JP2002105511A - Hydrogen storage alloy having excellent durability and its production method - Google Patents

Hydrogen storage alloy having excellent durability and its production method

Info

Publication number
JP2002105511A
JP2002105511A JP2000303542A JP2000303542A JP2002105511A JP 2002105511 A JP2002105511 A JP 2002105511A JP 2000303542 A JP2000303542 A JP 2000303542A JP 2000303542 A JP2000303542 A JP 2000303542A JP 2002105511 A JP2002105511 A JP 2002105511A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
alloy
storage alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000303542A
Other languages
Japanese (ja)
Inventor
Tatsuo Nagata
辰夫 永田
Hideya Kaminaka
秀哉 上仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000303542A priority Critical patent/JP2002105511A/en
Publication of JP2002105511A publication Critical patent/JP2002105511A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To produce a hydrogen storage alloy having high hydrogen occuluding performance and a long-term repeated hydrogen absorbing and discharging life suitable for the storage and transport of hydrogen, usable in a temperature in the vicinity of room temperature, maintaining excellent oxidation resistance over a long period and easily treatable in the air. SOLUTION: The surface of rapidly solidified hydrogen storage alloy powder having a composition expressed by TiaV1-a-b-c-dCrbAcBd (wherein; A is one or more kinds selected from Mn, Fe, Co, Cu, Nb, Zn, Zr, Mo, Ag, Hf, Ta, W, Al, Si, C, N, P and B; B is one or more kinds selected from Ln (lanthanoid metals) and Y; a is 0.2 to 0.5, b is 0.1 to 0.4, c is 0.01 to 0.2, and d is 0.001 to 0.03) is formed with a Cu coated layer and an Ni coated layer in this order by plating, mechanical alloying or the like, thereafter, heat treatment is performed at 400 to 1,000 deg.C to form a Ti-Ni compound layer on the surface of the powder, and also, a Cu concentrated region is formed in the vicinity of the boundary between the Ti-Ni compound layer and the base metal alloy.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸蔵量 (水素
吸蔵能力) が高く、耐久性と耐酸化性に優れ、繰り返し
水素吸収放出による特性劣化が少なく、室温近傍の温度
で利用可能で、比較的安価といった特徴を持つ水素吸蔵
合金とその製造方法に関する。本発明の水素吸蔵合金あ
るいは本発明の方法により製造される水素吸蔵合金は、
特に水素ガス貯蔵・輸送用、水素ガス分離・精製用、さ
らには熱輸送システムや冷却システム、静的コンプレッ
サー、水素ガスを燃料とする燃料電池などに最適であ
る。
TECHNICAL FIELD The present invention has a high hydrogen storage capacity (hydrogen storage capacity), is excellent in durability and oxidation resistance, has little characteristic deterioration due to repeated hydrogen absorption and release, and can be used at a temperature near room temperature. The present invention relates to a hydrogen storage alloy having a feature of being relatively inexpensive and a method for producing the same. The hydrogen storage alloy of the present invention or the hydrogen storage alloy produced by the method of the present invention,
Particularly, it is most suitable for hydrogen gas storage / transport, hydrogen gas separation / purification, heat transport system and cooling system, static compressor, fuel cell using hydrogen gas as fuel, etc.

【0002】[0002]

【従来の技術】水素ガスは、燃焼すると水になり、化石
燃料のように炭酸ガスや硫黄酸化物を形成することがな
いため、クリーンなエネルギー源である。
2. Description of the Related Art Hydrogen gas is converted into water when burned, and does not form carbon dioxide gas or sulfur oxides unlike fossil fuels. Therefore, hydrogen gas is a clean energy source.

【0003】水素ガスの貯蔵・輸送は、一般に圧縮して
高圧ガスとして行われている。高圧水素ガスには重くて
嵩張る耐圧容器が必要であるにもかかわらず、体積は 2
00分の1程度にしかならず非効率的である上、安全性に
も問題がある。そこで、冷却・加熱により水素ガスを可
逆的に吸収・放出できる水素吸蔵合金を水素ガスの貯蔵
・輸送に利用することが検討されてきた。水素吸蔵合金
は、単位体積当たりの水素ガスの貯蔵密度が高圧水素ガ
ス容器より高く、より軽量かつ小体積の水素ガス貯蔵容
器となり、水素ガスの輸送も容易になる。また、低圧で
あることから安全性が高く、輸送中の機械的な衝撃にも
強い。
[0003] The storage and transportation of hydrogen gas is generally performed as high-pressure gas by compression. Despite the need for heavy and bulky pressure vessels for high pressure hydrogen gas, the volume is 2
This is inefficient, about 1/00, and has a problem in safety. Therefore, it has been studied to use a hydrogen storage alloy capable of reversibly absorbing and releasing hydrogen gas by cooling and heating for storing and transporting hydrogen gas. The hydrogen storage alloy has a higher storage density of hydrogen gas per unit volume than a high-pressure hydrogen gas container, becomes a lighter and smaller volume hydrogen gas storage container, and facilitates the transport of hydrogen gas. In addition, since the pressure is low, the safety is high, and it is resistant to mechanical shock during transportation.

【0004】水素の貯蔵・輸送を目的とする水素吸蔵合
金は従来より開発されており、小規模な水素の貯蔵には
既に利用されている。また、ガソリンの代替燃料として
水素ガスを利用する低公害水素自動車の研究も進んでお
り、これにもFeTi系をはじめとする各種の水素吸蔵合金
が水素貯蔵デバイスとして検討されている。さらに、一
部実用化されつつある燃料電池にも、水素が燃料として
利用されている。
[0004] Hydrogen storage alloys for the purpose of storing and transporting hydrogen have been developed in the past, and are already used for storing hydrogen on a small scale. Research on low-pollution hydrogen vehicles that use hydrogen gas as an alternative fuel to gasoline is also in progress, and various hydrogen storage alloys such as FeTi alloys are being studied as hydrogen storage devices. Furthermore, hydrogen is also used as fuel in fuel cells that are being put into practical use.

【0005】水素吸蔵合金の実用化が期待される他の用
途としては、その熱−化学エネルギー変換機能を機能を
利用した熱エネルギーの貯蔵・輸送システムや化学的ヒ
ートポンプとして冷却システム、その熱−を機械エネル
ギー変換機能を利用した熱駆動型の静的水素コンプレッ
サやアクチュエータ、さらには水素ガスの精製、水素同
位体の分離などがある。
Other applications in which the hydrogen storage alloy is expected to be put to practical use include a heat energy storage / transport system utilizing its function of converting heat and chemical energy, a cooling system as a chemical heat pump, and a heat pump. There are thermal-driven static hydrogen compressors and actuators using mechanical energy conversion functions, as well as hydrogen gas purification and hydrogen isotope separation.

【0006】このように水素吸蔵合金には幅広い用途が
あるが、どの用途に対しても、水素吸蔵量が最も重要な
特性である。また、上記の用途はいずれも比較的多量の
水素吸蔵合金を必要とするので、水素吸蔵合金を繰り返
し使用しても機能低下が少なく、耐久性に優れているこ
とと、合金の価格が比較的安価であることも重要であ
る。用途によっては室温近傍の比較的低い温度 (例、15
0 ℃以下) で水素の吸収・放出が起こることも求められ
る。
[0006] As described above, the hydrogen storage alloy has a wide range of applications, but the hydrogen storage amount is the most important characteristic for any application. In addition, since all of the above applications require a relatively large amount of hydrogen storage alloy, even if the hydrogen storage alloy is repeatedly used, the functions are not reduced much, the durability is excellent, and the price of the alloy is relatively low. It is also important that it be inexpensive. For some applications, relatively low temperatures around room temperature (e.g., 15
(0 ° C or less) is required to absorb and release hydrogen.

【0007】例えば、実用化が先行したLaNi5 またはMm
Ni5 で代表されるAB5 型の水素吸蔵合金は高価である
ので、水素吸蔵合金の使用量が少ないNi−水素電池等の
小型二次電池用には使用できても、水素ガス貯蔵用とい
った大量の水素吸蔵合金が必要な用途には、価格面から
使用が困難である。また、水素吸蔵量もそれほど多くな
い。
[0007] For example, LaNi 5 or Mm
Since AB 5 type hydrogen storage alloy represented by Ni 5 it is expensive, also be used for small secondary battery such as to utilize less Ni- MH batteries of the hydrogen storage alloy, such as for hydrogen gas storage For applications requiring a large amount of hydrogen storage alloy, it is difficult to use in terms of price. Also, the hydrogen storage amount is not so large.

【0008】水素吸蔵合金の水素ガスの吸収と放出は、
それぞれ体積の膨張と収縮を伴う化学反応である。実用
的な反応速度を得るには、水素吸蔵合金を粉末状で使用
して表面積を増大させる必要がある。しかし、使用中に
合金粉末の体積の膨張と収縮が繰り返されると、内部歪
みにより粉末に亀裂が入り、やがて細かな粒子に割れて
粉末が微粉化する。微粉化が進行すると、閉塞により水
素ガスが容易に流れなくなったり、微粉が水素ガスの流
れに混じってガス配管内に移動する。従って、この微粉
化が水素吸蔵合金の長期繰り返し水素吸収・放出寿命
(即ち、耐久性)低下の大きな原因となる。
The absorption and release of hydrogen gas by the hydrogen storage alloy are as follows:
Each is a chemical reaction involving volume expansion and contraction. To obtain a practical reaction rate, it is necessary to increase the surface area by using a hydrogen storage alloy in powder form. However, if the volume expansion and contraction of the alloy powder are repeated during use, the powder is cracked due to internal strain, and eventually breaks into fine particles to become fine powder. As the pulverization proceeds, the hydrogen gas does not easily flow due to blockage, or the fine powder moves into the gas pipe while mixing with the flow of the hydrogen gas. Therefore, this pulverization is the long-term repetitive hydrogen absorption / release life of the hydrogen storage alloy.
(I.e., durability) is a major cause.

【0009】比較的安価で水素吸蔵量の多い水素吸蔵合
金として、特公昭59−38293 号公報と特開平7−252560
号公報にはTi−Cr−V系合金が、特開平7−268513号公
報と特開平7−268514号公報には、Ti−V−Ni系合金が
それぞれ記載されている。これらは水素吸蔵量の多い合
金として開発されたものであるが、実際には所定の水素
吸蔵量に達しないことが多い。しかも、これらの水素吸
蔵合金では、上述した微粉化による耐久性の問題が解決
されていない。
As hydrogen storage alloys which are relatively inexpensive and have a large amount of hydrogen storage, Japanese Patent Publication No. 59-38293 and Japanese Patent Laid-Open No. 7-252560.
Japanese Patent Application Laid-Open No. 7-268513 and Japanese Patent Application Laid-Open No. 7-268514 describe a Ti-Cr-V-based alloy, respectively. These have been developed as alloys having a large hydrogen storage capacity, but in practice, often do not reach a predetermined hydrogen storage capacity. In addition, these hydrogen storage alloys do not solve the problem of durability due to pulverization described above.

【0010】水素吸蔵合金の耐酸化性も重要な特性であ
る。水素吸蔵合金は大気中に放置されると表面が酸化さ
れ、酸化膜が形成される。特に、V含有合金は酸化膜が
形成され易い。この酸化膜は水素吸収の障害となり、所
定の水素吸蔵能力を発揮することができない。そのた
め、水素吸蔵合金粉末は、使用前に酸化膜を除去するた
め活性化処理が必要となることが多い。この活性化処理
は、合金粉末を耐圧容器に入れ、数十Kg/cm2の高圧の水
素ガスを高温で1日〜数日間作用させることにより行わ
れ、容器と処理のどちらにも費用がかかる。従って、活
性化処理が不要となるように、空気中に放置しても酸化
されにくい水素吸蔵合金粉末が求められている。
[0010] The oxidation resistance of the hydrogen storage alloy is also an important characteristic. When the hydrogen storage alloy is left in the atmosphere, its surface is oxidized and an oxide film is formed. In particular, a V-containing alloy tends to form an oxide film. This oxide film becomes a hindrance to hydrogen absorption, and cannot exhibit a predetermined hydrogen storage capacity. Therefore, the hydrogen storage alloy powder often requires an activation treatment to remove an oxide film before use. This activation treatment is performed by putting the alloy powder in a pressure-resistant container and applying high-pressure hydrogen gas of several tens of kg / cm 2 at a high temperature for one day to several days, and both the container and the treatment are expensive. . Therefore, a hydrogen storage alloy powder that is hardly oxidized even when left in the air is required so that the activation treatment is not required.

【0011】特開昭60−190570号公報には、水素吸蔵合
金粉末に湿式無電解メッキにより銅および/またはニッ
ケル金属を被覆することで、雰囲気中の不純物ガスによ
る汚染の影響を小さくでき、初期活性化が不要ないし軽
減できることが説明されている。この表面被覆は水素吸
蔵合金粉末の耐酸化性の向上には有効であるが、被覆金
属が水素吸蔵能力を全く持たないCuやNiの金属そのもの
であるため、被覆金属の分だけ水素吸蔵量が減少する。
Japanese Patent Application Laid-Open No. 60-190570 discloses that by coating copper and / or nickel metal on a hydrogen storage alloy powder by wet electroless plating, the influence of contamination by impurity gas in the atmosphere can be reduced. It is described that activation is unnecessary or can be reduced. This surface coating is effective in improving the oxidation resistance of the hydrogen storage alloy powder, but since the coating metal is a Cu or Ni metal itself having no hydrogen storage ability, the hydrogen storage amount is reduced by the amount of the coating metal. Decrease.

【0012】[0012]

【発明が解決しようとする課題】本発明は、水素ガスの
貯蔵・輸送、水素ガスの精製・分離、熱輸送・冷却シス
テム、水素コンプレッサーなどの用途に有用な、高い水
素吸蔵能力と耐久性を備え、室温近傍の比較的低い(150
℃以下) の温度で使用でき、かつ耐酸化性に優れてい
て、その優れた耐酸化性が水素吸収・放出の繰り返し後
も維持される、大気中で長期使用した場合の性能低下が
少ない水素吸蔵合金とその製造方法を提供することを課
題とする。
SUMMARY OF THE INVENTION The present invention provides a high hydrogen storage capacity and durability useful for applications such as storage and transportation of hydrogen gas, purification and separation of hydrogen gas, heat transportation and cooling systems, and hydrogen compressors. Relatively low around room temperature (150
(° C or lower), and has excellent oxidation resistance, and its excellent oxidation resistance is maintained even after repeated absorption and release of hydrogen. It is an object to provide an occlusion alloy and a method for producing the occlusion alloy.

【0013】本発明者らは先に、急冷凝固法により製造
された、結晶粒径の小さい特定組成のTi−Cr−V系水素
吸蔵合金粉末が、高い水素吸蔵能力と優れた繰り返し水
素吸収・放出寿命 (耐久性) を持ち、室温近傍の比較的
低温で使用できること、そしてこの水素吸蔵合金粉末
に、メッキ法やメカニカルアロイング法によりNiを被覆
し、次いで熱処理して被覆中のNiを合金粉末中のTiと反
応させて、粉末表面にNi−Ti化合物層を主体とするNi付
加層を形成すると、水素吸蔵能力を損なわずに水素吸蔵
合金粉末の耐酸化性を著しく向上させることができるこ
とを見出した (特開平11−80865 号公報参照) 。
The present inventors have previously obtained a Ti—Cr—V-based hydrogen storage alloy powder having a small crystal grain size and a specific composition produced by a rapid solidification method, having a high hydrogen storage capacity and an excellent repetitive hydrogen absorption / absorption property. It has a release life (durability) and can be used at a relatively low temperature near room temperature.This hydrogen-absorbing alloy powder is coated with Ni by plating or mechanical alloying, and then heat-treated to alloy the Ni in the coating. By reacting with Ti in the powder to form a Ni-added layer mainly composed of a Ni-Ti compound layer on the powder surface, it is possible to significantly improve the oxidation resistance of the hydrogen-absorbing alloy powder without impairing the hydrogen-absorbing ability. (See JP-A-11-80865).

【0014】しかし、表面にNi付加層を形成して耐酸化
性を高めた上記の水素吸蔵合金は、水素吸収・放出を繰
り返すと、粉末表面に亀裂が発生したり、局部的な剥離
を生じて、耐酸化性が次第に低下し、大気放置後の水素
吸蔵量が低下することが判明した。本発明は、この耐酸
化性の低下を防ぐことができる水素吸蔵合金を製造する
ことにより、上記課題を解決しようとするものである。
However, the above-mentioned hydrogen-absorbing alloy in which the Ni-added layer is formed on the surface to increase the oxidation resistance, causes cracks on the powder surface or local exfoliation when hydrogen absorption and desorption are repeated. As a result, it was found that the oxidation resistance gradually decreased, and the hydrogen storage amount after standing in the air decreased. The present invention is intended to solve the above-mentioned problems by manufacturing a hydrogen storage alloy capable of preventing the reduction in oxidation resistance.

【0015】[0015]

【課題を解決するための手段】本発明者らは、特開平11
−80865 号公報に提案した、表面にNi付加層を形成した
Ti−Cr−V系水素吸蔵合金粉末における、水素吸収・放
出の繰り返しによる耐酸化性の低下の防止手段について
検討した。
Means for Solving the Problems The present inventors disclosed in Japanese Patent Application Laid-Open
-Addition of Ni layer on the surface as proposed in -80865
The means for preventing the oxidation resistance of Ti-Cr-V-based hydrogen storage alloy powder from decreasing due to repeated hydrogen absorption and release were investigated.

【0016】その結果、Ni付加層の主体であるTi−Ni化
合物 (即ち、Ti2Ni 、TiNi、Ni3Tiといった金属間化合
物) の変形能力が、水素吸蔵合金に比べて小さく、水素
吸収時の合金膨張と水素放出時の合金収縮という合金の
変形にTi−Ni化合物が追随できないため、粉末表面に亀
裂発生や局所的剥離が起こること、この亀裂発生や局所
的剥離は、Ni−Ti化合物層と水素吸蔵合金との間にCu濃
化領域を介在させることで効果的に防止できることを見
出した。
As a result, the deformability of the Ti—Ni compound (ie, intermetallic compound such as Ti 2 Ni, TiNi, and Ni 3 Ti), which is the main component of the Ni addition layer, is smaller than that of the hydrogen storage alloy, Since the Ti-Ni compound cannot follow the deformation of the alloy such as alloy expansion and alloy shrinkage during hydrogen release, cracking and local peeling occur on the powder surface.This cracking and local peeling are caused by the Ni-Ti compound. It has been found that it can be effectively prevented by interposing a Cu-enriched region between the layer and the hydrogen storage alloy.

【0017】ここに、本発明は、式:Tia 1-a-b-c-d
Crb c d ‥‥ (1)で示される組成を持ち、主相の平
均結晶粒径が40μm以下である水素吸蔵合金粉末の表面
に、Ti−Ni化合物層を有し、かつ水素吸蔵合金とTi−Ni
化合物層との境界近傍にCu濃化領域を有することを特徴
とする、繰り返し水素吸収放出後の耐酸化性に優れた水
素吸蔵合金である。
Here, the present invention relates to a compound represented by the formula: Ti a V 1-abcd
Cr b A c B d ‥‥ (1) A hydrogen storage alloy powder having a main phase having an average crystal grain size of 40 μm or less has a Ti-Ni compound layer on the surface thereof and has a hydrogen storage capacity. Alloy and Ti-Ni
A hydrogen storage alloy having a Cu-enriched region near a boundary with a compound layer and having excellent oxidation resistance after repeated hydrogen absorption and release.

【0018】上記式中、Aは、Mn、Fe、Co、Cu、Nb、Z
n、Zr、Mo、Ag、Hf、Ta、W、Al、Si、C、N、P、お
よびBから選ばれた1種または2種以上の元素を意味
し、BはLn (ランタノイド系金属) およびYから選ばれ
た1種または2種以上の元素を意味し、aの値は0.2 以
上、0.5 以下、bの値は0.1 以上、0.4 以下、cの値は
0.01以上、0.2 以下、dの値は0.001 以上、0.03以下。
In the above formula, A is Mn, Fe, Co, Cu, Nb, Z
n, Zr, Mo, Ag, Hf, Ta, W, Al, Si, C, N, P, and B means one or more elements selected from B, and B is Ln (lanthanoid metal) And one or more elements selected from Y and Y, the value of a is 0.2 or more and 0.5 or less, the value of b is 0.1 or more and 0.4 or less, and the value of c is
0.01 or more and 0.2 or less, and the value of d is 0.001 or more and 0.03 or less.

【0019】本発明の水素吸蔵合金は、上記(1) 式
(A、B、a、b、c、dは上記と同じ意味) で示され
る組成を持ち、主相の平均結晶粒径が40μm以下である
水素吸蔵合金粉末の表面に、Cu被覆層とNi被覆層をこの
順に形成した後、 400〜1000℃の温度で熱処理すること
を特徴とする方法により製造される。
The hydrogen storage alloy of the present invention has the above formula (1)
(A, B, a, b, c, and d have the same meanings as described above), and a Cu coating layer and a Ni coating are formed on the surface of the hydrogen storage alloy powder having an average crystal grain size of the main phase of 40 μm or less. It is manufactured by a method characterized by forming a coating layer in this order and then performing a heat treatment at a temperature of 400 to 1000 ° C.

【0020】熱処理前の状態で、Cu被覆層とNi被覆層の
合計付着量が水素吸蔵合金粉末質量の1〜20質量%であ
り、この合計付着量に対するCu被覆層中のCuの量が50質
量%以下であることが好ましい。
Before the heat treatment, the total adhesion amount of the Cu coating layer and the Ni coating layer is 1 to 20% by mass of the mass of the hydrogen storage alloy powder, and the amount of Cu in the Cu coating layer is 50% of the total adhesion amount. It is preferable that the content is not more than mass%.

【0021】[0021]

【発明の実施の形態】水素吸蔵合金粉末 本発明の水素吸蔵合金は、(1) Tia 1-a-b-c-d Crb
c d なる式 (式中のA、B、a〜dは上記と同じ意
味) で示される組成を有し、(2) その主相の平均結晶粒
径が40μm以下と微細であるという特徴を有する。
BEST MODE FOR CARRYING OUT THE INVENTION Hydrogen storage alloy powder The hydrogen storage alloy according to the present invention comprises (1) Ti a V 1-abcd Cr b A
characterized c B d becomes formula (A in the formula, B, to d are as defined above) having a composition represented by, (2) an average grain size of the main phase is less and fine 40μm Having.

【0022】この水素吸蔵合金の主相は体心立方晶であ
り、この結晶格子は、Ti、V、Crの3元素からなり、そ
の一部がA元素で置換された固溶体である。上記(2) の
微細な主相の平均結晶粒径は、水素吸蔵合金をロール急
冷法やガスアトマイズ法といった急冷凝固法により製造
することにより得られる。従って、本発明の水素吸蔵合
金は、「上記(1) 式で示される化学組成を持つ急冷凝固
された合金」であるといえる。例えば、アーク溶解法の
ように凝固時の冷却速度が遅くなると、凝固中に結晶粒
が成長して粗大になり、主相の平均結晶粒径は40μmを
超える。
The main phase of this hydrogen storage alloy is body-centered cubic, and its crystal lattice is a solid solution composed of three elements, Ti, V, and Cr, a part of which is replaced by element A. The average crystal grain size of the fine main phase of the above (2) can be obtained by manufacturing a hydrogen storage alloy by a rapid solidification method such as a roll quenching method or a gas atomizing method. Therefore, it can be said that the hydrogen storage alloy of the present invention is "a rapidly solidified alloy having a chemical composition represented by the above formula (1)". For example, when the cooling rate at the time of solidification is low as in the arc melting method, crystal grains grow during the solidification and become coarse, and the average crystal grain size of the main phase exceeds 40 μm.

【0023】本発明の水素吸蔵合金が、高い水素吸蔵能
力を持ち、微粉化しにくく耐久性に優れ、かつ室温近傍
の比較的低い(150℃以下) の温度で使用できる理由は次
のように推測される。
The reason why the hydrogen storage alloy of the present invention has a high hydrogen storage capacity, is hardly pulverized, has excellent durability, and can be used at a relatively low temperature (150 ° C. or lower) near room temperature is as follows. Is done.

【0024】急冷凝固した体心立方晶のTi−V−Cr系合
金は、大気圧に近い0.1 MPa の水素平衡圧 (水素吸収・
放出反応の平衡ガス圧) を示す温度が150 ℃以下と低い
ので、150 ℃以下の温度範囲でも、多量の水素を吸収す
ることができ、かつ微粉化しにくいため繰り返し水素吸
収・放出寿命に優れている。
The rapidly solidified body-centered cubic Ti-V-Cr alloy has a hydrogen equilibrium pressure (hydrogen absorption / pressure) of 0.1 MPa close to the atmospheric pressure.
(Equilibrium gas pressure for the release reaction) is as low as 150 ° C or less, so even in a temperature range of 150 ° C or less, a large amount of hydrogen can be absorbed and it is difficult to pulverize. I have.

【0025】しかし、この高い水素吸蔵量や優れた耐久
性は、アーク溶解法のように溶解後の凝固が遅い従来の
方法で製造された合金では得られない。これは、凝固時
の冷却速度が低下すると、水素吸蔵量の少ないTiCr2
主体とする第2相が、凝固中にかなりの割合で析出する
ためである。この第2相の析出物は、水素吸蔵量を低下
させるだけでなく、水素平衡圧を低下させて吸収した水
素の可逆的な放出を不可能にし、さらに粒界破壊の起点
となるため、微粉化を起こり易くする。本発明の水素吸
蔵合金では、この第2相の析出量が非常に少ないため、
この相に起因する水素吸蔵量の低下や微粉化を避けるこ
とができる。
However, such a high hydrogen storage amount and excellent durability cannot be obtained with an alloy manufactured by a conventional method in which solidification after melting is slow as in the arc melting method. This is because when the cooling rate at the time of solidification is reduced, the second phase mainly composed of TiCr 2 having a small hydrogen storage amount is precipitated at a considerable rate during solidification. The precipitates of the second phase not only reduce the hydrogen storage capacity but also lower the hydrogen equilibrium pressure, making it impossible to reversibly release the absorbed hydrogen. Makes it easier for them to occur. In the hydrogen storage alloy of the present invention, the precipitation amount of the second phase is very small.
It is possible to avoid a decrease in the hydrogen storage amount and pulverization due to this phase.

【0026】本発明によれば、急冷凝固されたTi−V−
Cr系合金に上記(1) 式のAおよびBで示される元素を添
加することにより、元合金とほぼ温度・圧力で水素ガス
を吸収・放出する特性を維持し、かつ上記第2相の形成
も抑えながら、水素吸蔵量をさらに増大させることがで
きる。その理由は完全に解明されたわけではないが、次
のように考えられる。
According to the present invention, the rapidly solidified Ti-V-
By adding elements represented by A and B in the above formula (1) to the Cr-based alloy, the characteristics of absorbing and releasing hydrogen gas at almost the same temperature and pressure as the original alloy are maintained, and the formation of the second phase is performed. The hydrogen storage amount can be further increased while suppressing the above. Although the reason has not been completely elucidated, it is considered as follows.

【0027】A元素 (Mn、Fe、Co、Cu、Nb、Zn、Zr、M
o、Ag、Hf、Ta、W、Al、Si、C、N、P、B) は、主
相の体心立方晶を構成するTi、V、Crと置換して格子寸
法を拡大することで、合金自体の水素吸蔵量を高めてい
ると予想される。これらの元素も、溶解後の冷却速度が
遅いと、TiまたはCrとの金属間化合物、炭化物、ホウ化
物を形成しやすく、水素吸蔵量が低下する。従って、高
い水素吸蔵量を得るには、このような化合物の晶出また
は析出を抑制するために、急冷凝固する必要がある。そ
れにより、この化合物が起点となる微粉化も抑制され
る。
Element A (Mn, Fe, Co, Cu, Nb, Zn, Zr, M
o, Ag, Hf, Ta, W, Al, Si, C, N, P, and B) are replaced with Ti, V, and Cr constituting the body-centered cubic crystal of the main phase to enlarge the lattice size. It is expected that the hydrogen storage capacity of the alloy itself is increased. If these elements also have a low cooling rate after melting, they tend to form intermetallic compounds, carbides and borides with Ti or Cr, and the hydrogen storage capacity decreases. Therefore, in order to obtain a high hydrogen storage amount, it is necessary to rapidly solidify the compound in order to suppress crystallization or precipitation of such a compound. Thereby, pulverization starting from this compound is also suppressed.

【0028】B元素 (ランタノイド系金属<Ln>または
Y) は、主相の体心立方晶にはほとんど存在せず、合金
中に含まれる不純物酸素と酸化物を形成して存在すると
考えられる。不純物酸素は主相の体心立方晶の金属原子
間に侵入する状態で存在しているが、これらの元素が侵
入する位置は、水素を吸蔵させた場合に水素原子が侵入
する位置でもある。従って、この不純物酸素は水素侵入
サイトを塞いでしまうため、水素吸蔵量を減少させる原
因となる。酸素と化合しやすいLnやYを添加すると、不
純物酸素が主相の外に追いやられ、水素吸蔵量が増加す
るものと推定される。
Element B (lanthanoid metal <Ln> or Y) is hardly present in the body-centered cubic crystal of the main phase, and is considered to be present by forming oxides with impurity oxygen contained in the alloy. The impurity oxygen exists in a state of invading between the body-centered cubic metal atoms of the main phase, and the position at which these elements enter is also the position at which hydrogen atoms enter when hydrogen is occluded. Accordingly, the impurity oxygen blocks the hydrogen intrusion site, which causes a reduction in the amount of hydrogen occlusion. It is presumed that when Ln or Y, which easily combines with oxygen, is added, impurity oxygen is driven out of the main phase, and the hydrogen storage amount increases.

【0029】本発明の水素吸蔵合金の各元素の原子比
は、150 ℃以下の低温および大気圧近傍で高い水素吸蔵
量を得るように検討して、上記のように決定された。次
にその理由を説明する。なお、上記(1) 式からわかるよ
うに、各元素の量はいずれも原子数比であり、合計が1
である。
The atomic ratio of each element of the hydrogen storage alloy according to the present invention was determined as described above in consideration of obtaining a high hydrogen storage amount at a low temperature of 150 ° C. or lower and near the atmospheric pressure. Next, the reason will be described. As can be seen from the above equation (1), the amounts of the respective elements are all atomic ratios, and the total is 1
It is.

【0030】チタン (Ti) Ti量が増えると、合金主相である体心立方晶の格子寸法
が拡大し、水素吸蔵量が増加する。高い水素吸蔵量を得
るには、0.2 以上のTiが必要である。チタンが多いほど
水素吸蔵量は増大するが、それに伴って水素平衡圧が低
下し、室温・大気圧近傍で利用することができなくなる
上、微粉化が原因の繰り返し水素吸収・放出に対する寿
命 (耐久性) が低下する。水素吸蔵量と耐久性のバラン
スの観点から、Ti量は 0.2以上、0.5 以下とし、好まし
くは0.3 以上、0.45以下、より好ましくは0.3 以上、0.
4 以下である。
Titanium (Ti) When the amount of Ti increases, the lattice size of the body-centered cubic crystal, which is the main alloy phase, increases, and the hydrogen storage amount increases. To obtain a high hydrogen storage capacity, 0.2 or more Ti is required. As the amount of titanium increases, the amount of hydrogen storage increases, but the hydrogen equilibrium pressure decreases with it, making it unusable at room temperature and near atmospheric pressure.In addition, the lifetime against repeated hydrogen absorption and release due to pulverization (durability) Sex) is reduced. From the viewpoint of the balance between hydrogen storage capacity and durability, the Ti content is 0.2 or more and 0.5 or less, preferably 0.3 or more, 0.45 or less, more preferably 0.3 or more, and 0.
4 or less.

【0031】クロム (Cr) Cr量が増えると水素吸蔵量は増加するが、その程度はTi
ほど大きくないので、Cr添加の主目的は水素平衡圧の制
御にある。従って、Cr量は、Ti量や目的とする使用温度
および水素平衡圧により変化する。しかし、Cr量が0.1
未満では、Ti量が0.2 の場合に室温での水素平衡圧が大
気圧よりかなり低くなり、室温近傍で可逆的に水素を吸
収・放出できなくなる。一方、Crが0.4 を超えると、第
2相として析出するTiCr2 相の量が増加し、水素吸蔵量
が低下するだけでなく、微粉化が起こり易くなり繰り返
し水素吸収・放出に対する寿命も低下する。水素吸蔵量
と耐久性のバランスの観点から、Cr量は 0.1以上、0.4
以下とし、好ましくは0.2以上、0.4 以下、より好まし
くは0.2 以上、0.35以下である。
Chromium (Cr) As the amount of Cr increases, the amount of hydrogen occlusion increases.
Since it is not so large, the main purpose of adding Cr is to control the hydrogen equilibrium pressure. Therefore, the amount of Cr changes depending on the amount of Ti, the intended use temperature, and the hydrogen equilibrium pressure. However, when the Cr content is 0.1
If the Ti content is less than 0.2, the hydrogen equilibrium pressure at room temperature becomes significantly lower than the atmospheric pressure when the Ti content is 0.2, and it becomes impossible to reversibly absorb and release hydrogen near room temperature. On the other hand, when Cr exceeds 0.4, the amount of the TiCr 2 phase precipitated as the second phase increases, and not only the hydrogen storage amount decreases, but also the pulverization tends to occur and the life for repeated hydrogen absorption and release decreases. . From the viewpoint of the balance between hydrogen storage capacity and durability, the Cr content is 0.1 or more, 0.4
Or less, preferably 0.2 or more and 0.4 or less, more preferably 0.2 or more and 0.35 or less.

【0032】バナジウム (V) Ti−Crの2元系では、第2相としてTiCr2 が多く形成
し、水素吸蔵量と繰り返し水素吸収・放出に対する寿命
が低下し、水素平衡圧が低すぎて室温近傍での利用も困
難になる。そのため、Vを一緒に添加する。Vの添加に
より、主相の体心立方晶相が多く得られ、水素吸蔵量が
増加する。Vの量は、Ti、Cr、A元素、およびB元素の
量により自動的に決定される。
In the binary system of vanadium (V) Ti—Cr, a large amount of TiCr 2 is formed as a second phase, the hydrogen storage capacity and the life for repeated hydrogen absorption / desorption are reduced, and the hydrogen equilibrium pressure is too low and the room temperature is too low. Use in the vicinity is also difficult. Therefore, V is added together. By adding V, a large body-centered cubic phase of the main phase is obtained, and the hydrogen storage amount increases. The amount of V is automatically determined by the amounts of Ti, Cr, A element, and B element.

【0033】A元素 (Mn、Fe、Co、Cu、Nb、Zn、Zr、M
o、Ag、Hf、Ta、W、Al、Si、C、N、P、B) これらの添加元素は、主相の体心立方晶を構成する金属
である、Ti、Cr、Vのいずれかと置換し、格子寸法を拡
大して水素吸蔵量を増加させるのに効果的な元素であ
る。これらの元素はTiまたはCrとの金属間化合物、炭化
物、ホウ化物を形成しやすいため、あまり多量には添加
できない。A元素の量が0.2 より多くなると、合金全体
の水素吸蔵量はかえて減少する。一方、A元素の量が0.
01より少ないと、添加による水素吸蔵量の増加が認めら
れない。金属間化合物等の形成量と水素吸蔵量とのバラ
ンスから、A元素の量は0.01以上、0.2 以下とし、好ま
しくは0.03以上、0.15以下、より好ましくは0.05以上、
0.15以下である。
Element A (Mn, Fe, Co, Cu, Nb, Zn, Zr, M
o, Ag, Hf, Ta, W, Al, Si, C, N, P, B) These additional elements are any of Ti, Cr, and V, which are metals constituting the body-centered cubic crystal of the main phase. It is an element effective for substituting and expanding the lattice size to increase the amount of hydrogen occlusion. Since these elements easily form intermetallic compounds, carbides and borides with Ti or Cr, they cannot be added in large amounts. When the amount of element A is more than 0.2, the hydrogen storage amount of the entire alloy is reduced instead. On the other hand, the amount of element A is 0.
If it is less than 01, no increase in hydrogen storage due to the addition is observed. From the balance between the formation amount of intermetallic compounds and the like and the hydrogen storage amount, the amount of element A is 0.01 or more and 0.2 or less, preferably 0.03 or more, 0.15 or less, more preferably 0.05 or more,
0.15 or less.

【0034】B元素 [Ln (ランタノイド系金属元素) 、
Y] これらの添加元素は、合金の主相の水素侵入サイトに存
在する不純物酸素と化合物を形成させるために添加す
る。従って、B元素の量は合金中の不純物酸素量に影響
される。合金製造時に安価だが不純物の多い原料を用い
れば多く添加する必要があり、高価だが不純物の少ない
原料を用いれば少ない量で十分である。
Element B [Ln (lanthanoid metal element),
Y] These additional elements are added to form a compound with impurity oxygen present at the hydrogen invasion site of the main phase of the alloy. Therefore, the amount of B element is affected by the amount of impurity oxygen in the alloy. If an inexpensive raw material containing a large amount of impurities is used during the production of an alloy, it is necessary to add a large amount of the raw material.

【0035】不純物の多い原料を用いた場合でも、B元
素の量は0.03までで十分である。B元素の量が0.001 以
下では、不純物酸素を除去できず、水素吸蔵量が増加し
ない。以上より、B元素の量を0.001 以上、0.03以下と
する。高価なB元素の添加量は非常に少ないので、その
添加によるコスト増大はわずかである。また、B元素の
酸化物は、熱処理中の結晶粒度の粗大化を抑える効果を
有しているため、B元素添加により、微細結晶組織を得
ることができる熱処理温度の上限を、Ti−V−Cr合金の
場合より高くすることができ、表面被覆後の熱処理時間
を短くすることができる。
Even when a raw material having a large amount of impurities is used, the amount of B element is sufficient up to 0.03. When the amount of the B element is 0.001 or less, impurity oxygen cannot be removed, and the hydrogen storage amount does not increase. From the above, the amount of the B element is set to 0.001 or more and 0.03 or less. Since the addition amount of the expensive B element is very small, the cost increase by the addition is small. Further, since the oxide of the element B has an effect of suppressing the coarsening of the crystal grain size during the heat treatment, the upper limit of the heat treatment temperature at which a fine crystal structure can be obtained by adding the element B is Ti-V- It can be higher than that of the Cr alloy, and the heat treatment time after surface coating can be shortened.

【0036】ランタノイド系金属は、純金属として精製
されたLa、Ce等の元素を単独添加することも可能である
が、希土類金属の合金であり多くのランタノイド系金属
を含んでいる安価なミッシュメタルと呼ばれる合金を用
いると、本発明の水素吸蔵合金の製造コストはさらに低
下する。
The lanthanoid metal may be an element such as La or Ce purified as a pure metal alone, but it is an alloy of rare earth metals and is an inexpensive misch metal containing many lanthanoid metals. The use of an alloy referred to as, further reduces the production cost of the hydrogen storage alloy of the present invention.

【0037】主相の平均結晶粒径 以上に説明したように、本発明の水素吸蔵合金は、もと
もと水素吸蔵量の多い体心立方晶を主相とするTi−Cr−
V系合金にA、Bの2種類の元素を添加して、さらに水
素吸蔵量を増大させることに成功したものである。
[0037] As described above average crystal grain size of the main phase, the hydrogen storage alloy of the present invention, Ti-Cr- to originally main phase more body-centered cubic of hydrogen storage capacity
By adding two types of elements A and B to the V-based alloy, the hydrogen storage amount was successfully increased.

【0038】しかし、このTi−Cr−V−A−B系の化学
組成を持っていても、この合金の水素吸蔵量は、製造方
法や主相の平均結晶粒径により変化し、合金製造時に溶
解した後の凝固速度 (冷却速度) が遅くなって、主相の
平均結晶粒径が40μmを超えると、同じ組成であっても
水素吸蔵量が低下することが判明した。また、合金製造
時の凝固速度が遅いために主相の平均結晶粒径が40μm
を超えると、繰り返し水素吸収・放出試験をした時の微
粉化 (粉末平均粒径の低下により判定できる)が顕著に
なり、合金寿命 (耐久性) の低下も著しいことが判明し
た。そのため、本発明の水素吸蔵合金は、主相 (体心立
方晶) の平均結晶粒径を40μm以下とする。
However, even with this Ti-Cr-VAB system chemical composition, the hydrogen storage capacity of this alloy varies depending on the production method and the average crystal grain size of the main phase. It was found that when the solidification rate (cooling rate) after dissolution was reduced and the average crystal grain size of the main phase exceeded 40 μm, the hydrogen storage amount was reduced even with the same composition. In addition, the average crystal grain size of the main phase is 40 μm due to the slow solidification rate during alloy production.
It was found that, when the hydrogen absorption and desorption tests were repeated, pulverization (which can be determined by a decrease in the average particle diameter of the powder) became remarkable, and the life of the alloy (durability) also decreased remarkably. Therefore, in the hydrogen storage alloy of the present invention, the average crystal grain size of the main phase (body-centered cubic) is set to 40 μm or less.

【0039】本発明の水素吸蔵合金のこれらの特性をさ
らに改善するには、後述するNi被覆層を形成する前の時
点で、合金主相の平均結晶粒径が20μm以下、特に15μ
m以下であることが好ましい。また、第2相として形成
されるTiCr2 やA元素との金属間化合物等の析出物の平
均結晶粒径が5μm以下であると微粉化が生じにくくな
り、2μm以下であるとほとんど微粉化しないことが判
明した。
In order to further improve these characteristics of the hydrogen storage alloy of the present invention, the average crystal grain size of the alloy main phase is 20 μm or less, particularly 15 μm, before forming a Ni coating layer described later.
m or less. Further, when the average crystal grain size of the precipitate formed as the second phase, such as TiCr 2 or an intermetallic compound with the element A, is 5 μm or less, pulverization is difficult to occur, and when it is 2 μm or less, pulverization hardly occurs. It has been found.

【0040】主相の平均結晶粒径が40μm以下と微細な
本発明の水素吸蔵合金は、前述したように急冷凝固法に
より製造できる。具体的な急冷凝固の方法は、上記の平
均結晶粒径を持つ合金が得られる限り限定されない。採
用可能な急冷凝固法としては、回転電極法、回転ドラム
あるいはロール上に合金溶湯を注湯する方法 (例、単ロ
ールまたは双ロール急冷法) 、水冷銅板上へ薄く鋳込む
方法、ガスアトマイズ法等が挙げられる。
The hydrogen storage alloy of the present invention having a fine main phase having an average crystal grain size of 40 μm or less can be produced by the rapid solidification method as described above. The specific method of rapid solidification is not limited as long as an alloy having the above average crystal grain size is obtained. Possible rapid solidification methods include a rotating electrode method, a method of pouring a molten alloy onto a rotating drum or roll (eg, a single-roll or twin-roll quenching method), a method of thin casting on a water-cooled copper plate, and a gas atomizing method. Is mentioned.

【0041】これらのうち、回転電極法とアトマイズ法
は、水素吸蔵合金の球形粉末を製造することができ、粉
末化するための粉砕工程が不要となる上、粉末形状が実
質的に球形で充填密度が高くなる点で有利である。他の
方法の場合には、必要に応じて得られた水素吸蔵合金を
粉砕して粉末にする。粉砕方法としては、水素化粉砕、
機械粉砕のいずれも採用可能であり、両者を併用しても
よい。
Of these methods, the rotary electrode method and the atomizing method can produce spherical powder of a hydrogen storage alloy, which eliminates the need for a pulverizing step for pulverization and makes the powder shape substantially spherical. This is advantageous in that the density is increased. In the case of another method, the obtained hydrogen storage alloy is pulverized into powder as required. Hydrogen crushing,
Any of mechanical pulverization can be adopted, and both may be used in combination.

【0042】本発明の水素吸蔵合金は、平均粒径が10〜
50μm程度の粉末形態とすることが適当である。それに
より、表面積が増大し、水素の吸収・放出反応が促進さ
れる。必要であれば、分級により平均粒径を調整する。
The hydrogen storage alloy of the present invention has an average particle size of 10 to
It is appropriate to use a powder form of about 50 μm. As a result, the surface area increases, and the hydrogen absorption / desorption reaction is promoted. If necessary, adjust the average particle size by classification.

【0043】急冷凝固法により製造された水素吸蔵合金
は、一般に微小な急冷歪みを持っている。本発明では、
後でCu被覆層とNi被覆層を形成した後に水素吸蔵合金粉
末を熱処理するので、その際にこの急冷歪みが除去され
る。従って、急冷歪みを除去するための熱処理を施す必
要はないが、この被覆前に熱処理を行うことも可能であ
る。
The hydrogen storage alloy produced by the rapid solidification method generally has a minute rapid cooling strain. In the present invention,
Since the hydrogen storage alloy powder is heat-treated after forming the Cu coating layer and the Ni coating layer later, the quenching strain is removed at that time. Therefore, it is not necessary to perform a heat treatment for removing the quenching strain, but it is also possible to perform a heat treatment before the coating.

【0044】表面被覆 上記(1) 式の組成を持ち、かつ(2) で規定される主相の
平均結晶粒径を持つ水素吸蔵合金は、そのままでは、大
気中に放置した場合に、室温近傍の低温 (例、80℃) で
測定した水素吸蔵量が減少する。この合金を大気中に放
置すると表面が酸化し、この酸化膜が障害となって低温
での水素吸蔵量が減少することが原因と考えられる。こ
のように大気放置により水素吸蔵量が低下した水素吸蔵
合金は、高圧水素ガス中 (例、20気圧) で500 ℃まで加
熱して活性化させると水素吸蔵量が増加し、放置前の吸
収量を回復する。しかし、前述したように、この活性化
処理は費用がかかる。
Surface Coating The hydrogen storage alloy having the composition of the above formula (1) and having the average crystal grain size of the main phase defined in the above (2), as it is, when left in the air, is close to room temperature. The hydrogen storage capacity measured at low temperatures (eg, 80 ° C) decreases. It is considered that the surface of the alloy is oxidized when the alloy is left in the air, and the oxide film acts as an obstacle to decrease the amount of hydrogen absorbed at low temperatures. The hydrogen storage alloy whose hydrogen storage capacity has been reduced by being left in the air as described above is activated by heating it to 500 ° C in high-pressure hydrogen gas (for example, 20 atm) to increase the hydrogen storage capacity, and the absorption capacity before storage To recover. However, as mentioned above, this activation process is expensive.

【0045】水素吸蔵合金を利用した装置では、製作過
程で大気との接触を完全に避けることはできないので、
上記の活性化処理を避けるには、大気と接触しても酸化
しないように本発明の水素吸蔵合金の耐酸化性を改善す
ることが望まれる。
In a device using a hydrogen storage alloy, contact with the atmosphere cannot be completely avoided during the manufacturing process.
In order to avoid the above activation treatment, it is desired to improve the oxidation resistance of the hydrogen storage alloy of the present invention so as not to be oxidized even when it comes into contact with the atmosphere.

【0046】水素吸蔵合金の耐酸化性は、特開昭60−19
0570号公報に記載のように、合金表面をNiで被覆すると
改善される。しかし、この手法は、耐酸化性の向上には
有効であるものの、合金表面を被覆したNi自体は水素吸
蔵能力がほとんどないため、合金単位重量当たりの水素
吸蔵量がかなり低下する。
The oxidation resistance of the hydrogen storage alloy is described in JP-A-60-19.
As described in Japanese Patent No. 0570, improvement is achieved by coating the alloy surface with Ni. However, although this method is effective for improving oxidation resistance, Ni itself coated on the alloy surface has almost no hydrogen storage capacity, so that the hydrogen storage amount per unit weight of the alloy is considerably reduced.

【0047】特開平11−80865 号公報に提案したよう
に、Ni被覆後に熱処理して、Ni被覆層を母材合金と反応
させて、粉末表面にTi−Ni化合物層を生成させると、こ
のNi−Ti化合物層は、純Niより著しく大きな水素吸蔵能
力を持つため、水素吸蔵量をほとんど低下させずに、水
素吸蔵合金に耐酸化性を付与することができる。しか
し、Ti−Ni化合物は、母材合金に比べて変形能が非常に
小さいため、水素吸収・放出に伴う合金の変形に追随で
きないことから、この部分に亀裂発生や局所的剥離が起
こる。そのため、水素の吸収・放出を繰り返すと、耐酸
化性の改善効果が次第に失われ、大気放置後の水素吸蔵
量が低下する。
As proposed in Japanese Patent Application Laid-Open No. 11-80865, heat treatment is performed after Ni coating to cause the Ni coating layer to react with the base material alloy to form a Ti—Ni compound layer on the powder surface. Since the -Ti compound layer has a significantly greater hydrogen storage capacity than pure Ni, the oxidation resistance can be imparted to the hydrogen storage alloy without substantially reducing the hydrogen storage amount. However, since the Ti—Ni compound has a very low deformability as compared with the base alloy, the Ti—Ni compound cannot follow the deformation of the alloy due to hydrogen absorption and desorption, so that cracks and local peeling occur in this portion. Therefore, when the absorption and release of hydrogen are repeated, the effect of improving the oxidation resistance is gradually lost, and the amount of hydrogen absorbed after leaving in the atmosphere is reduced.

【0048】本発明によれば、上記組成と主晶の平均結
晶粒径を有する水素吸蔵合金の粉末を、まずCuで被覆し
てからNi被覆し、熱処理する。即ち、最初に第1層とし
てCu被覆層、次に第2層としてNi被覆層という2層構造
の被覆層を粉末表面に形成する。その後の熱処理中に、
合金粉末からTiがCu被覆層を通過して表面のNi被覆層に
拡散する結果、水素吸蔵合金粉末の表面にはTi−Ni化合
物層が生成する。また、この熱処理中にCu被覆層中のCu
は、母材の水素吸蔵合金およびTi−Ni化合物層に固溶
し、それぞれにCu濃化領域を形成する。その結果、粉末
表面のTi−Ni化合物層と母材合金との境界近傍に、他の
領域より高いCu濃度を有するCu濃化領域が生成する。Ti
−Ni化合物層と母材合金との境界近傍にCu濃化領域が介
在することで、後述するように、水素吸蔵・放出時にTi
−Ni化合物層に加わる応力が緩和され、Ti−Ni化合物層
の亀裂発生が防止される。
According to the present invention, the powder of the hydrogen storage alloy having the above composition and the average crystal grain size of the main crystal is first coated with Cu, then coated with Ni, and heat-treated. That is, a coating layer having a two-layer structure of a Cu coating layer as a first layer and a Ni coating layer as a second layer is first formed on the powder surface. During the subsequent heat treatment,
As a result of diffusion of Ti from the alloy powder to the Ni coating layer on the surface through the Cu coating layer, a Ti—Ni compound layer is formed on the surface of the hydrogen storage alloy powder. During this heat treatment, the Cu
Dissolves in the hydrogen storage alloy and the Ti—Ni compound layer of the base material, and forms a Cu-enriched region in each. As a result, a Cu-enriched region having a higher Cu concentration than other regions is generated near the boundary between the Ti-Ni compound layer and the base material alloy on the powder surface. Ti
-The presence of a Cu-enriched region in the vicinity of the boundary between the Ni compound layer and the base metal alloy allows Ti
The stress applied to the -Ni compound layer is reduced, and the generation of cracks in the Ti-Ni compound layer is prevented.

【0049】本発明において、Cu被覆層とNi被覆層は、
いずれもCuまたはNiの純金属から構成する必要はなく、
CuまたはNiを含有する層でよい。好ましくは、Cu被覆層
とNi被覆層は、それぞれCuまたはNi含有量が50質量%以
上であり、より好ましくは実質的にCuまたはNiからなる
層である。
In the present invention, the Cu coating layer and the Ni coating layer
Neither need to be composed of pure metal of Cu or Ni,
It may be a layer containing Cu or Ni. Preferably, the Cu coating layer and the Ni coating layer each have a Cu or Ni content of 50% by mass or more, and more preferably are layers substantially composed of Cu or Ni.

【0050】熱処理により粉末表面に生成したTi−Ni化
合物層は、母材の水素吸蔵合金より高濃度でNiを含有す
るため、内部の水素吸蔵合金粉末を酸化から保護する耐
酸化性を示す。また、このTi−Ni化合物層は、多くの場
合、母材合金からCrも取り込んでいるため、Ti−Niの二
元系金属間化合物に比べて、さらに耐酸化性に優れてい
る。表面のTi−Ni化合物層と母材合金との境界近傍に介
在するCu濃化領域は、変形能が水素吸蔵合金より小さ
く、Ti−Ni化合物より大きいので、水素吸収・放出時の
水素吸蔵合金の変形に伴ってTi−Ni化合物層に加わる応
力を緩和するクッション効果を発揮し、Ti−Ni化合物層
の亀裂発生や局所的剥離を効果的に防止する。その結
果、水素の吸収・放出を繰り返しても、最表層のTi−Ni
化合物層による耐酸化性の改善効果が持続し、水素吸蔵
合金を繰り返し使用する間に大気にさらされても、高い
水素吸蔵量を維持することができる。
Since the Ti—Ni compound layer formed on the powder surface by the heat treatment contains Ni at a higher concentration than the base metal hydrogen storage alloy, it exhibits oxidation resistance for protecting the internal hydrogen storage alloy powder from oxidation. In addition, since the Ti—Ni compound layer often incorporates Cr from the base metal alloy, the Ti—Ni compound layer is more excellent in oxidation resistance than the binary intermetallic compound of Ti—Ni. The Cu-enriched region, which is located near the boundary between the Ti-Ni compound layer on the surface and the base metal alloy, has a smaller deformability than the hydrogen-absorbing alloy and is larger than the Ti-Ni compound. It exerts a cushioning effect of alleviating the stress applied to the Ti-Ni compound layer due to the deformation, and effectively prevents cracking and local peeling of the Ti-Ni compound layer. As a result, even if hydrogen absorption / desorption is repeated, Ti-Ni
The effect of improving the oxidation resistance of the compound layer is maintained, and a high hydrogen storage amount can be maintained even if the hydrogen storage alloy is exposed to the atmosphere while repeatedly used.

【0051】この効果を十分に達成するには、前述した
耐酸化性Cu被覆層とNi被覆層の付着量は、この2つの被
覆層の合計付着量が水素吸蔵合金粉末質量の1〜20質量
%となり、この合計付着量に占めるCu被覆層中のCu量が
50質量%以下となるようにすることが好ましい。より好
ましくは、合計付着量が水素吸蔵合金粉末の5〜20質量
%であり、Cu量が合計付着量の15〜45質量%である。
In order to sufficiently achieve this effect, the adhesion amount of the oxidation-resistant Cu coating layer and the Ni coating layer described above is such that the total adhesion amount of the two coating layers is 1 to 20 mass of the mass of the hydrogen storage alloy powder. %, And the amount of Cu in the Cu coating layer relative to the total
It is preferable that the content be 50% by mass or less. More preferably, the total adhesion amount is 5 to 20% by mass of the hydrogen storage alloy powder, and the Cu amount is 15 to 45% by mass of the total adhesion amount.

【0052】Cu被覆層とNi被覆層はいずれも、電解メッ
キ、無電解メッキ、メカニカルアロイング、メカノケミ
カルアロイング、または気相反応によって形成すること
ができる。メカニカルアロイングは、水素吸蔵合金粉末
をCuまたはNiの微粉末と一緒に高速ボールミルにて塑性
加工を加える処理である。メカノケミカルアロイング
は、メカニカルアロイングと操作は似ているが、より少
ないエネルギーで表面に付着層を形成することができ
る。気相反応としては、CuカルボニルまたはNiカルボニ
ルといった化合物の気相熱分解を利用した被覆方法が例
示される。
Each of the Cu coating layer and the Ni coating layer can be formed by electrolytic plating, electroless plating, mechanical alloying, mechanochemical alloying, or gas phase reaction. Mechanical alloying is a process in which a hydrogen absorbing alloy powder and a fine powder of Cu or Ni are subjected to plastic working with a high-speed ball mill. Mechanochemical alloying is similar in operation to mechanical alloying, but can form an adhesion layer on a surface with less energy. As the gas phase reaction, a coating method utilizing gas phase thermal decomposition of a compound such as Cu carbonyl or Ni carbonyl is exemplified.

【0053】Cu被覆層の上にNi被覆層を設けた2層構造
の金属被覆は、上記いずれかの被覆方法を利用して、最
初にCu被覆層を形成し、次にNi被覆層を形成するとい
う、2回処理によって形成することができる。別の方法
として、電解Niメッキまたは無電解Niメッキに使用する
メッキ液に所定量のCuイオンを含有させ、Cuの方がNiよ
り優先的に析出する性質を利用して、1回のメッキ処理
で上記2層構造の被覆層を形成することも可能である。
The metal coating having a two-layer structure in which a Ni coating layer is provided on a Cu coating layer is formed by first forming a Cu coating layer and then forming a Ni coating layer by using any of the above coating methods. It can be formed by two treatments. As another method, the plating solution used for electrolytic Ni plating or electroless Ni plating contains a certain amount of Cu ions, and one plating treatment is performed using the property that Cu precipitates preferentially over Ni. It is also possible to form a coating layer having the above-mentioned two-layer structure.

【0054】これらの被覆処理前に、必要であれば、水
素吸蔵合金粉末を、フッ酸、塩酸等の非酸化性の酸で酸
洗処理して、合金表面の酸化層を除去してもよい。水素
吸蔵合金粉末の表面に上記2層構造の被覆層を形成した
後、 400〜1000℃、好ましくは 450〜900 ℃の温度範囲
で熱処理を行う。この熱処理中に、母材合金からTiが被
覆層中に拡散し、Ni被覆層はTi−Ni化合物 (例えば Ni3
Ti、TiNi、Ti2Ni)の層に変化し、粉末表面にTi−Ni化合
物層が生成する。同時に、Ni被覆層の下側のCu被覆層に
も、表面のNiや内部の水素吸蔵合金の元素が拡散し、も
ともとCu被覆層のあった部分は、Cu濃度が他領域より高
いCu濃化領域になる。その結果、Ti−Ni化合物層と母材
合金の境界近傍にCu濃化領域が生成する。このCu濃化領
域は、Cuを高濃度に含有するTi−Ni化合物層または水素
吸蔵合金でよく、金属Cu相を実質的に含有しない。Ti−
Ni化合物層と母材合金との境界近傍にCu金属からなる層
が残存すると、水素の吸蔵・放出 (移動) の妨げになる
ので、熱処理は、Ni被覆層がTi−Ni化合物層に変化し、
かつCu被覆層が、金属Cu相を実質的に含有しないCu濃化
領域に変化するまで行う。なお、熱処理温度が高すぎる
と、水素吸蔵合金の結晶粒径の粗大化が起こり、耐久性
が低下する。熱処理温度が低すぎると、TiとNiとの反応
やCu被覆層の上記変化が進みにくい。
Before the coating treatment, if necessary, the hydrogen storage alloy powder may be pickled with a non-oxidizing acid such as hydrofluoric acid or hydrochloric acid to remove an oxide layer on the surface of the alloy. . After the coating layer having the two-layer structure is formed on the surface of the hydrogen storage alloy powder, heat treatment is performed at a temperature in the range of 400 to 1000 ° C, preferably 450 to 900 ° C. During this heat treatment, Ti diffuses from the base metal alloy into the coating layer, and the Ni coating layer forms a Ti-Ni compound (for example, Ni 3
Ti, TiNi, changes to a layer of Ti 2 Ni), TiNi compound layer is produced on the powder surface. At the same time, Ni on the surface and elements of the internal hydrogen storage alloy diffuse into the Cu coating layer underneath the Ni coating layer, and the portion where the Cu coating layer was originally had a higher Cu concentration than the other regions. Area. As a result, a Cu-enriched region is generated near the boundary between the Ti—Ni compound layer and the base metal alloy. This Cu-enriched region may be a Ti-Ni compound layer containing a high concentration of Cu or a hydrogen storage alloy, and does not substantially contain a metallic Cu phase. Ti−
If a layer made of Cu metal remains near the boundary between the Ni compound layer and the base metal alloy, the absorption and release (movement) of hydrogen is hindered, so the heat treatment changes the Ni coating layer to a Ti-Ni compound layer. ,
The process is performed until the Cu coating layer changes to a Cu-enriched region substantially not containing a metal Cu phase. If the heat treatment temperature is too high, the crystal grain size of the hydrogen storage alloy becomes coarse, and the durability decreases. If the heat treatment temperature is too low, the reaction between Ti and Ni and the above change in the Cu coating layer do not easily proceed.

【0055】熱処理雰囲気は、水素吸蔵合金の酸化を防
止するため、真空中または不活性ガス雰囲気中で行うこ
とが好ましい。熱処理時間は、Ti−Ni化合物層およびCu
濃化領域の形成が可能で、かつ主晶の平均結晶粒径が40
μmより粗大にならないように設定する。水素吸蔵合金
がB元素を含むため、熱処理温度の上限が高くなり、短
時間で熱処理を終了させることができる。Ti−Ni化合物
層の形成および金属Cuを実質的に含有しないCu濃化領域
の形成は、X線回折等により確認することができる。
The heat treatment is preferably performed in a vacuum or in an inert gas atmosphere in order to prevent oxidation of the hydrogen storage alloy. Heat treatment time is Ti-Ni compound layer and Cu
A concentrated region can be formed, and the average crystal grain size of the main crystal is 40
Set so as not to become coarser than μm. Since the hydrogen storage alloy contains the B element, the upper limit of the heat treatment temperature is increased, and the heat treatment can be completed in a short time. The formation of the Ti—Ni compound layer and the formation of the Cu-enriched region substantially containing no metallic Cu can be confirmed by X-ray diffraction or the like.

【0056】[0056]

【実施例】以下の実施例は本発明を例示するものであ
る。実施例中、%は特に指定のない限り質量%である。
The following examples illustrate the invention. In Examples,% is% by mass unless otherwise specified.

【0057】アルゴンガスアトマイズ法 (10 kg/ch) に
より水素吸蔵合金粉末を作製した。溶解に用いた原料
は、純度99%のスポンジチタン、純度98%のバナジウ
ム、純度99%のクロム、ランタノイド系希土類金属の合
金であるミッシュメタル (Lnと略記する)(La=46%、Ce
=5%、Nd=37%、Pr=10%、総希土類含有量99.5%)
、純度99%のFe、Mn、Co、Nb、Y、Zr、純度99.9%のA
l、Taであった。軽元素 (Si、C、B) は、TiまたはCr
との化合物(TiC、TiB2等) で添加した。
A hydrogen storage alloy powder was prepared by an argon gas atomizing method (10 kg / ch). The raw material used for melting was misch metal (abbreviated as Ln) which is an alloy of 99% pure titanium sponge, 98% pure vanadium, 99% pure chromium, and a lanthanoid rare earth metal (La = 46%, Ce
= 5%, Nd = 37%, Pr = 10%, total rare earth content 99.5%)
, 99% pure Fe, Mn, Co, Nb, Y, Zr, 99.9% pure A
l, Ta. Light elements (Si, C, B) are Ti or Cr
(TiC, TiB 2 etc.).

【0058】作製した水素吸蔵合金はTi=0.30、V=0.
25、Cr=0.30、A=0.14、B=0.01の同一組成とした
(但し、A、Bの元素の種類は変化させた) 。得られた
ガスアトマイズ粉末から100 μm超の粉末をふるいで除
去した。こうして得た各粉末の平均粒径は約50μmであ
った。また、この水素吸蔵合金の主相の平均結晶粒径は
約5〜20μmであり、40μmより十分に小さかった。
The prepared hydrogen storage alloy had Ti = 0.30 and V = 0.
25, Cr = 0.30, A = 0.14, B = 0.01
(However, the types of the elements A and B were changed). From the resulting gas atomized powder, a powder having a size of more than 100 μm was removed by sieving. The average particle size of each powder thus obtained was about 50 μm. The average crystal grain size of the main phase of this hydrogen storage alloy was about 5 to 20 μm, which was sufficiently smaller than 40 μm.

【0059】得られた水素吸蔵合金の粉末表面に、最初
に第1被覆層としてCu被覆層を形成した。Cu被覆は、無
電解CuメッキまたはCu微粉末を用いたメカニカルアロイ
ングにより行った。その後、第2被覆層としてNi被覆層
を、無電解Niメッキ、Ni微粉末を用いたメカニカルアロ
イング、または気相反応により形成した。メカニカルア
ロイングは、粒径1μm程度のCu微粉末またはNi微粉末
を用い、高速ボールミルでアルゴンガス雰囲気中5〜10
時間処理することにより行った。無電解Niメッキ液は市
販品を用いた。
First, a Cu coating layer was formed as a first coating layer on the powder surface of the obtained hydrogen storage alloy. Cu coating was performed by electroless Cu plating or mechanical alloying using Cu fine powder. Thereafter, a Ni coating layer was formed as a second coating layer by electroless Ni plating, mechanical alloying using Ni fine powder, or gas phase reaction. Mechanical alloying uses Cu fine powder or Ni fine powder with a particle size of about 1 μm,
Performed by time treatment. A commercially available electroless Ni plating solution was used.

【0060】気相反応によるNi被覆層の形成はNi(CO)4
ガスを使用して行った。ガス注入孔と排気孔をもつ直径
150 mm×長さ300 mmの石英円筒容器に、幅100 mm×長さ
150mmの石英ボートを入れ、このボートに水素吸蔵合金
粉末を収容した。この円筒容器を、約150 ℃に温度制御
した電気抵抗加熱炉内に装入し、粉末全体が約150 ℃に
到達した後に、Ni(CO)4 ガス80体積%、COガス20体積%
の約35℃の混合ガスを、前記注入孔に接続したチューブ
から円筒容器内に注入し、目的量のNiが粉末に付着され
るまで処理を行った。
The formation of the Ni coating layer by the gas phase reaction is performed by using Ni (CO) 4
This was performed using gas. Diameter with gas injection and exhaust holes
In a quartz cylindrical container of 150 mm x 300 mm length, width 100 mm x length
A 150 mm quartz boat was placed, and the hydrogen storage alloy powder was stored in the boat. This cylindrical container was placed in an electric resistance heating furnace controlled at a temperature of about 150 ° C, and after the whole powder reached about 150 ° C, 80% by volume of Ni (CO) 4 gas and 20% by volume of CO gas
Was injected into the cylindrical container from the tube connected to the injection hole, and the mixture was treated until the desired amount of Ni was attached to the powder.

【0061】Cu被覆層とNi被覆層を形成した後、アルゴ
ンガス雰囲気中で熱処理を行い、粉末表面のTi−Ni化合
物層とこの層と母材合金の境界近傍のCu濃化領域を有す
る水素吸蔵合金を得た。粉末表面のTi−Ni化合物層の形
成の有無はX線回折法により確認した。また、このTi−
Ni化合物層が形成された水素吸蔵合金では、上記のCu濃
化領域が生成した結果、金属Cu相が消失していたことも
X線回折により確認した。
After forming the Cu coating layer and the Ni coating layer, a heat treatment is performed in an argon gas atmosphere to obtain a hydrogen having a Ti-Ni compound layer on the powder surface and a Cu-enriched region near the boundary between this layer and the base metal alloy. An occlusion alloy was obtained. The presence or absence of the formation of the Ti-Ni compound layer on the powder surface was confirmed by an X-ray diffraction method. In addition, this Ti-
It was also confirmed by X-ray diffraction that in the hydrogen storage alloy on which the Ni compound layer was formed, as a result of the formation of the above-mentioned Cu-enriched region, the metallic Cu phase had disappeared.

【0062】図1に、こうして熱処理後された水素吸蔵
合金 (後で示す表1のNo.1の合金)において、Ti−Ni化
合物層と母材合金との境界近傍を分析装置付き透過型電
子顕微鏡でCu濃度について分析した結果を示す。図1に
示すように、この境界近傍にCu濃度が非常に高くなった
Cu濃化領域が存在していた。
FIG. 1 shows that the vicinity of the boundary between the Ti—Ni compound layer and the base metal alloy in the hydrogen-absorbing alloy heat-treated in this manner (No. 1 alloy in Table 1 shown later) is a transmission type electron with an analyzer. The result of having analyzed about Cu concentration with a microscope is shown. As shown in FIG. 1, the Cu concentration became very high near this boundary.
There was a Cu enriched region.

【0063】初期水素吸蔵量の測定 上記のように被覆および熱処理した水素吸蔵合金粉末の
初期水素吸蔵量を、ジーベルツ型の水素吸収・放出試験
装置を用いた活性化原点法により、次のようにして測定
した。
Measurement of Initial Hydrogen Storage Amount The initial hydrogen storage of the hydrogen-absorbing alloy powder coated and heat-treated as described above was determined by the activation origin method using a Sibeltz-type hydrogen absorption / desorption test apparatus as follows. Measured.

【0064】供試合金を容器に入れ、真空排気して原点
を決定した後、0.5 MPa の水素圧下300〜500 ℃に加熱
して活性化処理した。試験前の合金粉末表面の酸化の影
響を除くため、活性化処理する前に試験合金を5体積%
フッ酸水溶液で酸洗した。試験に用いた水素ガスの放出
−吸収サイクルは、合金温度20℃で水素圧を0.1 MPaか
ら3.0 MPa まで加圧する水素ガス吸収と、合金温度60℃
で水素圧を3.0 MPa から0.1 MPa まで下げる水素ガス放
出とからなるものであった。
The gold was placed in a container, evacuated to determine the origin, and then heated to 300 to 500 ° C. under a hydrogen pressure of 0.5 MPa for activation. 5% by volume of the test alloy before the activation treatment to eliminate the effect of oxidation of the alloy powder surface before the test
The product was pickled with a hydrofluoric acid aqueous solution. The hydrogen gas release-absorption cycle used in the test consisted of hydrogen gas absorption in which the hydrogen pressure was increased from 0.1 MPa to 3.0 MPa at an alloy temperature of 20 ° C, and an alloy temperature of 60 ° C.
And release of hydrogen gas to reduce the hydrogen pressure from 3.0 MPa to 0.1 MPa.

【0065】水素吸蔵量は、1サイクル終了後の水素ガ
ス放出時に水素放出曲線を作製して、圧力1MPa での水
素吸蔵量の値を求め、この水素量を合金を構成する金属
原子数に対する吸収された水素原子数の比であるH/M
に換算して評価した。
The hydrogen storage amount was determined by preparing a hydrogen release curve at the time of releasing hydrogen gas after one cycle, obtaining the value of the hydrogen storage amount at a pressure of 1 MPa, and determining the hydrogen amount with respect to the number of metal atoms constituting the alloy. H / M which is the ratio of the number of hydrogen atoms
And evaluated.

【0066】耐酸化性の評価 上記の水素ガス吸収・放出サイクルを100 サイクル繰り
返した後、供試合金に400 ℃で30分間の脱水素処理を施
した。その後、供試合金を温度25℃、湿度65%の恒温恒
湿の大気雰囲気に1週間放置してから、ジーベルツ型の
水素吸収放出試験装置を用いて、活性化処理なしに80℃
で2.5 MPa の水素ガスの吸収試験を行って、水素吸蔵量
を測定した。
Evaluation of Oxidation Resistance After repeating the above hydrogen gas absorption / desorption cycle for 100 cycles , the resulting gold was subjected to a dehydrogenation treatment at 400 ° C. for 30 minutes. After that, the match gold was left in a constant temperature and humidity atmosphere at a temperature of 25 ° C. and a humidity of 65% for one week, and then was heated to 80 ° C. without activation using a Sibeltz-type hydrogen absorption / release test apparatus.
, A hydrogen gas absorption test of 2.5 MPa was performed to measure the hydrogen storage capacity.

【0067】別に、1サイクルだけ水素ガス吸収・放出
サイクルを受けさせた供試合金について、上と同じよう
に脱水素処理と大気雰囲気への1週間の放置を行ってか
ら、水素吸蔵量を測定した。1サイクル後の水素吸蔵量
に対する100 サイクル後の水素吸蔵量の低下率を次式に
より算出し、耐酸化性を評価した。この水素吸蔵量の低
下率が10%以下であれば、耐酸化性は合格である。
Separately, the hydrogen storage amount was measured for the gold subjected to one cycle of hydrogen gas absorption / desorption cycles, after dehydrogenation treatment and leaving it in the air atmosphere for one week as described above. did. The reduction rate of the hydrogen storage capacity after 100 cycles with respect to the hydrogen storage capacity after one cycle was calculated by the following formula, and the oxidation resistance was evaluated. If the reduction rate of the hydrogen storage amount is 10% or less, the oxidation resistance is acceptable.

【0068】 水素吸蔵量低下率(%) =[(A−B)/A] × 100 A=1サイクルの水素吸収・放出後に大気放置して測定
した水素吸蔵量 B=100 サイクルの水素吸収・放出後に大気放置して測
定した水素吸蔵量 これらの試験結果を、水素吸蔵合金組成、第1(Cu)およ
び第2(Ni)の各被覆層の形成方法と付着量 (合金粉末に
対する質量%) 、熱処理条件、Ti−Ni化合物層の形成の
有無とともに、次の表1にまとめて示す。
Hydrogen storage rate decrease rate (%) = [(AB) / A] × 100 A = 1 hydrogen absorption / release after one cycle of absorption and release of hydrogen B = 100 cycles of hydrogen absorption / release Hydrogen storage amount measured after leaving in the air after release The results of these tests were determined based on the composition of the hydrogen storage alloy, the method of forming each of the first (Cu) and second (Ni) coating layers, and the adhesion amount (% by mass based on the alloy powder). Table 1, together with the heat treatment conditions and the presence or absence of the formation of the Ti-Ni compound layer, are shown in Table 1 below.

【0069】[0069]

【表1】 表1からわかるように、本発明に従って第1のCu被覆層
と第2のNi被覆層を形成してから熱処理を行って、粉末
表面にTi−Ni化合物層とその内部のCu濃化領域とを形成
した水素吸蔵合金粉末は、初期水素吸蔵量が高く、かつ
水素ガスの吸収・放出サイクルを100 サイクル繰り返し
た後も優れた耐酸化性を保持し、1週間の大気放置後に
測定した水素吸蔵量の低下率が10%以下に抑えられた。
即ち、水素吸蔵能力を損なわずに、水素ガスの吸収・放
出を繰り返す間に大気中で水素吸蔵合金粉末を取り扱う
ことができるので、取扱いが非常に容易になり、費用の
かかる活性化処理が不要ないし軽減される。なお、この
水素吸蔵合金粉末が水素ガスの吸収・放出を繰り返して
も微粉化しにくく、耐久性に優れていることは、特開平
11−80865 号公報に実証されている通りである。
[Table 1] As can be seen from Table 1, after forming the first Cu coating layer and the second Ni coating layer according to the present invention, a heat treatment was performed to form a Ti-Ni compound layer on the powder surface and a Cu-enriched region therein. The hydrogen-absorbing alloy powder formed with a high initial hydrogen-absorbing capacity, and has excellent oxidation resistance even after 100 cycles of hydrogen gas absorption / desorption cycles. The rate of decrease of the amount was suppressed to 10% or less.
In other words, the hydrogen-absorbing alloy powder can be handled in the air while the absorption and release of hydrogen gas is repeated without impairing the hydrogen-absorbing ability, so that the handling becomes very easy and costly activation treatment is unnecessary. Or be reduced. It is to be noted that this hydrogen storage alloy powder is hard to be finely divided even when hydrogen gas is repeatedly absorbed and released, and has excellent durability.
As demonstrated in JP-A-11-80865.

【0070】比較例において、表面被覆層を全く形成し
ないと、大気放置後の水素吸蔵合金の低下は37%と大き
かった。第1層としてCu被覆層を形成せず、Ni被覆層だ
けを形成して熱処理した場合も、なお水素吸蔵量の低下
率は20%と大きかった。また、第1層のCu被覆層と第2
層のNi被覆層の2層構造の金属被覆を施しても、熱処理
を行わないと、表面にTi−Ni化合物層が形成されず、水
素吸蔵量低下率はやはり17%と大きかった。
In the comparative example, when the surface coating layer was not formed at all, the decrease in the hydrogen storage alloy after leaving in the air was as large as 37%. Even when the heat treatment was performed by forming only the Ni coating layer without forming the Cu coating layer as the first layer, the reduction rate of the hydrogen storage amount was still as large as 20%. Further, the first Cu coating layer and the second
Even if a two-layer metal coating of the Ni coating layer was applied, without heat treatment, no Ti-Ni compound layer was formed on the surface, and the hydrogen storage amount reduction rate was as large as 17%.

【0071】[0071]

【発明の効果】本発明の水素吸蔵合金は、水素吸蔵量が
高く、室温近傍の比較的低い温度で水素の吸収・放出が
起こるので、各種用途に使い易く、水素吸収・放出を長
期間にわたって繰り返しても微粉化しにくく、かつ比較
的安価である。さらに、この水素吸蔵合金の表面に、Cu
濃化領域を介在させてTi−Ni化合物層が生成している。
表面のTi−Ni化合物層により合金の耐酸化性が向上し、
かつCu濃化領域によりTi−Ni化合物層への応力が緩和さ
れるため、耐酸化性の向上効果が水素の吸収・放出を繰
り返しても保持される。その結果、途中で大気に放出し
ても、費用のかかる活性化処理を行わずに、水素ガスの
吸収と放出を繰り返して、高い水素吸蔵量を得ることが
でき、使い勝手が改善される。
The hydrogen storage alloy of the present invention has a high hydrogen storage capacity and absorbs and releases hydrogen at a relatively low temperature near room temperature, so that it is easy to use for various applications, and can absorb and release hydrogen for a long period of time. It is hard to pulverize even if repeated, and relatively inexpensive. Furthermore, the surface of this hydrogen storage alloy
A Ti—Ni compound layer is generated with the thickened region interposed.
The oxidation resistance of the alloy is improved by the Ti-Ni compound layer on the surface,
In addition, since the stress on the Ti-Ni compound layer is reduced by the Cu-enriched region, the effect of improving the oxidation resistance is maintained even when hydrogen is repeatedly absorbed and released. As a result, even if the gas is released to the air on the way, a high amount of hydrogen storage can be obtained by repeating the absorption and release of the hydrogen gas without performing an expensive activation treatment, and the usability is improved.

【0072】本発明の方法で製造された水素吸蔵合金
は、水素ガス貯蔵・輸送用、水素ガス分離・精製用、熱
輸送システムや冷却システム、静的コンプレッサー、水
素ガスを燃料とする燃料電池といった用途に最適であ
る。
The hydrogen storage alloy produced by the method of the present invention is used for hydrogen gas storage / transport, hydrogen gas separation / purification, heat transport system and cooling system, static compressor, fuel cell using hydrogen gas as fuel, etc. Ideal for use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で製造した本発明に係る水素吸蔵合金の
粉末表面のTi−Ni化合物層と内分の母材合金との境界付
近におけるCu濃度分布を示す。
FIG. 1 shows a Cu concentration distribution near a boundary between a Ti—Ni compound layer on a powder surface of a hydrogen storage alloy according to the present invention manufactured in an example and an internal base metal alloy.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 661 C22F 1/00 661C 682 682 691 691B 1/18 1/18 H H01M 8/04 H01M 8/04 J ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 661 C22F 1/00 661C 682 682 691 691B 1/18 1/18 H H01M 8/04 H01M 8 / 04 J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 式:Tia 1-a-b-c-d Crb c d ‥‥ (1) で示される組成を持ち、主相の平均結晶粒径が40μm以
下である水素吸蔵合金粉末の表面に、Ti−Ni化合物層を
有し、かつ水素吸蔵合金とTi−Ni化合物層との境界近傍
にCu濃化領域を有することを特徴とする、繰り返し水素
吸収放出後の耐酸化性に優れた水素吸蔵合金。上記式
中、 Aは、Mn、Fe、Co、Cu、Nb、Zn、Zr、Mo、Ag、Hf、Ta、
W、Al、Si、C、N、P、およびBから選ばれた1種ま
たは2種以上の元素を意味し、 BはLn (ランタノイド系金属) およびYから選ばれた1
種または2種以上の元素を意味し、 aの値は0.2 以上、0.5 以下、 bの値は0.1 以上、0.4 以下、 cの値は0.01以上、0.2 以下、 dの値は0.001 以上、0.03以下。
1. A formula: Ti a V 1-abcd Cr b A c B has a composition d ‥‥ represented by (1), on the surface of the hydrogen-absorbing alloy powder having an average grain size of the main phase is 40μm or less Characterized by having a Ti-Ni compound layer, and having a Cu-enriched region near the boundary between the hydrogen storage alloy and the Ti-Ni compound layer, and having excellent oxidation resistance after repeated hydrogen absorption and release. Storage alloy. In the above formula, A is Mn, Fe, Co, Cu, Nb, Zn, Zr, Mo, Ag, Hf, Ta,
Means one or more elements selected from W, Al, Si, C, N, P, and B; and B is one selected from Ln (lanthanoid metal) and Y
A or two or more elements, a value of 0.2 or more and 0.5 or less, b value of 0.1 or more and 0.4 or less, c value of 0.01 or more and 0.2 or less, d value of 0.001 or more and 0.03 or less .
【請求項2】 請求項1記載の(1) 式 (式中、A、B、
a、b、c、dは請求項1に同じ) で示される組成を持
ち、主相の平均結晶粒径が40μm以下である水素吸蔵合
金粉末の表面に、Cu被覆層とNi被覆層をこの順に形成し
た後、 400〜1000℃の温度で熱処理することを特徴とす
る、請求項1記載の水素吸蔵合金の製造方法。
2. The formula (1) according to claim 1, wherein A, B,
a, b, c, d are the same as in claim 1), and a Cu coating layer and a Ni coating layer are formed on the surface of a hydrogen storage alloy powder having a main phase having an average crystal grain size of 40 μm or less. 2. The method for producing a hydrogen storage alloy according to claim 1, wherein the heat treatment is performed at a temperature of 400 to 1000 [deg.] C. after the formation.
【請求項3】 Cu被覆層とNi被覆層の合計付着量が水素
吸蔵合金粉末質量の1〜20質量%である、請求項2記載
の方法。
3. The method according to claim 2, wherein the total amount of the Cu coating layer and the Ni coating layer is 1 to 20% by mass of the mass of the hydrogen storage alloy powder.
【請求項4】 前記合計付着量に対するCu被覆層中のCu
の量が50質量%以下である、請求項2または3記載の方
法。
4. The method according to claim 1, wherein the amount of Cu in the Cu coating layer is
The method according to claim 2 or 3, wherein the amount of is less than or equal to 50% by weight.
JP2000303542A 2000-10-03 2000-10-03 Hydrogen storage alloy having excellent durability and its production method Withdrawn JP2002105511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000303542A JP2002105511A (en) 2000-10-03 2000-10-03 Hydrogen storage alloy having excellent durability and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000303542A JP2002105511A (en) 2000-10-03 2000-10-03 Hydrogen storage alloy having excellent durability and its production method

Publications (1)

Publication Number Publication Date
JP2002105511A true JP2002105511A (en) 2002-04-10

Family

ID=18784728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000303542A Withdrawn JP2002105511A (en) 2000-10-03 2000-10-03 Hydrogen storage alloy having excellent durability and its production method

Country Status (1)

Country Link
JP (1) JP2002105511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283075A (en) * 2005-03-31 2006-10-19 Hitachi Metals Ltd Dual phase alloy for separating/refining hydrogen
CN110484942A (en) * 2019-08-07 2019-11-22 湖南纳菲尔新材料科技股份有限公司 A kind of more first micron crystalline substance coating of Ni-P-C-Si-W, plating solution and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283075A (en) * 2005-03-31 2006-10-19 Hitachi Metals Ltd Dual phase alloy for separating/refining hydrogen
JP4756450B2 (en) * 2005-03-31 2011-08-24 日立金属株式会社 Double phase alloy for hydrogen separation and purification
CN110484942A (en) * 2019-08-07 2019-11-22 湖南纳菲尔新材料科技股份有限公司 A kind of more first micron crystalline substance coating of Ni-P-C-Si-W, plating solution and preparation method thereof
CN110484942B (en) * 2019-08-07 2022-01-04 湖南纳菲尔新材料科技股份有限公司 Ni-P-C-Si-W multi-element micron crystal coating, plating solution and preparation method thereof

Similar Documents

Publication Publication Date Title
JPH11503489A (en) Nanocrystalline Mg-based material and its use for hydrogen transport and hydrogen storage
US20060233659A1 (en) Hydrogen storage metal alloy and production thereof
JPH10110225A (en) Hydrogen storage alloy and its production
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
US5900334A (en) Hydrogen occluding alloy
JP4280816B2 (en) Hydrogen storage material and manufacturing method thereof
CN115074578B (en) Y-Mg-Ni-based hydrogen storage alloy and preparation method thereof
JP2002540053A (en) Metal-containing material, its hydride and its production method
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JP2002105511A (en) Hydrogen storage alloy having excellent durability and its production method
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance
JP4102429B2 (en) Hydrogen storage alloy and method for producing the same
JP2000303101A (en) Hydrogen storage alloy excellent in durability, and its manufacture
JPH0673466A (en) Hydrogen occlusion alloy for ni-hydrogen battery having excellent electrode life and its production
JP2002060804A (en) Hydrogen storage alloy excellent in durability and its production method
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
WO2002066695A1 (en) Hydrogen occlusion alloy
JP3775639B2 (en) Method for producing hydrogen storage alloy
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
JPH10310833A (en) Hydrogen storage alloy excellent in durability
JP3984802B2 (en) Hydrogen storage alloy
JP2002146446A (en) Method for recovering hydrogen storage alloy, and hydrogen fuel tank
JP2003313601A (en) Hydrogen storage alloy, its production process and electrode for secondary battery
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JPH10121180A (en) Hydrogen storage alloy and its production

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204