferred onto the object. For example,
When the metal thin film is used for decoration or the like, there is almost no problem as long as the underlayer is transparent and the transferred amount of the underlayer is very small.

【0005】しかし、特開平1−42809号公報に記
載されているように、電子部品の電極、より特定的には
積層セラミックコンデンサの内部電極の形成に、上述し
たような転写技術が適用される場合には、たとえ0.1
%以下の不純物でも問題になる可能性があるため、この
方法は不適当である。
However, as described in Japanese Patent Application Laid-Open No. 1-42809, the transfer technique as described above is applied to the formation of electrodes of electronic parts, more specifically the internal electrodes of laminated ceramic capacitors. In case of 0.1
This method is unsuitable because impurities of less than 5% may cause a problem.

【0006】なお、フィルム上に形成したシートを容易
に剥離できるようにするため、フィルムに表面処理を施
す場合もある。しかしながら、現在、確立されている技
術としては、樹脂系のシートのみに有効な表面処理技術
しかなく、蒸着またはスパッタ等の方法で形成した金属
薄膜を剥離する際に有効な表面処理技術はない。
The film may be subjected to a surface treatment so that the sheet formed on the film can be easily peeled off. However, currently established techniques are only surface treatment techniques that are effective only for resin-based sheets, and there is no effective surface treatment technique when peeling a metal thin film formed by a method such as vapor deposition or sputtering.

【0007】そこで、この発明の目的は、前述したよう
な破壊が予定された下地層に頼ることなく、転写性に優
れた金属薄膜を製造する方法、すなわちフィルム上に転
写性に優れた金属薄膜を形成する方法を提供しようとす
ることである。
Therefore, an object of the present invention is to provide a method for producing a metal thin film having excellent transferability without relying on the underlayer which is scheduled to be destroyed, that is, a metal thin film having excellent transferability on the film. Is to provide a way to form.

【0008】[0008]

【課題を解決するための手段】この発明による転写性に
優れた金属薄膜の製造方法は、酸素分圧または水蒸気分
圧を2×10-4〜2×10-3Torrに調節した状態で
蒸着により金属薄膜をフィルム上に形成することを特徴
としている。
The method for producing a metal thin film having excellent transferability according to the present invention is a vapor deposition method in which oxygen partial pressure or water vapor partial pressure is adjusted to 2 × 10 −4 to 2 × 10 −3 Torr. Is characterized in that a metal thin film is formed on the film.

【0009】上述した蒸着は、抵抗加熱蒸着法、誘導加
熱蒸着法、または電子ビーム蒸着法のいずれの方法によ
って行なってもよい。なお、スパッタのような蒸発原子
を加速するような方法は除外される。
The above-mentioned vapor deposition may be performed by any of the resistance heating vapor deposition method, the induction heating vapor deposition method, and the electron beam vapor deposition method. A method of accelerating vaporized atoms such as sputtering is excluded.

【0010】この発明によって得られる金属薄膜として
は、たとえば、ニッケル、銅、銀などの薄膜がある。ま
た、金属薄膜を形成するために用いられるフィルムとし
ては、たとえば、ポリエチリンテレフタレートなどの樹
脂フィルムがある。
The metal thin film obtained by the present invention is, for example, a thin film of nickel, copper, silver or the like. The film used for forming the metal thin film is, for example, a resin film such as polyethylene terephthalate.

【0011】この発明によって得られた金属薄膜が転写
される対象物としては、セラミックグリーンシート、セ
ラミック、樹脂、金属などがある。また、転写は、この
金属薄膜を対象物に接する状態としておき、ホットスタ
ンピングにより、たとえば、圧力10〜500kg/c
2 、温度60〜95℃の範囲内で実施される。
Objects to which the metal thin film obtained by the present invention is transferred include ceramic green sheets, ceramics, resins and metals. In the transfer, the metal thin film is kept in contact with an object and hot stamping is performed, for example, at a pressure of 10 to 500 kg / c.
m < 2 >, temperature 60-95 degreeC is implemented in the range.

【0012】[0012]

【作用】この発明は、金属薄膜とフィルムとの界面に水
分が存在すると、両者の接着力が小さくなり、また、金
属上に樹脂を接着する場合に、金属表面が酸化している
と、両者の接着力が小さくなる、という知見に基づいて
いる。
According to the present invention, when water is present at the interface between the metal thin film and the film, the adhesive force between the two becomes small, and when the resin is adhered onto the metal, if the metal surface is oxidized, It is based on the finding that the adhesive strength of is reduced.

【0013】従来から、たとえば、半導体産業の分野な
どで、蒸着またはスパッタによって基板上に金属薄膜を
形成する際に、基板と金属薄膜との接着力を高めるため
に、基板をプラズマ中にさらして基板表面の付着ガス分
子を取り除くことを行なっている。これに対して、この
発明では、蒸着装置内へ所定のガスを導入するため、基
板表面の付着ガス分子を増加させることになり、その結
果、基板と金属薄膜との接着力が弱められる、と推定さ
れる。
Conventionally, for example, in the field of the semiconductor industry, when a metal thin film is formed on a substrate by vapor deposition or sputtering, the substrate is exposed to plasma in order to enhance the adhesive force between the substrate and the metal thin film. The removal of adhering gas molecules on the substrate surface is performed. On the other hand, in the present invention, since a predetermined gas is introduced into the vapor deposition apparatus, the number of attached gas molecules on the substrate surface is increased, and as a result, the adhesive force between the substrate and the metal thin film is weakened. Presumed.

【0014】また、金属が、酸素分圧または水蒸気分圧
が高い雰囲気中を蒸発しているため、金属薄膜の性質が
変化し、金属薄膜とフィルムとの接着力が小さくなっ
た、とも考えられる。
It is also considered that since the metal is evaporated in an atmosphere having a high oxygen partial pressure or water vapor partial pressure, the properties of the metal thin film are changed and the adhesive force between the metal thin film and the film is reduced. ..

【0015】[0015]

【発明の効果】このように、この発明によれば、フィル
ム上に蒸着によって金属薄膜を形成する際に、蒸着装置
内の酸素分圧または水蒸気分圧を2×10-4〜2×10
-3Torrにすることにより、転写性に優れた金属薄膜
を得ることができる。
As described above, according to the present invention, when the metal thin film is formed on the film by vapor deposition, the oxygen partial pressure or the water vapor partial pressure in the vapor deposition apparatus is 2 × 10 −4 to 2 × 10.
By setting the pressure to be -3 Torr, a metal thin film having excellent transferability can be obtained.

【0016】この発明によって得られた金属薄膜は、た
とえば従来のホットスタンピング用の金属薄膜とフィル
ムとの間の破壊が予定された下地層がないため、電子部
品のように、微量の不純物でも問題になる用途にでも、
問題なく使用することができる。
The metal thin film obtained according to the present invention does not have a ground layer between the conventional metal thin film for hot stamping and the film, which is scheduled to be broken, so that even a trace amount of impurities such as electronic parts poses a problem. Even for applications that become
It can be used without problems.

【0017】また、フィルム上の金属薄膜は、たとえ
ば、フォトエッチング法により容易にパターニングする
ことができるため、この発明によって得られた金属薄膜
は、電子部品の電極、多層基板の内部電極や外部導体、
回路基板上の導体、表示用の金属箔、などとして有利に
用いることができる。
Further, since the metal thin film on the film can be easily patterned by, for example, a photoetching method, the metal thin film obtained by the present invention can be used as an electrode for electronic parts, an internal electrode of a multilayer substrate, or an external conductor. ,
It can be advantageously used as a conductor on a circuit board, a metal foil for display, and the like.

【0018】[0018]

【実施例】この発明に従って、次のような実験を行なっ
た。実験例1 図1に示すように、まず、フィルム1を用意した。フィ
ルム1としては、100℃程度の温度では変化しないポ
リエチレンテレフタレートからなるものを用い、後で形
成する金属薄膜の転写性をより高めるため、そのような
フィルム1にシリコーン・コートを施した。
EXAMPLE The following experiment was conducted according to the present invention. Experimental Example 1 As shown in FIG. 1, first, a film 1 was prepared. As the film 1, a film made of polyethylene terephthalate which does not change at a temperature of about 100 ° C. was used, and such a film 1 was silicone-coated in order to further enhance the transferability of the metal thin film to be formed later.

【0019】次に、フィルム1上に、図1に示すよう
に、Cu蒸着膜2を形成した。このCu蒸着膜2の形成
には、加熱電流500Aの抵抗加熱蒸着法(比較例1−
1)、出力10kWの誘導加熱蒸着法(比較例1−2)
および出力10kWの電子ビーム蒸着法(比較例1−
3)の3種類の方法を用いた。蒸着中の雰囲気は、特に
コントロールせず、大気から5×10-4Torrまで真
空引きしたままとした。残留ガスの成分は、窒素、酸
素、および水であり、それぞれの圧力は、2×10-4
0.5×10-4、および2.5×10-4Torrであっ
た。得られたCu蒸着膜2の厚みは、0.3μmであっ
た。
Next, a Cu vapor deposition film 2 was formed on the film 1 as shown in FIG. To form the Cu vapor deposition film 2, a resistance heating vapor deposition method with a heating current of 500 A (Comparative Example 1-
1), an induction heating vapor deposition method with an output of 10 kW (Comparative Example 1-2).
And an electron beam evaporation method with an output of 10 kW (Comparative Example 1-
Three methods of 3) were used. The atmosphere during vapor deposition was not particularly controlled, and the atmosphere was kept evacuated to 5 × 10 −4 Torr. The components of the residual gas are nitrogen, oxygen, and water, and the respective pressures are 2 × 10 −4 ,
It was 0.5 × 10 −4 and 2.5 × 10 −4 Torr. The thickness of the obtained Cu vapor deposition film 2 was 0.3 μm.

【0020】他方、蒸着中に、大気から一度5×10-5
Torrまで真空引きした後に、酸素ガスを蒸着装置中
に導入し、真空度を5×10-4Torrに調節した雰囲
気中で、比較例と同様に、フィルム1上にCu蒸着膜2
を形成した。このCu蒸着膜2の形成にも、加熱電流5
00Aの抵抗加熱蒸着法(実施例1−1)、出力10k
Wの誘導加熱蒸着法(実施例1−2)および出力10k
Wの電子ビーム蒸着法(実施例1−3)を用いた。残留
ガスの成分は、窒素、酸素、および水であり、それぞれ
の圧力は、0.2×10-4、4.5×10-4、および
0.3×10-4Torrであった。得られたCu蒸着膜
2の厚みは、0.3μmであった。
On the other hand, during vapor deposition, once at a pressure of 5 × 10 −5 from the atmosphere.
After evacuation to Torr, oxygen gas was introduced into the vapor deposition apparatus, and the degree of vacuum was adjusted to 5 × 10 −4 Torr, in the same manner as in the comparative example, the Cu vapor deposition film 2 was formed on the film 1.
Formed. A heating current of 5 is applied to the formation of the Cu vapor deposition film 2.
00A resistance heating evaporation method (Example 1-1), output 10k
Induction heating evaporation method of W (Example 1-2) and output 10 k
The electron beam evaporation method of W (Example 1-3) was used. The components of the residual gas were nitrogen, oxygen, and water, and the respective pressures were 0.2 × 10 −4 , 4.5 × 10 −4 , and 0.3 × 10 −4 Torr. The thickness of the obtained Cu vapor deposition film 2 was 0.3 μm.

【0021】これら比較例1−1,2,3ならびに実施
例1−1,2,3を評価するために、次のような実験を
行なった。
In order to evaluate these Comparative Examples 1-1, 2, 3 and Examples 1-1, 2, 3, the following experiment was conducted.

【0022】2cm角の板を2枚準備し、これら比較例
および実施例の各々のものを、2枚の板の間に挟み、比
較例および実施例の各々と板とをそれぞれの接触面で接
着剤により固定した。この状態で、板を外方に向かって
引っ張り、フィルム1からCu蒸着膜2を剥離するのに
要する力を調べたところ、表1のような結果が得られ
た。表1において、剥離力を示す数字の単位は、“g”
である。
Two 2 cm square plates were prepared, each of these comparative examples and examples was sandwiched between two plates, and each of the comparative examples and examples and the plate were bonded at their respective contact surfaces with an adhesive. Fixed by. In this state, the plate was pulled outward to examine the force required for peeling the Cu vapor deposition film 2 from the film 1, and the results shown in Table 1 were obtained. In Table 1, the unit of the number showing the peeling force is "g"
Is.

【0023】[0023]

【表1】 [Table 1]

【0024】以上のように、蒸着中に酸素ガスを導入す
ることによって、Cu蒸着膜2の剥離性が向上した。実験例2 実験例1における実施例1−1,2,3を実施する際に
用いた酸素ガスに代えて、水蒸気を用い、これを蒸着装
置中に導入した。すなわち、蒸着中に、大気から一度5
×10-5Torrまで真空引きした後に、水蒸気を蒸着
装置中に導入し、真空度を5×10-4Torrに調節し
た雰囲気中で、図1に示すように、フィルム1上にCu
蒸着膜2を形成した。このCu蒸着膜2の形成には、加
熱電流500Aの抵抗加熱蒸着法(実施例2−1)、出
力10kWの誘導加熱蒸着法(実施例2−2)および出
力10kWの電子ビーム蒸着法(実施例2−3)を用い
た。残留ガスの成分は、窒素、酸素、および水であり、
それぞれの圧力は、0.2×10-4、0.05×1
-4、および4.3×10-4Torrであった。得られ
たCu蒸着膜2の厚みは、0.3μmであった。
As described above, the peelability of the Cu vapor deposition film 2 was improved by introducing oxygen gas during vapor deposition. Experimental Example 2 Instead of the oxygen gas used when carrying out Examples 1-1, 2 and 3 in Experimental Example 1, water vapor was used and introduced into the vapor deposition apparatus. That is, during vapor deposition, once 5
After evacuation to × 10 -5 Torr, water vapor was introduced into the vapor deposition apparatus and Cu was formed on the film 1 in an atmosphere in which the degree of vacuum was adjusted to 5 × 10 -4 Torr, as shown in FIG.
The vapor deposition film 2 was formed. To form the Cu vapor deposition film 2, a resistance heating vapor deposition method with a heating current of 500 A (Example 2-1), an induction heating vapor deposition method with an output of 10 kW (Example 2-2) and an electron beam vapor deposition method with an output of 10 kW (implementation). Example 2-3) was used. The components of the residual gas are nitrogen, oxygen, and water,
Each pressure is 0.2 × 10 -4 , 0.05 × 1
It was 0 −4 , and 4.3 × 10 −4 Torr. The thickness of the obtained Cu vapor deposition film 2 was 0.3 μm.

【0025】このようにして得られた実験例2−1,
2,3を、実験例1と同様に評価し、以下の表2に示す
ような結果を得た。
Experimental example 2-1 thus obtained
2 and 3 were evaluated in the same manner as in Experimental Example 1, and the results shown in Table 2 below were obtained.

【0026】[0026]

【表2】 [Table 2]

【0027】以上のように、蒸着中に水蒸気を導入する
ことによっても、Cu蒸着膜2の剥離性が向上した。
As described above, the peelability of the Cu vapor deposition film 2 was also improved by introducing water vapor during vapor deposition.

【0028】以上、この発明を、金属薄膜として、Cu
蒸着膜を得る場合について説明したが、蒸着される金属
薄膜の種類は任意である。
As described above, according to the present invention, as a metal thin film, Cu
Although the case of obtaining a vapor-deposited film has been described, the type of metal thin film to be vapor-deposited is arbitrary.

【0029】また、金属薄膜を形成するためのフィルム
は、上述した実験例では、シリコーン・コートが施さ
れ、転写性を向上させていたが、このような表面処理
は、この発明において必須ではない。フィルム自身を構
成する材料として、本来的に金属との付着力が小さいも
のを用いれば、あえて転写性を向上させるための表面処
理を施す必要はない。
The film for forming the metal thin film was coated with silicone in the above-mentioned experimental example to improve transferability, but such surface treatment is not essential in the present invention. .. If a material that originally has a low adhesion to a metal is used as a material for forming the film itself, it is not necessary to perform a surface treatment to improve transferability.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に従って実施された実験例によってフ
ィルム1上に形成されたCu蒸着膜2を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing a Cu vapor deposition film 2 formed on a film 1 according to an experimental example carried out according to the present invention.

【符号の説明】[Explanation of symbols]

1 フィルム 2 Cu蒸着膜(金属薄膜) 1 film 2 Cu vapor deposition film (metal thin film)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸素分圧または水蒸気分圧を2×10-4
〜2×10-3Torrに調節した状態で蒸着により金属
薄膜をフィルム上に形成することを特徴とする、転写性
に優れた金属薄膜の製造方法。
1. A partial pressure of oxygen or water vapor is set to 2 × 10 −4.
A method for producing a metal thin film having excellent transferability, which comprises forming a metal thin film on a film by vapor deposition in a state of being adjusted to 2 × 10 −3 Torr.
JP29425191A 1991-11-11 1991-11-11 Manufacture of metallic thin film excellent in transferrability Pending JPH05132758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29425191A JPH05132758A (en) 1991-11-11 1991-11-11 Manufacture of metallic thin film excellent in transferrability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29425191A JPH05132758A (en) 1991-11-11 1991-11-11 Manufacture of metallic thin film excellent in transferrability

Publications (1)

Publication Number Publication Date
JPH05132758A true JPH05132758A (en) 1993-05-28

Family

ID=17805308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29425191A Pending JPH05132758A (en) 1991-11-11 1991-11-11 Manufacture of metallic thin film excellent in transferrability

Country Status (1)

Country Link
JP (1) JPH05132758A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278842A (en) * 2005-03-30 2006-10-12 Matsushita Electric Ind Co Ltd Method for forming internal electrode pattern and method for manufacturing laminated ceramic electronic component using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278842A (en) * 2005-03-30 2006-10-12 Matsushita Electric Ind Co Ltd Method for forming internal electrode pattern and method for manufacturing laminated ceramic electronic component using the same
JP4591151B2 (en) * 2005-03-30 2010-12-01 パナソニック株式会社 Method for forming internal electrode pattern and method for producing multilayer ceramic electronic component using the same

Similar Documents

Publication Publication Date Title
US4179324A (en) Process for fabricating thin film and glass sheet laminate
US5217589A (en) Method of adherent metal coating for aluminum nitride surfaces
US6248958B1 (en) Resistivity control of CIC material
JPH05132758A (en) Manufacture of metallic thin film excellent in transferrability
JPH09201900A (en) Laminate
JPH0661600A (en) Flexible circuit board
JP2003218516A (en) Manufacturing method for wiring board
US5028306A (en) Process for forming a ceramic-metal adduct
JPH029457B2 (en)
JPH05214516A (en) Manufacture of thin metallic film excellent in transferability
JP3176096B2 (en) Method of forming metal film on ceramic surface
JP2928648B2 (en) Method of manufacturing substrate for semiconductor device
JPH08330695A (en) High adhesive flexible circuit board
JPH073473A (en) Production of metallic pattern film having excellent transferability
JP2000017424A (en) Metal transfer film
JP2761118B2 (en) Method of forming conductive film on ceramic circuit board
JP2666977B2 (en) Thin-film electronic components
JPH08330694A (en) Heat resistant flexible circuit board
JPS63303730A (en) Polyether imide film metallized with metallic thin film
JPS62198137A (en) Insulating substrate for electric device
JP2536604B2 (en) Copper / organic insulation film wiring board manufacturing method
JPH0551197B2 (en)
JPH03185752A (en) Manufacture of board for semiconductor device
JPH0245354B2 (en) KINZOKUKAIROOJUSURUSERAMITSUKUSUKIBANNOSEIZOHOHO
JPH03173197A (en) Manufacture of wiring board and macromolecule film having metal layer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010911