JP2002105628A - Vacuum arc vapor deposition apparatus - Google Patents

Vacuum arc vapor deposition apparatus

Info

Publication number
JP2002105628A
JP2002105628A JP2000303266A JP2000303266A JP2002105628A JP 2002105628 A JP2002105628 A JP 2002105628A JP 2000303266 A JP2000303266 A JP 2000303266A JP 2000303266 A JP2000303266 A JP 2000303266A JP 2002105628 A JP2002105628 A JP 2002105628A
Authority
JP
Japan
Prior art keywords
vacuum arc
porous member
substrate
plasma
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000303266A
Other languages
Japanese (ja)
Inventor
Hiroshi Murakami
浩 村上
Takashi Mikami
隆司 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2000303266A priority Critical patent/JP2002105628A/en
Priority to KR1020010060317A priority patent/KR100610412B1/en
Priority to EP01123260A priority patent/EP1195792A3/en
Priority to US09/968,016 priority patent/US6506292B2/en
Publication of JP2002105628A publication Critical patent/JP2002105628A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32871Means for trapping or directing unwanted particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum arc vapor deposition apparatus capable of forming a thin film having a smooth surface, good adhesion, high purity and good quality on a substrate. SOLUTION: The vacuum arc vapor deposition apparatus is constituted so that a porous member 10 is arranged on the inner wall of a plasma duct 5 provided with a deflection magnetic field forming means having a magnetic coil 8 at its outside, with which the plasma containing a cathode substance generated from a cathode 7 attached to a evaporation source 6 can be guided to the neighborhood of the substrate 11 housed in a film forming chamber 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は機械部品、自動車部
品、工具、金型等の耐摩耗性、耐焼付き性、摺動性等の
特性を向上させるための薄膜形成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film forming apparatus for improving characteristics such as abrasion resistance, seizure resistance and slidability of mechanical parts, automobile parts, tools, dies and the like.

【0002】[0002]

【従来の技術】真空アーク放電によって陰極を蒸発させ
て陰極物質を含むプラズマを生成する真空アーク蒸発源
を用いて、この真空アーク蒸発源で発生させたプラズマ
中のイオンを負バイアス電圧等によって基体に引き込ん
で基体の表面に薄膜を形成する手法は、真空アーク蒸着
法とも呼ばれており、成膜速度が大きい、薄膜の密着性
が高い等の特徴を有している。
2. Description of the Related Art Using a vacuum arc evaporation source for evaporating a cathode by vacuum arc discharge to generate a plasma containing a cathode material, ions in the plasma generated by the vacuum arc evaporation source are applied to a substrate by a negative bias voltage or the like. The method of forming a thin film on the surface of a substrate by drawing into a substrate is also called a vacuum arc vapor deposition method, and has features such as a high deposition rate and high adhesion of the thin film.

【0003】しかし、真空アーク蒸発源から蒸発する陰
極物質には、成膜に好ましい微小粒子の他に、例えば直
経が数μm程度またはそれ以上という粗大粒子(マクロ
パーティクル、あるいはドロップレットとも呼ばれてい
る。)が含まれており、この粗大粒子が基体に飛来して
付着していまい、これが原因で基体に対する薄膜の密着
性や薄膜表面の平滑性が低下するという問題がある。
However, the cathode material evaporated from the vacuum arc evaporation source includes, in addition to fine particles suitable for film formation, coarse particles having a straight diameter of about several μm or more (also called macro particles or droplets). ), And the coarse particles fly and adhere to the substrate, which causes a problem that the adhesion of the thin film to the substrate and the smoothness of the thin film surface are reduced.

【0004】この問題を克服すべく、種々の方法、装置
が提案されているが、それらの一つに磁力線によって、
アーク放電で生成されたプラズマを基体に導き、同時に
生成される粗大粒子をを分離して低減させる装置が提案
されている。この代表的な例として、I.I.Aksenov
et al,Sov.J.Plasma Phys. 4(1978)425-428 に記載
された装置がある。本装置は真空アーク蒸発源と、真空
アーク蒸発源で生成したプラズマを粗大粒子を除去して
基体に導くように、その外部に磁場形成装置を有する湾
曲した輸送管(プラズマダクト)と、基体が収納される
成膜室とが連接されて構成されている。
In order to overcome this problem, various methods and devices have been proposed.
An apparatus has been proposed in which plasma generated by arc discharge is guided to a substrate, and coarse particles generated at the same time are separated and reduced. Typical examples of this include: I. Aksenov
et al, Sov. J. There is an apparatus described in Plasma Phys. 4 (1978) 425-428. This device is composed of a vacuum arc evaporation source, a curved transport pipe (plasma duct) having a magnetic field forming device outside, and a substrate, so that plasma generated by the vacuum arc evaporation source is guided to the substrate by removing coarse particles. The film forming chamber to be housed is connected to the film forming chamber.

【0005】近年、前記したような磁場を用いて、蒸発
源で生成したプラズマ中のイオンだけを基板に導く装置
の改良装置が種々提案されている。一例として特表平1
0−505633公報に記載された薄膜形成装置を以下
に説明する。
[0005] In recent years, various improved devices for guiding only ions in plasma generated by an evaporation source to a substrate using a magnetic field as described above have been proposed. As an example, Tokio Table 1
The thin film forming apparatus described in Japanese Patent Publication No. 0-505633 will be described below.

【0006】図2に示す薄膜形成装置はアーク放電によ
って蒸発物質が生成されるターゲット33と、前記ター
ゲット33に負電圧が印加された状態でこのターゲット
33に接触される触発電極35と、およそ直角に折曲さ
れたプラズマダクト39と、ターゲット33が設けられ
た部分のプラズマダクト39の外側に備えられた第1電
磁石46と、前記プラズマダクト39の屈曲部分に備え
られた第2電磁石48と、前記プラズマダクト39の出
口側に、このプラズマダクト39を取り囲むように備え
られた第3電磁石50とで構成されている。プラズマダ
クト39の内壁には内側に向かって延びるバッフル52
が設けられている。
The thin film forming apparatus shown in FIG. 2 is substantially perpendicular to a target 33 where an evaporant is generated by arc discharge, and a trigger electrode 35 which comes into contact with the target 33 when a negative voltage is applied to the target 33. A first electromagnet 46 provided on the outside of the plasma duct 39 where the target 33 is provided, and a second electromagnet 48 provided on the bent portion of the plasma duct 39. A third electromagnet 50 is provided on the outlet side of the plasma duct 39 so as to surround the plasma duct 39. A baffle 52 extending inward is provided on the inner wall of the plasma duct 39.
Is provided.

【0007】前記ターゲット33に電圧が印加された状
態で前記触発電極35がターゲット33に接触すると、
瞬間的にアークが発生され、このアークがターゲット3
3の表面上に所定時間留まりながらターゲットを蒸発さ
せ、ターゲット物質を含むプラズマを生成する。
When the trigger electrode 35 comes into contact with the target 33 while a voltage is applied to the target 33,
An arc is instantaneously generated, and this arc is
The target is evaporated while remaining on the surface of No. 3 for a predetermined time to generate a plasma containing the target material.

【0008】この際、第1、第2及び第3電磁石46,
48,50に電流が印加されると、プラズマダクト39
に沿って磁力線40が分布される。従って、ターゲット
33から発生したターゲット物質を含むプラズマ中、荷
電粒子(イオン)は磁力線40(偏向磁場)に沿って、
進行し、プラズマダクト39の出口から成膜室(図示せ
ず)中に送出され、同室中に配設された基体(図示せ
ず)に蒸着される。そして、イオン化されない中性粒子
及び粗大粒子は基体まで到達できず、プラズマダクト3
9とこのプラズマダクト39の内壁に備えられたバッフ
ル52に付着される。
At this time, the first, second and third electromagnets 46,
When current is applied to 48, 50, the plasma duct 39
Are distributed along the magnetic field lines 40. Accordingly, in the plasma containing the target material generated from the target 33, the charged particles (ions) are moved along the magnetic force lines 40 (deflection magnetic field).
The plasma advances and is sent out from an outlet of the plasma duct 39 into a film forming chamber (not shown), and is vapor-deposited on a substrate (not shown) provided in the chamber. Neutral particles and coarse particles that are not ionized cannot reach the substrate, and the plasma duct 3
9 and a baffle 52 provided on the inner wall of the plasma duct 39.

【0009】従って、粗大粒子の大部分はプラズマダク
ト39内を進行しながらこのプラズマダクト39の内壁
やバッフル52に付着し除去される。
Therefore, most of the coarse particles adhere to and are removed from the inner wall of the plasma duct 39 and the baffle 52 while traveling in the plasma duct 39.

【0010】また、米国特許第 5,279,723
号、特開平10−280135公報にも同様な装置が開
示されているが、いずれも粗大粒子を捕獲するように前
記屈曲あるいは湾曲したプラズマダクト内壁にはプラズ
マダクト内壁から内側に向かって延びる金属リング状部
材もしくは羽根状の部材で構成されたバッフルが設けら
れている。
Also, US Pat. No. 5,279,723
And Japanese Patent Application Laid-Open No. H10-280135 also disclose a similar device. In any case, a metal ring extending inward from the inner wall of the plasma duct is provided on the inner wall of the bent or curved plasma duct so as to capture coarse particles. There is provided a baffle formed of a member or a blade-like member.

【0011】しかし、前記した従来のプラズマダクト内
壁に設けられたバッフルの構造では下記のような問題点
がある。第1に、前記したように、いずれのバッフルも
プラズマダクト内壁から内側に向かって延びる金属リン
グ部材もしくは羽根状の部材で構成されているため、プ
ラズマダクトに垂直に面している部分に粗大粒子が飛来
した場合は、付着又は陰極方向に反射されるが、プラズ
マダクトに平行な面に飛来した場合は基体方向に反射す
る可能性が高い。
However, the conventional structure of the baffle provided on the inner wall of the plasma duct has the following problems. First, as described above, since each of the baffles is formed of a metal ring member or a wing-like member extending inward from the inner wall of the plasma duct, coarse particles are formed in a portion facing perpendicularly to the plasma duct. If it comes, it is attached or reflected in the direction of the cathode, but if it comes in a plane parallel to the plasma duct, it is highly likely that it is reflected in the direction of the substrate.

【0012】粗大粒子の多くをターゲット方向に跳ね返
らせようとしてリング状もしくは羽根状部材を多数設け
ると、前記したようにプラズマダクトに平行した面が必
然的に多くなり、基体方向に反射される粗大粒子の数が
増加して、基体に粗大粒子が到達する可能性が高くな
り、薄膜の平滑性や密着性を阻害する。
If a large number of ring-shaped or blade-shaped members are provided in order to bounce many of the coarse particles toward the target, as described above, the number of surfaces parallel to the plasma duct inevitably increases, and the surface is reflected toward the substrate. As the number of coarse particles increases, the possibility that the coarse particles reach the substrate increases, and the smoothness and adhesion of the thin film are hindered.

【0013】第2に、多数のリング状もしくは羽根状部
材をプラズマダクト内壁に固定するためには、内壁にネ
ジ止めもしくは溶接する必要があるが、多数のリング状
もしくは羽根状部材を設置するためには、多大の加工時
間と取り付け作業時間を要し、製造コストが高くなる。
また、長時間運転した場合には、バッフルが汚れるため
交換する必要があるが、多数のバッフルを交換するには
多大の時間を要する。
Second, in order to fix a large number of ring-shaped or blade-shaped members to the inner wall of the plasma duct, it is necessary to screw or weld them to the inner wall. Requires a great deal of processing time and mounting work time, and increases manufacturing costs.
In addition, when the baffle is operated for a long time, the baffle becomes dirty and needs to be replaced. However, it takes a lot of time to replace a large number of baffles.

【0014】第3に、前記したようなバッフル構造で
は、プラズマダクト内壁にも大小の中性粒子が付着して
汚れるため、バッフル交換時等での汚れの除去作業が必
要であり、メンテナンス等が容易でない。
Third, in the baffle structure as described above, since neutral particles of large and small sizes adhere to the inner wall of the plasma duct and become dirty, it is necessary to remove the dirt at the time of baffle replacement or the like. Not easy.

【0015】また、前記粗大粒子に関する問題点の他
に、成膜に好ましい微小粒子であっても、基体に被覆さ
れず、成膜室内壁に付着するものもあり、以下の問題も
ある。前記した装置では、基体を収納する成膜室の内壁
の構造については記載されておらず、成膜室内壁が成膜
室を構成する材質のままであれば、成膜室内壁に一旦付
着した微小粒子が落下し、これらが薄膜中に混入し、膜
質を劣化させる恐れがある。
In addition to the problem of the coarse particles described above, even fine particles suitable for film formation may not be coated on the substrate and may adhere to the inner wall of the film formation chamber. In the above-described apparatus, the structure of the inner wall of the film formation chamber for accommodating the substrate is not described. There is a possibility that the fine particles fall, and these fall into the thin film and deteriorate the film quality.

【0016】[0016]

【発明を解決しようとする課題】本発明は、前記問題点
を解決するために考案されたもので、前記粗大粒子や微
小粒子の混入が少なく、平滑性、密着性及び膜質の優れ
た薄膜を基体に形成し、しかも、低コストでメンテナン
ス等の作業性の良い装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve the above-mentioned problems, and is intended to provide a thin film having a small amount of the coarse particles and fine particles and excellent in smoothness, adhesion and film quality. It is an object of the present invention to provide an apparatus which is formed on a base and which is low in cost and has good workability such as maintenance.

【0017】[0017]

【課題を解決するための手段】前記目的を達成するため
の本発明の装置は、真空アーク放電によって、陰極を蒸
発させて陰極物質を含むプラズマを生成する真空アーク
蒸発源と、基体を収納して真空排気される成膜室と、こ
の真空アーク蒸発源によって生成したプラズマを、粗大
粒子を除去して基体近傍に導くように、その外部に偏向
磁場形成手段を有する湾曲したプラズマダクト、とを備
える薄膜形成装置において、前記プラズマダクトの内壁
に、多孔部材を配設してなることを特徴としている。さ
らに、前記プラズマダクトの内壁とともに、成膜室内壁
にも多孔部材を配設することも特徴としている。
An apparatus according to the present invention for achieving the above object comprises a vacuum arc evaporation source for evaporating a cathode by vacuum arc discharge to generate a plasma containing a cathode material, and a substrate. And a curved plasma duct having a deflecting magnetic field forming means outside thereof to remove the coarse particles and guide the plasma generated by the vacuum arc evaporation source to the vicinity of the substrate. In the thin film forming apparatus provided, a porous member is provided on the inner wall of the plasma duct. Further, a porous member is provided on the inner wall of the film formation chamber together with the inner wall of the plasma duct.

【0018】本発明の真空アーク蒸着装置によれば、プ
ラズマダクト内壁に吸着表面積の大きい多孔状部材を配
設しているので、前記した従来例に比べて、飛来してき
た粗大粒子は多孔状部材の孔部に入るので捕獲しやす
く、多孔部材との密着性も良いため、基体方向に反射
し、薄膜に混入する粗大粒子を抑制することができる。
成膜室内壁にも多孔部材を配設した場合には、成膜室内
壁に付着した微小粒子は落下しにくく、成膜中に薄膜に
混入する微小粒子を抑制することができる。
According to the vacuum arc vapor deposition apparatus of the present invention, since the porous member having a large adsorption surface area is disposed on the inner wall of the plasma duct, the large particles which have come flying are smaller than those of the prior art. Since the particles enter the holes, they are easy to capture and have good adhesion to the porous member, so that coarse particles that are reflected in the direction of the base and mixed into the thin film can be suppressed.
In the case where the porous member is also provided on the inner wall of the film formation chamber, the fine particles attached to the inner wall of the film formation chamber hardly fall, and the fine particles mixed into the thin film during the film formation can be suppressed.

【0019】ここで、前記粗大粒子を捕獲するための多
孔部材は、フェルト状、メッシュ状の部材で構成するす
ることができる。フェルト状の部材とは線状の部材を綿
状に圧縮加工したもので、メッシュ状の部材とは網目状
に織られたものをしめす。特に、メッシュ状の部材を複
数重ねて用いると粗大粒子の捕獲効果は高くなる。
Here, the porous member for capturing the coarse particles can be constituted by a felt-like or mesh-like member. The felt-like member is obtained by compressing a linear member into a cotton-like shape, and the mesh-like member is a mesh-like member. In particular, when a plurality of mesh-shaped members are used in an overlapping manner, the effect of capturing coarse particles increases.

【0020】また、前記多孔部材は不織布、金属又は非
金属の多孔体によっても構成することができる。不織布
は、できれば200℃以上の高温に耐えられる耐熱性に
優れているものが望ましい。さらに、前記多孔部材が陰
極物質を含む材料で構成されていることが望ましい。陰
極物質を含んでいない材質よりも含んでいる材質の方
が、粗大粒子あるいは前記微小粒子とのなじみが良く、
付着力が強くなるため、捕獲能力が高くなるからであ
る。また、陰極物質を含んでいない場合であっても、あ
らかじめ陰極材料元素をを含む材料を一般に用いられる
めっきや蒸着等によって被覆しておくことによっても同
様な効果が得られる。
Further, the porous member may be constituted by a nonwoven fabric, a metal or a nonmetallic porous body. Preferably, the nonwoven fabric is excellent in heat resistance that can withstand a high temperature of 200 ° C. or more if possible. Further, it is desirable that the porous member is made of a material containing a cathode material. The material containing the cathode material is better compatible with the coarse particles or the fine particles than the material not containing the cathode material,
This is because the trapping ability is increased because the adhesive force is increased. Further, even in the case where the cathode material is not contained, the same effect can be obtained by coating the material containing the cathode material element in advance by generally used plating or vapor deposition.

【0021】[0021]

【発明の実施の形態】図1は本発明に係る真空アーク蒸
着装置の一例を示す概略断面図である。この真空アーク
蒸着装置は、図示しない真空排気装置によって真空排気
される成膜室1を備えており、その中に、成膜しようと
する基体11を保持するホルダ2が設けられている。こ
の成膜室1及びそれに接続された後述するプラズマダク
ト5は、この例では電気的に接地されている。ホルダ2
はこの例では支持軸3に支持されており、図示しない駆
動部によって例えばA方向に回転させられる。
FIG. 1 is a schematic sectional view showing an example of a vacuum arc evaporation apparatus according to the present invention. This vacuum arc vapor deposition apparatus includes a film forming chamber 1 that is evacuated by a vacuum exhaust device (not shown), and a holder 2 that holds a substrate 11 on which a film is to be formed is provided therein. The film forming chamber 1 and a later-described plasma duct 5 connected thereto are electrically grounded in this example. Holder 2
Is supported by a support shaft 3 in this example, and is rotated, for example, in the direction A by a drive unit (not shown).

【0022】成膜室1には、必要に応じて、不活性ガ
ス、反応性ガス等のガスが導入される。不活性ガスは、
例えばアルゴンガスである。反応性ガスは真空アーク蒸
発源から発生する陰極物質と反応して化合物を作るガス
であり、例えば窒素ガスである。
A gas such as an inert gas or a reactive gas is introduced into the film forming chamber 1 as needed. Inert gas is
For example, argon gas. The reactive gas is a gas that reacts with a cathode material generated from a vacuum arc evaporation source to form a compound, for example, nitrogen gas.

【0023】ホルダ2及びそれに保持される基体11に
は、この例では、バイアス電源4から、例えば−数十V
〜−1000V程度の負のバイアス電圧が印加される。
成膜される薄膜や基体が電気絶縁性物質である場合に
は、正負のパルス電圧や高周波電圧が印加される場合も
ある。
In this example, the holder 2 and the substrate 11 held by the holder 2 are supplied with a voltage of, for example, several tens
A negative bias voltage of about -1000 V is applied.
When the thin film or the substrate to be formed is an electrically insulating substance, a positive or negative pulse voltage or a high-frequency voltage may be applied.

【0024】成膜室1の壁面の開口部には、湾曲したプ
ラズマダクト5の一方の端部が、ホルダ2上の基体11
に向くように接続されている。このプラズマダクト5内
も、成膜室1とともに真空排気される。プラズマダクト
5の他方の端部には真空アーク蒸発源6が接続されてい
る。この真空アーク蒸発源6は陰極(ターゲット)7を
有していて、陰極とこの例では陽極を兼ねるプラズマダ
クト5との間の真空アーク放電によって、陰極7を局部
的に溶解させて陰極物質を蒸発させるものである。
One end of the curved plasma duct 5 is provided at the opening of the wall surface of the film forming chamber 1 with the base 11 on the holder 2.
It is connected to face. The inside of the plasma duct 5 is evacuated together with the film forming chamber 1. A vacuum arc evaporation source 6 is connected to the other end of the plasma duct 5. The vacuum arc evaporation source 6 has a cathode (target) 7, and the cathode 7 is locally melted by a vacuum arc discharge between the cathode and the plasma duct 5 which also serves as an anode in this example, to remove the cathode material. It evaporates.

【0025】真空アーク蒸発源6の陰極7は、成膜しよ
うとする薄膜の種類に応じた所望の材料(例えば純金
属、合金、カーボン等)からなる。より具体的には、例
えばTi、Cr、Mo、Ta、W、Al、Cu等の純金
属、TiAl等の合金、グラファイト(カーボン)から
なる。
The cathode 7 of the vacuum arc evaporation source 6 is made of a desired material (for example, a pure metal, an alloy, carbon, or the like) according to the type of a thin film to be formed. More specifically, it is made of, for example, a pure metal such as Ti, Cr, Mo, Ta, W, Al, or Cu, an alloy such as TiAl, or graphite (carbon).

【0026】プラズマダクト5の外周部には、当該プラ
ズマダクト5に沿って湾曲した磁界を形成し、この磁界
によって真空アーク蒸発源6で生成したプラズマを成膜
室1内のホルダ2上の基体11の近傍に導く磁気コイル
8からなる偏向磁場形成手段が設けられている。磁気コ
イル8は図示しない直流の励磁電源によって励磁され
る。この磁気コイル8が励磁されることによって発生す
る磁力線9の一部を図1中に概略的に示すがプラズマダ
クト5の内面にほぼ沿っている。
A magnetic field curved along the plasma duct 5 is formed on the outer periphery of the plasma duct 5, and the plasma generated by the vacuum arc evaporation source 6 by the magnetic field is used to form a substrate on the holder 2 in the film forming chamber 1. A deflecting magnetic field forming means including a magnetic coil 8 guided to the vicinity of 11 is provided. The magnetic coil 8 is excited by a DC exciting power supply (not shown). A part of the magnetic field lines 9 generated when the magnetic coil 8 is excited is schematically shown in FIG. 1, but substantially along the inner surface of the plasma duct 5.

【0027】磁場形成手段として用いられる前記磁気コ
イル8は、この例ではソレノイドコイルであるが、その
代わりに複数のトロイダルコイルをプラズマダクト外周
部に配してもよい。また、永久磁石を配してもよい。
The magnetic coil 8 used as the magnetic field forming means is a solenoid coil in this example. Instead, a plurality of toroidal coils may be arranged on the outer periphery of the plasma duct. Further, a permanent magnet may be provided.

【0028】プラズマダクト5の内壁に多孔部材10が
取り付けられている。また、この例では成膜室1の内壁
にも多孔部材10が配設されている。
A porous member 10 is attached to the inner wall of the plasma duct 5. In this example, a porous member 10 is also provided on the inner wall of the film forming chamber 1.

【0029】真空アーク放電によって陰極7から陰極物
質の粗大粒子がプラズマダクト5中に飛来するが、当該
粗大粒子は上記多孔部材10に付着し、捕獲される。そ
して、この多孔部材10は多孔であるため吸着表面積が
大きく、従って付着能力が高く一旦捕獲された粗大粒子
があまり基体11方向に反射することはない。従って、
本発明の装置によれば、上記粗大粒子が除去されたプラ
ズマを磁力線に沿って、基体近傍に導くことができる。
Coarse particles of the cathode material fly from the cathode 7 into the plasma duct 5 by the vacuum arc discharge, and the coarse particles adhere to the porous member 10 and are captured. Since the porous member 10 is porous, it has a large adsorption surface area, and therefore has a high adhering ability, so that the once captured coarse particles are hardly reflected toward the substrate 11. Therefore,
According to the apparatus of the present invention, the plasma from which the coarse particles have been removed can be guided to the vicinity of the substrate along the lines of magnetic force.

【0030】前記多孔部材10は粗大粒子を捕獲するも
のであるため、吸着表面積が大きく、孔径が粗大粒子以
上あり、しかも湾曲したプラズマダクトの内壁に取り付
けられるものであるため加工性の良いものであったらよ
い。具体的には、フェルト状、メッシュ状の部材、不織
布及び金属又は非金属の多孔体が挙げられる。特に、フ
ェルト状、メッシュ状の部材、及び不織布は上記特性の
他に弾力性があり、飛来する粗大粒子の運動エネルギー
を吸収するので、反射するエネルギーを減ずる効果があ
り、最も好ましい。
Since the porous member 10 captures coarse particles, the porous member 10 has a large adsorption surface area, has a pore size larger than the coarse particles, and is attached to the inner wall of a curved plasma duct. Good luck. Specific examples include felt-like and mesh-like members, non-woven fabrics, and metal or non-metallic porous bodies. In particular, felt-like, mesh-like members, and nonwoven fabrics have elasticity in addition to the above-described characteristics, and absorb kinetic energy of flying coarse particles, and therefore have the effect of reducing reflected energy, and are most preferable.

【0031】また、多孔部材10は飛来する粗大粒子の
捕獲後に双方のなじみが良く、密着性が良いものであっ
てもよく、従って真空アーク放電によって蒸発する陰極
物質を含む材料で、あるいは陰極物質を含む材料がめっ
きや蒸着で被覆されている部材で構成することもでき
る。
Further, the porous member 10 may be a material having good compatibility and good adhesion after capturing the flying coarse particles. Therefore, the porous member 10 may be made of a material containing a cathode material evaporated by vacuum arc discharge, or a cathode material. May be constituted by a member coated with a material containing by plating or vapor deposition.

【0032】例えば、真空アーク蒸発源6にグラファイ
トからなる陰極7を取り付け、陰極を蒸発させて基体1
1にカーボン膜を形成する場合には、多孔部材10とし
て、炭素含有フェルト材(カーボンフェルト)、多孔質
カーボン材(カーボンフォーム)、カーボンメッシュ材
(カーボン線材を網目状に縫い合わせたもの)等を用い
ることができる。多孔部材10がカーボン以外の材質の
場合にはあらかじめ多孔部材10にカーボンコーティン
グを施すことも有効である。
For example, a cathode 7 made of graphite is attached to a vacuum arc evaporation source 6 and the cathode is evaporated to form a base 1.
In the case of forming a carbon film on 1, as the porous member 10, a carbon-containing felt material (carbon felt), a porous carbon material (carbon foam), a carbon mesh material (a carbon wire sewn in a mesh shape) or the like is used. Can be used. When the porous member 10 is made of a material other than carbon, it is also effective to apply a carbon coating to the porous member 10 in advance.

【0033】多孔部材は一体ものでもよいし、分割して
プラズマダクト内壁へ取り付けてもよい。取り付けは、
多孔部材の両端のネジ止め等で簡単にでき、従って、取
り替え等のメンテナンスが短時間に簡単にできる。な
お、多孔部材を分割してプラズマダクト内壁に取り付け
る場合、複数種の多孔部材を用いてもよい。
The porous member may be integral or may be divided and attached to the inner wall of the plasma duct. Installation is
It can be easily performed by screwing the both ends of the porous member or the like, so that maintenance such as replacement can be easily performed in a short time. When the porous member is divided and attached to the inner wall of the plasma duct, a plurality of types of porous members may be used.

【0034】また、図1の例では、成膜室1の内壁にも
多孔部材10を配設しているが、この場合は、成膜室1
の内壁に付着した微小粒子が落下して、基体11に付
着、あるいは薄膜中に混入することがなく、さらに平滑
性及び密着性の良い、良質の薄膜を形成することができ
る。
Further, in the example of FIG. 1, the porous member 10 is also provided on the inner wall of the film forming chamber 1.
Fine particles attached to the inner wall of the substrate do not fall and adhere to the substrate 11 or enter the thin film, and a high-quality thin film having good smoothness and adhesion can be formed.

【0035】さらに、図1の例では、プラズマダクト内
壁のほぼ全体に多孔部材を配設しているが、粗大粒子の
飛来する割合の多い部分等プラズマダクトの一部に、あ
るいは複数部に多孔部材を配設してもよいのはもちろん
である。
Further, in the example shown in FIG. 1, the porous member is provided on almost the entire inner wall of the plasma duct. Of course, a member may be provided.

【0036】[0036]

【発明の効果】以上のように、この発明によれば、湾曲
したプラズマダクトの内壁に多孔部材を配設したので、
従来のプラズマダクトのバッフルの場合より製作コスト
が安く、メンテナンス等の作業性の良い真空アーク蒸着
装置を提供できる。
As described above, according to the present invention, since the porous member is provided on the inner wall of the curved plasma duct,
It is possible to provide a vacuum arc vapor deposition apparatus that is less expensive to manufacture than a conventional plasma duct baffle and has good workability such as maintenance.

【0037】そして、真空アーク放電によって生成する
粗大粒子を確実に捕獲することができ、粗大粒子を除去
したプラズマを成膜する基体近傍に導くことができるの
で、表面平滑性及び基体との密着性の良い良質の薄膜を
形成することができる。
The coarse particles generated by the vacuum arc discharge can be reliably captured, and the plasma from which the coarse particles have been removed can be guided to the vicinity of the substrate on which the film is to be formed. A good quality thin film with good quality can be formed.

【0038】また、成膜室の内壁にも多孔部材を配設す
ると、成膜室の内壁に付着する微小粒子の落下を防ぎ、
基体へ付着や薄膜への混入を防ぐことができるので、さ
らに良質の薄膜を形成することができる。
When a porous member is also provided on the inner wall of the film forming chamber, it is possible to prevent minute particles adhering to the inner wall of the film forming chamber from falling.
Since it is possible to prevent the adhesion to the substrate and the incorporation into the thin film, a higher quality thin film can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る真空アーク蒸着装置の一例を示
す概略断面図である。
FIG. 1 is a schematic sectional view showing an example of a vacuum arc evaporation apparatus according to the present invention.

【図2】従来の真空アークプラズマ輸送装置の一例を示
す断面図である。
FIG. 2 is a sectional view showing an example of a conventional vacuum arc plasma transport device.

【符号の説明】[Explanation of symbols]

1 成膜室 2 ホルダ 3 支持軸 4 バイアス電源 5 プラズマダクト 6 真空アーク蒸発源 7 陰極 8 磁気コイル 9 磁力線 10 多孔部材 11 基体 DESCRIPTION OF SYMBOLS 1 Film-forming chamber 2 Holder 3 Support shaft 4 Bias power supply 5 Plasma duct 6 Vacuum arc evaporation source 7 Cathode 8 Magnetic coil 9 Magnetic field line 10 Porous member 11 Substrate

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 真空アーク放電によって、陰極を蒸発さ
せて陰極物質を含むプラズマを生成する真空アーク蒸発
源と、基体を収納して真空排気される成膜室と、この真
空アーク蒸発源によって生成したプラズマを、粗大粒子
を除去して基体近傍に導くように、その外部に偏向磁場
形成手段を有する湾曲したプラズマダクト、とを備える
薄膜形成装置において、前記プラズマダクトの内壁に、
多孔部材を配設してなることを特徴とする真空アーク蒸
着装置。
1. A vacuum arc evaporation source for evaporating a cathode by vacuum arc discharge to generate a plasma containing a cathode material, a film forming chamber containing a substrate and being evacuated and evacuated, and a vacuum chamber formed by the vacuum arc evaporation source. In the thin film forming apparatus, a curved plasma duct having a deflecting magnetic field forming means outside thereof to remove the coarse particles and guide the plasma to the vicinity of the substrate,
A vacuum arc vapor deposition apparatus comprising a porous member.
【請求項2】 真空アーク放電によって、陰極を蒸発さ
せて陰極物質を含むプラズマを生成する真空アーク蒸発
源と、基体を収納して真空排気される成膜室と、この真
空アーク蒸発源によって生成したプラズマを、粗大粒子
を除去して基体近傍に導くように、その外部に偏向磁場
形成手段を有する湾曲したプラズマダクト、とを備える
薄膜形成装置において、前記プラズマダクト及び成膜室
双方の内壁に多孔部材を配設してなることを特徴とする
真空アーク蒸着装置。
2. A vacuum arc evaporation source for evaporating a cathode by vacuum arc discharge to generate a plasma containing a cathode material, a film formation chamber containing a substrate and evacuated to a vacuum, and a vacuum arc evaporation source generated by the vacuum arc evaporation source. A curved plasma duct having a deflecting magnetic field forming means outside thereof to remove the coarse particles and guide it to the vicinity of the substrate, wherein the plasma duct and the inner wall of both the film forming chamber are formed. A vacuum arc vapor deposition apparatus comprising a porous member.
【請求項3】 前記多孔部材が、フェルト状の部材であ
る請求項1又は2記載の真空アーク蒸着装置。
3. The vacuum arc evaporation apparatus according to claim 1, wherein the porous member is a felt-shaped member.
【請求項4】 前記多孔部材が、メッシュ状の部材であ
る請求項1又は2記載の真空アーク蒸着装置。
4. The vacuum arc vapor deposition apparatus according to claim 1, wherein the porous member is a mesh member.
【請求項5】 前記多孔部材が、不織布である請求項1
又は2記載の真空アーク蒸着装置。
5. The method according to claim 1, wherein the porous member is a nonwoven fabric.
Or the vacuum arc evaporation apparatus according to 2.
【請求項6】 前記多孔部材が、金属又は非金属の多孔
体である請求項1又は2記載の真空アーク蒸着装置。
6. The vacuum arc vapor deposition apparatus according to claim 1, wherein the porous member is a metal or non-metallic porous body.
【請求項7】 前記多孔部材が、陰極物質を含む材料で
構成されている請求項1から6のいずれかに記載の真空
アーク蒸着装置。
7. The vacuum arc evaporation apparatus according to claim 1, wherein the porous member is made of a material containing a cathode material.
【請求項8】 前記多孔部材が、陰極物質を含む材料で
被覆されている部材で構成されている請求項1から6の
いずれかに記載の真空アーク蒸着装置。
8. The vacuum arc vapor deposition apparatus according to claim 1, wherein the porous member is formed of a member coated with a material containing a cathode material.
JP2000303266A 2000-10-03 2000-10-03 Vacuum arc vapor deposition apparatus Pending JP2002105628A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000303266A JP2002105628A (en) 2000-10-03 2000-10-03 Vacuum arc vapor deposition apparatus
KR1020010060317A KR100610412B1 (en) 2000-10-03 2001-09-28 Film forming apparatus
EP01123260A EP1195792A3 (en) 2000-10-03 2001-10-02 Film forming apparatus
US09/968,016 US6506292B2 (en) 2000-10-03 2001-10-02 Film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303266A JP2002105628A (en) 2000-10-03 2000-10-03 Vacuum arc vapor deposition apparatus

Publications (1)

Publication Number Publication Date
JP2002105628A true JP2002105628A (en) 2002-04-10

Family

ID=18784486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303266A Pending JP2002105628A (en) 2000-10-03 2000-10-03 Vacuum arc vapor deposition apparatus

Country Status (4)

Country Link
US (1) US6506292B2 (en)
EP (1) EP1195792A3 (en)
JP (1) JP2002105628A (en)
KR (1) KR100610412B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038700A1 (en) * 2006-09-30 2008-04-03 Ferrotec Corporation Radially enlarged type plasma generating apparatus
JP2008291326A (en) * 2007-05-25 2008-12-04 Fujitsu Ltd Film-forming apparatus and film-forming method
WO2009119655A1 (en) 2008-03-27 2009-10-01 株式会社フェローテック Plasma generating apparatus and plasma processing apparatus
WO2010113544A1 (en) 2009-03-31 2010-10-07 株式会社フェローテック Insulator-interposed plasma processing device
JP2010287268A (en) * 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
JP2011137191A (en) * 2009-12-26 2011-07-14 Canon Anelva Corp Vacuum arc vapor-deposition apparatus
WO2014115733A1 (en) 2013-01-22 2014-07-31 日新電機株式会社 Plasma device, carbon thin film manufacturing method and coating method using plasma device
KR101616855B1 (en) * 2014-11-11 2016-04-29 한국기계연구원 A vacuum arc deposition device comprising plasma duct
JP2016089233A (en) * 2014-11-06 2016-05-23 キヤノンアネルバ株式会社 Film forming apparatus
JPWO2014171208A1 (en) * 2013-04-18 2017-02-16 株式会社日立製作所 Gas circuit breaker
CN108085640A (en) * 2017-10-31 2018-05-29 东莞市汇成真空科技有限公司 Large tank inner wall plated film vacuum cathode arc coating machine
JP2022542530A (en) * 2020-07-02 2022-10-05 安徽純源鍍膜科技有限公司 Transmission channel device and coating equipment for plasma transfer

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826108B2 (en) * 2002-04-24 2006-09-27 キヤノン株式会社 Film forming apparatus and film forming method
JP2005029855A (en) * 2003-07-08 2005-02-03 Fuji Electric Device Technology Co Ltd Vacuum arc deposition system, vacuum arc deposition method, and magnetic recording medium
US20050249983A1 (en) * 2004-05-06 2005-11-10 Seagate Technology Llc Thickness gradient protective overcoat layers by filtered cathodic arc deposition
US7872244B2 (en) * 2007-08-08 2011-01-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI379916B (en) * 2009-02-24 2012-12-21 Ind Tech Res Inst Vacuum coating device and coating method
DE102009057375B3 (en) * 2009-12-09 2011-05-26 Roth & Rau Ag ECR plasma source with a coating protection and application of the coating protection
US9024273B2 (en) * 2010-04-20 2015-05-05 Varian Semiconductor Equipment Associates, Inc. Method to generate molecular ions from ions with a smaller atomic mass
JP5606777B2 (en) * 2010-04-22 2014-10-15 株式会社フェローテック Plasma flow generation method, plasma processing method, plasma generator, and plasma processing apparatus
US9840765B2 (en) * 2013-10-16 2017-12-12 General Electric Company Systems and method of coating an interior surface of an object
JP2016027604A (en) * 2014-06-24 2016-02-18 株式会社荏原製作所 Surface processing apparatus
JP6347414B2 (en) * 2014-11-04 2018-06-27 日新イオン機器株式会社 Mass spectrometry electromagnet
KR101639630B1 (en) * 2014-12-11 2016-07-15 한국기계연구원 A vacuum arc deposition device comprising plasma duct
EP3263737B1 (en) * 2016-06-29 2019-06-12 Oerlikon Surface Solutions AG, Pfäffikon Vacuum coating chamber and method for filtering macroparticles during cathodic arc evaporation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3634710A1 (en) * 1986-10-11 1988-04-21 Ver Glaswerke Gmbh DEVICE FOR VACUUM COATING A GLASS DISC BY REACTIVE CATHODAL SPRAYING
US5637199A (en) * 1992-06-26 1997-06-10 Minnesota Mining And Manufacturing Company Sputtering shields and method of manufacture
US5279723A (en) 1992-07-30 1994-01-18 As Represented By The United States Department Of Energy Filtered cathodic arc source
US5480527A (en) 1994-04-25 1996-01-02 Vapor Technologies, Inc. Rectangular vacuum-arc plasma source
US5455426A (en) * 1994-06-15 1995-10-03 Texas Instruments Incorporated Target chamber shielding
GB9503305D0 (en) * 1995-02-20 1995-04-12 Univ Nanyang Filtered cathodic arc source
US5656092A (en) * 1995-12-18 1997-08-12 Eaton Corporation Apparatus for capturing and removing contaminant particles from an interior region of an ion implanter
KR100230279B1 (en) * 1997-03-31 1999-11-15 윤종용 Coating apparatus by using cathodic arc discharge

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660452B2 (en) * 2006-09-30 2011-03-30 株式会社フェローテック Expanded tube plasma generator
JP2008091184A (en) * 2006-09-30 2008-04-17 Ferrotec Corp Radially enlarged tube type plasma generating apparatus
WO2008038700A1 (en) * 2006-09-30 2008-04-03 Ferrotec Corporation Radially enlarged type plasma generating apparatus
JP2008291326A (en) * 2007-05-25 2008-12-04 Fujitsu Ltd Film-forming apparatus and film-forming method
WO2009119655A1 (en) 2008-03-27 2009-10-01 株式会社フェローテック Plasma generating apparatus and plasma processing apparatus
US8562800B2 (en) 2008-03-27 2013-10-22 Ferrotec Corporation Plasma generating apparatus and plasma processing apparatus
WO2010113544A1 (en) 2009-03-31 2010-10-07 株式会社フェローテック Insulator-interposed plasma processing device
US8999122B2 (en) 2009-03-31 2015-04-07 Ferrotec Corporation Insulator interposed type plasma processing apparatus
JP2010287268A (en) * 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
JP2011137191A (en) * 2009-12-26 2011-07-14 Canon Anelva Corp Vacuum arc vapor-deposition apparatus
WO2014115733A1 (en) 2013-01-22 2014-07-31 日新電機株式会社 Plasma device, carbon thin film manufacturing method and coating method using plasma device
JPWO2014171208A1 (en) * 2013-04-18 2017-02-16 株式会社日立製作所 Gas circuit breaker
JP2016089233A (en) * 2014-11-06 2016-05-23 キヤノンアネルバ株式会社 Film forming apparatus
US9896760B2 (en) 2014-11-06 2018-02-20 Canon Anelva Corporation Deposition apparatus
KR101616855B1 (en) * 2014-11-11 2016-04-29 한국기계연구원 A vacuum arc deposition device comprising plasma duct
CN108085640A (en) * 2017-10-31 2018-05-29 东莞市汇成真空科技有限公司 Large tank inner wall plated film vacuum cathode arc coating machine
JP2022542530A (en) * 2020-07-02 2022-10-05 安徽純源鍍膜科技有限公司 Transmission channel device and coating equipment for plasma transfer
JP7273187B2 (en) 2020-07-02 2023-05-12 安徽純源鍍膜科技有限公司 Transmission channel device and coating equipment for plasma transfer

Also Published As

Publication number Publication date
KR20020026833A (en) 2002-04-12
EP1195792A3 (en) 2004-10-06
EP1195792A2 (en) 2002-04-10
US20020074226A1 (en) 2002-06-20
US6506292B2 (en) 2003-01-14
KR100610412B1 (en) 2006-08-09

Similar Documents

Publication Publication Date Title
JP2002105628A (en) Vacuum arc vapor deposition apparatus
US20030094366A1 (en) Plasma processing apparatus with real-time particle filter
JP2015503030A (en) Cathode arc deposition apparatus and method with filter
WO2005089031A1 (en) Plasma generator
JP5264168B2 (en) Coating apparatus and coating method for coating a substrate
JP2002008893A (en) Plasma machining method
WO2009157438A1 (en) Cathode unit and spattering device having same
EP1170776A2 (en) Vacuum arc evaporation source and film formation apparatus using the same
KR102533881B1 (en) single beam plasma source
JP2005350763A (en) Film deposition system and film deposition method
JP4019457B2 (en) Arc type evaporation source
EP1081247A2 (en) Arc type ion plating apparatus
JP3305786B2 (en) Manufacturing method of permanent magnet with excellent corrosion resistance
JP5429802B2 (en) Vacuum arc evaporation system
JP2004183021A (en) Apparatus and method for forming film
JP4019464B2 (en) Arc type evaporation source
US20140034484A1 (en) Device for the elimination of liquid droplets from a cathodic arc plasma source
JP4053210B2 (en) Plasma processing method
JP2005054230A (en) Vacuum arc deposition system
JPH07302575A (en) Ion source for ion implantation
JP4647476B2 (en) Deposition equipment
JP2812249B2 (en) Ion deposition thin film forming equipment
JP2005187864A (en) Film deposition apparatus and film deposition method
CN113366601A (en) Magnet arrangement for a plasma source for performing plasma processing
JP2002260541A (en) Liquid-metal ion source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070806