JPH10310833A - Hydrogen storage alloy excellent in durability - Google Patents

Hydrogen storage alloy excellent in durability

Info

Publication number
JPH10310833A
JPH10310833A JP9121211A JP12121197A JPH10310833A JP H10310833 A JPH10310833 A JP H10310833A JP 9121211 A JP9121211 A JP 9121211A JP 12121197 A JP12121197 A JP 12121197A JP H10310833 A JPH10310833 A JP H10310833A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
hydrogen storage
storage alloy
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9121211A
Other languages
Japanese (ja)
Inventor
Tatsuo Nagata
辰夫 永田
Hideya Kaminaka
秀哉 上仲
Masakatsu Hosomi
政功 細見
Hisashi Maeda
尚志 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9121211A priority Critical patent/JPH10310833A/en
Publication of JPH10310833A publication Critical patent/JPH10310833A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy, suitable for hydrogen storage and transport, heat transport and cooling system, gaseous hydrogen purification, etc., having high hydrogen occluding capacity and long-term repeated hydrogen absorbing and releasing life (hardly causing pulverization), usable at temps. in the vicinity of room temp., excellent in oxidation resistance, and capable of handling with ease in the air, and its production. SOLUTION: The hydrogen storage alloy, having a chemical composition represented by formula Tia V1-a-b Crb where the values of (a) and (b) are 0.3-0.5 and 0.1-0.45, respectively, and also having a structure in which the average crystalline grain size of the main phase is regulated to $40 μm, is produced by means of rapid solidification. The oxidation resistance of this hydrogen storage alloy can be remarkably improved by applying Ni coating to the surface of the alloy and then applying heat treatment at 400-750 deg.C or by applying Ni coating to the surface of the alloy by means of mechanical alloying to form an Ni-addition layer composed essentially of Ti-Ni compound on the surface.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水素吸収量 (水素
吸蔵能力) が高く、同時に繰り返し水素吸収放出による
特性劣化が少なく、室温近傍の温度で利用可能で、比較
的安価といった特徴を持つ水素吸蔵合金とその製造方法
に関する。上記特徴を持つ本発明の水素吸蔵合金は、水
素ガス貯蔵用および水素ガス精製用に最適である。
BACKGROUND OF THE INVENTION The present invention relates to hydrogen having the characteristics of high hydrogen absorption (hydrogen storage capacity), low degradation of characteristics due to repeated hydrogen absorption and release, use at temperatures near room temperature, and relatively low cost. The present invention relates to an occlusion alloy and a method for producing the same. The hydrogen storage alloy of the present invention having the above characteristics is most suitable for hydrogen gas storage and hydrogen gas purification.

【0002】[0002]

【従来の技術】水素ガスは、燃焼時に炭酸ガスや窒素酸
化物を形成しないことから、従来の化石燃料よりもクリ
ーンなエネルギー源である。その貯蔵・輸送に際しては
高圧水素ガス容器を用いることが多いが、水素ガスは液
化温度が低いため多量の水素ガスを保存するには大型の
高圧ガス容器を用いなければならず、その貯蔵容器体積
や重量が大きくなるという欠点があった。
2. Description of the Related Art Hydrogen gas is a cleaner energy source than conventional fossil fuels because it does not form carbon dioxide gas or nitrogen oxides during combustion. A high-pressure hydrogen gas container is often used for storage and transportation, but a large high-pressure gas container must be used to store a large amount of hydrogen gas because hydrogen gas has a low liquefaction temperature. And the disadvantage of increased weight.

【0003】水素吸蔵合金は可逆的に水素ガスを吸収放
出できるため、多量の水素ガスを吸蔵できる水素吸蔵合
金を水素の貯蔵・輸送に用いれば、高圧ガス容器よりも
高密度で多量の水素を貯蔵でき、同容量の水素を貯蔵す
る高圧ガス容器よりも軽量となるために輸送も容易であ
り、また機械的な衝撃にも強いという利点もある。その
ため、従来より水素貯蔵・輸送を目的とする水素吸蔵合
金の研究開発が行われてきた。
Since a hydrogen storage alloy can reversibly absorb and release hydrogen gas, if a hydrogen storage alloy capable of storing a large amount of hydrogen gas is used for storing and transporting hydrogen, a large amount of hydrogen can be stored at a higher density than a high-pressure gas container. It has the advantage that it can be stored, is lighter than a high-pressure gas container that stores the same volume of hydrogen, is easy to transport, and is resistant to mechanical shock. For this reason, research and development of hydrogen storage alloys for the purpose of storing and transporting hydrogen have been conventionally performed.

【0004】水素吸蔵合金による水素の吸収は合金の水
素化反応であり、水素の放出は水素化物の分解反応であ
るので、水素ガスの吸収および放出時にはそれぞれ発熱
および吸熱を生じる。この特性を利用して水素吸蔵合金
を熱輸送システムや加温もしくは冷却システム (例、ヒ
ートポンプ) に用いることも可能である。
Since the absorption of hydrogen by the hydrogen storage alloy is a hydrogenation reaction of the alloy and the release of hydrogen is a decomposition reaction of the hydride, heat is generated and heat is absorbed when hydrogen gas is absorbed and released. Utilizing this property, hydrogen storage alloys can also be used in heat transport systems or heating or cooling systems (eg, heat pumps).

【0005】水素吸蔵合金の水素吸収放出速度は他のガ
ス成分の吸収速度よりも大きく、水素とその同位体とで
も差があるために、そのような水素吸蔵特性の違いを利
用して、不純ガス成分を含むガス中から水素ガスを精製
する用途に水素吸蔵合金を用いることもできる。
[0005] The hydrogen absorption and desorption rate of the hydrogen storage alloy is higher than that of other gas components, and there is a difference between hydrogen and its isotope. A hydrogen storage alloy can also be used for purifying hydrogen gas from a gas containing a gas component.

【0006】前述の用途ではいずれも、水素吸蔵合金は
使用中に水素ガスの吸収・放出を繰り返し受けることに
なる。この水素ガスの吸収・放出において実用的な反応
速度を得るには、水素吸蔵合金を粉末化して表面積を増
大させる必要がある。この粉末状の水素吸蔵合金を所定
容器に充填して使用に供する。
In any of the above-mentioned applications, the hydrogen storage alloy is repeatedly subjected to absorption and release of hydrogen gas during use. In order to obtain a practical reaction rate in absorbing and releasing hydrogen gas, it is necessary to increase the surface area by powdering the hydrogen storage alloy. The powdered hydrogen storage alloy is filled in a predetermined container and used.

【0007】水素吸蔵合金が水素ガスを吸収・放出する
際には、上記の発熱・吸熱に加えて、10〜20%程度の体
積の膨張・収縮も起こる。そのため、使用中に水素ガス
の吸収・放出を繰り返し受けると、水素吸蔵合金の粉末
に亀裂が入り、粉末粒子が破壊されて微粉末になる微粉
化が起こる。この微粉化が進行すると、微粉が容器内で
詰まって、水素ガスが容易に流れなくなったり、水素ガ
スの流れにより微粉がガス配管内に移動するという問題
が生じる。このような事情から、繰り返し使用における
合金粉末の微粉化抑制は、水素吸蔵合金の実用化にあた
り非常に大きな問題となっている。
When the hydrogen storage alloy absorbs and releases hydrogen gas, in addition to the above-mentioned heat generation and heat absorption, expansion and contraction of about 10 to 20% of the volume also occurs. Therefore, if hydrogen gas is repeatedly absorbed and released during use, cracks are formed in the powder of the hydrogen storage alloy, and the powder particles are broken, resulting in pulverization into fine powder. As the pulverization progresses, the fine powder becomes clogged in the container, causing a problem that the hydrogen gas does not easily flow or the fine powder moves into the gas pipe due to the flow of the hydrogen gas. Under such circumstances, suppression of the pulverization of the alloy powder in repeated use has become a very serious problem in practical use of a hydrogen storage alloy.

【0008】水素吸蔵合金を用いた水素吸蔵装置の作製
時に合金が大気と触れることを防ぐことはできない。水
素吸蔵合金が大気に触れ、酸化されると、合金表面に酸
化膜が生成し、その酸化膜が水素吸収の障害となるた
め、水素吸蔵量が低下する。特にV合金は、酸化により
水素吸収が阻害されやすい。一度酸化したV合金を利用
できるようにするには、水素吸蔵合金を高圧水素中で高
温に加熱しなければならず、このような処理に耐えるよ
うな水素ボンベは高価であるばかりでなく、サイズと重
量の増加も避けられない。そこで、水素吸蔵合金の耐酸
化性改善も実用上重要な問題である。
[0008] At the time of manufacturing a hydrogen storage device using a hydrogen storage alloy, it is impossible to prevent the alloy from coming into contact with the atmosphere. When the hydrogen storage alloy is exposed to the atmosphere and oxidized, an oxide film is formed on the surface of the alloy, and the oxide film hinders hydrogen absorption, so that the hydrogen storage amount decreases. In particular, in V alloys, hydrogen absorption is easily hindered by oxidation. In order to be able to use the once oxidized V alloy, the hydrogen storage alloy must be heated to a high temperature in high-pressure hydrogen, and a hydrogen cylinder that can withstand such a treatment is not only expensive but also has a small size. And an increase in weight is inevitable. Therefore, improvement of the oxidation resistance of the hydrogen storage alloy is also a practically important problem.

【0009】このように水素吸蔵合金には幅広い用途が
あるが、どのような用途で用いる場合でも、水素吸収量
が最も重要な特性である。また、用途によっては室温近
傍の比較的低い温度 (例、150 ℃以下) で水素の吸収・
放出が起こることも重要である。さらに、合金の価格も
大量に水素吸蔵合金を使用する用途では実用上非常に重
要である。
As described above, the hydrogen storage alloy has a wide range of applications, but the hydrogen absorption amount is the most important characteristic in any application. Also, depending on the application, absorption of hydrogen at a relatively low temperature near room temperature (eg, 150 ° C or less)
It is also important that the release occurs. Furthermore, the price of the alloy is also very important in practical use in applications where a large amount of hydrogen storage alloy is used.

【0010】例えば、実用化が最も先行したLaNi5 また
はMmNi5 で代表されるAB5 型の水素吸蔵合金は高価で
あり、水素吸蔵合金の使用量が少ない小型二次電池用に
は使用できても、水素貯蔵用といった大量の水素吸蔵合
金が必要な用途には使用が困難である。
[0010] For example, AB 5 type hydrogen storage alloys commercialized represented by LaNi 5 or MmNi 5 was most prior it is expensive, is for small secondary batteries utilize less of the hydrogen storage alloy can be used However, it is difficult to use it for applications requiring a large amount of hydrogen storage alloy, such as for hydrogen storage.

【0011】特公昭59−38293 号公報には、比較的安価
で高容量水素吸蔵合金としてTi−Cr−V系水素吸蔵合金
が記載されている。合金の製造方法としてはアーク法し
か具体的に説明されていない。特開平7−252560号公報
にも同様な成分で構成される水素吸蔵合金が記載されて
いる。特開平7−268513号公報と特開平7−268514号公
報には、Ti−V−Ni系の類似の水素吸蔵合金が記載され
ている。
Japanese Patent Publication No. 59-38293 describes a Ti-Cr-V hydrogen storage alloy as a relatively inexpensive and high capacity hydrogen storage alloy. As an alloy production method, only the arc method is specifically described. JP-A-7-252560 also describes a hydrogen storage alloy composed of similar components. JP-A-7-268513 and JP-A-7-268514 describe similar hydrogen-absorbing alloys based on Ti-V-Ni.

【0012】また、特開昭60−190570号公報には、水素
吸蔵合金粉末に湿式無電解メッキにより銅および/また
はニッケル金属を被覆することで、雰囲気中の不純物ガ
スによる汚染の影響を小さくできることが説明されてい
る。
Japanese Patent Application Laid-Open No. 60-190570 discloses that the influence of contamination by an impurity gas in the atmosphere can be reduced by coating copper and / or nickel metal on a hydrogen storage alloy powder by wet electroless plating. Is explained.

【0013】[0013]

【発明が解決しようとする課題】前述したTi−Cr−V系
水素吸蔵合金およびTi−V−Ni系合金は、理論上は水素
吸収量が多く、水素吸蔵能力に優れている筈であるが、
実際にはそうではないことが経験されてきた。これは、
このような合金系では水素吸収量の少ないTiCr2といっ
た第2相が生成し、そのため水素吸蔵能力が低下するこ
とに原因があると考えられる。
The above-mentioned Ti-Cr-V-based hydrogen storage alloy and Ti-V-Ni-based alloy should theoretically have a large amount of hydrogen absorption and have excellent hydrogen storage capacity. ,
It has been experienced that it is not. this is,
It is considered that such an alloy system generates a second phase such as TiCr 2 having a small amount of hydrogen absorption, which causes a decrease in hydrogen storage capacity.

【0014】例えば、特公昭59−38293 号公報に記載の
Ti−Cr−V系水素吸蔵合金は、この公報に記載されてい
るようにアーク法で製造すると、凝固速度が遅いため、
第2相析出物として水素吸蔵量の低いTiCr2 金属間化合
物がかなりの割合で生成し、水素貯蔵能力が低下する。
また、水素吸収・放出の繰り返し中にこの第2相を起点
として合金粉末に亀裂が入り、微粉化が促進されるとい
う問題点もある。
For example, a method described in JP-B-59-38293 is disclosed.
When the Ti-Cr-V-based hydrogen storage alloy is manufactured by the arc method as described in this publication, the solidification rate is low,
As a second phase precipitate, a considerable amount of TiCr 2 intermetallic compound having a low hydrogen storage amount is generated, and the hydrogen storage capacity is reduced.
Further, there is a problem that the alloy powder is cracked from the second phase as a starting point during repetition of hydrogen absorption / desorption, which promotes pulverization.

【0015】特開平7−252560号公報の実施例では、上
記の第2相を減らすため1200〜1400℃という高温で保持
して立方晶の単相組織とした後、直ちに水冷により急冷
する製法がとられている。しかし、このような方法で
は、高温加熱保持の際に結晶粒の粗大化が生じるため、
第2相の析出物量は減少しても、粗大化により材料自体
の強度が弱くなり、かえって微粉化し易くなる。その
上、工業的に大量生産する際には大型インゴットを用い
るため、加熱後に水冷しても十分な冷却速度が得られ
ず、粗大析出物が形成されて水素貯蔵能力も低下してし
まう。
In the embodiment of Japanese Patent Application Laid-Open No. 7-252560, in order to reduce the above-mentioned second phase, a method of holding at a high temperature of 1200 to 1400 ° C. to form a cubic single-phase structure, and then immediately quenching by water cooling is used. Has been taken. However, in such a method, the crystal grains are coarsened during high-temperature heating and holding,
Even if the amount of the precipitates of the second phase is reduced, the strength of the material itself is weakened due to the coarsening, and it is rather easy to pulverize. In addition, since a large ingot is used for mass production on an industrial scale, a sufficient cooling rate cannot be obtained even with water cooling after heating, and coarse precipitates are formed and the hydrogen storage capacity is reduced.

【0016】特開平7−268513号と同268514号の各公報
に記載のTi−V−Ni系水素吸蔵合金は、Ti−V系固溶体
合金からなる母相中にTi−Ni金属間化合物が粒界に3次
元網目骨格を形成することを特徴とする。このような粒
界相が合金の水素との反応性を向上させるため、母層に
若干の酸化があってもこの粒界相を介して水素ガス吸収
放出が可能である。しかし、3次元網目構造をとるほど
の多くの第2相が形成されるため、水素吸蔵能力の低い
第2相形成により合金全体の水素貯蔵量が低下し、また
この第2相を起点とした微粉化が生じるという問題点が
ある。
The Ti-V-Ni-based hydrogen storage alloys described in JP-A-7-268513 and JP-A-268514 have a structure in which a Ti-Ni intermetallic compound is contained in a matrix composed of a Ti-V-based solid solution alloy. A three-dimensional network skeleton is formed in the field. Since such a grain boundary phase enhances the reactivity of the alloy with hydrogen, even if there is some oxidation in the base layer, hydrogen gas can be absorbed and released through the grain boundary phase. However, since a large number of second phases having a three-dimensional network structure are formed, the formation of the second phase having a low hydrogen storage capacity reduces the hydrogen storage capacity of the entire alloy, and the second phase is used as a starting point. There is a problem that pulverization occurs.

【0017】また、特開昭60−190570号公報に記載のよ
うに水素吸蔵合金の表面にCuかNi金属を被覆した場合、
この被覆自体には水素吸蔵能力が全くないため、被覆の
分だけ水素吸収量が減少してしまう。
Further, when the surface of the hydrogen storage alloy is coated with Cu or Ni metal as described in JP-A-60-190570,
Since the coating itself has no hydrogen storage capacity, the amount of hydrogen absorbed is reduced by the amount of the coating.

【0018】本発明は、水素の貯蔵・輸送、熱輸送や冷
却システム、水素ガス精製等に適用可能な、高い水素吸
蔵能力と長期繰り返し水素吸収・放出寿命をもち、室温
近傍の温度で使用でき、かつ大気中で保管しても水素吸
蔵特性劣化の少ない、比較的安価な水素吸蔵合金を提供
することを課題とするものである。
The present invention has a high hydrogen storage capacity and a long-term repetitive hydrogen absorption / desorption life which can be applied to hydrogen storage / transport, heat transport / cooling systems, hydrogen gas purification, etc., and can be used at a temperature near room temperature. It is another object of the present invention to provide a relatively inexpensive hydrogen storage alloy which does not deteriorate its hydrogen storage characteristics even when stored in the atmosphere.

【0019】[0019]

【課題を解決するための手段】本発明者らは、高い水素
吸蔵能力と優れた繰り返し水素吸収・放出寿命をもち、
室温近傍の比較的低温(150℃以下) で利用可能な水素吸
蔵合金に関する研究を行った結果、Ti−Cr−V系水素吸
蔵合金を急冷凝固法により製造して結晶粒径を小さくす
ると、上記課題を解決することができることを見出し、
本発明に到達した。
Means for Solving the Problems The present inventors have a high hydrogen storage capacity and an excellent repetitive hydrogen absorption / release life,
As a result of conducting research on hydrogen storage alloys that can be used at relatively low temperatures near room temperature (below 150 ° C), when the Ti-Cr-V-based hydrogen storage alloy is manufactured by the rapid solidification method to reduce the crystal grain size, We found that we could solve the problem,
The present invention has been reached.

【0020】ここに、本発明は、Tia V1-a-bCrb なる式
で表わされ、aの値が 0.3〜0.5 、bの値が 0.1〜0.45
である化学組成を有し、主相の平均結晶粒径が40μm以
下であることを特徴とする水素吸蔵合金である。
Here, the present invention is represented by the formula of Ti a V 1-ab Cr b , wherein the value of a is 0.3 to 0.5 and the value of b is 0.1 to 0.45
Wherein the average crystal grain size of the main phase is 40 μm or less.

【0021】この水素吸蔵合金は、Tia V1-a-bCrb なる
式で表わされ、aの値が 0.3〜0.5、bの値が 0.1〜0.4
5である化学組成を有する合金を急冷凝固法により溶製
することにより製造できる。
The hydrogen storage alloy is represented by the following formula: Ti a V 1-ab Cr b , where a is 0.3 to 0.5 and b is 0.1 to 0.4.
It can be produced by melting an alloy having a chemical composition of 5 by a rapid solidification method.

【0022】本発明の好適態様においては、水素吸蔵合
金が表面にTi−Ni化合物を主体とするNi付加層を有して
いる。このNi付加層は、急冷凝固法により製造した水
素吸蔵合金の表面をNi被覆し、次いで 400〜750 ℃の温
度で熱処理を行うか、或いはこの水素吸蔵合金の表面
をメカニカルアロイング法によりNi被覆することにより
形成することができる。
In a preferred embodiment of the present invention, the hydrogen storage alloy has a Ni-added layer mainly composed of a Ti-Ni compound on the surface. This Ni-added layer is coated with Ni on the surface of the hydrogen storage alloy produced by the rapid solidification method and then heat-treated at a temperature of 400 to 750 ° C, or the surface of the hydrogen storage alloy is coated with Ni by mechanical alloying. Can be formed.

【0023】[0023]

【発明の実施の形態】以下、本発明を詳しく説明する。
本発明の水素吸蔵合金の特徴は、Tia V1-a-bCrb で示
される化学組成 (式中、a:0.3〜0.5 、b:0.1〜0.45)
と、主相の平均結晶粒径が40μm以下と微細である、
という2点である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The feature of the hydrogen storage alloy of the present invention is a chemical composition represented by Ti a V 1-ab Cr b (where a: 0.3 to 0.5, b: 0.1 to 0.45)
And, the average crystal grain size of the main phase is as fine as 40 μm or less,
It is two points.

【0024】この水素吸蔵合金の主相とは、Ti、V、Cr
の3元素からなる固溶体層であり、結晶形態は体心立方
晶である。上記の微細な主相の平均結晶粒径は、水素
吸蔵合金をロール急冷法やガスアトマイズ法といった急
冷凝固法により製造することで達成することができる。
例えば、アーク溶解法のように凝固時の冷却速度が遅く
なると、凝固中に結晶粒が成長して粗大になるため、主
相の平均結晶粒径は40μmを超えてしまう。
The main phases of this hydrogen storage alloy are Ti, V, Cr
Is a solid solution layer composed of the three elements, and the crystal form is body-centered cubic. The average crystal grain size of the fine main phase can be achieved by manufacturing the hydrogen storage alloy by a rapid solidification method such as a roll quenching method or a gas atomizing method.
For example, when the cooling rate at the time of solidification is slow as in the arc melting method, the crystal grains grow during the solidification and become coarse, so that the average crystal grain size of the main phase exceeds 40 μm.

【0025】上記のとの条件を満たす本発明のTi−
V−Cr系水素吸蔵合金は、水素吸蔵能力の低いTiCr2
いった第2相の析出量が少ないので、150 ℃以下の温度
範囲でも、大気圧近傍の0.1 MPa の水素ガスを非常に多
く吸収し、その水素吸収量は、H/M 比 (合金を構成する
金属原子1個に対して吸収された水素原子の数の比)で
1.5 以上と多くなる。また、0.1 MPa の平衡水素圧を示
す温度が150 ℃以下と低いため、150 ℃以下の室温近傍
での使用が可能であり、かつ微粉化を受けにくく耐久性
(寿命) に非常に優れた水素吸蔵合金となる。また、希
土類金属を含んでいないので、合金の原料コストもそれ
ほど高くない。
The Ti— of the present invention that satisfies the above conditions
V-Cr-based hydrogen storage alloys absorb a very large amount of 0.1 MPa hydrogen gas near the atmospheric pressure even at a temperature range of 150 ° C or less, because the amount of the second phase such as TiCr 2 having a low hydrogen storage capacity is small. The amount of absorbed hydrogen is calculated as the H / M ratio (the ratio of the number of absorbed hydrogen atoms to the number of absorbed metal atoms in the alloy).
1.5 or more. In addition, since the temperature at which the equilibrium hydrogen pressure of 0.1 MPa is as low as 150 ° C or lower, it can be used near room temperature of 150 ° C or lower, and is resistant to pulverization and durable.
It becomes a hydrogen storage alloy with extremely excellent (lifetime). Further, since it does not contain a rare earth metal, the raw material cost of the alloy is not so high.

【0026】上記の第2相の析出物の結晶形態は六方晶
または立方晶であり、これは本発明の水素吸蔵合金の主
相である体心立方晶の粒界部または粒内部に存在する。
まず、本発明の水素吸蔵合金の化学組成をのように限
定した理由について説明する。なお、上記の化学組成の
式からわかるように、各元素の量はいずれも原子数比で
あり、合計が1になる。
The crystal form of the precipitate of the second phase is hexagonal or cubic, which is present at the grain boundary or inside of the body-centered cubic which is the main phase of the hydrogen storage alloy of the present invention. .
First, the reason why the chemical composition of the hydrogen storage alloy of the present invention is limited as described above will be described. As can be seen from the above chemical composition formula, the amounts of the respective elements are all atomic ratios, and the total is 1.

【0027】チタン(Ti):Ti量が増えると体心立方晶の
合金主相の格子寸法が拡大し、水素吸収量が増加する。
H/M が1.2 以上の高い水素吸収量を得るには、0.3 以上
のTiが必要であり、Ti量がこれを下回ると水素吸収量が
低くなる。チタンを多く加えすぎると、水素吸収量がさ
らに増大するが、水素平衡圧が下がりすぎ、室温・大気
圧近傍で利用することができなくなる。
Titanium (Ti) : As the amount of Ti increases, the lattice size of the main phase of the body-centered cubic alloy increases, and the amount of hydrogen absorbed increases.
In order to obtain a high hydrogen absorption of H / M of 1.2 or more, Ti of 0.3 or more is required, and if the amount of Ti is less than this, the hydrogen absorption becomes low. If too much titanium is added, the amount of absorbed hydrogen further increases, but the hydrogen equilibrium pressure becomes too low, making it unusable near room temperature and atmospheric pressure.

【0028】そのため、水素平衡圧を上昇させる元素と
してCrを添加するが、Ti量が0.5 を超えると、Crを添加
しても水素平衡圧を大気圧近傍まで上昇させることがで
きない上、水素吸収・放出の繰り返しによる微粉化に対
する耐久性 (合金寿命) も悪化する。水素吸収量と合金
寿命とのバランスの観点からは、Tiの添加量は 0.3〜0.
45の範囲が好ましく、より好ましくは 0.3〜0.4 の範囲
内である。
For this reason, Cr is added as an element for increasing the hydrogen equilibrium pressure. However, if the Ti content exceeds 0.5, the hydrogen equilibrium pressure cannot be increased to near atmospheric pressure even if Cr is added, and the hydrogen absorption is not increased.・ Durability (alloy life) against pulverization due to repeated release also deteriorates. From the viewpoint of the balance between the amount of hydrogen absorbed and the life of the alloy, the amount of Ti added is 0.3 to 0.
It is preferably in the range of 45, more preferably in the range of 0.3 to 0.4.

【0029】クロム(Cr):Cr添加量が増えると水素吸収
量は増加するが、その程度はチタンほど大きくない。Cr
添加の主目的は水素平衡圧の制御にある。従って、その
添加量は、Ti添加量、目的とする使用温度、水素平衡圧
により変化する。Crが0.1 未満ではTi0.3の場合に室温
での水素平衡圧が大気圧以下となってしまい、室温で可
逆的に水素を吸収・放出させられなくなる。一方、Crが
0.45を超えると、第2相として析出するTiCr2 相の量が
増加して、水素吸収量が低下するだけでなく、繰り返し
水素吸収・放出に対する寿命も低下する。Crの添加量は
水素吸収量と合金寿命のバランスの観点から 0.2〜0.45
の範囲内が好ましく、より好ましくは 0.3〜0.4 であ
る。
Chromium (Cr) : As the amount of added Cr increases, the amount of absorbed hydrogen increases, but the extent is not as large as that of titanium. Cr
The main purpose of the addition is to control the hydrogen equilibrium pressure. Therefore, the addition amount varies depending on the Ti addition amount, the intended use temperature, and the hydrogen equilibrium pressure. If Cr is less than 0.1, the hydrogen equilibrium pressure at room temperature becomes lower than atmospheric pressure in the case of Ti0.3, and hydrogen cannot be reversibly absorbed and released at room temperature. On the other hand,
If it exceeds 0.45, the amount of the TiCr 2 phase precipitated as the second phase increases, and not only the hydrogen absorption amount decreases, but also the life for repeated hydrogen absorption / release decreases. The amount of Cr added should be 0.2-0.45 from the viewpoint of the balance between hydrogen absorption and alloy life.
Is more preferably in the range of 0.3 to 0.4.

【0030】バナジウム(V):Ti−Crの2元系合金では、
第2相としてTiCr2 が多く形成し、水素吸収量と合金寿
命が低下し、水素平衡圧も低すぎて室温での利用が困難
であることから、Vを添加する。Vの添加により体心立
方晶相が多く得られ、水素吸収量が増加する。Vの添加
量はTiとCrの添加量により自動的に決定されるものであ
る。
Vanadium (V): In a binary alloy of Ti—Cr,
V is added because a large amount of TiCr 2 is formed as the second phase, the hydrogen absorption amount and the alloy life are reduced, and the hydrogen equilibrium pressure is too low to use at room temperature. By adding V, a large body-centered cubic phase is obtained, and the amount of hydrogen absorption increases. The added amount of V is automatically determined by the added amounts of Ti and Cr.

【0031】以上に説明したTi−Cr−V三元系の化学組
成を持っていても、この合金の水素吸収量は、製造方法
や主相の平均結晶粒径により変化し、凝固時の冷却速度
が遅くなって主相の平均結晶粒径が40μmを超えると、
同じ化学成分であっても水素吸収量が低下する。これ
は、凝固速度が低下すると、TiCr2 のような析出物が第
2相として形成される割合が増え、この析出物はそれ自
体の水素吸収量が少ないため、第2相が形成量が増える
と合金全体としての水素吸収量は低下するためである。
Even with the Ti-Cr-V ternary chemical composition described above, the amount of hydrogen absorbed by this alloy varies depending on the manufacturing method and the average crystal grain size of the main phase, and the cooling during solidification When the speed becomes slow and the average crystal grain size of the main phase exceeds 40 μm,
Even with the same chemical composition, the amount of hydrogen absorption decreases. This is because, as the solidification rate decreases, the rate at which precipitates such as TiCr 2 are formed as the second phase increases, and since the precipitates themselves have a small amount of hydrogen absorption, the amount of the second phase formed increases. This is because the hydrogen absorption of the alloy as a whole decreases.

【0032】また、この析出物が第2相として形成され
る割合が増えると、主相である体心立方晶の合金相中の
Ti、Cr量が低下するため、主相の水素吸収量が減少する
だけでなく、主としてCr量減少に起因して、水素吸収・
放出反応の平衡ガス圧である水素平衡圧が低下し、可逆
的に吸収した水素を放出できなくなる。
When the rate at which this precipitate is formed as the second phase increases, the proportion of the main phase of the alloy phase of the body-centered cubic crystal increases.
Since the amounts of Ti and Cr decrease, not only the hydrogen absorption of the main phase decreases, but also the hydrogen absorption and
The hydrogen equilibrium pressure, which is the equilibrium gas pressure for the release reaction, decreases, and it becomes impossible to release reversibly absorbed hydrogen.

【0033】なお、上記との両方を満たす本発明の
水素吸蔵合金においても、TiCr2 のような析出物が第2
相として析出することは避けられないが、その量が少な
いため、これらの問題点は実質的に解消される。
In the hydrogen storage alloy of the present invention that satisfies both of the above conditions, precipitates such as TiCr 2 do not
Although it is inevitable to precipitate as a phase, these problems are substantially eliminated because the amount thereof is small.

【0034】さらに、本発明の水素吸蔵合金は、水素の
吸収・放出の繰り返しによる合金体積の膨張・収縮が原
因で起こる微粉化 (粉末平均粒径の低下により判定でき
る)を受けにくく、耐久性に非常に優れている。この優
れた耐久性は、希土類系水素吸蔵合金として知られるMm
Ni5 系金属間化合物よりも著しく良好である。
Further, the hydrogen storage alloy of the present invention is less susceptible to pulverization (which can be determined by a reduction in the average powder particle diameter) caused by expansion and contraction of the alloy volume due to repeated absorption and release of hydrogen, and has a high durability. Very good at. This excellent durability is based on Mm, which is known as a rare earth hydrogen storage alloy.
Significantly better than Ni 5 intermetallics.

【0035】しかし、この微粉化に対する耐久性も、水
素吸収量と同様に、製造方法や主相の平均結晶粒径によ
り変化し、凝固時の冷却速度が遅くなって主相の平均結
晶粒径が40μmを超えると、同じ化学成分であっても微
粉化が起こり易くなる。前述したように、このように冷
却速度が遅くなると、第2相であるTiCr2 の生成量が増
えるので、微粉化はこの第2相を起点とした粒界破壊が
その主因であると推定される。
However, the durability against pulverization also varies depending on the production method and the average crystal grain size of the main phase, as in the case of the amount of hydrogen absorbed. If it exceeds 40 μm, pulverization is likely to occur even with the same chemical component. As described above, when the cooling rate is reduced in this manner, the amount of generation of the second phase, TiCr 2 , increases. Therefore, it is estimated that the pulverization is mainly caused by grain boundary fracture starting from the second phase. You.

【0036】以上の知見から、本発明の水素吸蔵合金で
は、主相の平均結晶粒径を40μm以下に限定する。微粉
化に対する耐久性 (合金寿命) をさらに改善するには、
主相の平均結晶粒径が20μmであることが好ましい。ま
た、第2相として形成される析出物の平均結晶粒径が5
μm以下であとば微粉化が生じにくくなり、2μm以下
であればほとんど微粉化しない。
From the above findings, in the hydrogen storage alloy of the present invention, the average crystal grain size of the main phase is limited to 40 μm or less. To further improve the resistance to pulverization (alloy life)
The average crystal grain size of the main phase is preferably 20 μm. In addition, the precipitate formed as the second phase has an average crystal grain size of 5
If it is less than μm, pulverization hardly occurs, and if it is less than 2 μm, it is hardly pulverized.

【0037】主相の平均結晶粒径が40μm以下である本
発明の水素吸蔵合金は、所定組成の合金溶湯を急冷凝固
法により溶製することで製造することができる。急冷凝
固法は、上記の平均結晶粒径を持つ本発明の水素吸蔵合
金が得られる限り、特に制限はない。一般に、冷却速度
が103 ℃/sec 以上となる凝固法であればよい。
The hydrogen storage alloy of the present invention in which the average crystal grain size of the main phase is 40 μm or less can be produced by melting a molten alloy having a predetermined composition by a rapid solidification method. The rapid solidification method is not particularly limited as long as the hydrogen storage alloy of the present invention having the above average crystal grain size is obtained. In general, any solidification method that provides a cooling rate of 10 3 ° C / sec or more may be used.

【0038】本発明で採用できる急冷凝固法としては、
回転電極法、回転ドラムあるいはロール上に合金溶湯を
注湯する方法 (例、単ロールまたは双ロール急冷法) 、
水冷銅板上へ薄く鋳込む方法、ガスアトマイズ法等が挙
げられる。これらのうち、回転電極法とアトマイズ法
は、水素吸蔵合金の球形粉末を製造することができ、粉
末化するための粉砕工程が不要となる上、粉末形状が実
質的に球形で充填密度が高くなる点で有利である。他の
方法の場合には、必要に応じて得られた水素吸蔵合金を
粉砕して粉末にする。粉砕方法としては、水素化粉砕、
機械粉砕のいずれも採用可能であり、両者を併用しても
よい。
As the rapid solidification method that can be employed in the present invention,
A rotating electrode method, a method of pouring molten alloy on a rotating drum or a roll (eg, a single roll or twin roll quenching method),
A method of thin casting on a water-cooled copper plate, a gas atomizing method, and the like can be given. Of these, the rotating electrode method and the atomizing method can produce spherical powder of a hydrogen storage alloy, which eliminates the need for a pulverizing step for pulverization, and has a substantially spherical powder shape and a high packing density. This is advantageous in that: In the case of another method, the obtained hydrogen storage alloy is pulverized into powder as required. Hydrogen crushing,
Any of mechanical pulverization can be adopted, and both may be used in combination.

【0039】本発明の水素吸蔵合金は、平均粒径が10〜
50μm程度の粉末形態とすることが適当である。それに
より、表面積が増大し、水素の吸収・放出反応が促進さ
れる。必要であれば、分級により平均粒径を調整する。
The hydrogen storage alloy of the present invention has an average particle size of 10 to
It is appropriate to use a powder form of about 50 μm. As a result, the surface area increases, and the hydrogen absorption / desorption reaction is promoted. If necessary, adjust the average particle size by classification.

【0040】急冷凝固法により製造された本発明の水素
吸蔵合金は、微小な急冷歪みを持っている。この急冷歪
みは本発明の水素吸蔵合金の耐久性 (微粉化) に特に著
しい悪影響は生じないが、所望により水素吸蔵合金を熱
処理してこの急冷歪みを除去してもよい。この熱処理
は、合金の酸化を防止するため、真空中または不活性ガ
ス中で行うことが好ましい。
The hydrogen storage alloy of the present invention produced by the rapid solidification method has a minute rapid cooling strain. Although this quenching strain does not cause a particularly significant adverse effect on the durability (pulverization) of the hydrogen storage alloy of the present invention, the quenching strain may be removed by heat-treating the hydrogen storage alloy if desired. This heat treatment is preferably performed in a vacuum or in an inert gas to prevent oxidation of the alloy.

【0041】熱処理条件は、熱処理中に合金主相の平均
結晶粒径が40μmより大きくなることがないように設定
する必要がある。この条件は、急冷凝固法により製造さ
れた水素吸蔵合金の主相の平均結晶粒径によっても異な
るが、通常は温度 400〜750℃×2〜20時間の範囲内で
あろう。
The heat treatment conditions need to be set so that the average crystal grain size of the alloy main phase does not become larger than 40 μm during the heat treatment. This condition will vary depending on the average crystal grain size of the main phase of the hydrogen storage alloy produced by the rapid solidification method, but will usually be in the range of 400 to 750 ° C for 2 to 20 hours.

【0042】但し、後述するように、本発明の水素吸蔵
合金の耐酸化性を向上させるため、合金表面にTi−Ni化
合物を主体とするNi付加層を形成する場合には、この層
の形成過程で熱処理を行うことがあり、この熱処理中に
急冷歪みも除去されるので、その場合には急冷歪みの除
去の目的だけの熱処理は必要ない。本発明の水素吸蔵合
金に対して2回の熱処理を行うことは、平均結晶粒径の
粗大化の観点から望ましくない。
However, as will be described later, in order to improve the oxidation resistance of the hydrogen storage alloy of the present invention, when a Ni-added layer mainly composed of a Ti—Ni compound is formed on the alloy surface, this layer is formed. A heat treatment may be performed in the process, and the quenching strain is also removed during this heat treatment. In this case, the heat treatment only for the purpose of removing the quenching strain is not required. It is not desirable to perform the heat treatment twice on the hydrogen storage alloy of the present invention from the viewpoint of increasing the average crystal grain size.

【0043】本発明の水素吸蔵合金は、大気中に放置し
ておくと、室温付近の低温 (例、70℃) で測定した水素
吸収量が減少する。この大気放置した合金でも、高圧水
素ガス中 (20気圧) で500 ℃まで加熱して再活性化させ
ると水素吸収量が増加し、放置前の吸収量を回復する。
即ち、この合金を大気中に放置すると表面が酸化し、こ
の酸化膜が障害となって低温での水素吸蔵量が減少する
ものと考えられる。
When the hydrogen storage alloy of the present invention is left in the atmosphere, the hydrogen absorption measured at a low temperature near room temperature (eg, 70 ° C.) decreases. Even when the alloy is left in the atmosphere, it is heated to 500 ° C. in high-pressure hydrogen gas (20 atm) and reactivated, the hydrogen absorption increases, and the absorption before recovery is restored.
That is, it is considered that the surface of the alloy is oxidized when the alloy is left in the air, and the oxide film acts as an obstacle to reduce the amount of hydrogen absorbed at low temperatures.

【0044】水素ガスの貯蔵用または精製用といった用
途では、水素吸蔵合金が大気に曝されることが避けられ
ず、また動作温度は150 ℃以下と比較的低温であるの
で、上記の酸化による水素吸収量の低下を避けるため
に、本発明の水素吸蔵合金の耐酸化性を改善することが
望ましい。
In applications such as storage or purification of hydrogen gas, it is inevitable that the hydrogen storage alloy is exposed to the atmosphere, and the operating temperature is relatively low at 150 ° C. or less. It is desirable to improve the oxidation resistance of the hydrogen storage alloy of the present invention in order to avoid a decrease in absorption.

【0045】この点について検討した結果、特開昭60−
190570号公報に記載のように、本発明の水素吸蔵合金の
表面をNiで被覆すると、合金の耐酸化性が改善されるこ
とが判明した。しかし、この手法は耐酸化性の向上には
有効であるものの、合金表面を被覆したNi自体は水素吸
蔵能力がほとんどないため、合金単位重量当たりの水素
吸収量が低下する。そこでさらに検討した結果、合金表
面のNi被覆層を母材となるTi−V−Cr合金と反応させて
Ti−Ni化合物を主体とするNi付加層に変えることによ
り、このNi付加層は純Niより大きな水素吸蔵能力を持つ
ため、水素吸収量をほとんど低下させずに、水素吸蔵合
金に耐酸化性を付与することができることがわかった。
従って、好適態様においては、本発明の水素吸蔵合金は
Ti−Ni化合物を主体とするNi付加層を合金表面に有して
いる。
As a result of examining this point, Japanese Unexamined Patent Publication No.
As described in 190570, it has been found that coating the surface of the hydrogen storage alloy of the present invention with Ni improves the oxidation resistance of the alloy. However, although this technique is effective in improving oxidation resistance, Ni itself coated on the alloy surface has almost no hydrogen storage capacity, so that the amount of hydrogen absorbed per unit weight of the alloy decreases. Therefore, as a result of further study, the Ni coating layer on the alloy surface was reacted with the Ti-V-Cr alloy serving as the base material.
By changing to a Ni-added layer mainly composed of a Ti-Ni compound, this Ni-added layer has a greater hydrogen storage capacity than pure Ni, so that the hydrogen storage alloy has an oxidation resistance with almost no reduction in hydrogen absorption. It has been found that it can be applied.
Therefore, in a preferred embodiment, the hydrogen storage alloy of the present invention
The alloy surface has an additional Ni layer mainly composed of a Ti-Ni compound.

【0046】合金表面へのNiの被覆方法は、物理的な方
法 (例、Ni微粉末と合金粉末とを混合する方法、ボール
ミル等で混合させるメカニカルアロイングに相当する方
法も含む) 、化学的な方法 (例、電解Niめっき、無電解
Niめっき) のいずれでもよく、特に制限はない。Niの被
覆量は、水素吸蔵合金の粉末の平均粒径によっても異な
るが、通常は水素吸蔵合金に対して1〜20重量%、好ま
しくは5〜10重量%が適当である。このNi被覆の前に、
必要であれば、水素吸蔵合金をフッ酸、塩化水素酸など
の非酸化性の酸で酸洗処理して、合金表面の酸化層を除
去してもよい。
The method of coating Ni on the alloy surface may be a physical method (including a method of mixing Ni fine powder and alloy powder, a method corresponding to mechanical alloying by mixing with a ball mill or the like), and a chemical method. (E.g., electrolytic Ni plating, electroless
Ni plating), and there is no particular limitation. The coating amount of Ni varies depending on the average particle size of the powder of the hydrogen storage alloy, but is usually 1 to 20% by weight, preferably 5 to 10% by weight based on the hydrogen storage alloy. Before this Ni coating,
If necessary, the hydrogen storage alloy may be pickled with a non-oxidizing acid such as hydrofluoric acid or hydrochloric acid to remove an oxide layer on the surface of the alloy.

【0047】水素吸蔵合金の表面をNiで被覆した後、熱
処理して表面被覆中のNiを母材合金中のTi成分とを反応
させて、Ni層を水素吸蔵能力の高いTi−Ni化合物に変化
させることにより、表面にTi−Ni化合物を主体とするNi
付加層を形成する。このNi付加層は母材からCrを取り込
んでいるため、Ti−Niの2元系金属間化合物より耐酸化
性に優れている。
After the surface of the hydrogen storage alloy is coated with Ni, heat treatment is performed to cause the Ni in the surface coating to react with the Ti component in the base alloy, thereby converting the Ni layer into a Ti—Ni compound having a high hydrogen storage capacity. By changing the surface, Ni mainly composed of Ti-Ni compound
An additional layer is formed. Since the Ni-added layer takes in Cr from the base material, it has better oxidation resistance than the binary intermetallic compound of Ti-Ni.

【0048】この熱処理も、合金の酸化を防止するた
め、真空中または不活性ガス中で行うことが好ましい。
熱処理条件は、この熱処理中に母材合金の主相の平均結
晶粒径が40μmを超えるまでに粗大化しないように設定
する。この観点から、熱処理温度は 400〜750 ℃の範囲
とする。熱処理温度が750 ℃を越えると、平均結晶粒径
が第2相の析出物の粗大化が進み、水素吸収量が低下し
たり、水素吸収・放出に繰り返しにより微粉化し易くな
る。一方、400 ℃未満ではTi−Ni化合物の生成反応が進
みにくい。好ましい熱処理温度は 450〜600 ℃である。
This heat treatment is preferably performed in a vacuum or in an inert gas to prevent oxidation of the alloy.
The heat treatment conditions are set so that during the heat treatment, the main phase of the base alloy does not become coarse until the average crystal grain size of the main phase exceeds 40 μm. From this viewpoint, the heat treatment temperature is in the range of 400 to 750 ° C. If the heat treatment temperature exceeds 750 ° C., the precipitates of the second phase having an average crystal grain size are coarsened, and the amount of hydrogen absorbed is reduced, and the powder is liable to be finely divided by repeating the absorption and release of hydrogen. On the other hand, when the temperature is lower than 400 ° C., the formation reaction of the Ti—Ni compound hardly proceeds. The preferred heat treatment temperature is 450-600 ° C.

【0049】但し、Ni被覆を、例えばボールミル中で長
時間 (例、 100〜1000時間) 行うといったメカニカルア
ロイングに相当する方法で行った場合には、生成したNi
被覆は既に母材合金中のTiと反応してTi−Ni化合物を主
体とするNi付加層になっているので、反応のために熱処
理を行う必要はない。
However, when Ni coating is performed by a method corresponding to mechanical alloying, for example, in a ball mill for a long time (eg, 100 to 1000 hours), the Ni
Since the coating has already reacted with Ti in the base metal alloy to form a Ni-added layer mainly composed of a Ti-Ni compound, it is not necessary to perform heat treatment for the reaction.

【0050】[0050]

【実施例】試験合金の作製には、高周波溶解 (5 kg/c
h)、ボタンアーク溶解 (ボタンサイズ:250 g/chと50 g
/ch)、銅ロールを用いた単ロール急冷 (20 g/ch)、Arガ
スアトマイズ (10 g/ch)、回転電極法 (500 g/ch) を用
いた。合金溶湯の調製に用いた原料は、純度99重量%の
スポンジチタン、純度98重量%のバナジウム、純度99重
量%のクロムであった。
[Example] To produce a test alloy, high-frequency melting (5 kg / c
h), button arc melting (button size: 250 g / ch and 50 g
/ ch), single-roll quenching using a copper roll (20 g / ch), Ar gas atomization (10 g / ch), and a rotating electrode method (500 g / ch). The raw materials used for preparing the alloy melt were sponge titanium having a purity of 99% by weight, vanadium having a purity of 98% by weight, and chromium having a purity of 99% by weight.

【0051】粉末が直接得られるガスアトマイズと回転
電極以外の方法では、得られた合金を300 ℃、2.5 MPa
の水素ガス中で5時間水素化した後に機械的に粉砕し、
粉末にした。いずれの合金粉末も、100 μm以下の粉末
をふるいで選別して用いた。ガスアトマイズ材の一部に
ついては、平均結晶粒径を大きくするために、アルゴン
雰囲気中で熱処理を施した。試験合金の特性評価方法を
次にまとめて説明する。
In a method other than gas atomization and a rotating electrode, in which powder is directly obtained, the obtained alloy is heated at 300 ° C. and 2.5 MPa.
After hydrogenation for 5 hours in hydrogen gas, mechanical pulverization,
Powdered. Each alloy powder was used by selecting a powder having a size of 100 μm or less through a sieve. A part of the gas atomized material was heat-treated in an argon atmosphere in order to increase the average crystal grain size. The method of evaluating the properties of the test alloy will be described below.

【0052】水素ガス吸収・放出特性 水素ガス吸収・放出特性は、ジーベルツ型の装置を用い
て測定した。測定は、試験合金をまず200 ℃、2.5 MPa
の水素ガス中に12時間放置して活性化処理した後、300
℃で脱水素処理を行い、80℃で水素を吸収させることに
より行った。機械粉砕における合金粉末表面の酸化の影
響を除くため、活性化の前に試験合金を5vol%フッ酸水
溶液で酸洗した。水素吸収量は、1サイクル目の放出曲
線の0.5MPa での水素吸蔵量を測定し、合金を構成する
金属原子数と吸収された水素原子数の比であるH/M 値で
評価し、H/M が1.5 以上を合格とした。
Hydrogen Gas Absorption / Desorption Characteristics The hydrogen gas absorption / desorption characteristics were measured using a Siebert's type apparatus. The test was performed by first testing the test alloy at 200 ° C and 2.5 MPa
After activating it by leaving it in hydrogen gas for 12 hours, 300
The dehydrogenation treatment was performed at a temperature of 80 ° C., and hydrogen was absorbed at a temperature of 80 ° C. Before the activation, the test alloy was pickled with a 5 vol% hydrofluoric acid aqueous solution in order to eliminate the effect of oxidation of the alloy powder surface during mechanical pulverization. The amount of hydrogen absorbed was measured by measuring the amount of hydrogen absorbed at 0.5 MPa in the release curve of the first cycle, and evaluated by the H / M value that was the ratio of the number of metal atoms constituting the alloy to the number of absorbed hydrogen atoms. / M was 1.5 or more.

【0053】微粉化 繰り返し水素吸収・放出による微粉化の影響は、前記の
水素吸収・放出特性の測定試験を300 サイクル行った
後、粒径20μm以下の粉末がどれだけ増加したかを測定
し、評価した。粒度測定には、レーザー回折式の粒度分
布測定装置を用いた。製造方法により粉末の粒度分布に
差があったため、評価は試験前の20μm以下の粒子量を
基準にして、その量に対して比較した微粉増加率を次式
により算出して評価した。微粉増加率が15%以下であれ
ば合格である。
The effect of pulverization due to repeated hydrogen absorption and release was determined by measuring the increase in powder having a particle size of 20 μm or less after 300 cycles of the above-described hydrogen absorption and release characteristics measurement test. evaluated. For particle size measurement, a laser diffraction type particle size distribution measuring device was used. Since there was a difference in the particle size distribution of the powder depending on the production method, the evaluation was based on the amount of particles having a particle size of 20 μm or less before the test, and the increase rate of the fine powder compared to the amount was calculated by the following formula. If the rate of increase in fine powder is 15% or less, the test passes.

【0054】[0054]

【数1】 (Equation 1)

【0055】結晶粒径 試験合金の主相の結晶粒径の測定は、粉砕前の合金をエ
ポキシ樹脂に埋め込み、研磨した後に、0.4 vol%フッ酸
と1vol%硝酸との混酸でエッチングし、光学顕微鏡で観
察して行い、ランダムに選択した結晶粒20個の測定結果
の平均値を平均結晶粒径とした。第2相の析出物の粒径
は微細であったため、SEM (二次電子顕微鏡) を用い
て測定し、上と同様に平均値を求めた。
Crystal grain size test The grain size of the main phase of the alloy was measured by embedding the alloy before pulverization in an epoxy resin, polishing and then etching with a mixed acid of 0.4 vol% hydrofluoric acid and 1 vol% nitric acid. Observation was performed with a microscope, and the average value of the measurement results of 20 randomly selected crystal grains was defined as the average crystal grain size. Since the particle size of the precipitate of the second phase was fine, it was measured using an SEM (secondary electron microscope), and the average value was obtained in the same manner as above.

【0056】耐酸化性 表面をNi被覆してNi付加層を形成した水素吸蔵合金の耐
酸化性の評価は、温度25℃、湿度65%の恒温恒湿の空気
雰囲気に1週間放置した後、ジーベルツ型の水素吸収・
放出試験装置を用いて、活性化処理なしに70℃で2.5 MP
a の水素ガスの吸収試験を行い、Ni付加層を形成する前
の合金の水素吸着量と比較した水素吸収量の低下率を次
式により算出した。水素吸収量低下率が10%以下であれ
ば合格である。
Oxidation resistance The oxidation resistance of the hydrogen-absorbing alloy having a Ni-added layer formed by coating the surface with Ni was evaluated by standing for one week in a constant temperature and constant humidity air atmosphere at a temperature of 25 ° C. and a humidity of 65%. Sibeltz-type hydrogen absorption
2.5 MP at 70 ° C without activation using release test equipment
The hydrogen gas absorption test of a was performed, and the reduction rate of the hydrogen absorption amount compared with the hydrogen adsorption amount of the alloy before forming the Ni additional layer was calculated by the following equation. If the rate of decrease in the amount of absorbed hydrogen is 10% or less, the test passes.

【0057】[0057]

【数2】 (Equation 2)

【0058】(実施例1)本実施例は、合金組成を変化さ
せて水素吸蔵合金の性能を検討した実施例である。水素
吸蔵合金の作製法としては、急冷凝固法のみを採用し
た。主相の平均結晶粒径、水素吸収量、および微粉増加
率の測定結果を表1に示す。
(Example 1) This example is an example in which the performance of a hydrogen storage alloy was examined by changing the alloy composition. As a method for producing the hydrogen storage alloy, only the rapid solidification method was used. Table 1 shows the measurement results of the average crystal grain size of the main phase, the amount of absorbed hydrogen, and the rate of increase in fine powder.

【0059】[0059]

【表1】 [Table 1]

【0060】表1からわかるように、合金組成が本発明
範囲内である本発明例の水素吸蔵合金は、いずれもH/M
が1.5 以上という高い水素吸収量と、15%以下の低い微
粉化率とを兼ね備えており、水素吸収量が多く、かつ繰
り返し水素吸収・放出による劣化が少ないことがわか
る。
As can be seen from Table 1, all of the hydrogen storage alloys of the present invention having an alloy composition within the range of the present invention have H / M
Has a high hydrogen absorption of 1.5 or more and a low pulverization rate of 15% or less, indicating that the hydrogen absorption is large and the deterioration due to repeated hydrogen absorption and release is small.

【0061】これに対して、Ti、Crが多く、V添加がな
いNo.9の比較例の合金では、水素吸収量は大きいが非常
に微粉化しやすい。Ti、Cr量が本発明範囲をはずれたN
o.8〜11の比較例の合金では、微粉化は穏やかであるも
のの水素吸収量が少ない。
On the other hand, the alloy of Comparative Example No. 9, which contains a large amount of Ti and Cr and does not contain V, has a large amount of hydrogen absorption, but is very easily pulverized. N whose Ti and Cr contents are out of the range of the present invention
In the alloys of Comparative Examples o to 8 to 11, the pulverization is moderate but the hydrogen absorption is small.

【0062】(実施例2)本実施例は、各種製造方法で作
製した水素吸蔵合金の主相の平均結晶粒径が水素吸蔵合
金の性能に及ぼす影響を検討した実施例である。合金の
化学組成は、Ti=0.40、V=0.30、Cr=0.30の同一組成
とした。結晶粒径の影響をみるため、ガスアトマイズ後
に熱処理した試験合金も作製した。試験結果を表2に示
Example 2 This example is an example in which the influence of the average crystal grain size of the main phase of the hydrogen storage alloy produced by various manufacturing methods on the performance of the hydrogen storage alloy was examined. The alloy had the same chemical composition as Ti = 0.40, V = 0.30, and Cr = 0.30. In order to examine the influence of the crystal grain size, a test alloy heat-treated after gas atomization was also prepared. Table 2 shows the test results.

【0063】[0063]

【表2】 [Table 2]

【0064】表2からわかるように、急冷凝固法で水素
吸蔵合金を作製すると、主相の平均結晶粒径が20μm以
下程度と微細な組織の合金が得られる。この微細組織の
水素吸蔵合金を熱処理すると、結晶粒径は粗大になる
が、主相の平均結晶粒径が40μm以下であれば、水素吸
収量と微粉増加率のいずれも合格であった。しかし、特
に平均結晶粒径が20μm以下の、急冷凝固後に熱処理し
ていない試験合金が、微粉増加率が10%以下と優れた特
性を示した。
As can be seen from Table 2, when a hydrogen storage alloy is produced by the rapid solidification method, an alloy having a fine structure in which the average crystal grain size of the main phase is about 20 μm or less can be obtained. When the hydrogen storage alloy having this fine structure was heat-treated, the crystal grain size became coarse. However, if the average crystal grain size of the main phase was 40 μm or less, both the hydrogen absorption and the fine powder increase rate were acceptable. However, a test alloy having an average crystal grain size of not more than 20 μm and not subjected to heat treatment after rapid solidification showed excellent characteristics with a fine powder increase rate of not more than 10%.

【0065】なお、主相の平均結晶粒径が40μm以下で
あると、第2相の析出物の平均結晶粒径も5μm以下、
特に2μm以下という、微粉化の抑制の望ましい範囲に
なることが、表2からわかる。
If the average crystal grain size of the main phase is 40 μm or less, the average crystal grain size of the second phase precipitate is also 5 μm or less.
It can be seen from Table 2 that the range of the suppression of the pulverization is preferably 2 μm or less.

【0066】これに対して、ボタンアーク溶解材は、水
素吸収量は比較的多いものの、微粉増加率が大きくなっ
た (No.5、6)。高周波溶解材では水素吸収量と微粉増加
率のいずれも不合格となった (No.7) 。ガスアトマイズ
材を熱処理した場合、平均結晶粒径が40μmを超えるよ
うに熱処理条件を設定すると、微粉増加率が不合格とな
り、結晶粒径の粗大化が甚だしいと、水素吸収量も大き
く低下した。
On the other hand, although the button arc melting material had a relatively large hydrogen absorption amount, the fine powder increase rate was large (Nos. 5 and 6). In the case of high frequency melting material, both hydrogen absorption and fine powder increase rate were rejected (No.7). When heat treatment was performed on the gas atomized material, if the heat treatment conditions were set so that the average crystal grain size exceeded 40 μm, the rate of increase in fine powder was rejected, and when the crystal grain size was excessively large, the hydrogen absorption amount was significantly reduced.

【0067】(実施例3)本実施例は、合金表面にTi−Ni
化合物を主体とするNi付加層を形成した場合の水素吸蔵
合金の耐酸化性の向上を例示する。試験した水素吸蔵合
金はいずれもArガスアトマイズ法で作製した粉末であ
る。合金の化学組成は、1例を除いて、Ti=0.40、V=
0.30、Cr=0.30の同一組成とした (これを合金Aとす
る) 。残りの1例 (合金B) は、Ti=0.30、V=0.60、
Cr=0.10であった。結晶粒径の影響をみるため、ガスア
トマイズ後に熱処理した試験合金も作製した。
(Embodiment 3) In this embodiment, Ti-Ni
The improvement of the oxidation resistance of the hydrogen storage alloy when a Ni-added layer mainly composed of a compound is formed will be exemplified. All of the tested hydrogen storage alloys were powders produced by the Ar gas atomizing method. The chemical composition of the alloy is Ti = 0.40, V =
The same composition of 0.30 and Cr = 0.30 was used (this is alloy A). The other example (alloy B) has Ti = 0.30, V = 0.60,
Cr = 0.10. In order to examine the influence of the crystal grain size, a test alloy heat-treated after gas atomization was also prepared.

【0068】Ni付加層を形成するための水素吸蔵合金粉
末のNi被覆は、物理的な方法と化学的な方法の両方を採
用した。物理的な方法では、粒径1μm程度のNi微粉末
を用い、これを合金粉末に対して10重量%配合した後、
乳鉢で均一に混合するか、またはボールミルで長時間混
合した。化学的な方法は、市販の無電解Niめっき液を用
いて、合金粉末表面に約10重量%のNiめっき層を形成し
た。なお、当然ながら、電解めっきを行っても同様のNi
めっき層を形成することができる。
For the Ni coating of the hydrogen storage alloy powder for forming the Ni additional layer, both a physical method and a chemical method were employed. In the physical method, Ni fine powder having a particle size of about 1 μm is used, and after blending 10% by weight with respect to the alloy powder,
Mix evenly in a mortar or mix for a long time in a ball mill. The chemical method used a commercially available electroless Ni plating solution to form an approximately 10% by weight Ni plating layer on the surface of the alloy powder. Of course, the same Ni
A plating layer can be formed.

【0069】これらの方法でNi被覆を施した後、アルゴ
ン雰囲気中で熱処理を行って、Ni被覆層を合金粉末と反
応させて合金化することにより、合金表面にTi−Ni化合
物を主体とするNi付加層を形成した。但し、ボールミル
によりNi粉末を機械的に被覆する方法では、このボール
ミル混合を100 時間と長時間行うことにより、メカニカ
ルアロイングによってNi被覆の合金化が起こっているの
で、熱処理は行わなかった。また、比較例として、この
熱処理を行わず、単にNi被覆しただけの試験材も作製し
た。
After applying Ni coating by these methods, heat treatment is performed in an argon atmosphere, and the Ni coating layer is reacted with the alloy powder to form an alloy, whereby the alloy surface is mainly composed of a Ti-Ni compound. A Ni additional layer was formed. However, in the method of mechanically coating Ni powder with a ball mill, heat treatment was not performed because alloying of the Ni coating occurred by mechanical alloying by performing the ball mill mixing for as long as 100 hours. Further, as a comparative example, a test material simply coated with Ni without performing this heat treatment was also manufactured.

【0070】こうして表面にNi含有層を形成したガスア
トマイズ法で作製された水素吸蔵合金粉末の耐酸化性
を、上記のように所定条件の大気中で1週間の放置後に
調査した。試験結果を、Ni付加層の形成方法 (上段はNi
被覆方法、下段は熱処理条件)、主相の平均結晶粒径、T
i−Ni化合物相の形成の有無 (X線回折装置により確認)
と共に表3に示す。
The oxidation resistance of the hydrogen-absorbing alloy powder produced by the gas atomization method, on which the Ni-containing layer was formed on the surface, was examined after standing for one week in the air under the predetermined conditions as described above. The test results were compared with the method for forming the Ni-added layer.
Coating method, lower stage is heat treatment condition), average crystal grain size of main phase, T
Presence or absence of formation of i-Ni compound phase (confirmed by X-ray diffractometer)
Are shown in Table 3.

【0071】[0071]

【表3】 [Table 3]

【0072】表3からわかるように、本発明に従ってNi
被覆を施し、かつこのNi被覆を合金成分と反応させるこ
とによりTi−Ni化合物を主体とするNi付加層を合金表面
に形成すると、本発明の水素吸蔵合金の大気中での酸化
が抑制され、1週間放置後も水素吸収量の低下が10%以
下に抑えられた。その結果、大気中での合金粉末の取り
扱いが簡便になり、表面が酸化された場合の再活性化処
理が不要となる。
As can be seen from Table 3, according to the present invention, Ni
Applying a coating, and forming a Ni-added layer mainly composed of a Ti-Ni compound on the alloy surface by reacting the Ni coating with the alloy component, oxidation of the hydrogen storage alloy of the present invention in the atmosphere is suppressed, Even after one week of storage, the decrease in hydrogen absorption was suppressed to 10% or less. As a result, the handling of the alloy powder in the atmosphere is simplified, and the reactivation treatment when the surface is oxidized becomes unnecessary.

【0073】一方、比較例において、Ni被覆を全く施さ
ないと、1週間放置後の合金粉末の水素吸収量は30%も
低下した (試験No.5) 。しかし、Ni被覆を施しても、熱
処理またはメカニカルアロイングによりNi被覆を合金成
分と反応させないと、1週間放置後の合金粉末の水素吸
収量は23〜26%も低下した (試験No.6, 7)。即ち、Ni被
覆だけでは、未被覆の場合に比べて耐酸化性の向上はほ
とんどないことがわかる。また、Ni被覆後の熱処理温度
が高すぎて、主相の平均結晶粒径が40μmを超えると、
粗大化の影響で水素吸収量が大きく低下した。
On the other hand, in the comparative example, when no Ni coating was applied, the hydrogen absorption of the alloy powder after standing for one week was reduced by 30% (Test No. 5). However, even if the Ni coating is applied, if the Ni coating is not reacted with the alloy components by heat treatment or mechanical alloying, the hydrogen absorption of the alloy powder after standing for one week is reduced by 23 to 26% (Test No. 6, 7). In other words, it can be seen that the oxidation resistance is hardly improved with the Ni coating alone as compared with the case without the Ni coating. Also, if the heat treatment temperature after Ni coating is too high and the average crystal grain size of the main phase exceeds 40 μm,
Due to the effect of coarsening, the amount of hydrogen absorbed decreased significantly.

【0074】[0074]

【発明の効果】本発明の水素吸蔵合金は、水素吸収量が
多く、室温近傍の比較的低い温度 (例、150 ℃以下) で
水素の吸収・放出が起こるので、各種用途に使い易く、
水素吸収・放出を長期間にわたって繰り返しても微粉化
しにくいので、高い水素吸収量が長期間保持され (即
ち、長寿命であり) 、かつ比較的安価である。
The hydrogen storage alloy of the present invention has a large amount of hydrogen absorption and absorbs and releases hydrogen at a relatively low temperature near room temperature (eg, 150 ° C. or lower), so that it is easy to use for various applications.
Even if hydrogen absorption / release is repeated for a long period of time, it is difficult to pulverize, so that a high amount of hydrogen absorption is maintained for a long period of time (that is, it has a long life) and is relatively inexpensive.

【0075】また、合金表面にTi−Ni化合物を主体とす
るNi付加層を形成すると、合金の耐酸化性が著しく向上
し、大気中に使用する場合の素吸収量の低下が非常に小
さくなるので、大気中で容易に取り扱うことが可能とな
り、再活性化処理が不要となる。本発明の水素吸蔵合金
は、水素貯蔵・輸送、熱輸送や冷却システム、水素ガス
精製用途に最適である。
Further, when a Ni-added layer mainly composed of a Ti-Ni compound is formed on the surface of the alloy, the oxidation resistance of the alloy is remarkably improved, and the decrease in the elemental absorption when used in the atmosphere is extremely small. Therefore, it can be easily handled in the atmosphere, and the reactivation process is not required. The hydrogen storage alloy of the present invention is most suitable for hydrogen storage and transportation, heat transportation and cooling systems, and hydrogen gas purification applications.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22C 27/02 101 C22C 27/02 101Z (72)発明者 前田 尚志 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C22C 27/02 101 C22C 27/02 101Z (72) Inventor Naoshi Maeda 4-33 Kitahama, Chuo-ku, Osaka City Sumitomo Metal Industries Inside the corporation

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Tia V1-a-bCrb なる式で表わされ、aの
値が 0.3〜0.5 、bの値が 0.1〜0.45である化学組成を
有し、主相の平均結晶粒径が40μm以下であることを特
徴とする水素吸蔵合金。
1. A chemical composition represented by the formula Ti a V 1-ab Cr b , wherein a has a value of 0.3 to 0.5 and b has a value of 0.1 to 0.45, and has an average crystal grain size of the main phase. Is a hydrogen storage alloy having a particle size of 40 μm or less.
【請求項2】 表面にTi−Ni化合物を主体とするNi付加
層を有する、請求項1記載の水素吸蔵合金。
2. The hydrogen storage alloy according to claim 1, having a Ni-added layer mainly composed of a Ti—Ni compound on the surface.
【請求項3】 Tia V1-a-bCrb なる式で表わされ、aの
値が 0.3〜0.5 、bの値が 0.1〜0.45である化学組成を
有する合金を急冷凝固法により製造することからなる、
請求項1記載の水素吸蔵合金の製造方法。
3. An alloy having a chemical composition represented by the formula Ti a V 1-ab Cr b , wherein the value of a is 0.3 to 0.5 and the value of b is 0.1 to 0.45, is produced by a rapid solidification method. Consisting of
A method for producing a hydrogen storage alloy according to claim 1.
【請求項4】 Tia V1-a-bCrb なる式で表わされ、aの
値が 0.3〜0.5 、bの値が 0.1〜0.45である化学組成を
有する合金を急冷凝固法により製造し、この水素吸蔵合
金の表面をNi被覆し、次いで 400〜750 ℃の温度で熱処
理を行うことからなる、請求項2記載の水素吸蔵合金の
製造方法。
4. An alloy having a chemical composition represented by the formula Ti a V 1-ab Cr b wherein the value of a is 0.3 to 0.5 and the value of b is 0.1 to 0.45 is produced by a rapid solidification method. 3. The method for producing a hydrogen storage alloy according to claim 2, wherein the surface of the hydrogen storage alloy is coated with Ni and then heat-treated at a temperature of 400 to 750C.
【請求項5】 Tia V1-a-bCrb なる式で表わされ、aの
値が 0.3〜0.5 、bの値が 0.1〜0.45である化学組成を
有する合金を急冷凝固法により製造し、この水素吸蔵合
金の表面をメカニカルアロイング法によりNi被覆するこ
とからなる、請求項2記載の水素吸蔵合金の製造方法。
5. An alloy having a chemical composition represented by the formula Ti a V 1-ab Cr b , wherein the value of a is 0.3 to 0.5 and the value of b is 0.1 to 0.45, is produced by a rapid solidification method. 3. The method for producing a hydrogen storage alloy according to claim 2, wherein the surface of the hydrogen storage alloy is coated with Ni by a mechanical alloying method.
JP9121211A 1997-05-12 1997-05-12 Hydrogen storage alloy excellent in durability Pending JPH10310833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9121211A JPH10310833A (en) 1997-05-12 1997-05-12 Hydrogen storage alloy excellent in durability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9121211A JPH10310833A (en) 1997-05-12 1997-05-12 Hydrogen storage alloy excellent in durability

Publications (1)

Publication Number Publication Date
JPH10310833A true JPH10310833A (en) 1998-11-24

Family

ID=14805636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9121211A Pending JPH10310833A (en) 1997-05-12 1997-05-12 Hydrogen storage alloy excellent in durability

Country Status (1)

Country Link
JP (1) JPH10310833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134175B2 (en) * 1999-12-17 2013-01-30 株式会社 東北テクノアーチ Hydrogen storage alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5134175B2 (en) * 1999-12-17 2013-01-30 株式会社 東北テクノアーチ Hydrogen storage alloy

Similar Documents

Publication Publication Date Title
JP4828986B2 (en) Hydrogen storage alloy, hydrogen storage membrane and hydrogen storage tank
JPH11503489A (en) Nanocrystalline Mg-based material and its use for hydrogen transport and hydrogen storage
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
WO1998014627A1 (en) Hydrogen absorbing alloy and process for preparing the same
JP3934800B2 (en) Hydrogen storage alloy and secondary battery
JP5449989B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage device
JP4121711B2 (en) Hydrogen storage metal-containing material and method for producing the same
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
US5900334A (en) Hydrogen occluding alloy
JPH11106859A (en) Hydrogen storage alloy excellent in plateau flatness
JPH11310844A (en) Hydrogen storage alloy and hydrogen storage alloy electrode
JPH10310833A (en) Hydrogen storage alloy excellent in durability
JP2000239703A (en) Manufacture of hydrogen storage alloy powder excellent in oxidation resistance
Hsu et al. Hydrogenation of multicomponent Zr-base C15 type alloys
JP2000303101A (en) Hydrogen storage alloy excellent in durability, and its manufacture
JPS5947022B2 (en) Alloy for hydrogen storage
WO2002066695A1 (en) Hydrogen occlusion alloy
JP4189447B2 (en) Mg-Ti hydrogen storage alloy and method for producing the same
JP4524384B2 (en) Quasicrystal-containing titanium alloy and method for producing the same
JP2002105511A (en) Hydrogen storage alloy having excellent durability and its production method
JP2002060804A (en) Hydrogen storage alloy excellent in durability and its production method
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
CN110249066B (en) Hydrogen-storage alloy
JP4417805B2 (en) Hydrogen storage alloy and hydrogen storage container
JP2896433B2 (en) Magnesium hydrogen storage alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021015