JP2002097005A - Silicon nitride-based powder and its manufacturing method, silicon nitride-based sintered compact and its manufacturing method, and circuit board - Google Patents

Silicon nitride-based powder and its manufacturing method, silicon nitride-based sintered compact and its manufacturing method, and circuit board

Info

Publication number
JP2002097005A
JP2002097005A JP2000284957A JP2000284957A JP2002097005A JP 2002097005 A JP2002097005 A JP 2002097005A JP 2000284957 A JP2000284957 A JP 2000284957A JP 2000284957 A JP2000284957 A JP 2000284957A JP 2002097005 A JP2002097005 A JP 2002097005A
Authority
JP
Japan
Prior art keywords
silicon nitride
powder
sintered body
less
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000284957A
Other languages
Japanese (ja)
Other versions
JP3565425B2 (en
JP2002097005A5 (en
Inventor
Toshiyuki Imamura
寿之 今村
Masahisa Sofue
昌久 祖父江
Shigeyuki Hamayoshi
繁幸 濱吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000284957A priority Critical patent/JP3565425B2/en
Priority to DE10146227.1A priority patent/DE10146227B4/en
Priority to DE10165107.4A priority patent/DE10165107B3/en
Priority to DE2001165080 priority patent/DE10165080B4/en
Priority to CNB011379634A priority patent/CN1192989C/en
Priority to US09/956,033 priority patent/US6846765B2/en
Priority to KR1020010058380A priority patent/KR100833962B1/en
Publication of JP2002097005A publication Critical patent/JP2002097005A/en
Publication of JP2002097005A5 publication Critical patent/JP2002097005A5/ja
Application granted granted Critical
Publication of JP3565425B2 publication Critical patent/JP3565425B2/en
Priority to US10/998,657 priority patent/US7031166B2/en
Priority to KR1020070095109A priority patent/KR100836150B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly thermal conductive-type silicon nitride-based sintered compact having an excellent mechanical strength and the enhanced thermal conductivity more than before without the anisotropy in the direction of thermal conduction. SOLUTION: For the method for manufacturing a silicon nitride-based power, the raw material contains oxygen in the range of >=0.02 wt.%, <2 wt.% in SiO2 conversion and has a specific surface area of >=0.5 m2/g, is characteristically heated above 1,400 degree C in the non-acidic atmosphere of nitrogen or nitrogen/hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体用基板や発
熱素子用ヒ−トシンク等の電子部品用部材、あるいは一
般機械器具用部材、溶融金属用部材、または熱機関用部
材等の構造用部材として好適な高強度・高熱伝導性に富
んだ窒化ケイ素質焼結体およひその製造方法、その製造
に用いる好適な窒化ケイ素質粉末およびその製造方法、
ならびに前記窒化ケイ素質焼結体を用いて構成される回
路基板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member for electronic parts such as a semiconductor substrate and a heat sink for a heating element, or a structural member such as a member for general machinery, a member for molten metal, or a member for a heat engine. High-strength, high-thermal-conductivity-rich silicon nitride-based sintered body and a method for producing the same, silicon nitride-based powder suitable for the production thereof, and a method for producing the same,
In addition, the present invention relates to a circuit board formed using the silicon nitride sintered body.

【0002】[0002]

【従来の技術】窒化ケイ素質焼結体は、高温強度特性お
よび耐摩耗性等の機械的特性に加え、耐熱性、低熱膨張
性、耐熱衝撃性、および金属に対する耐食性に優れてい
るので、従来からガスタ−ビン用部材、エンジン用部
材、製鋼用機械部材、あるいは溶融金属の耐溶部材等の
各種構造用部材に用いられている。また、高い絶縁性を
利用して電気絶縁材料として使用されている。
2. Description of the Related Art Conventionally, silicon nitride sintered bodies have excellent heat resistance, low thermal expansion, thermal shock resistance, and corrosion resistance to metals, in addition to mechanical properties such as high-temperature strength characteristics and wear resistance. It is used for various structural members such as members for gas turbines, members for engines, mechanical members for steelmaking, and melt-resistant members of molten metal. In addition, it is used as an electrical insulating material by utilizing high insulating properties.

【0003】近年、高周波トランジスタ、パワーIC等
の発熱量の大きい半導体素子の発展に伴い、電気絶縁性
に加えて良好な放熱特性を得るために高い熱伝導率を有
するセラミックス基板の需要が増加している。このよう
なセラミックス基板として、窒化アルミニウム基板が用
いられているが、機械的強度や破壊靭性等が低く、基板
ユニットの組立て工程での締め付けによって割れを生じ
るという問題がある。また、Si半導体素子を窒化アル
ミニウム基板に実装した回路基板では、Siと窒化アル
ミニウム基板との熱膨張差が大きいため、熱サイクルに
より窒化アルミニウム基板にクラックや割れを発生し実
装信頼性が低下するという問題がある。
[0003] In recent years, with the development of semiconductor elements having a large amount of heat, such as high-frequency transistors and power ICs, the demand for ceramic substrates having a high thermal conductivity to obtain good heat dissipation characteristics in addition to electrical insulation has increased. ing. As such a ceramic substrate, an aluminum nitride substrate is used, but there is a problem that mechanical strength and fracture toughness are low, and cracks are generated by fastening in a process of assembling the substrate unit. Further, in a circuit board in which a Si semiconductor element is mounted on an aluminum nitride substrate, since the thermal expansion difference between Si and the aluminum nitride substrate is large, cracks and cracks occur in the aluminum nitride substrate due to thermal cycling, and the mounting reliability is reduced. There's a problem.

【0004】そこで、窒化アルミニウム基板より熱伝導
率は劣るものの、熱膨張率がSiに近く、かつ機械的強
度、破壊靭性および耐熱疲労特性に優れる高熱伝導窒化
ケイ素質焼結体からなる基板が注目され、種々の提案が
行われている。
Accordingly, a substrate made of a silicon nitride sintered body having high thermal conductivity, which is inferior in thermal conductivity to an aluminum nitride substrate but has a coefficient of thermal expansion close to that of Si and is excellent in mechanical strength, fracture toughness and thermal fatigue resistance, has attracted attention. And various proposals have been made.

【0005】例えば、特開平4−175268号公報に
は、実質的に窒化ケイ素からなり、不純物として含有さ
れるAlおよび酸素が共に3.5重量%以下であり、密度
が3.15Mg/m3(3.15g/cm3)以上であり、40w/(m・K)以
上の熱伝導率を有する窒化ケイ素質焼結体が記載されて
いる。
[0005] For example, Japanese Patent Application Laid-Open No. 4-175268 discloses that silicon and silicon are substantially composed of silicon nitride, the content of Al and oxygen both contained as impurities is not more than 3.5% by weight, and the density is 3.15 Mg / m3 (3.15 g / m3). cm3) or more, and a silicon nitride-based sintered body having a thermal conductivity of 40 w / (m · K) or more.

【0006】また、特開平9−30866号公報には、
85〜99重量%のβ型窒化ケイ素粒と残部が酸化物または
酸窒化物の粒界相とから構成され、粒界相中にMg,C
a,Sr,Ba,Y,La,Ce,Pr,Nd,Sm,
Gd,Dy,Ho,ErおよびYbのうちから選ばれる
少なくとも1種の元素を0.5〜10重量%含有し、粒界相
中のAl元素含有量が1重量%以下であり、気孔率が5
%以下であり、かつβ型窒化ケイ素粒のうちで短軸径5
μm以上を持つものの割合が10〜60体積%である窒化ケ
イ素質焼結体が記載されている。
[0006] Japanese Patent Application Laid-Open No. 9-30866 describes that
85 to 99% by weight of β-type silicon nitride grains and the remainder are composed of an oxide or oxynitride grain boundary phase, and Mg, C
a, Sr, Ba, Y, La, Ce, Pr, Nd, Sm,
It contains at least one element selected from Gd, Dy, Ho, Er and Yb in an amount of 0.5 to 10% by weight, the content of Al element in the grain boundary phase is 1% by weight or less, and the porosity is 5% or less.
% Or less and a minor axis diameter of 5
A silicon nitride based sintered body in which the ratio of those having μm or more is 10 to 60% by volume is described.

【0007】また、日本セラミックス協会1996年年会講
演予稿集1G11、同1G12、および特開平10−1
94842号公報には、原料粉末に柱状の窒化ケイ素粒
子またはウイスカーを予め添加し、ドクターブレード法
あるいは押出成形法を用いて、この粒子を2次元的に配
向させた成形体を得た後、焼成することにより熱伝導に
異方性を付与して特定方向の熱伝導率を高めた窒化ケイ
素質焼結体が記載されている。
[0007] Japanese Ceramics Association 1996 Annual Meeting Proceedings 1G11, 1G12, and JP-A-10-1
No. 94842 discloses a method in which columnar silicon nitride particles or whiskers are added in advance to a raw material powder, and a molded body in which the particles are two-dimensionally oriented is obtained by a doctor blade method or an extrusion molding method, and then fired. A silicon nitride-based sintered body in which the anisotropy is given to the heat conduction to increase the heat conductivity in a specific direction.

【0008】窒化ケイ素の熱伝導率の向上あるいは曲げ
強度と破壊靭性を両立させる微構造の構築のために用い
られるβ粉末の作製方法として、窒化ケイ素原料粉末を
所定量のYおよびSiOと混合し、混合物を窒
素等の非酸化性雰囲気中で焼成して得る方法が、J.Ce
ram. Soc. Japan., 101[9] 1078-80(1993)に記載されて
いる。
[0008] As a method for producing β powder used for improving the thermal conductivity of silicon nitride or for constructing a microstructure that achieves both bending strength and fracture toughness, silicon nitride raw material powder is prepared by adding a predetermined amount of Y 2 O 3 and SiO 2. 2 is obtained by sintering the mixture in a non-oxidizing atmosphere such as nitrogen. Ce
ram. Soc. Japan., 101 [9] 1078-80 (1993).

【0009】さらに、窒化ケイ素粉末のβ分率を向上さ
せる方法として、比表面積が1m/g以上、SiO
算として2〜5重量%の酸素を含んだ窒化ケイ素質原料
粉末を窒素等の非酸化性雰囲気中で熱処理する方法が特
開平6−263410号公報に記載されている。
Further, as a method for improving the β fraction of silicon nitride powder, a silicon nitride-based raw material powder having a specific surface area of 1 m 2 / g or more and containing 2 to 5% by weight of oxygen as SiO 2 , A method of performing heat treatment in a non-oxidizing atmosphere is described in JP-A-6-263410.

【0010】[0010]

【発明が解決しようとする課題】前述の特開平4−17
5268号公報では40W/(m・K)以上の熱伝導率が得られ
ているが、さらに熱伝導率を高めた、機械的強度に優れ
る材料が望まれている。また、特開平9−30866号
公報、特開平10−194842号等公報に記載の方法
では、窒化ケイ素質焼結体中に巨大な柱状粒子を得るた
めに、成長核となる種結晶あるいはウィスカ−を予め添
加し、2000℃以上および10.1MPa(100気圧)以上の窒素
雰囲気下での焼成が不可欠である。したがって、ホット
プレスあるいはHIP等の特殊な高温・高圧設備が必要と
なりコストアップを招来する。また、窒化ケイ素粒子を
配向させた成形体を得るための成形プロセスが複雑であ
るため、生産性性が著しく低下するという問題がある。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Laid-Open No. 4-17 / 1994
In Japanese Patent No. 5268, a thermal conductivity of 40 W / (m · K) or more is obtained. However, a material having higher thermal conductivity and excellent mechanical strength is desired. Further, in the methods described in JP-A-9-30866 and JP-A-10-194842, a seed crystal or a whisker serving as a growth nucleus is used in order to obtain huge columnar particles in a silicon nitride sintered body. , And baking in a nitrogen atmosphere of 2000 ° C. or more and 10.1 MPa (100 atm) or more is indispensable. Therefore, special high-temperature and high-pressure equipment such as a hot press or HIP is required, resulting in an increase in cost. In addition, since a molding process for obtaining a molded body in which silicon nitride particles are oriented is complicated, there is a problem that productivity is significantly reduced.

【0011】また、前述のJ.Ceram. Soc. Japan, 101
[9] 1078-80(1993)に記載されている手法では、スラグ
として使用するY量およびSiO量が多いた
め、得られる処理粉末の凝集が強くなり、粉砕乳鉢等で
破砕することが必須となる。また、粒子表面に付着した
酸化物除去ための酸による溶解処理、さらに粒度調整の
ための分級処理が必要であり、プロセスが煩雑になる。
また、得られた処理粉末中には使用した助剤成分が固溶
するといった難点がある。
Further, the above-mentioned J.A. Ceram. Soc. Japan, 101
[9] In the method described in 1078-80 (1993), since the amount of Y 2 O 3 and the amount of SiO 2 used as slag are large, the resulting treated powder is strongly agglomerated and crushed in a crushing mortar or the like. It is essential. Further, a dissolution treatment with an acid for removing oxides attached to the particle surface and a classification treatment for adjusting the particle size are required, and the process becomes complicated.
Further, there is a problem that the used auxiliary component is dissolved in the obtained treated powder.

【0012】さらに、前述の特開平6−263410号
公報に記載される手法は、β分率が95%以上の窒化ケイ
素質粉末を工業的に安価に製造することを可能にしてい
る。これによるとβ分率を向上させる手法として、Si
換算として2〜5重量%の酸素を含み、比表面積が
1m2/g以上である窒化ケイ素質粉末を、非酸性雰囲気
下、温度1500℃以上で熱処理することを特徴としてい
る。当該発明で使用される窒化ケイ素質粉末に含まれる
酸素量をSiO換算で2〜5wt%と規定する理由に
は、該値が2wt%未満では、窒化ケイ素質粉末のβ分
率の増大効果が小さく、また、β分率にばらつきが生じ
やすいこと。一方、該値が5wt%を超えると、熱処理
後の窒化ケイ素質粉末にSiOが残留し窒化ケイ素質
粉末の粉末特性が悪くなるとしている。また、粒度につ
いては、当該発明の処理を均一かつ短時間に行うため
に、比表面積が1m/g以上の微粉であることが好まし
いとしている。しかしながら、実施例には、β分率が9
5%以上の処理粉末が得られているものの、低温・短時
間にて処理を完了させることを目的として、SiO
算で2〜5wt%の酸素量である窒化ケイ素質原料粉末
を用いているために、得られる粉末の酸素量はいずれも
1.2wt%以上である。また、原料粉末の酸素量を所定
量に調整するために予めSiO粉末を添加したり、あ
るいは酸素雰囲気中での熱処理を必要とするといった難
点がある。さらに、当該発明の方法によって得られる窒
化ケイ素質粉末は、熱処理によって凝集しているので、
使用に際しては、例えばボ−ルミル、ロ−ル−クラッシ
ャー等を用いて解砕する工程を要するといった難点があ
る。
Further, the method described in the above-mentioned Japanese Patent Application Laid-Open No. 6-263410 makes it possible to industrially and inexpensively produce a silicon nitride powder having a β fraction of 95% or more. According to this, as a technique for improving the β fraction, Si
It contains 2 to 5% by weight of oxygen in terms of O 2 and has a specific surface area of
It is characterized in that a silicon nitride-based powder of 1 m 2 / g or more is heat-treated at a temperature of 1500 ° C. or more in a non-acidic atmosphere. The reason that the amount of oxygen contained in the silicon nitride powder used in the present invention is defined as 2 to 5 wt% in terms of SiO 2 is that if the value is less than 2 wt%, the effect of increasing the β fraction of the silicon nitride powder is increased. And the β fraction tends to vary. On the other hand, when the value exceeds 5 wt%, SiO 2 remains in the silicon nitride powder after the heat treatment, and the powder characteristics of the silicon nitride powder deteriorate. Regarding the particle size, in order to perform the treatment of the present invention uniformly and in a short time, it is preferable that the fine particles have a specific surface area of 1 m 2 / g or more. However, in the example, the β fraction was 9
Although a processing powder of 5% or more is obtained, a silicon nitride raw material powder having an oxygen content of 2 to 5 wt% in terms of SiO 2 is used for the purpose of completing the processing at a low temperature and in a short time. Therefore, the amount of oxygen in the resulting powder is
It is 1.2 wt% or more. In addition, there is a problem in that SiO 2 powder is added in advance to adjust the oxygen amount of the raw material powder to a predetermined amount, or heat treatment in an oxygen atmosphere is required. Furthermore, since the silicon nitride-based powder obtained by the method of the present invention is agglomerated by heat treatment,
In use, there is a drawback that a step of crushing using, for example, a ball mill or a roll crusher is required.

【0013】本発明は上記従来の問題に鑑みてなされた
ものであり、2000℃以上でかつ10.1MPa(100気圧)以上
の高温・高圧焼成といったコストの高い焼成法を必要と
せず、機械的強度に優れ、熱伝導の方向に異方性を持た
ずに従来に比べて熱伝導率を高めた高熱伝導型窒化ケイ
素質焼結体を提供することを課題とする。また本発明の
課題は、窒化ケイ素質粉末のβ分率、含有酸素量、不純
物量およびα型窒化ケイ素質粉末との混合比等を規定す
ることにより、高い熱伝導率および高い強度を有する窒
化ケイ素質焼結体およびその製造方法を提供することで
ある。また本発明の課題は、高強度・高熱伝導性の発現
のために用いる窒化ケイ素質粉末およびその製造方法を
提供することである。また本発明の課題は前記高強度・
高熱伝導性に富んだ窒化ケイ素質焼結体用いて構成され
る放熱性の良好な回路基板を提供することである。
The present invention has been made in view of the above-described conventional problems, and does not require a high-cost and high-temperature sintering method of 2,000 ° C. or more and 10.1 MPa (100 atm) or more. It is an object of the present invention to provide a high thermal conductivity type silicon nitride sintered body which is excellent in heat conductivity and does not have anisotropy in the direction of heat conduction and has a higher thermal conductivity than conventional ones. Another object of the present invention is to provide a silicon nitride powder having a high thermal conductivity and a high strength by defining the β fraction, the oxygen content, the amount of impurities and the mixing ratio with the α-type silicon nitride powder. An object of the present invention is to provide a silicon-based sintered body and a method for producing the same. Another object of the present invention is to provide a silicon nitride powder used for developing high strength and high thermal conductivity and a method for producing the same. The object of the present invention is to provide the high strength
An object of the present invention is to provide a circuit board having good heat radiation properties, which is constituted by using a silicon nitride sintered body rich in high thermal conductivity.

【0014】[0014]

【課題を解決するための手段】本発明者らは上記課題を
達成するため、用いる窒化ケイ素質粉末のβ分率、含有
酸素量、不純物およびα粉末との混合比等の粉末特性を
規定することにより、安定して100W/(m・K)以上の熱伝導
率と十分な曲げ強度を有する窒化ケイ素質焼結体が得ら
れることを発見した。また、焼結助剤をMgO基として
焼結性を向上させ、かつLa,YおよびYbを含む希土
類元素(RE)から選択される少なくとも1種の元素を
特定量含有させることが有効なことを発見し、本発明に
至った。
Means for Solving the Problems In order to achieve the above object, the present inventors define powder characteristics such as β fraction, oxygen content, impurities and mixing ratio with α powder of a silicon nitride powder to be used. As a result, it has been found that a silicon nitride sintered body having a thermal conductivity of 100 W / (m · K) or more and a sufficient bending strength can be obtained stably. Further, it is effective to improve the sinterability by using a sintering aid as an MgO group and to contain a specific amount of at least one element selected from rare earth elements (RE) containing La, Y and Yb. Discovered and led to the present invention.

【0015】本発明の窒化ケイ素質粉末は、例えば、金
属シリコン直接窒化法、シリカ還元法またはシリコンイ
ミド分解法による原料の窒化ケイ素質粉末を用い、窒素
または窒素/水素の混合雰囲気中で1400℃〜1950℃×5
〜20時間熱処理することにより製造できる。高いβ分率
および低酸素化を実現するために、熱処理条件を1800℃
〜1900℃×5〜20時間にすることがより好ましい。な
お、1800℃以上の熱処理では窒化ケイ素の分解を避ける
ために1.0MPa(10気圧)以上の窒素あるいは窒素/水素
雰囲気中で行うことが望ましい。熱処理後の含有酸素量
を0.5wt%以下にするために、初期含有酸素量をSi
量換算で2wt%未満とすることが好ましい。また
Fe,Al等の不純物量を極力少なく抑える目的からイ
ミド分解法による高純度原料の窒化ケイ素質粉末の使用
がより好ましい。原料粉末充填に共する容器はカーボン
製またはBN製のいずれでもよいが、カーボン製ヒータ
ーおよびカーボン製断熱材仕様の熱処理炉を使用する場
合は過度のCO還元性雰囲気の作用を抑制するためにB
N製のものが望ましい。
The silicon nitride-based powder of the present invention is prepared, for example, by using a silicon nitride-based powder as a raw material obtained by a metal silicon direct nitridation method, a silica reduction method or a silicon imide decomposition method, at 1400 ° C. in a nitrogen or nitrogen / hydrogen mixed atmosphere. ~ 1950 ℃ × 5
It can be manufactured by heat treatment for up to 20 hours. Heat treatment conditions at 1800 ° C to achieve high β fraction and low oxygen
It is more preferable to set the temperature to 1900 ° C. × 5 to 20 hours. Note that the heat treatment at 1800 ° C. or more is preferably performed in a nitrogen or nitrogen / hydrogen atmosphere of 1.0 MPa (10 atm) or more to avoid decomposition of silicon nitride. In order to reduce the oxygen content after the heat treatment to 0.5 wt% or less, the initial oxygen content is set to Si.
It is preferable that the content be less than 2 wt% in terms of O 2 . In order to minimize the amount of impurities such as Fe and Al, it is more preferable to use silicon nitride powder as a high-purity raw material by an imide decomposition method. The container used for charging the raw material powder may be made of carbon or BN. However, if a carbon heater and a heat treatment furnace with a carbon insulating material specification are used, B is used to suppress the action of an excessive CO reducing atmosphere.
It is desirable to use a product made of N.

【0016】本発明の窒化ケイ素質粉末は、含有酸素量
の少ない原料粉末を用いるため助剤として作用するSi
成分が少なく、さらにα型窒化ケイ素質粉末からβ
型窒化ケイ素質粉末への相転移は気相を介しているた
め、結果として低酸素含有量になり、熱処理後も凝集が
なく、粉砕ならびに表面酸化物除去のための酸処理工程
を必要としない。また、Y等の酸化物を粒子成長
のための焼結助剤として用いないため、これら助剤成分
の窒化ケイ素質粉末内への固溶を避けることができる。
すなわち、本発明の窒化ケイ素質粉末はβ分率が30〜10
0%であり、酸素量が0.5wt%以下であり、平均粒子径が
0.2〜10μmであり、アスペクト比が10以下であることを
特徴とする。さらにFe含有量およびAl含有量がそれ
ぞれ100ppm以下であることを特徴とする。
The silicon nitride powder of the present invention uses Si powder which acts as an auxiliary agent because it uses a raw material powder having a low oxygen content.
O 2 component is low and β-type silicon nitride powder
Phase transition to silicon nitride type powder is through gas phase, resulting in low oxygen content, no aggregation after heat treatment, no need for acid treatment step for grinding and removing surface oxides . Also, since oxides such as Y 2 O 3 are not used as sintering aids for particle growth, solid solution of these aid components in silicon nitride powder can be avoided.
That is, the silicon nitride powder of the present invention has a β fraction of 30 to 10
0%, the oxygen content is 0.5 wt% or less, and the average particle size is
0.2 to 10 μm, and the aspect ratio is 10 or less. Further, it is characterized in that the Fe content and the Al content are each 100 ppm or less.

【0017】また本発明の窒化ケイ素質焼結体の製造方
法は、β分率が30〜100%であり、酸素量が0.5wt
%以下であり、平均粒子径が0.2〜10μmであり、アス
ペクト比が10以下である窒化ケイ素質粉末1〜59重量部
と、平均粒子径が0.2〜4μmのα型窒化ケイ素質粉末99
〜50重量部とを配合し、焼結することを特徴とする。前
記窒化ケイ素質粉末のβ分率が30%未満では成長核とし
ての効果はあるものの部分的に核として作用するため、
異常粒成長が起こり、最終的に得られる窒化ケイ素質焼
結体のミクロ組織中に大きな粒子を均一分散できなくな
り曲げ強度が低下する。したがって、窒化ケイ素質粉末
のβ分率は30%以上が望ましい。また前記窒化ケイ素質
粉末の平均粒子径が0.2μm未満では前記同様に柱状粒子
が均一に発達したミクロ組織を呈する窒化ケイ素質焼結
体を得られず、熱伝導率および曲げ強度を高めることが
困難である。前記窒化ケイ素質粉末の平均粒子径が10μ
mより大きいと焼結体の窒化ケイ素質緻密化が阻害され
る。したがって、窒化ケイ素質粉末の平均粒子径は0.2
〜10μmが好ましい。また、アスペクト比が10超の場合
は窒化ケイ素質焼結体の緻密化が阻害され、結果とし
て、常温における3点曲げ強度は600MPa未満になる。し
たがって、窒化ケイ素質粉末のアスペクト比を10以下と
することが好ましい。
In the method for producing a silicon nitride sintered body according to the present invention, the β fraction is 30 to 100%, and the oxygen content is 0.5 wt.
% Or less, an average particle diameter of 0.2 to 10 μm, an aspect ratio of 10 or less, 1 to 59 parts by weight of a silicon nitride powder, and an α-type silicon nitride powder 99 of an average particle diameter of 0.2 to 4 μm.
5050 parts by weight and sintering. When the β fraction of the silicon nitride-based powder is less than 30%, although it has an effect as a growth nucleus, it partially acts as a nucleus,
Abnormal grain growth occurs, and large particles cannot be uniformly dispersed in the microstructure of the finally obtained silicon nitride sintered body, and the bending strength decreases. Therefore, the β fraction of the silicon nitride powder is desirably 30% or more. When the average particle diameter of the silicon nitride powder is less than 0.2 μm, a silicon nitride sintered body having a microstructure in which columnar particles are uniformly developed cannot be obtained as described above, and the thermal conductivity and the bending strength may be increased. Have difficulty. The average particle size of the silicon nitride powder is 10μ.
If it is larger than m, densification of the silicon nitride of the sintered body is hindered. Therefore, the average particle size of the silicon nitride powder is 0.2
1010 μm is preferred. On the other hand, when the aspect ratio is more than 10, the densification of the silicon nitride sintered body is hindered, and as a result, the three-point bending strength at room temperature becomes less than 600 MPa. Therefore, it is preferable that the aspect ratio of the silicon nitride powder is 10 or less.

【0018】本発明の窒化ケイ素質焼結体は、含有する
Mgを酸化マグネシウム(MgO)換算し、また含有す
るLa,YおよびYbを含む希土類元素(RE)から選
択される少なくとも1種の元素を酸化物(RE
換算し、それら酸化物換算含有量の合計が0.6〜7wt
%であることを特徴とする。前記酸化物換算含有量の合
計が0.6wt%未満では焼結時の緻密化作用が不十分と
なり相対密度が95%未満となり好ましくなく、7wt%
超では窒化ケイ素質焼結体の第2のミクロ組織成分であ
る熱伝導率の低い粒界相の量が過剰となり焼結体の熱伝
導率が100W/(m・K)未満になる。これら窒化ケイ素質含
有量の合計は0.6〜4wt%がより好ましい。前記窒化
ケイ素質焼結体は、常温における熱伝導率が100〜300W/
(m・K)であり、常温における3点曲げ強度が600〜150
0MPaであり高強度・高熱伝導性に富んでいる。また前記
窒化ケイ素質焼結体が、含有するMgを酸化マグネシウ
ム(MgO)換算し、また含有するLa,YおよびYb
を含む希土類元素(RE)から選択される少なくとも1
種の元素を酸化物(RE)換算し、それら酸化物
換算含有量の合計が0.6〜7wt%であり、かつMgO
/RExOyで表される重量比が1〜70である場合に特に
高強度・高熱伝導性が向上する。(MgO/RE
)(重量比)が1未満では粒界相中の希土類酸化
物の割合が増大するため焼結過程で液相線温度が上昇し
難焼結性となり緻密な焼結体が得られない。(MgO/
RE)(重量比)が70超では焼成時におけるMg
の拡散を抑制することができず焼結体表面に色むらの発
生を生じる。 MgO/RExOy(重量比)が1〜70の
範囲にある場合、1650〜1850℃の焼結温度で成形体を予
備焼成し、次いで1850〜1900℃の熱処理を行うと高熱伝
導化が顕著になり120w/(m・K)を超える窒化ケイ素質焼
結体を得られ特に好ましい。この熱処理による高熱伝導
化は窒化ケイ粒子の成長と、蒸気圧の高いMgO基とし
た粒界相成分が効率よく窒化ケイ素質焼結体外へ揮発す
ることの複合効果による。
The silicon nitride sintered body of the present invention converts the contained Mg into magnesium oxide (MgO) and contains at least one element selected from the group consisting of rare earth elements (RE) containing La, Y and Yb. To oxide (RE x O y )
Converted, the sum of the content in terms of oxide is 0.6 to 7 wt.
%. If the total content in terms of oxide is less than 0.6 wt%, the densification effect during sintering becomes insufficient, and the relative density becomes less than 95%, which is not preferable.
In the case of more than one, the amount of the grain boundary phase having a low thermal conductivity, which is the second microstructure component of the silicon nitride sintered body, becomes excessive and the thermal conductivity of the sintered body becomes less than 100 W / (m · K). The total of these silicon nitride contents is more preferably 0.6 to 4% by weight. The silicon nitride-based sintered body has a thermal conductivity at room temperature of 100 to 300 W /
(M · K) and the three-point bending strength at room temperature is 600-150.
It is 0MPa and has high strength and high thermal conductivity. The silicon nitride-based sintered body converts Mg contained in magnesium oxide (MgO) and contains La, Y and Yb.
At least one selected from rare earth elements (RE) containing
The species elements are converted to oxides (RE x O y ), the total content of the oxides is 0.6 to 7 wt%, and MgO
When the weight ratio represented by / RExOy is 1 to 70, high strength and high thermal conductivity are particularly improved. (MgO / RE
When xOy ) (weight ratio) is less than 1, the ratio of the rare earth oxide in the grain boundary phase increases, so that the liquidus temperature rises in the sintering process, the sintering becomes difficult, and a dense sintered body is obtained. Absent. (MgO /
If RE x O y ) (weight ratio) exceeds 70, the Mg
Cannot be suppressed, and color unevenness occurs on the surface of the sintered body. When the MgO / RExOy (weight ratio) is in the range of 1 to 70, the preform is fired at a sintering temperature of 1650 to 1850 ° C., and then a heat treatment at 1850 to 1900 ° C. makes high thermal conductivity remarkable. A silicon nitride sintered body exceeding 120 w / (m · K) can be obtained, which is particularly preferable. The increase in thermal conductivity due to this heat treatment is due to the combined effect of the growth of silicon nitride particles and the efficient vaporization of the MgO-based grain boundary phase component having a high vapor pressure out of the silicon nitride sintered body.

【0019】また本発明の回路基板は、含有するMgを
酸化マグネシウム(MgO)換算し、また含有するL
a,YおよびYbを含む希土類元素(RE)から選択さ
れる少なくとも1種の元素を酸化物(RE)換算
し、それら酸化物換算含有量の合計が0.6〜7wt%で
ある窒化ケイ素質焼結体を用いて構成され、従来に比べ
て耐熱抵抗性および放熱性が優れたものを提供できる。
Further, the circuit board of the present invention converts the contained Mg into magnesium oxide (MgO), and the contained L
At least one element selected from the rare earth elements (RE) containing a, Y and Yb is converted into oxide (RE x O y ), and the total content of the oxides is 0.6 to 7 wt%. It is possible to provide a material which is constituted by using an elementary sintered body and has excellent heat resistance and heat dissipation as compared with the prior art.

【0020】[0020]

【発明の実施の形態】前記窒化ケイ素質粉末の酸素量を
0.5wt%以下としたのは、前記窒化ケイ素質粉末を成
長核として作用させて窒化ケイ素質焼結体を形成した場
合、窒化ケイ素質焼結体を構成する窒化ケイ素質粒子内
に固溶する酸素量は、成長核として用いる前記化ケイ素
質粉末の酸素量に強く依存し、前記窒化ケイ素質粉末の
酸素量が高い程、前記窒化ケイ素質粒子内に固溶する酸
素量が高くなる。窒化ケイ素質粒子中に含有される酸素
により熱伝導媒体であるフォノンの散乱が発生し、窒化
ケイ素質焼結体の熱伝導率が低下する。100W/m.K以上と
いう従来の窒化ケイ素質焼結体では得られなかった高い
熱伝導率を発現するには、窒化ケイ素質粉末の含有酸素
量を0.5wt%以下に抑えて、最終的に得られる窒化ケイ素
質焼結体の酸素量を低減することが必要不可欠である。
BEST MODE FOR CARRYING OUT THE INVENTION The amount of oxygen in the silicon nitride powder is
The reason why the content is set to 0.5 wt% or less is that when the silicon nitride-based powder is used as a growth nucleus to form a silicon nitride-based sintered body, the solid solution forms in the silicon nitride-based particles constituting the silicon nitride-based sintered body. The amount of oxygen strongly depends on the amount of oxygen in the silicon nitride powder used as a growth nucleus, and the higher the amount of oxygen in the silicon nitride powder, the higher the amount of oxygen dissolved in the silicon nitride particles. Oxygen contained in the silicon nitride particles causes scattering of phonon, which is a heat conduction medium, and lowers the thermal conductivity of the silicon nitride sintered body. In order to express a high thermal conductivity that was not obtained with the conventional silicon nitride sintered body of 100 W / mK or more, the oxygen content of the silicon nitride powder was suppressed to 0.5 wt% or less and finally obtained. It is indispensable to reduce the oxygen content of the silicon nitride sintered body.

【0021】窒化ケイ素質粉末中のFe含有量およびA
l含有量がそれぞれ100ppm超では窒化ケイ素粒子内にF
eまたはAlが顕著に固溶し、この固溶部分で熱伝導媒
体であるフォノンの散乱を生じ、窒化ケイ素質焼結体の
熱伝導率を低下させる。したがって100W/m・K以上の熱
伝導率を得るには窒化ケイ素質粉末中のFe含有量およ
びAl含有量をそれぞれ100ppm以下に制御することが肝
要である。
Fe Content in Silicon Nitride Powder and A
If the l content exceeds 100 ppm, F
e or Al remarkably forms a solid solution, and phonon, which is a heat conductive medium, is scattered at the solid solution portion, thereby lowering the thermal conductivity of the silicon nitride sintered body. Therefore, in order to obtain a thermal conductivity of 100 W / m · K or more, it is important to control the Fe content and the Al content in the silicon nitride powder to 100 ppm or less, respectively.

【0022】前記β分率が30〜100%の窒化ケイ素質粉
末とα型窒化ケイ素質粉末との比率は1〜50wt%:99
〜50wt%が好ましい。前記β分率が30〜100%の窒化
ケイ素質粉末の比率が1wt%未満では成長核としての
効果はあるものの、添加量が少ないために作用する成長
核の数が少なく、異常粒成長が起こりミクロ組織中に大
きな粒子を均一分散できなくなり、曲げ強度が低下す
る。また、50wt%超では成長核の数が多くなり、粒成
長の過程で、粒子同士が互いに衝突するため成長阻害が
起こり、強度は維持できるが、発達した柱状粒子からな
る窒化ケイ素質焼結体のミクロ組織を得られず、従来に
比べて高い熱伝導率を実現困難になる。
The ratio of the silicon nitride powder having a β fraction of 30 to 100% to the α-type silicon nitride powder is 1 to 50 wt%: 99
~ 50 wt% is preferred. When the ratio of the silicon nitride-based powder having a β fraction of 30 to 100% is less than 1 wt%, although there is an effect as a growth nucleus, the number of growth nuclei acting due to a small amount of addition is small, and abnormal grain growth occurs. Large particles cannot be uniformly dispersed in the microstructure, and the bending strength decreases. On the other hand, if the content exceeds 50 wt%, the number of growth nuclei increases, and in the process of grain growth, particles collide with each other, thereby inhibiting growth and maintaining strength. However, a silicon nitride sintered body composed of developed columnar particles can be maintained. Cannot be obtained, and it becomes difficult to realize a high thermal conductivity as compared with the related art.

【0023】MgおよびYは焼結助剤として有用であ
り、窒化ケイ素質原料粉末の緻密化に有効である。これ
らの元素は窒化ケイ素質焼結体を構成する第1ミクロ組
織成分である窒化ケイ素質粒子に対する固溶度が小さい
ので、窒化ケイ素粒子、ひいては窒化ケイ素質焼結体の
熱伝導率を高い水準に保つことができる。
Mg and Y are useful as sintering aids and are effective for densification of silicon nitride raw material powder. Since these elements have a low solid solubility in silicon nitride particles, which are the first microstructure component constituting the silicon nitride sintered body, the thermal conductivity of the silicon nitride particles, and thus the silicon nitride sintered body, is high. Can be kept.

【0024】Yと同様に窒化ケイ素質粒子に対する固溶
度が小さく、焼結助剤として有用な元素として、La,
Ce,Nd,Pm,Sm,Eu,Gd,Dy,Ho,E
r,Tm,YbおよびLuの群から選択される少なくと
も1種の希土類元素が挙げられる。そのうち、温度およ
び圧力が高くなり過ぎずに焼成ができる点でLa,C
e,Gd,DyおよびYbの群から選択される少なくと
も1種の希土類元素が好ましい。
Like Y, it has a small solid solubility in silicon nitride particles, and is useful as a sintering aid.
Ce, Nd, Pm, Sm, Eu, Gd, Dy, Ho, E
At least one rare earth element selected from the group consisting of r, Tm, Yb and Lu is included. Among them, La and C are preferred because they can be fired without excessively increasing the temperature and pressure.
At least one rare earth element selected from the group consisting of e, Gd, Dy and Yb is preferred.

【0025】本発明の窒化ケイ素質焼結体からなる基板
は高強度、高靭性ならびに高熱伝導率の特性を生かし
て、パワ−半導体用基板またはマルチチップモジュ−ル
用基板などの各種基板、あるいはペルチェ素子用熱伝
板、または各種発熱素子用ヒ−トシンクなどの電子部品
用部材に好適である。
The substrate made of the silicon nitride sintered body of the present invention takes advantage of the characteristics of high strength, high toughness and high thermal conductivity to make use of various substrates such as a substrate for a power semiconductor or a substrate for a multi-chip module, or It is suitable for electronic component members such as a heat transfer plate for a Peltier element or a heat sink for various heating elements.

【0026】本発明の窒化ケイ素質焼結体を半導体素子
用基板として用いた場合、半導体素子の作動に伴う繰り
返しの熱サイクルを受けたときの前記基板のクラックの
発生が抑えられ、耐熱衝撃性ならびに耐熱サイクル性が
著しく向上し、信頼性に優れたものとなる。また、高出
力化および高集積化を指向する半導体素子を搭載した場
合でも、熱抵抗特性の劣化が少なく、優れた放熱特性を
発揮する。さらに、優れた機械的特性により本来の基板
材料としての機能だけでなく、それ自体が構造部材を兼
ねることができるため、基板ユニット自体の構造を簡略
化できる。
When the silicon nitride sintered body of the present invention is used as a substrate for a semiconductor device, the occurrence of cracks in the substrate when subjected to repeated thermal cycles accompanying the operation of the semiconductor device can be suppressed, and the thermal shock resistance can be reduced. In addition, the heat cycle resistance is significantly improved, and the reliability is excellent. Further, even when a semiconductor element for high output and high integration is mounted, deterioration of the thermal resistance characteristics is small and excellent heat radiation characteristics are exhibited. In addition, the excellent mechanical properties allow not only the function as the original substrate material but also the structure itself to serve as a structural member, so that the structure of the substrate unit itself can be simplified.

【0027】また、本発明の窒化ケイ素質焼結体は、上
述の電子部品用部材以外に熱衝撃および熱疲労の耐熱抵
抗特性が要求される材料に幅広く利用できる。構造用部
材として、各種の熱交換器部品や熱機関用部品、アルミ
ニウムや亜鉛等の金属溶解の分野で用いられるヒーター
チューブ、ストークス、ダイカストスリーブ、溶湯攪拌
用プロペラ、ラドル、あるいは熱電対保護管等に適用で
きる。また、アルミニウム、亜鉛等の溶融金属めっきラ
インで用いられるシンクロール、サポートロール、軸
受、あるいは軸等に適用することにより、急激な加熱や
冷却に対して耐割れ性に富んだ部材となり得る。また、
鉄鋼あるいは非鉄の加工分野では、圧延ロール、スキー
ズロール、ガイドローラ、線引きダイス、あるいは工具
用チップ等に用いれば、被加工物との接触時の放熱性が
良好なため、耐熱疲労性および耐熱衝撃性を改善するこ
とができ、これにより摩耗が少なく、熱応力割れを生じ
にくくできる。
Further, the silicon nitride sintered body of the present invention can be widely used for materials requiring heat resistance characteristics such as thermal shock and thermal fatigue in addition to the above-mentioned electronic component members. Structural members include various heat exchanger parts and heat engine parts, heater tubes used in the field of melting metals such as aluminum and zinc, Stokes, die-cast sleeves, propellers for molten metal agitation, ladles, thermocouple protection tubes, etc. Applicable to Further, by applying the present invention to a sink roll, a support roll, a bearing, a shaft, or the like used in a hot-dip metal plating line for aluminum, zinc, or the like, a member having excellent crack resistance against rapid heating and cooling can be obtained. Also,
In the field of steel or non-ferrous processing, when used for rolling rolls, squeeze rolls, guide rollers, drawing dies, or tool tips, etc., it has good heat dissipation when it comes into contact with the workpiece, so it can withstand heat fatigue and heat resistance. The impact resistance can be improved, thereby reducing abrasion and making thermal stress cracking less likely to occur.

【0028】さらに、スパッタターゲット部材にも適用
でき、例えば磁気記録装置のMRヘッド、GMRヘッ
ド、またはTMRヘッドなどに用いられる電気絶縁膜の
形成や、熱転写プリンターのサーマルヘッドなどに用い
られる耐摩耗性皮膜の形成に好適である。スパッタして
得られる被膜は、本質的に高熱伝導特性を持つととも
に、スパッタレートも十分高くでき、被膜の電気的絶縁
耐圧が高いものとなる。このため、このスパッタターゲ
ットで形成したMRヘッド、GMRヘッド、またはTM
Rヘッド用の電気絶縁性被膜は高熱伝導ならびに高耐電
圧の特性を有するので、素子の高発熱密度化や絶縁性被
膜の薄膜化が図れる。また、このスパッタターゲットで
形成したサ−マルヘッド用の耐摩耗性被膜は、窒化ケイ
素本来の特性により耐摩耗性が良好であることはもとよ
り、高熱伝導性のため熱抵抗が小さくできるので印字速
度を高めることができる。
Further, the present invention can be applied to a sputter target member, for example, forming an electric insulating film used for an MR head, a GMR head, or a TMR head of a magnetic recording apparatus, and abrasion resistance used for a thermal head of a thermal transfer printer. Suitable for forming a film. The film obtained by sputtering has inherently high thermal conductivity, a sufficiently high sputter rate, and a high electric breakdown voltage of the film. Therefore, an MR head, GMR head, or TM
Since the electrical insulating film for the R head has characteristics of high thermal conductivity and high withstand voltage, it is possible to increase the heat generation density of the element and to reduce the thickness of the insulating film. In addition, the wear-resistant coating for a thermal head formed by this sputter target has not only good wear resistance due to the inherent characteristics of silicon nitride, but also high thermal conductivity, so that thermal resistance can be reduced. Can be enhanced.

【0029】[0029]

【実施例】以下、実施例により本発明を説明するが、そ
れら実施例により本発明が限定されるものではない。 (実施例1)含有酸素量がSiO換算で2.0wt%未
満、平均粒子径0.2〜2.0μmのイミド分解法による窒化
ケイ素質粉末をBN製るつぼに充填し、次いで常圧〜1.
0MPa(10気圧)のN雰囲気中にて1400℃〜1950℃で1
〜20時間加熱する熱処理を施し、次いで室温まで冷却し
た。得られた窒化ケイ素質粉末のβ分率は90〜100%で
あり、酸素含有量は0.2〜0.4wt%であった。図1に得
られた窒化ケイ素質粉末例のSEM観察像を示す。当該
粉末のβ分率は100%、酸素量は0.2wt%、Feお
よびAl量はそれぞれ、50ppmおよび40ppmで
ある。当該粉末には粒子の長軸方向と平行に溝部が形成
されており、これは気相を介して粒成長が起こる場合の
特徴で、特に酸素量が微量であるほど顕著となることが
実証された。当該粉末の次いで、得られたβ型Si
を主体とする粉末窒化ケイ素質粉末5〜30重量部
と、酸素含有量が0.3〜1.5wt%であり平均粒子径0.5
μmのα型窒化ケイ素(Si3N4)粉末99.5〜66
重量部とを配合し、さらに焼結助剤として平均粒子径0.
2μmのMgO粉末、および平均粒子径0.2〜2.0μmの表
1に記載されるRE粉末(焼結助剤)を配合し、
さらに2wt%の分散剤(レオカ゛-ト゛GP)を配合し、エタノー
ルを満たしたボ−ルミル容器中に投入し、次いで混合し
た。得られた混合物を真空乾燥し、次いで目開き150?m
の篩を通して造粒した。次に、プレス機により直径20mm
×厚さ10mmおよび直径100mm×厚さ15mmのディスク状の
成形体を圧力3tonのCIP成形により得た。次いで1750〜1
900℃,0.9MPa(9気圧)の窒素ガス雰囲気中で5時間
焼成した。得られた窒化ケイ素質粉末のFe,Alの不
純物分析はプラズマ発光分析(ICP)法により行った。
また、酸素含有量は赤外線加熱吸収法により測定した。
また得られた窒化ケイ素質粉末のβ分率はCu−Kα線
を用いたX線回折強度比から式(1)により求めた。 β分率(%)={(Iβ(101)+Iβ(210))/(Iβ(101)+I
β(210)+Iα(102)+Iα(201))}×100 (1) Iβ(101) :β型Siの(101)面回折ヒ゜-ク強
度, Iβ(210) :β型Siの(210)面回折ヒ゜-ク強
度, Iα(102) :α型Siの(102)面回折ヒ゜-ク強
度, Iα(210) :α型Siの(210)面回折ヒ゜-ク強
度。 また、得られた窒化ケイ素質粉末の平均粒子径および平
均アスペクト比は、SEM観察にて観察倍率×2000倍で得
られたSEM写真を用い、200μm×500μm視野面積内にあ
る計500個の窒化ケイ素質粒子を無作為に選定して画像
解析装置により最小径と最大径を測定し、その平均値を
求めて評価した。次に得られた窒化ケイ素質焼結体か
ら、直径10mm×厚さ3mmの熱伝導率および密度測定用の
試験片、ならびに縦3mm×横4mm×長さ40mmの曲げ試験
片を採取した。密度はマイクロメ−タにより寸法を測定
し、また重量を測定し、算出した。熱伝導率はレーザー
フラッシュ法により常温での比熱および熱拡散率を測定
し熱伝導率を算出した。3点曲げ強度は常温にてJIS
R1606に準拠して測定を行った。以上の製造条件
の概略および評価結果を、表1,2の試料No.1〜11に
示す。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. (Example 1) less than the oxygen content is 2.0 wt% in terms of SiO 2, a silicon nitride powder by the imide decomposition method with an average particle diameter 0.2~2.0μm was filled in a BN crucible and then atmospheric pressure to 1.
0 MPa 1 at 1400 ℃ ~1950 ℃ in N 2 atmosphere (10 atm)
Heat treatment for ~ 20 hours was applied and then cooled to room temperature. The β fraction of the obtained silicon nitride-based powder was 90 to 100%, and the oxygen content was 0.2 to 0.4% by weight. FIG. 1 shows an SEM observation image of the obtained silicon nitride-based powder example. The β fraction of the powder is 100%, the amount of oxygen is 0.2% by weight, and the amounts of Fe and Al are 50 ppm and 40 ppm, respectively. Grooves are formed in the powder in parallel with the major axis direction of the particles, which is a feature when grain growth occurs through the gas phase, and it has been demonstrated that the smaller the amount of oxygen is, the more significant it becomes. Was. Following the powder, the obtained β-type Si 3 N
4 to 5 to 30 parts by weight of a silicon nitride-based powder having an oxygen content of 0.3 to 1.5 wt% and an average particle diameter of 0.5
μm α-type silicon nitride (Si 3 N 4) powder 99.5-66
Parts by weight and an average particle size of 0.
2 μm of MgO powder and RE x O y powder (sintering aid) described in Table 1 having an average particle diameter of 0.2 to 2.0 μm were blended,
Further, 2 wt% of a dispersant (Leoka-to-GP) was blended, charged into a ball mill container filled with ethanol, and then mixed. The resulting mixture is vacuum dried, and then has an aperture of 150 m.
And granulated through a sieve. Next, press machine to 20mm in diameter
A disk-shaped compact having a thickness of 10 mm, a diameter of 100 mm and a thickness of 15 mm was obtained by CIP molding under a pressure of 3 tons. Then 1750-1
The firing was performed for 5 hours in a nitrogen gas atmosphere at 900 ° C. and 0.9 MPa (9 atm). The impurities of Fe and Al in the obtained silicon nitride powder were analyzed by a plasma emission spectrometry (ICP).
The oxygen content was measured by an infrared heating absorption method.
The β fraction of the obtained silicon nitride powder was determined from the X-ray diffraction intensity ratio using Cu-Kα ray according to the formula (1). β fraction (%) = {(I β (101) + I β (210) ) / (I β (101) + I
β (210) + I α (102) + I α (201) )} × 100 (1) I β (101) : (101) plane diffraction peak intensity of β-type Si 3 N 4 , I β (210 ) : (210) plane diffraction peak intensity of β-type Si 3 N 4 , I α (102) : α-type Si 3 N 4 (102) plane diffraction peak intensity, I α (210) : α type (210) plane diffraction peak intensity of Si 3 N 4 . The average particle diameter and average aspect ratio of the obtained silicon nitride-based powder were determined by using a SEM photograph obtained at an observation magnification of × 2000 by SEM observation, and a total of 500 nitrided particles within a visual area of 200 μm × 500 μm were used. The silicon particles were randomly selected, the minimum diameter and the maximum diameter were measured by an image analyzer, and the average value was obtained and evaluated. Next, from the obtained silicon nitride sintered body, a test piece having a diameter of 10 mm and a thickness of 3 mm for measuring thermal conductivity and density, and a bending test piece having a length of 3 mm, a width of 4 mm and a length of 40 mm were collected. The density was calculated by measuring the size with a micrometer and measuring the weight. The thermal conductivity was determined by measuring the specific heat and the thermal diffusivity at room temperature by the laser flash method and calculating the thermal conductivity. 3-point bending strength is JIS at room temperature
The measurement was performed according to R1606. The outlines of the above manufacturing conditions and the evaluation results are shown in Samples 1 to 11 in Tables 1 and 2.

【0030】(比較例1)表1に記載の製造条件とした
以外は実施例1と同様にしてβ分率の異なる窒化ケイ素
質粉末を作製した。次いで得られた窒化ケイ素質粉末を
用いて窒化ケイ素質焼結体を作製し、評価した。以上の
製造条件の概略および評価結果を、表1,2の試料No.3
1〜41に示す。
Comparative Example 1 Silicon nitride powders having different β fractions were prepared in the same manner as in Example 1 except that the production conditions shown in Table 1 were used. Next, a silicon nitride-based sintered body was prepared using the obtained silicon nitride-based powder and evaluated. The outline of the above manufacturing conditions and the evaluation results are shown in Tables 1 and 2 for sample No. 3.
1 to 41.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】表1および表2の試料No.1〜11から、以
下の知見が得られた。成長核として添加する窒化ケイ素
質粉末のβ分率が30%以上、不純物としての酸素含有量
が0.5wt%以下,Fe含有量が100ppm以下、およびA
l含有量が100ppm以下であり、平均粒子径が0.2〜10μ
m、アスペクト比が10以下、およびβ化率が30%以上の
前記窒化ケイ素質粉末の配合量を1〜50wt%とし得ら
れた窒化ケイ素質焼結体は、常温における熱伝導率が10
0w/(m・K)以上になり、かつ常温における3点曲げ強度
が600MPa以上になる。従来技術による窒化ケイ素質焼結
体の熱伝導率40 w/(m・K)程度であり、熱伝導率を飛躍
的に高めることができた。また、焼結助剤として、Mg
を酸化マグネシウム(MgO)換算し、Y,La,C
e,Dy,GdおよびYbを酸化物(RE)換算
して、それら酸化物換算含有量の合計が0.6〜7.0wt%
であり、かつ(MgO/RExy)(重量比)が1〜70
のものは熱伝導率が100w/(m・K) 以上でかつ曲げ強度が6
00MPa以上を得られた。
The following findings were obtained from Sample Nos. 1 to 11 in Tables 1 and 2. The silicon nitride powder added as growth nuclei has a β fraction of 30% or more, an oxygen content of 0.5% by weight or less, an Fe content of 100 ppm or less, and A
l content is 100 ppm or less, the average particle size is 0.2 ~ 10μ
m, the aspect ratio is 10 or less, and the β-conversion rate is 30% or more. The silicon nitride-based sintered body obtained by mixing 1 to 50 wt% of the silicon nitride-based powder has a thermal conductivity of 10% at room temperature.
0 w / (m · K) or more, and the three-point bending strength at room temperature becomes 600 MPa or more. The thermal conductivity of the silicon nitride sintered body according to the prior art was about 40 w / (m · K), and the thermal conductivity could be dramatically increased. In addition, Mg as a sintering aid
In terms of magnesium oxide (MgO), Y, La, C
e, Dy, Gd and Yb are converted to oxides (RE x O y ), and the total content of the oxides is 0.6 to 7.0 wt%.
And (MgO / RE x O y ) (weight ratio) is 1 to 70
Has a thermal conductivity of 100 w / (mK) or more and a bending strength of 6
00MPa or more was obtained.

【0034】これに対し、表1,2の比較例1の試料N
o.31〜41から以下の知見が得られた。No.31では、窒化
ケイ素質粒子のβ分率が30%未満では曲げ強度が顕著に
低下し500MPa程度になる。またNo.32では、窒化ケイ素
質粉末中に不可避に含有する酸素量が0.5wt超では熱
伝導率が70 w/(m・K)以下に劣化する。またNo.33および
No.34では、窒化ケイ素質粉末中に含有する不純物のF
eおよびAlの含有量がそれぞれ100ppmを超えると熱伝
導率が65 w/(m・K)以下に低下する。またNo.35およびN
o.36では、窒化ケイ素質粉末の平均粒子径が0.2μm未満
では熱伝導率は60 w/(m・K)以下に低下し、10μmより大
きい場合には緻密な焼結体が得られず熱伝導率は60 w/
(m・K)以下になり曲げ強度は600MPa以下に低下する。ま
たNo.37では、窒化ケイ素質粉末のアスペクト比が10以
上では、緻密な焼結体が得られず、曲げ強度は600MPa以
下に低下した。またNo.38およびNo.39では、窒化ケイ素
質粉末の添加量が1.0wt%未満では曲げ強度は600MPa
以下に低下し、50wt%より大きい場合には熱伝導率は
70 w/(m・K)以下に低下した。またNo.40およびNo.41で
は、焼結助剤成分が0.6wt%未満では焼結体の密度が
低下し、このために熱伝導率および曲げ強度は著しく低
下した。また焼結助剤成分が7.0wt%を超えると焼成
過程で充分なガラス相が生成するので焼結体の緻密化は
達成されたが、その反面、低熱伝導相である粒界相の増
加により熱伝導率は60 w/(m・K)以下に低下した。
On the other hand, Sample N of Comparative Example 1 in Tables 1 and 2
o. The following findings were obtained from 31 to 41. In No. 31, when the β fraction of the silicon nitride particles is less than 30%, the bending strength is remarkably reduced to about 500 MPa. In No. 32, when the amount of oxygen inevitably contained in the silicon nitride-based powder exceeds 0.5 wt, the thermal conductivity is reduced to 70 w / (m · K) or less. No.33 and
In No. 34, the impurity F contained in the silicon nitride powder was
When the content of each of e and Al exceeds 100 ppm, the thermal conductivity decreases to 65 w / (m · K) or less. No.35 and N
In o.36, when the average particle diameter of the silicon nitride powder is less than 0.2 μm, the thermal conductivity is reduced to 60 w / (mK) or less, and when it is more than 10 μm, a dense sintered body cannot be obtained. Thermal conductivity is 60 w /
(m · K) or less, and the bending strength decreases to 600 MPa or less. In No. 37, when the aspect ratio of the silicon nitride-based powder was 10 or more, a dense sintered body was not obtained, and the bending strength was reduced to 600 MPa or less. In Nos. 38 and 39, the bending strength was 600 MPa when the addition amount of the silicon nitride powder was less than 1.0 wt%.
If it falls below 50 wt%, the thermal conductivity becomes
It decreased to 70 w / (m · K) or less. In Nos. 40 and 41, when the sintering aid component was less than 0.6 wt%, the density of the sintered body was reduced, and as a result, the thermal conductivity and the bending strength were significantly reduced. If the sintering aid component exceeds 7.0 wt%, a sufficient glass phase is generated during the firing process, so that the sintered body can be densified, but on the other hand, the grain boundary phase, which is a low thermal conductive phase, has been increased. Thermal conductivity dropped below 60 w / (m · K).

【0035】(実施例2)実施例1で作製したβ化率が
30%以上の窒化ケイ素質粉末に3wt%MgO、1wt
%Y23の焼結助剤を添加した混合粉末を作製した。次
いで、アミン系の分散剤を2wt%添加したトルエン・
ブタノール溶液を満たしたボールミルの樹脂製ポット中
に作製した混合粉末および粉砕媒体の窒化ケイ素製ボー
ルを投入し、48時間湿式混合した。次いで、前記ポット
中の混合粉末100重量部に対しポリビニル系の有機バイ
ンダーを15重量部および可塑剤(ジメチルフタレ−
ト)を5重量部添加し、次いで48時間湿式混合しシート
成形用スラリーを得た。この成形用スラリーを調整後、
ドクターブレード法によりグリーンシート成形した。次
いで、成形したグリーンシートを空気中400〜600℃で2
〜5時間加熱することにより、予め添加し有機バインダ
ー成分を十分に脱脂(除去)した。次いで脱脂体を0.9M
Pa(9気圧)の窒素雰囲気中で1850℃×5時間の焼成を
行い、次いで同窒素雰囲気中で1900℃×24時間の熱処理
を行い、その後室温に冷却した、得られた窒化ケイ素質
焼結体シートに機械加工を施し縦50mm×横50mm×厚さ0.
6mmの半導体装置用の基板を製造した。この窒化ケイ素
質焼結体製基板を用いて図2に示す回路基板を作製し
た。図2において、回路基板1は作製した前記縦50mm×
横50mm×厚さ0.6mmの寸法の窒化ケイ素質焼結体製基板
2の表面に銅製回路板3を設け、前記基板2の裏面に銅
板4をろう材5により接合して構成されている。この回
路基板1に対し、3点曲げ強度の評価および耐熱サイク
ル試験を行った。その結果、曲げ強度が600MPa以上と大
きく、回路基板1の実装工程における締め付け割れおよ
びはんだ付け工程時の熱応力に起因するクラックの発生
する頻度がほぼ見られなくなり、回路基板を使用した半
導体装置の製造歩留まりを大幅に改善できることが実証
された。また、耐熱サイクル試験は、−40での冷却を20
分、室温での保持を10分および180℃における加熱を20
分とする昇温/降温サイクルを1サイクルとし、これを
繰り返し付与し、基板部にクラック等が発生するまでの
サイクル数を測定した。その結果、1000サイクル経過後
においても窒化ケイ素質焼結体製基板2の割れや銅製回
路板2の剥離はなく、優れた耐久性と信頼性を兼備する
ことが確認された。また、1000サイクル経過後において
も耐電圧特性の低下は発生しなかった。
(Example 2) The β conversion rate produced in Example 1 was
3 wt% MgO, 1 wt% in 30% or more silicon nitride powder
A mixed powder to which a sintering aid of% Y 2 O 3 was added was prepared. Then, toluene containing 2 wt% of an amine-based dispersant was added.
The prepared mixed powder and a ball made of silicon nitride as a grinding medium were put into a resin pot of a ball mill filled with a butanol solution, and wet-mixed for 48 hours. Then, 15 parts by weight of a polyvinyl-based organic binder and 100 parts by weight of a plasticizer (dimethyl phthalate) were added to 100 parts by weight of the mixed powder in the pot.
G) was added thereto and wet-mixed for 48 hours to obtain a sheet forming slurry. After adjusting this molding slurry,
Green sheets were formed by a doctor blade method. Next, the formed green sheet is heated at 400 to 600 ° C in air for 2 hours.
By heating for 55 hours, the organic binder component added in advance was sufficiently degreased (removed). Then defatted body 0.9M
The obtained silicon nitride-based sintering was performed by firing at 1850 ° C. × 5 hours in a nitrogen atmosphere of Pa (9 atm), then performing heat treatment at 1900 ° C. × 24 hours in the nitrogen atmosphere, and then cooled to room temperature. Machine processing is applied to the body sheet, length 50 mm × width 50 mm × thickness 0.
A 6 mm substrate for a semiconductor device was manufactured. A circuit board shown in FIG. 2 was produced using the silicon nitride sintered body substrate. In FIG. 2, the circuit board 1 has the length of 50 mm ×
A copper circuit board 3 is provided on the surface of a silicon nitride-based sintered body 2 having a size of 50 mm in width × 0.6 mm in thickness, and a copper plate 4 is joined to a back surface of the substrate 2 with a brazing material 5. This circuit board 1 was subjected to three-point bending strength evaluation and heat cycle test. As a result, the bending strength is as large as 600 MPa or more, and the frequency of occurrence of cracks due to tightening cracks in the mounting process of the circuit board 1 and thermal stress in the soldering process is hardly observed, and the semiconductor device using the circuit board 1 It has been demonstrated that the manufacturing yield can be significantly improved. In the heat cycle test, cooling at -40 was
10 minutes at room temperature and 20 minutes at 180 ° C.
The heating / cooling cycle as one minute was defined as one cycle, which was repeatedly applied, and the number of cycles until cracks or the like occurred in the substrate portion was measured. As a result, even after the lapse of 1000 cycles, there was no cracking of the silicon nitride sintered body substrate 2 or peeling of the copper circuit board 2, and it was confirmed that both the durability and the reliability were excellent. Further, even after 1000 cycles, the withstand voltage characteristics did not decrease.

【0036】[0036]

【発明の効果】以上記述の通り、本発明の窒化ケイ素質
焼結体は、本来有する高強度/高靭性に加えて高い熱伝
導率を具備するので、半導体素子用基板として用いた場
合に半導体素子の作動に伴う繰り返しの熱サイクルによ
って基板にクラックが発生することが少なく、耐熱衝撃
性ならびに耐熱サイクル性を著しく向上することができ
る。
As described above, the silicon nitride sintered body of the present invention has a high thermal conductivity in addition to its inherent high strength / high toughness. Cracks are less likely to occur in the substrate due to repeated thermal cycles associated with the operation of the element, and the thermal shock resistance and the thermal cycle resistance can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の代表的な窒化ケイ素質粉末を走査型電
子顕微鏡により撮影した写真である。
FIG. 1 is a photograph of a representative silicon nitride powder of the present invention taken with a scanning electron microscope.

【図2】本発明の回路基板の要部断面図を示す。FIG. 2 is a sectional view of a main part of a circuit board according to the present invention.

【符号の説明】[Explanation of symbols]

1 回路基板、 2 基板、 3 銅製回路板、 4
銅板、 5 ろう材。
1 circuit board, 2 board, 3 copper circuit board, 4
Copper plate, 5 brazing material.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G001 BA06 BA08 BA09 BA10 BA11 BA32 BA71 BA73 BB06 BB08 BB09 BB10 BB11 BB32 BB71 BB73 BC52 BC54 BD03 BD14 BE33  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G001 BA06 BA08 BA09 BA10 BA11 BA32 BA71 BA73 BB06 BB08 BB09 BB10 BB11 BB32 BB71 BB73 BC52 BC54 BD03 BD14 BE33

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 SiO換算として0.02wt%以上、2
wt%未満の酸素を含み、比表面積が0.5m2/g以上であ
る窒化ケイ素質粉末原料を窒素あるいは窒素/水素の非
酸性雰囲気下にて、温度1400℃以上で熱処理することを
特徴とする窒化ケイ素質粉末の製造方法。
1. A SiO 2 calculated as 0.02 wt% or more, 2
The method is characterized by heat-treating a silicon nitride powder raw material having a specific surface area of 0.5 m 2 / g or more containing less than wt% oxygen at a temperature of 1400 ° C. or more in a non-acidic atmosphere of nitrogen or nitrogen / hydrogen. A method for producing silicon nitride-based powder.
【請求項2】 β分率が30〜100%であり、酸素量が0.5
wt%以下であり、平均粒子径が0.2〜10μmであり、ア
スペクト比が10以下であることを特徴とする窒化ケイ素
質粉末。
2. The composition according to claim 1, wherein the β fraction is 30 to 100% and the oxygen content is 0.5%.
1 wt% or less, an average particle diameter of 0.2 to 10 µm, and an aspect ratio of 10 or less.
【請求項3】 Fe含有量およびAl含有量がそれぞれ
100ppm以下である請求項2に記載の窒化ケイ素質粉末。
3. The method according to claim 1, wherein the Fe content and the Al content are respectively
3. The silicon nitride powder according to claim 2, wherein the content is 100 ppm or less.
【請求項4】 β分率が30〜100%であり、酸素量が0.5
wt%以下であり、平均粒子径が0.2〜10μmであり、ア
スペクト比が10以下である窒化ケイ素質粉末1〜50重量
部と、平均粒子径が0.2〜4μmのα型窒化ケイ素粉末99
〜50重量部とを配合し、焼結することを特徴とする窒化
ケイ素質焼結体の製造方法。
4. A β-fraction of 30 to 100% and an oxygen content of 0.5
wt% or less, an average particle diameter of 0.2 to 10 μm, an aspect ratio of 10 or less, 1 to 50 parts by weight of silicon nitride powder, and an α-type silicon nitride powder 99 of average particle diameter of 0.2 to 4 μm.
To 50 parts by weight and sintering.
【請求項5】 含有するMgを酸化マグネシウム(Mg
O)換算し、また含有するLa,YおよびYbを含む希
土類元素(RE)から選択される少なくとも1種の元素
を酸化物(RE)換算し、それら酸化物換算含有
量の合計が0.6〜7wt%であることを特徴とする窒化
ケイ素質焼結体。
5. The method according to claim 5, wherein the Mg contained is magnesium oxide (Mg).
O), and at least one element selected from the rare earth elements (RE) containing La, Y and Yb contained therein is converted into oxides (RE x O y ), and the total of the contents in terms of oxides is A silicon nitride based sintered body characterized in that the content is 0.6 to 7% by weight.
【請求項6】 常温における熱伝導率が100〜300W/(m
・K)であり、常温における3点曲げ強度が600〜1500MP
aである高強度・高熱伝導性に富んだ請求項5に記載の
窒化ケイ素質焼結体。
6. The thermal conductivity at room temperature is 100 to 300 W / (m
・ K) and the three-point bending strength at room temperature is 600 ~ 1500MP
The silicon nitride-based sintered body according to claim 5, which is a, which is rich in high strength and high thermal conductivity.
【請求項7】 含有するMgを酸化マグネシウム(Mg
O)換算し、また含有するLa,YおよびYbを含む希
土類元素(RE)から選択される少なくとも1種の元素
を酸化物(RE)換算し、それら酸化物換算含有
量の合計が0.6〜7wt%であり、かつ(MgO/REx
y)で表される重量比が1〜70である請求項5または
6に記載の窒化ケイ素質焼結体。
7. A method according to claim 7, wherein the contained Mg is magnesium oxide (Mg).
O), and at least one element selected from the rare earth elements (RE) containing La, Y and Yb contained therein is converted into oxides (RE x O y ), and the total of the contents in terms of oxides is 0.6 to 7 wt%, and (MgO / RE x
O y) weight ratio expressed by the 1 to 70 claims 5 or silicon nitride sintered body according to 6.
【請求項8】 含有するMgを酸化マグネシウム(Mg
O)換算し、また含有するLa,YおよびYbを含む希
土類元素(RE)から選択される少なくとも1種の元素
を酸化物(RE)換算し、それら酸化物換算含有
量の合計が0.6〜7wt%である窒化ケイ素質焼結体を
用いて構成されることを特徴とする高強度・高熱伝導性
に富んだ回路基板。
8. A method according to claim 8, wherein the Mg contained is magnesium oxide (Mg).
O), and at least one element selected from the rare earth elements (RE) containing La, Y and Yb contained therein is converted into oxides (RE x O y ), and the total of the contents in terms of oxides is A circuit board having high strength and high thermal conductivity, characterized by being constituted by using a silicon nitride sintered body of 0.6 to 7 wt%.
JP2000284957A 2000-09-20 2000-09-20 Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body Expired - Lifetime JP3565425B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000284957A JP3565425B2 (en) 2000-09-20 2000-09-20 Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
DE10165107.4A DE10165107B3 (en) 2000-09-20 2001-09-19 Substrate with silicon nitride sintered body and printed circuit board
DE2001165080 DE10165080B4 (en) 2000-09-20 2001-09-19 Silicon nitride powder and sintered body and method of making the same and printed circuit board therewith
DE10146227.1A DE10146227B4 (en) 2000-09-20 2001-09-19 Silicon nitride sintered body, printed circuit board and thermoelectric module
US09/956,033 US6846765B2 (en) 2000-09-20 2001-09-20 Silicon nitride powder, silicon nitride sintered body, sintered silicon nitride substrate, and circuit board and thermoelectric module comprising such sintered silicon nitride substrate
KR1020010058380A KR100833962B1 (en) 2000-09-20 2001-09-20 Silicon nitride powder, sintered silicon nitride, sintered silicon nitride substrate, and circuit board and thermoelectric element module comprising such sintered silicon nitride substrate
CNB011379634A CN1192989C (en) 2000-09-20 2001-09-20 Silicon nitride powder, its sintered body, substrate and circuit board and thermoelectric element module thereof
US10/998,657 US7031166B2 (en) 2000-09-20 2004-11-30 Silicon nitride powder, silicon nitride sintered body, sintered silicon nitride substrate, and circuit board and thermoelectric module comprising such sintered silicon nitride substrate
KR1020070095109A KR100836150B1 (en) 2000-09-20 2007-09-19 Sintered silicon nitride, method of manufacturing the same and sintered silicon nitride substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000284957A JP3565425B2 (en) 2000-09-20 2000-09-20 Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004130790A Division JP4089974B2 (en) 2004-04-27 2004-04-27 Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same

Publications (3)

Publication Number Publication Date
JP2002097005A true JP2002097005A (en) 2002-04-02
JP2002097005A5 JP2002097005A5 (en) 2004-08-05
JP3565425B2 JP3565425B2 (en) 2004-09-15

Family

ID=18769101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284957A Expired - Lifetime JP3565425B2 (en) 2000-09-20 2000-09-20 Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body

Country Status (1)

Country Link
JP (1) JP3565425B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201075A (en) * 2000-10-27 2002-07-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
JP2006096661A (en) * 2005-12-26 2006-04-13 Hitachi Metals Ltd Sintered silicon nitride compact and circuit board using it
JP2009263201A (en) * 2007-08-01 2009-11-12 Mitsubishi Chemicals Corp Crystalline silicon nitride, its production method, phosphor using the silicon nitride, phosphor-containing composition, light-emitting device, illuminating device, image display, sintered compact and pigment
WO2010082478A1 (en) * 2009-01-13 2010-07-22 日立金属株式会社 Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
JP2010173877A (en) * 2009-01-28 2010-08-12 Taiheiyo Cement Corp Silicon nitride sintered compact
JP2010189207A (en) * 2009-02-16 2010-09-02 Taiheiyo Cement Corp Ceramic member
WO2012017949A1 (en) * 2010-08-04 2012-02-09 宇部興産株式会社 SILICON NITRIDE POWDER FOR SILICONITRIDE PHOSPHOR, CaAlSiN3 PHOSPHOR USING SAME, Sr2Si5N8 PHOSPHOR USING SAME, (Sr, Ca)AlSiN3 PHOSPHOR USING SAME, La3Si6N11 PHOSPHOR USING SAME, AND METHODS FOR PRODUCING THE PHOSPHORS
WO2012023414A1 (en) * 2010-08-19 2012-02-23 宇部興産株式会社 Silicon nitride powder for siliconitride fluorescent material, sr3al3si13o2n21 fluorescent material and β-sialon fluorescent material both obtained using same, and processes for producing these
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
WO2013054901A1 (en) * 2011-10-12 2013-04-18 宇部興産株式会社 Oxynitride fluorescent substance powder, silicon nitride powder for manufacturing same, and method for manufacturing same
EP2660200A1 (en) * 2010-12-28 2013-11-06 Ube Industries, Ltd. Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
JP2017108107A (en) * 2015-11-26 2017-06-15 三菱マテリアル株式会社 Ceramic/aluminum conjugate, insulation circuit board, power module, led module, thermoelectric module
JP2018528152A (en) * 2015-08-17 2018-09-27 韓国科学技術院Korea Advanced Institute Of Science And Technology High thermal conductivity silicon nitride sintered body and manufacturing method thereof
KR101901172B1 (en) * 2018-05-23 2018-09-27 (주)존인피니티 High thermal conductive silicon nitride ceramics substrate with excellent electric isolation
JP2019006673A (en) * 2017-06-26 2019-01-17 エルジー・ケム・リミテッド Production method of silicon nitride sintered body, silicon nitride sintered body, and heat radiation substrate using the same
WO2023176500A1 (en) * 2022-03-16 2023-09-21 株式会社 東芝 Silicon nitride sintered body and wear-resistant member using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177307A (en) * 1989-12-07 1991-08-01 Denki Kagaku Kogyo Kk Silicon nitride powder
JPH06166504A (en) * 1992-11-27 1994-06-14 Natl Inst For Res In Inorg Mater Treatment for raising purity of silicon nitride stock powder and silicon nitride powder
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH11349381A (en) * 1998-06-08 1999-12-21 Hitachi Metals Ltd Silicon nitride sintered compact and sputter target comprising the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03177307A (en) * 1989-12-07 1991-08-01 Denki Kagaku Kogyo Kk Silicon nitride powder
JPH06166504A (en) * 1992-11-27 1994-06-14 Natl Inst For Res In Inorg Mater Treatment for raising purity of silicon nitride stock powder and silicon nitride powder
JPH0930866A (en) * 1995-07-21 1997-02-04 Nissan Motor Co Ltd Siliceous nitride sintered compact having high thermal conductivity, its production and insulating base made of siliceous nitride sintered compact
JPH11349381A (en) * 1998-06-08 1999-12-21 Hitachi Metals Ltd Silicon nitride sintered compact and sputter target comprising the same

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201075A (en) * 2000-10-27 2002-07-16 Toshiba Corp Silicon nitride ceramic substrate and silicon nitride ceramic circuit substrate using it and its manufacturing method
JP2006096661A (en) * 2005-12-26 2006-04-13 Hitachi Metals Ltd Sintered silicon nitride compact and circuit board using it
JP4518020B2 (en) * 2005-12-26 2010-08-04 日立金属株式会社 A silicon nitride sintered body and a circuit board using the same.
JP2009263201A (en) * 2007-08-01 2009-11-12 Mitsubishi Chemicals Corp Crystalline silicon nitride, its production method, phosphor using the silicon nitride, phosphor-containing composition, light-emitting device, illuminating device, image display, sintered compact and pigment
US9184595B2 (en) 2008-09-27 2015-11-10 Witricity Corporation Wireless energy transfer in lossy environments
US8304935B2 (en) 2008-09-27 2012-11-06 Witricity Corporation Wireless energy transfer using field shaping to reduce loss
US8324759B2 (en) 2008-09-27 2012-12-04 Witricity Corporation Wireless energy transfer using magnetic materials to shape field and reduce loss
US8858865B2 (en) 2009-01-13 2014-10-14 Hitachi Metals, Ltd. Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
WO2010082478A1 (en) * 2009-01-13 2010-07-22 日立金属株式会社 Silicon nitride substrate manufacturing method, silicon nitride substrate, silicon nitride circuit substrate, and semiconductor module
JP2010173877A (en) * 2009-01-28 2010-08-12 Taiheiyo Cement Corp Silicon nitride sintered compact
JP2010189207A (en) * 2009-02-16 2010-09-02 Taiheiyo Cement Corp Ceramic member
JP5910498B2 (en) * 2010-08-04 2016-05-11 宇部興産株式会社 Silicon nitride powder for silicon nitride phosphor, CaAlSiN3 phosphor, Sr2Si5N8 phosphor, (Sr, Ca) AlSiN3 phosphor and La3Si6N11 phosphor using the same, and method for producing the same
WO2012017949A1 (en) * 2010-08-04 2012-02-09 宇部興産株式会社 SILICON NITRIDE POWDER FOR SILICONITRIDE PHOSPHOR, CaAlSiN3 PHOSPHOR USING SAME, Sr2Si5N8 PHOSPHOR USING SAME, (Sr, Ca)AlSiN3 PHOSPHOR USING SAME, La3Si6N11 PHOSPHOR USING SAME, AND METHODS FOR PRODUCING THE PHOSPHORS
US9023240B2 (en) 2010-08-04 2015-05-05 Ube Industries, Ltd. Silicon nitride powder for siliconnitride phosphor, CaAlSiN3 phosphor using same, Sr2Si5N8 phosphor using same, (Sr, Ca)AlSiN3 phosphor using same, La3Si6N11 Phosphor using same, and methods for producing the phosphors
JP5874635B2 (en) * 2010-08-19 2016-03-02 宇部興産株式会社 Silicon nitride powder for silicon nitride phosphor, Sr3Al3Si13O2N21 phosphor using the same, β-sialon phosphor and method for producing the same
US9023241B2 (en) 2010-08-19 2015-05-05 Ube Industries, Ltd Silicon nitride powder for siliconnitride phosphor, Sr3Al3Si13O2N21 phosphor and β-sialon phosphor both obtained using same, and processes for producing these
WO2012023414A1 (en) * 2010-08-19 2012-02-23 宇部興産株式会社 Silicon nitride powder for siliconitride fluorescent material, sr3al3si13o2n21 fluorescent material and β-sialon fluorescent material both obtained using same, and processes for producing these
EP2660200A4 (en) * 2010-12-28 2014-10-29 Ube Industries Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
US8973888B2 (en) 2010-12-28 2015-03-10 Ube Industries, Ltd. Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
EP2660200A1 (en) * 2010-12-28 2013-11-06 Ube Industries, Ltd. Polycrystalline silicon ingot casting mold and method for producing same, and silicon nitride powder for mold release material for polycrystalline silicon ingot casting mold and slurry containing same
JPWO2013054901A1 (en) * 2011-10-12 2015-03-30 宇部興産株式会社 Oxynitride phosphor powder, silicon nitride powder for producing oxynitride phosphor powder, and method for producing oxynitride phosphor powder
WO2013054901A1 (en) * 2011-10-12 2013-04-18 宇部興産株式会社 Oxynitride fluorescent substance powder, silicon nitride powder for manufacturing same, and method for manufacturing same
US9758720B2 (en) 2011-10-12 2017-09-12 Ube Industries, Ltd. Oxynitride phosphor powder, silicon nitride powder for production of oxynitride phosphor powder, and production method of oxynitride phosphor powder
JP2018528152A (en) * 2015-08-17 2018-09-27 韓国科学技術院Korea Advanced Institute Of Science And Technology High thermal conductivity silicon nitride sintered body and manufacturing method thereof
JP2017108107A (en) * 2015-11-26 2017-06-15 三菱マテリアル株式会社 Ceramic/aluminum conjugate, insulation circuit board, power module, led module, thermoelectric module
JP2019006673A (en) * 2017-06-26 2019-01-17 エルジー・ケム・リミテッド Production method of silicon nitride sintered body, silicon nitride sintered body, and heat radiation substrate using the same
KR101901172B1 (en) * 2018-05-23 2018-09-27 (주)존인피니티 High thermal conductive silicon nitride ceramics substrate with excellent electric isolation
WO2023176500A1 (en) * 2022-03-16 2023-09-21 株式会社 東芝 Silicon nitride sintered body and wear-resistant member using same
JP7472408B2 (en) 2022-03-16 2024-04-22 株式会社東芝 Silicon nitride sintered body and wear-resistant member using same

Also Published As

Publication number Publication date
JP3565425B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
KR100833962B1 (en) Silicon nitride powder, sintered silicon nitride, sintered silicon nitride substrate, and circuit board and thermoelectric element module comprising such sintered silicon nitride substrate
JP3565425B2 (en) Method for producing silicon nitride-based powder and method for producing silicon nitride-based sintered body
Liang et al. Mechanical properties and thermal conductivity of Si3N4 ceramics with YF3 and MgO as sintering additives
JP5444384B2 (en) High thermal conductivity aluminum nitride sintered body
JP2005330178A (en) High thermoconductivity high strength silicon nitride ceramic and manufacturing method therefor
JP7062229B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2007197229A (en) High-thermal conductive silicon nitride substrate and method of manufacturing the same
JP2002293642A (en) Silicon nitride-based sintered compact having high thermal conductivity, method of producing the same, and circuit board
JP2002097005A5 (en)
JP7062230B2 (en) Plate-shaped silicon nitride sintered body and its manufacturing method
JP2002265276A (en) Silicon nitride powder and silicon nitride sintered compact
JP4089974B2 (en) Silicon nitride powder, silicon nitride sintered body, and circuit board for electronic components using the same
JP4518020B2 (en) A silicon nitride sintered body and a circuit board using the same.
JP3775335B2 (en) Silicon nitride sintered body, method for producing silicon nitride sintered body, and circuit board using the same
JP2002249379A (en) Aluminum nitride sintered compact and member for device for manufacturing of semiconductor
JP4529102B2 (en) High thermal conductivity silicon nitride sintered body and manufacturing method thereof
JP2005255462A (en) Silicon nitride sintered compact, method for manufacturing the same and circuit board using the same
JP4348659B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP2002029848A (en) Method for manufacturing sintered silicon nitride compact having high thermal conductivity
JPH09268069A (en) Highly heat conductive material and its production
JP4859267B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP4332828B2 (en) High thermal conductivity silicon nitride sintered body, substrate using the same, circuit board for semiconductor device
JP4065589B2 (en) Aluminum nitride sintered body and manufacturing method thereof
JP2008156142A (en) Aluminum nitride sintered compact and method for manufacturing the same
JP3929335B2 (en) Aluminum nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20031224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3565425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

EXPY Cancellation because of completion of term