JP2002090625A - Zoom lens and imaging device provided therewith - Google Patents

Zoom lens and imaging device provided therewith

Info

Publication number
JP2002090625A
JP2002090625A JP2001210118A JP2001210118A JP2002090625A JP 2002090625 A JP2002090625 A JP 2002090625A JP 2001210118 A JP2001210118 A JP 2001210118A JP 2001210118 A JP2001210118 A JP 2001210118A JP 2002090625 A JP2002090625 A JP 2002090625A
Authority
JP
Japan
Prior art keywords
lens
lens group
group
image
zoom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001210118A
Other languages
Japanese (ja)
Other versions
JP2002090625A5 (en
JP4503886B2 (en
Inventor
Toyoji Hanzawa
豊治 榛澤
Azusa Noguchi
あずさ 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001210118A priority Critical patent/JP4503886B2/en
Publication of JP2002090625A publication Critical patent/JP2002090625A/en
Publication of JP2002090625A5 publication Critical patent/JP2002090625A5/ja
Application granted granted Critical
Publication of JP4503886B2 publication Critical patent/JP4503886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a zoom lens constituted of few number of lenses, having a constitution capable of adopting rear focus, having stable image-forming performance over the entire zoom area and in the range from infinity to short distance, thinned overall by thinning respective lenses and is made inexpensive. SOLUTION: This zoom lens is constituted of a 1st negative lens group, a 2nd positive lens group and a 3rd positive lens group, starting from an object side, and the 3rd lens group is moved on an optical axis, so that a distance between the 3rd lens group and an image surface may be large, and consists of a single positive lens, so that the lenses satisfy conditions (1), (2), (3) and (4), where (1) |fW/f2R|<0.1, (2) 0.89<f3/fT<2.8, (3) 1.1<|β23T|<2, and (4) 1/β2T<0.25.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、奥行き方向が薄い
ズームレンズおよびこのズームレンズを備えたビデオカ
メラやデジタルカメラ等の撮像装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens having a thin depth direction and an image pickup apparatus such as a video camera and a digital camera provided with the zoom lens.

【0002】[0002]

【従来の技術】近年、銀塩35mmフィルム(いわゆる
ライカ版)カメラに代る次世代のカメラとしてデジタル
カメラ(電子カメラ)が注目されている。
2. Description of the Related Art In recent years, digital cameras (electronic cameras) have attracted attention as next-generation cameras that can replace silver halide 35 mm film (so-called Leica) cameras.

【0003】これらデジタルカメラは、業務用の高機能
なものからポータブルな普及タイプまで幅広いものが知
られている。
[0003] These digital cameras are known in a wide range from high-functional ones for business use to portable popular types.

【0004】本発明において目的とする特にポータブル
な普及タイプのビデオカメラあるいはデジタルカメラ
で、高画質で奥行きの薄いビデオカメラ、デジタルカメ
ラを実現するためにネックになっているのは、光学系、
特にズーム光学系の最も物体側の面から撮像面までの厚
さを薄くすることである。
[0004] In the present invention, a portable video camera or digital camera, particularly a portable type, which is a bottleneck for realizing a video camera and a digital camera with high image quality and a small depth is an optical system,
In particular, it is to reduce the thickness of the zoom optical system from the most object side surface to the imaging surface.

【0005】最近、撮影時に光学系をカメラボディー内
からせり出し、一方携帯時には光学系をカメラボディー
内に収納する沈胴式鏡筒を採用したものが知られてい
る。
Recently, it has been known to employ a collapsible lens barrel in which the optical system is protruded from the inside of the camera body at the time of photographing, while the optical system is housed inside the camera body when carrying.

【0006】しかしながら、使用する光学系のタイプや
フィルターによって光学系を沈銅させた時の厚さが大き
く異なる。特にズーム比やFナンバー等の仕様を高く設
定するために好適な、光学系の最も物体側のレンズ群が
正の屈折力を有するいわゆる正先行型ズームレンズは、
各レンズの肉厚が大であり、デッドスペースが大にな
り、沈胴しても厚さをあまり小にすることができない
(特開平11−258507号公報)。
[0006] However, the thickness of the optical system when the optical system is deposited differs greatly depending on the type of optical system and the filter used. A so-called positive-leading zoom lens, in which the most object-side lens group of the optical system has a positive refractive power, is particularly suitable for setting specifications such as the zoom ratio and the F-number high.
The thickness of each lens is large, the dead space becomes large, and the thickness cannot be made very small even when retracted (Japanese Patent Laid-Open No. 11-258507).

【0007】これに対し、負先行型の2群乃至3群ズー
ムレンズは、沈胴式を採用する場合有利である。
On the other hand, a negative-leading type second or third lens group zoom lens is advantageous when employing a retractable lens system.

【0008】また、特開平11−52246号公報に記
載されているズームレンズは、各群の構成レンズ枚数が
大であり、最も物体側のレンズが正レンズであるため沈
胴させてもカメラの厚さを薄くすることはできない。
The zoom lens described in Japanese Patent Application Laid-Open No. 11-52246 has a large number of constituent lenses in each group, and the lens closest to the object is a positive lens. It cannot be thin.

【0009】現在知られているズームレンズで、電子撮
像素子を用いるカメラに適していて、かつズーム比、画
角、Fナンバー等の結像性能が良好であって、沈胴厚を
最も薄くし得る光学系の例として特開平11−1942
74号、特開平11−287953号、特開2000−
9997号の各公報に記載されたものがある。
A currently known zoom lens, which is suitable for a camera using an electronic image pickup device, has good image forming performance such as a zoom ratio, an angle of view, and an F number, and can make the collapsed thickness the thinnest. JP-A-11-1942 as an example of an optical system
No. 74, JP-A-11-287953, JP-A-2000-
There is one described in each publication of No. 9997.

【0010】これら従来例において、第1群を薄くする
ためには、入射瞳位置を浅くするのがよいが、そのため
には第2群の倍率を高くせざるを得ない。しかし、第2
群の倍率を高くして第2群の負担が大になると、第2群
自身を薄くできなくなり、また収差補正が困難になり、
製造誤差による影響が大になり好ましくない。
In these conventional examples, to make the first unit thinner, it is preferable to make the position of the entrance pupil shallower. However, for that purpose, the magnification of the second unit must be increased. But the second
If the load on the second group is increased by increasing the magnification of the group, the second group itself cannot be thinned, and it becomes difficult to correct aberrations.
The influence of manufacturing errors increases, which is not preferable.

【0011】また、薄型化、小型化を達成するために
は、撮像素子を小さくすればよいが、同じ画素数で撮像
素子を小さくするためには画素ピッチを小さくする必要
があり、感度不足を光学系でカバーする必要がある。ま
た回折による影響もでるため好ましくない。
Further, in order to achieve a reduction in thickness and size, it is necessary to reduce the size of the image sensor. However, in order to reduce the size of the image sensor with the same number of pixels, it is necessary to reduce the pixel pitch. It is necessary to cover with an optical system. In addition, it is not preferable because the influence of diffraction occurs.

【0012】[0012]

【発明が解決しようとする課題】本発明は、構成枚数が
少なく、リアーフォーカスを採用し得る構成で、小型で
簡単でしかもズーム全領域および無限遠から近距離まで
安定した結像性能であり、更に各レンズを薄くして各レ
ンズ群の厚さを薄くしレンズ系全体を薄型にした安価な
ズームレンズおよびこのズームレンズを備えた奥行きの
薄い撮像装置を提供するものである。
SUMMARY OF THE INVENTION The present invention has a small number of components and can adopt a rear focus, and is compact and simple, and has stable imaging performance over the entire zoom range and from infinity to short distance. It is an object of the present invention to provide an inexpensive zoom lens in which each lens is thinned and the thickness of each lens group is thinned to make the entire lens system thin, and an imaging device with a small depth provided with this zoom lens.

【0013】[0013]

【課題を解決するための手段】本発明のズームレンズ
は、物体側より順に、負の屈折力を有する第1レンズ群
と、正の屈折力を有する第2レンズ群と、正の屈折力を
有する第3レンズ群とよりなり、広角端から望遠端に変
倍する際に前記第3レンズ群と像面との間隔が大になる
ように第3レンズ群を移動するレンズ系で、第3レンズ
群が正レンズ1枚よりなり、下記条件(1)、(2)、
(3)、(4)を満足することを特徴とする。 (1) |fW/f2R|<0.1 (2) 0.89<f3/fT<2.8 (3) 1.1<|β23T|<2 (4) 1/β2T<0.25 ただし、f2Rは第2レンズ群の最も像側のレンズの焦
点距離、f3は第3レンズ群の焦点距離、β23Tは望
遠端における第2レンズ群と第3レンズ群の合成倍率、
β2Tは望遠端における第2レンズ群の倍率、fWは広
角端におけるズームレンズ全系の焦点距離、fTは望遠
端におけるズームレンズ全系の焦点距離である。
A zoom lens according to the present invention comprises, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a positive refractive power. A lens system that moves the third lens group so as to increase the distance between the third lens group and the image plane when zooming from the wide-angle end to the telephoto end. The lens group consists of one positive lens, and the following conditions (1), (2),
(3) and (4) are satisfied. (1) | fW / f2R | <0.1 (2) 0.89 <f3 / fT <2.8 (3) 1.1 <| β23T | <2 (4) 1 / β2T <0.25 f2R is the focal length of the lens closest to the image in the second lens group, f3 is the focal length of the third lens group, β23T is the combined magnification of the second and third lens groups at the telephoto end,
β2T is the magnification of the second lens group at the telephoto end, fW is the focal length of the entire zoom lens system at the wide-angle end, and fT is the focal length of the entire zoom lens system at the telephoto end.

【0014】デジタルスチルカメラのような電子撮像装
置は、電子撮像素子に入射する光線の角度を極力小さく
する必要がある。
In an electronic imaging device such as a digital still camera, it is necessary to minimize the angle of a light beam incident on the electronic imaging device.

【0015】本発明のズームレンズは、負の第1レンズ
群と正の第2レンズ群の2群ズームレンズのうちの第2
レンズ群の最も像側の正レンズを第3レンズ群とし、電
子撮像素子に入射する光線の角度が小さくなるように第
3レンズ群を独立に移動するようにした。更に前記条件
(1)、(2)、(3)、(4)を満足するようにして
沈胴厚を薄くしつつ無限遠より近距離までの収差が良好
になるようにした。
The zoom lens system according to the present invention is a zoom lens system comprising a second negative lens unit and a second positive lens unit.
The positive lens closest to the image side of the lens group is defined as a third lens group, and the third lens group is independently moved so that the angle of a light beam incident on the electronic image sensor becomes small. Further, the conditions (1), (2), (3) and (4) were satisfied so that the retracted thickness was reduced and the aberration from infinity to a short distance was improved.

【0016】条件(1)は、第2レンズ群の最も像側の
レンズの焦点距離(屈折力)を規制することによって沈
胴厚を薄くするようにしたものである。
The condition (1) is such that the focal length (refractive power) of the lens closest to the image side of the second lens group is restricted so as to reduce the collapsible thickness.

【0017】条件(1)の上限の0.1を超えるとレン
ズの厚さを薄くすることが困難になり、沈胴厚を薄くす
ることができない。
When the value exceeds the upper limit of 0.1 of the condition (1), it becomes difficult to reduce the thickness of the lens, and it is impossible to reduce the collapsed thickness.

【0018】また、沈胴厚を更に薄くし、また色収差の
発生を抑え、温度や湿度の変化による影響を受けないよ
うにするためには、条件(1)の代りに下記条件(1−
1)を満足することが望ましい。 (1−1) |fW/f2R|<0.05
In order to further reduce the collapsed thickness, to suppress the occurrence of chromatic aberration, and to be free from the effects of changes in temperature and humidity, the following condition (1-1) is used instead of condition (1).
It is desirable to satisfy 1). (1-1) | fW / f2R | <0.05

【0019】条件(2)は、第3レンズ群の移動量を制
限することにより沈胴厚を薄くするために設けたもので
ある。
Condition (2) is provided to reduce the retracted thickness by limiting the amount of movement of the third lens unit.

【0020】本発明のズームレンズは、第2レンズ群と
第3レンズ群との収差のバランスをとることにより収差
を良好に補正するようにした。条件(2)の下限の0.
89を超えると第3レンズ群の屈折力が強くなり、第3
レンズ群にて発生するコマ収差や非点収差の補正が困難
になる。また、上限の2.8を超えると、第2レンズ群
の屈折力が強くなり、球面収差の補正が困難になる。
In the zoom lens according to the present invention, the aberrations are favorably corrected by balancing the aberrations of the second lens unit and the third lens unit. 0 of the lower limit of the condition (2).
If it exceeds 89, the refracting power of the third lens group becomes strong,
It becomes difficult to correct coma and astigmatism generated in the lens group. When the value exceeds the upper limit of 2.8, the refractive power of the second lens group becomes strong, and it becomes difficult to correct spherical aberration.

【0021】また、沈胴厚をより小さくするためには、
条件(2)の代りに下記条件(2−1)を満足すること
が望ましい。 (2−1) 1.1<f3/fT<2
In order to reduce the collapsed thickness,
It is preferable that the following condition (2-1) is satisfied instead of the condition (2). (2-1) 1.1 <f3 / fT <2

【0022】条件(3)は、望遠端における無限遠合焦
時の第2レンズ群と第3レンズ群の合成の倍率β23T
を規定するものである。このβ23Tの絶対値は、出来
る限り大きい方が広角端における入射瞳位置を浅く出
来、第1レンズ群の径を小さくしやすく、ひいては第1
レンズ群の厚さを小さくできる。この条件(3)の下限
の1.1を超えると第1レンズ群の厚さを小さくするこ
とが困難になり、また上限の2を超えると球面収差、コ
マ収差、非点収差等の補正が困難になる。
Condition (3) is a combination magnification β23T of the second lens unit and the third lens unit when focusing on infinity at the telephoto end.
Is defined. If the absolute value of β23T is as large as possible, the entrance pupil position at the wide-angle end can be made shallow, and the diameter of the first lens unit can be easily reduced.
The thickness of the lens group can be reduced. If the lower limit of 1.1 of the condition (3) is exceeded, it becomes difficult to reduce the thickness of the first lens unit. If the upper limit of 2 is exceeded, correction of spherical aberration, coma, astigmatism, and the like, will fail. It becomes difficult.

【0023】上記条件(3)の代りに下記条件(3−
1)を満足すればより望ましい。 (3−1) 1.2<|β23T|<1.8
Instead of the above condition (3), the following condition (3-
It is more desirable to satisfy 1). (3-1) 1.2 <| β23T | <1.8

【0024】条件(4)は、フォーカシングによる収差
の変動を小さくするための条件であり、倍率0.05倍
までの撮影に対し、収差変動を小さく抑えるようにする
ための条件である。この条件(4)の上限の0.25を
超えると近距離撮影時の球面収差、コマ収差、非点収差
等の補正が困難になる。
Condition (4) is a condition for reducing the fluctuation of aberration due to focusing, and is a condition for suppressing the fluctuation of aberration to be small for photographing up to a magnification of 0.05. When the value exceeds the upper limit of 0.25 of the condition (4), it becomes difficult to correct spherical aberration, coma, astigmatism, and the like at the time of close-up shooting.

【0025】また、近距離の0.1倍の撮影において良
好な像を得るためには、条件(4)の代りに下記条件
(4−1)を満足することが望ましい。 (4−1) 1/β2T<0.1
In order to obtain a good image in photographing at 0.1 times the short distance, it is desirable to satisfy the following condition (4-1) instead of condition (4). (4-1) 1 / β2T <0.1

【0026】本発明のレンズ系は、沈胴厚を薄くするた
めに第2レンズ群の曲率を出来るだけ緩くし、そのため
に第2レンズ群の屈折力が弱くなり、この屈折力の不足
を第3レンズ群にて補うようにしたものである。そのた
め、第3レンズ群は、変倍時に第2レンズ群の移動につ
いて移動する。これら、第2レンズ群と第3レンズ群の
広角端から望遠端にかけての移動量は、次の条件(5)
を満足することが好ましい。 (5) 0.6<Δ2/Δ3<3 ただし、Δ2、Δ3は夫々第2レンズ群、第3レンズ群
の広角端から望遠端の移動量である。
In the lens system according to the present invention, the curvature of the second lens unit is made as small as possible in order to reduce the collapsed thickness, so that the refractive power of the second lens unit is weakened. This is supplemented by a lens group. Therefore, the third lens unit moves with respect to the movement of the second lens unit during zooming. The amount of movement of the second lens unit and the third lens unit from the wide-angle end to the telephoto end is determined by the following condition (5).
Is preferably satisfied. (5) 0.6 <Δ2 / Δ3 <3 where Δ2 and Δ3 are the amounts of movement of the second lens unit and the third lens unit from the wide-angle end to the telephoto end, respectively.

【0027】この条件(5)において、下限の0.6を
超えると第2レンズ群の屈折力が弱くなり、収差補正が
困難になる。また撮影時の全長が長くなり沈胴状態から
撮影状態への移行に時間がかかり、シャッターチャンス
を逃す等の問題が生ずる。条件(5)の上限の3を超え
ると、沈胴厚が厚くなる。
In condition (5), if the lower limit of 0.6 is exceeded, the refractive power of the second lens unit becomes weak, and it becomes difficult to correct aberrations. In addition, the overall length during shooting becomes longer, and it takes time to shift from the collapsed state to the shooting state, causing problems such as missing a photo opportunity. When the value exceeds the upper limit of 3 in the condition (5), the collapsed thickness becomes large.

【0028】電子撮像素子を用いたカメラにおいて、色
分解プリズムの後に三つのCCDを配置して撮影を行な
う3板カメラの場合、色分解プリズムとして干渉膜を用
いるために、光学系よりの光束が傾くと色シェーディン
グが発生する。これを回避するためには、主光線の光軸
に対する傾きを5度以内にする必要がある。
In a camera using an electronic image pickup device, in the case of a three-plate camera in which three CCDs are arranged after a color separation prism to perform photographing, a light flux from an optical system is used because an interference film is used as the color separation prism. Tilting causes color shading. In order to avoid this, the inclination of the principal ray with respect to the optical axis needs to be within 5 degrees.

【0029】そのために、前記構成の本発明のズームレ
ンズは、下記条件(6)を満足することが望ましい。 (6) DW/fW>5 ただしDWは広角端での開口絞りから像面までの距離で
ある。
For this purpose, it is desirable that the zoom lens of the present invention having the above-described configuration satisfies the following condition (6). (6) DW / fW> 5 where DW is the distance from the aperture stop at the wide angle end to the image plane.

【0030】条件(6)の下限の5を超えると撮像面に
入射する主光線の傾き角が5度を超えるため色シェーデ
ィングが起きる。
If the lower limit of 5 of the condition (6) is exceeded, color shading occurs because the inclination angle of the principal ray incident on the image pickup surface exceeds 5 degrees.

【0031】また、光学系が一眼レフタイプのファイン
ダーを備える場合、ハーフミラーやクイックリターンミ
ラーをレンズと像面との間に入れる必要があり、レンズ
と像面との間隔をとる必要がある。そのためには、下記
条件(7)を満足する必要がある。 (7) f2/fW>3.6 ただし、f2は第2レンズ群の焦点距離である。
When the optical system has a single-lens reflex type finder, it is necessary to insert a half mirror or a quick return mirror between the lens and the image plane, and it is necessary to keep a distance between the lens and the image plane. For that purpose, the following condition (7) must be satisfied. (7) f2 / fW> 3.6 where f2 is the focal length of the second lens group.

【0032】この条件(7)の下限の3.6を超えると
一眼レフ用の光分割部材を配置できなくなるか、第2レ
ンズ群のレンズの枚数を増やす必要性が生じ第2レンズ
群が厚くなり、レンズ系の全長が長くなり、沈胴厚を薄
くできない。またクイックリターンミラーを配置する場
合、レンズ系の全長は長くなるが、沈胴時はクイックリ
ターンミラーを跳ね上げるので、沈胴厚を縮めることは
できる。
When the lower limit of 3.6 to condition (7) is exceeded, it becomes impossible to arrange a single-lens reflex light splitting member, or it becomes necessary to increase the number of lenses in the second lens group, and the second lens group becomes thick. As a result, the overall length of the lens system becomes longer, and the collapsed thickness cannot be reduced. When a quick return mirror is provided, the overall length of the lens system becomes longer, but when the lens is collapsed, the quick return mirror is flipped up, so that the collapsed thickness can be reduced.

【0033】本発明のズームレンズは、フォーカシング
のために第3レンズ群を用いることが望ましい。第3レ
ンズ群を物体側に繰り出すことにより近距離の被写体に
合焦することができる。
In the zoom lens of the present invention, it is desirable to use the third lens group for focusing. By extending the third lens group toward the object side, it is possible to focus on a subject at a short distance.

【0034】第3レンズ群をフォーカシングのために移
動すると、レンズの移動に伴う収差変動が問題になる。
第3レンズ群に非球面を設けて第1レンズ群と第2レン
ズ群で残存する収差を補正する場合、第3レンズ群のフ
ォーカシングのための移動により補正バランスが崩れ
る。そのために第3レンズ群をフォーカシングのために
使用する場合は、変倍域全域にわたって第1レンズ群と
第2レンズ群で非点収差を良好に補正し、第3レンズ群
は球面系にすることが望ましい。
When the third lens group is moved for focusing, there is a problem of fluctuation of aberration due to movement of the lens.
In the case where an aspheric surface is provided in the third lens group to correct residual aberration in the first lens group and the second lens group, the correction balance is lost due to the movement of the third lens group for focusing. Therefore, when the third lens group is used for focusing, the first lens group and the second lens group preferably correct astigmatism satisfactorily over the entire zoom range, and the third lens group must be a spherical system. Is desirable.

【0035】尚、条件式(2)を満足することは、第3
レンズ群をフォーカシングレンズとして使用する場合に
も有効である。条件式(2)を満足すると、第3レンズ
群のフォーカシング時の移動が制限され、沈胴厚を薄く
することが可能になる。
It should be noted that satisfying conditional expression (2) is satisfied by the third condition.
This is also effective when the lens group is used as a focusing lens. If conditional expression (2) is satisfied, the movement of the third lens unit during focusing is restricted, and the collapsible thickness can be reduced.

【0036】条件(2)の下限を超えると望遠端での第
3レンズ群の移動量が大になり、第3レンズ群を指示す
る機構が大になるため沈胴厚を小さくすることが困難に
なる。また第3レンズ群の径方向の長さが大になる。尚
条件(2)の代りに条件(2−1)を満足すれば広角端
における制限がより容易になり、かつ沈胴厚をより小さ
くすることが可能になる。
If the lower limit of the condition (2) is exceeded, the amount of movement of the third lens unit at the telephoto end becomes large, and the mechanism for pointing the third lens unit becomes large, so that it is difficult to reduce the collapsed thickness. Become. In addition, the radial length of the third lens group becomes large. If the condition (2-1) is satisfied instead of the condition (2), the restriction at the wide-angle end becomes easier, and the collapsed thickness can be further reduced.

【0037】また、本発明のズームレンズにおいて、沈
胴厚を出来る限り薄くするためには、第2レンズ群の厚
さを出来る限り薄くする必要がある。そのためには第2
レンズ群のレンズ枚数を少なくするか、レンズの曲率を
緩くする必要がある。しかし、収差補正のためには屈折
力が必要であるため、ある程度の曲率が必要である。そ
のためには次の条件(8)を満足することが望ましい。 (8) 0.3<R2b/f2<0.6 ただし、R2bは第2レンズ群中の空気に接する凸面で
最も小さい曲率半径(非球面の場合光軸付近の曲率半
径)、f2は第2レンズ群の焦点距離である。
In the zoom lens according to the present invention, in order to make the collapsed thickness as small as possible, it is necessary to make the thickness of the second lens group as small as possible. For that, the second
It is necessary to reduce the number of lenses in the lens group or to reduce the curvature of the lens. However, since a refractive power is required for aberration correction, a certain degree of curvature is required. For that purpose, it is desirable to satisfy the following condition (8). (8) 0.3 <R2b / f2 <0.6 where R2b is the smallest radius of curvature of the convex surface in contact with air in the second lens group (in the case of an aspheric surface, the radius of curvature near the optical axis), and f2 is the second radius. This is the focal length of the lens group.

【0038】条件(8)の下限の0.3を超えると第2
レンズ群の厚さが厚くなり沈胴厚が厚くなりすぎる。上
限の0.6を超えると収差補正とくに球面収差の補正が
困難になる。
When the lower limit of 0.3 to condition (8) is exceeded, the second condition is satisfied.
The thickness of the lens group becomes too thick and the collapsed thickness becomes too thick. If the upper limit of 0.6 is exceeded, it becomes difficult to correct aberrations, especially spherical aberration.

【0039】また、本発明のズームレンズは、開口絞り
を第2レンズ群の物体側に配置し、第2レンズ群中の特
に軸外収差の補正にとって効果的である最も像側のレン
ズに非球面を設けることが好ましい。この第2レンズ群
の最も像側のレンズに非球面を設けることによりコマ収
差を良好に補正することができる。
In the zoom lens according to the present invention, the aperture stop is arranged on the object side of the second lens group, and the second lens group has a non-aperture lens closest to the image side, which is particularly effective for correcting off-axis aberrations. Preferably, a spherical surface is provided. By providing an aspherical surface on the lens closest to the image in the second lens group, coma can be satisfactorily corrected.

【0040】一般に、非球面を設けるレンズの硝材は、
アッベ数の小さいものが多い。
Generally, the glass material of a lens having an aspherical surface is:
Many have small Abbe numbers.

【0041】上記非球面を設けるレンズは、前記条件
(1)を満足することにより肉厚を薄くすることができ
るだけでなく、アッベ数の小さいレンズを用いても色収
差の発生を抑えることができる。また温度、湿度の変化
に影響されにくい。
The lens provided with the aspheric surface can not only be reduced in thickness by satisfying the above condition (1), but also can suppress the occurrence of chromatic aberration by using a lens having a small Abbe number. In addition, it is hardly affected by changes in temperature and humidity.

【0042】また、第2レンズ群の物体側の正レンズと
負レンズは、これらレンズの相対的偏芯による収差の変
動が大きいため、これら正レンズと負レンズを接合する
ことが好ましい。更にこのような構成のレンズ群は、前
玉径が大きくなりにくいので開口絞りを第2レンズ群と
一体にし、つまり第2レンズ群の物体側に配置し、変倍
の際に第2レンズ群と開口絞りとを一体で移動すること
が機構上単純な構成になり、また沈胴時にデットスペー
スが生じにくいので好ましい。また、広角端と望遠端に
おけるFナンバーを小さくできる。
Since the positive lens and the negative lens on the object side of the second lens group vary greatly in aberration due to the relative eccentricity of these lenses, it is preferable to join these positive and negative lenses. Further, in the lens group having such a configuration, since the front lens diameter is unlikely to be large, the aperture stop is integrated with the second lens group, that is, disposed on the object side of the second lens group. It is preferable to move the aperture stop and the aperture stop integrally because the mechanism is simple in structure and a dead space hardly occurs at the time of collapsing. Further, the F number at the wide-angle end and the telephoto end can be reduced.

【0043】以上のことを考慮すると、第2レンズ群の
構成は、単レンズ−接合レンズ−単レンズかあるいは接
合レンズ−単レンズであることが好ましい。ここで、第
2レンズ群の物体側からi番目の単レンズの焦点距離を
f2iとおき、下記の条件式(9)を満たす場合、その
単レンズを屈折力の弱いレンズと呼ぶ。 (9) |fW/f2i|<0.1
In consideration of the above, the configuration of the second lens group is preferably a single lens-joint lens-single lens or a cemented lens-single lens. Here, when the focal length of the i-th single lens from the object side of the second lens group is f2i and the following conditional expression (9) is satisfied, the single lens is called a lens having a low refractive power. (9) | fW / f2i | <0.1

【0044】上記第2レンズ群の構成においては、いず
れも単レンズは屈折力が弱く平面に近いため、収差補正
能力が小である。この収差補正が十分でない分は非球面
にて補う必要がある。
In the configuration of the second lens group, the single lens has a low refractive power and is close to a flat surface, and therefore has a small aberration correction capability. It is necessary to compensate for the insufficiency of the aberration correction by using an aspheric surface.

【0045】また、前記構成のうち、接合レンズ−単レ
ンズの場合、最も物体側の面を非球面にすれば、単レン
ズ−接合レンズ−単レンズの物体側単レンズを除いて
も、単レンズ−接合レンズ−単レンズと同等の結像性能
を得ることができる。この場合いずれも接合レンズは、
物体側に凸面を向けたメニスカス形状である。また、こ
の接合レンズの接合面を分離して僅かに空気間隔をおい
て配置した2枚のレンズとし、両レンズの互いに向かい
合う面の曲率がほぼ等しくなるようにすれば、接合レン
ズと同等の作用を有するレンズ成分にすることができ
る。
In the above-described configuration, in the case of a cemented lens-single lens, if the surface closest to the object side is made aspherical, a single lens-joint lens-single lens can be replaced by a single lens -Joint lens-Imaging performance equivalent to that of a single lens can be obtained. In each case, the cemented lens is
It has a meniscus shape with the convex surface facing the object side. Also, if the cemented surface of the cemented lens is separated into two lenses arranged at a slight air gap, and the curvatures of the facing surfaces of both lenses are substantially equal, the same operation as the cemented lens can be obtained. Can be used as the lens component.

【0046】次に、本発明のズームレンズにおいて、第
1レンズ群は、出来る限り薄くするためにレンズの枚数
を少なく、各レンズの屈折力を弱くし、枚数を減らし、
屈折力を弱くすることにより減少した収差補正作用を非
球面を用いることにより補うようにすることが望まし
い。
Next, in the zoom lens according to the present invention, the number of lenses in the first lens group is reduced to make it as thin as possible, the refractive power of each lens is reduced, and the number of lenses is reduced.
It is desirable that the aberration correction effect reduced by weakening the refractive power is compensated for by using an aspheric surface.

【0047】第1レンズ群中、物体側からi番目の単レ
ンズの焦点距離をf1i、第1群の焦点距離をf1とし
たとき、以下の式を満足する場合にそのレンズを屈折力
の弱い単レンズと呼ぶ。 (10) |f1/f1i|<0.2 第1レンズ群を薄くするためには2枚か3枚のレンズに
て構成し、3枚にて構成する場合は、正レンズと負レン
ズと屈折力の弱い単レンズにて、または物体側から順に
屈折力の弱い単レンズと負レンズと正レンズにて、また
は物体側から順に屈折力の弱い単レンズと負レンズと屈
折力の弱い単レンズとにて構成し、いずれも屈折力の弱
い単レンズに非球面を設けるとよい。2枚のレンズにて
構成する場合は、負レンズと正レンズにて構成して負レ
ンズに非球面を設ける構成にすることが望ましい。
In the first lens group, when the focal length of the i-th single lens from the object side is f1i and the focal length of the first group is f1, if the following equation is satisfied, the lens is weak in refractive power. Called a single lens. (10) | f1 / f1i | <0.2 In order to make the first lens group thin, it is composed of two or three lenses. With a single lens with weak power, or a single lens with weak refractive power and a negative lens and a positive lens in order from the object side, or a single lens with weak refractive power and a negative lens and a single lens with weak refractive power in order from the object side In each case, it is preferable to provide an aspherical surface on a single lens having a low refractive power. In the case of using two lenses, it is preferable to use a negative lens and a positive lens and provide the negative lens with an aspheric surface.

【0048】上記第1レンズ群の構成のうち屈折力の弱
い単レンズと負レンズと正レンズとにて構成する場合、
最も物体側の直径の大きなレンズの屈折力を弱くするこ
とにより第1レンズ群の厚さを薄くし、それにより生ず
る収差補正の不足分を非球面により補うことができる。
またこの構成の第1レンズ群の2番目のレンズである負
レンズの像側の面を強い凹面にして3番目のレンズであ
る正レンズを物体側に凸のメニスカスレンズにすればコ
マ収差や非点収差を良好に補正し得る。
When the first lens unit is composed of a single lens having a low refractive power, a negative lens and a positive lens,
By reducing the refractive power of the lens with the largest diameter on the object side, the thickness of the first lens group can be reduced, and the resulting lack of aberration correction can be compensated for by the aspherical surface.
Further, if the image side surface of the negative lens, which is the second lens of the first lens unit having this configuration, is made strongly concave and the positive lens, which is the third lens, is made a meniscus lens which is convex toward the object side, coma aberration and non-comaberation can be reduced. Astigmatism can be corrected well.

【0049】また、第1レンズ群を物体側より順に屈折
力の弱い単レンズと負レンズと屈折力の弱い単レンズに
て構成した場合、最も像側の屈折力の弱い単レンズの屈
折力を極端に弱くして平行平面板に近づけ、それにより
発生する収差を非球面を設けることにより補正するよう
にすることが望ましい。
When the first lens unit is composed of a single lens having a low refractive power, a negative lens and a single lens having a low refractive power in order from the object side, the refractive power of the single lens having the lowest refractive power on the image side is determined. It is desirable to make it extremely weak and close to the plane-parallel plate, and to correct the aberrations caused thereby by providing an aspherical surface.

【0050】また第1レンズ群を前述のように、正レン
ズと負レンズと屈折力の弱い単レンズにて構成する場合
について述べる。第1レンズ群を球面系の三つのレンズ
にて構成する場合は、両凸の正の第1レンズと、像側に
強い凹面を向けた負の第2レンズと、物体側に強い凸面
を向けた正のメニスカスレンズの第3レンズとにて構成
するのが一般的である。しかし、第3レンズがメニスカ
スレンズであるために光軸方向にかなり厚くなる。第1
レンズ群を薄くするためには、第3レンズの屈折力を弱
くして光軸方向の厚さを薄くし、それにより発生する収
差を非球面により補正するようにすることが好ましい。
The case where the first lens group is composed of a positive lens, a negative lens, and a single lens having a low refractive power as described above will be described. When the first lens group is composed of three spherical lenses, a biconvex positive first lens, a negative second lens having a strong concave surface facing the image side, and a strong convex surface facing the object side In general, the third lens is a positive meniscus lens. However, since the third lens is a meniscus lens, the third lens becomes considerably thick in the optical axis direction. First
In order to make the lens group thinner, it is preferable that the refractive power of the third lens is weakened to reduce the thickness in the optical axis direction, and that the aberration generated thereby is corrected by the aspherical surface.

【0051】そのために、第1レンズ群を3枚のレンズ
にて構成する場合には、物体側から順に、正レンズと負
レンズと屈折力の弱い単レンズとにて構成するのが良
い。また、以下の条件(10−1)を満足すれば更に望
ましい。 (10−1) |f1/f1i|<0.13
Therefore, when the first lens group is composed of three lenses, it is preferable that the first lens group is composed of a positive lens, a negative lens, and a single lens having a low refractive power in order from the object side. It is more desirable that the following condition (10-1) be satisfied: (10-1) | f1 / f1i | <0.13

【0052】更に、第1レンズ群を2枚のレンズにて構
成する場合、負レンズと正レンズとにて構成し、負レン
ズの物体側の面を非球面にすることが好ましい。
Further, when the first lens group is composed of two lenses, it is preferable that the first lens group is composed of a negative lens and a positive lens, and the object side surface of the negative lens is made aspheric.

【0053】非球面を有する屈折力の弱い単レンズと負
レンズと正レンズの3枚のレンズにて構成されている第
1レンズ群の屈折力の弱い非球面単レンズを除去して、
負レンズと正レンズの2枚のレンズにて構成し、その時
発生する収差を負レンズの物体側の面を非球面にして補
正するようにすればよい。
The aspherical single lens having a weak refracting power of the first lens group composed of a single lens having an aspheric surface and a weak refracting power and a negative lens and a positive lens is removed.
The negative lens and the positive lens may be composed of two lenses, and the aberration generated at that time may be corrected by setting the object-side surface of the negative lens to an aspheric surface.

【0054】これにより、第1レンズ群は2枚のレンズ
のみからなり薄くすることができ、又、沈胴厚を薄くで
きる。
As a result, the first lens group can be made thin, consisting of only two lenses, and can be made thinner.

【0055】以上述べた屈折力の弱い非球面レンズは、
温度や湿度の変化により屈折率が変化する材料を使用す
ることも可能である。したがって、材料として例えばプ
ラスチックを使用すれば大量かつ安価に生産することが
でき、コストを低減させ得る。特にオートフォーカス機
能を有する場合、温度や湿度の変化による同焦点ずれを
自動的に補正でき、収差変動を小さくし得る。
The aspherical lens having a weak refractive power described above is
It is also possible to use a material whose refractive index changes with changes in temperature and humidity. Therefore, if plastic is used as the material, for example, mass production can be performed at low cost, and the cost can be reduced. In particular, when the camera has an autofocus function, parfocal deviation due to changes in temperature or humidity can be automatically corrected, and aberration fluctuation can be reduced.

【0056】また、下記条件(11)を満足するように
すれば、温度湿度による合焦ずれによる収差変動は、実
用上問題にならないレベルになし得る。 (11) |fW/fp|<0.1 ただし、fpはプラスチックレンズの焦点距離、fWは
広角端における全系の焦点距離である。
If the following condition (11) is satisfied, the fluctuation of aberration due to the focus shift due to the temperature and humidity can be reduced to a level that does not cause a practical problem. (11) | fW / fp | <0.1 where fp is the focal length of the plastic lens, and fW is the focal length of the entire system at the wide-angle end.

【0057】また下記条件(11−1)を満足すればよ
り望ましい。 (11−1) |fW/fp|<0.05
It is more desirable to satisfy the following condition (11-1). (11-1) | fW / fp | <0.05

【0058】更に下記条件(11−2)を満足すれば最
も望ましい。 (11−2) |fW/fp|<0.02
It is most desirable that the following condition (11-2) is satisfied: (11-2) | fW / fp | <0.02

【0059】以上述べた本発明のズームレンズの像位置
に電子撮像素子を配置することにより本発明の撮像装置
を構成し得る。
By arranging the electronic image pickup device at the image position of the zoom lens of the present invention described above, the image pickup apparatus of the present invention can be constituted.

【0060】[0060]

【発明の実施の形態】次に本発明の実施の形態について
述べる。
Next, an embodiment of the present invention will be described.

【0061】まず、本発明のズームレンズの実施の形態
を下記データを有する実施例をもとに述べる。 実施例1 f=4.39〜7.36〜13.28 ,Fナンバー=2.75〜3.14〜4.10 2ω=59.3°〜37.5°〜21.3° r1 =31.2493 d1 =1.9500 n1 =1.84666 ν1 =23.78 r2 =-65.0991 d2 =0.6808 r3 =-444.0763 d3 =1.0000 n2 =1.77250 ν2 =49.60 r4 =3.9935 d4 =3.8998 r5 =-137.8476(非球面)d5 =1.8521 n3 =1.80610 ν3 =40.92 r6 =-51.1701 d6 =D1 (可変) r7 =∞(絞り) d7 =1.0000 r8 =7.7924 d8 =2.2000 n4 =1.58913 ν4 =61.14 r9 =-22.1410 d9 =0.1000 r10=7.3555 d10=2.9000 n5 =1.51633 ν5 =64.14 r11=-7.3364 d11=1.0000 n6 =1.83400 ν6 =37.16 r12=7.7514 d12=0.9000 r13=∞ d13=1.2000 n7 =1.58913 ν7 =61.14 r14=-589.1299(非球面)d14=D2 (可変) r15=15.6009 d15=2.0000 n8 =1.48749 ν8 =70.23 r16=-17.1493 d16=D3 (可変) r17=∞ d17=1.9000 n9 =1.54771 ν9 =62.84 r18=∞ d18=0.8000 r19=∞ d19=0.7500 n10=1.51633 ν10=64.14 r20=∞ d20=1.15 r21=∞(像) 非球面係数 (第5面)K=0 ,A2 =0 ,A4 =6.1115×10-4 ,A6 =6.3032×10-78 =1.3229×10-6 ,A10=0 (第14面)K=0 ,A2 =0 ,A4 =9.8979×10-4 ,A6 =1.9313×10-58 =4.2402×10-7 ,A10=0 無限遠合焦時 f 4.39 7.36 13.28 D1 17.09115 7.30302 1.40000 D2 4.72311 3.80530 3.35776 D3 1.50000 6.53742 15.30673 物点距離100mmに合焦時 f 4.39 7.36 13.28 D1 17.09115 7.30302 1.40000 D2 4.41989 3.23129 1.50000 D3 1.80322 7.11143 17.16449 f2=12.05 ,f3=17.1 ,|fW/f2R|=0.0044 ,f3/fT=1.29 |β23T|=1.64 ,1/β2T=0.092 ,DW/fW=5.04 f2/fW=(2.74) ,R2b/f2=0.61 ,Δ2/Δ3=0.9 |f1/f13|=0.081 ,|fW/f24|=0.0044
First, an embodiment of the zoom lens of the present invention will be described based on an example having the following data. Example 1 f = 4.39 to 7.36 to 13.28, F-number = 2.75 to 3.14 to 4.10 2ω = 59.3 ° to 37.5 ° to 21.3 ° r 1 = 31.2493 d 1 = 1.9500 n 1 = 1.84666 ν 1 = 23.78 r 2 = -65.0991 d 2 = 0.6808 r 3 = -444.0763 d 3 = 1.0000 n 2 = 1.77250 ν 2 = 49.60 r 4 = 3.9935 d 4 = 3.8998 r 5 = -137.8476 ( aspherical) d 5 = 1.8521 n 3 = 1.80610 ν 3 = 40.92 r 6 = -51.1701 d 6 = D 1 ( variable) r 7 = ∞ (stop) d 7 = 1.0000 r 8 = 7.7924 d 8 = 2.2000 n 4 = 1.58913 ν 4 = 61.14 r 9 = -22.1410 d 9 = 0.1000 r 10 = 7.3555 d 10 = 2.9000 n 5 = 1.51633 ν 5 = 64.14 r 11 = -7.3364 d 11 = 1.0000 n 6 = 1.83400 ν 6 = 37.16 r 12 = 7.7514 d 12 = 0.9000 r 13 = ∞ d 13 = 1.2000 n 7 = 1.58913 v 7 = 61.14 r 14 = -589.1299 (aspherical surface) d 14 = D 2 (variable) r 15 = 15.609 d 15 = 2.0000 n 8 = 1.48749 v 8 = 70.23 r 16 = -17.1493 d 16 = D 3 ( Variable) r 17 = ∞ d 17 = 1.90 00 n 9 = 1.54771 v 9 = 62.84 r 18 = ∞ d 18 = 0.8000 r 19 = ∞ d 19 = 0.7500 n 10 = 1.51633 v 10 = 64.14 r 20 = ∞ d 20 = 1.15 r 21 = ∞ (image) Aspheric surface coefficient (fifth surface) K = 0, A 2 = 0, A 4 = 6.1115 × 10 -4, A 6 = 6.3032 × 10 -7 A 8 = 1.3229 × 10 -6, A 10 = 0 ( the fourteenth surface) K = 0, A 2 = 0, A 4 = 9.8979 × 10 -4 , A 6 = 1.9313 × 10 -5 A 8 = 4.2402 × 10 -7 , A 10 = 0 When focused on infinity f 4.39 7.36 13.28 D 1 17.09115 7.30302 1.40000 D 2 4.72311 3.80530 3.35776 D 3 1.50000 6.53742 15.30673 When focused on an object distance of 100 mm f 4.39 7.36 13.28 D 1 17.09115 7.30302 1.40000 D 2 4.41989 3.23129 1.50000 D 3 1.80322 7.11143 17.16449 f2 = 12.05, f3 = 17.1, | /F2R|=0.0044, f3 / fT = 1.29 | β23T | = 1.64, 1 / β2T = 0.092, DW / fW = 5.04 f2 / fW = (2.74), R2b / f2 = 0.61, Δ2 / Δ3 = 0.9 | f1 / 13 | = 0.081, | fW / f24 | = 0.0044

【0062】 実施例2 f=4.39〜7.36〜13.28 ,Fナンバー=2.74〜3.08〜3.83 2ω=59.3°〜37.5°〜21.3° r1 =50.0880 d1 =2.3000 n1 =1.84666 ν1 =23.78 r2 =-35.1849 d2 =0.2000 r3 =-65.7634 d3 =1.0000 n2 =1.72916 ν2 =54.68 r4 =4.4610 d4 =3.1218 r5 =13.0318 (非球面)d5 =1.1000 n3 =1.49241 ν3 =57.66 r6 =19.9534 d6 =D1 (可変) r7 =∞(絞り) d7 =1.0000 r8 =14.3782 (非球面)d8 =1.0000 n4 =1.49241 ν4 =57.66 r9 =19.8421 d9 =0.1000 r10=5.4400 d10=2.5000 n5 =1.51633 ν5 =64.14 r11=-52.8689 d11=1.0000 n6 =1.78470 ν6 =26.29 r12=14.9521 d12=0.8000 r13=-987.0956 d13=1.2000 n7 =1.49241 ν7 =57.66 r14=982.9308(非球面)d14=D2 (可変) r15=15.7957 d15=1.8000 n8 =1.48749 ν8 =70.23 r16=-17.0241 d16=D3 (可変) r17=∞ d17=1.9000 n9 =1.54771 ν9 =62.84 r18=∞ d18=0.8000 r19=∞ d19=0.7500 n10=1.51633 ν10=64.14 r20=∞ d20=1.15 r21=∞(像) 非球面係数 (第5面)K=0 ,A2 =0 ,A4 =8.6004×10-4 ,A6 =-1.3646 ×10-58 =1.6576×10-6 ,A10=0 (第8面)K=0 ,A2 =0 ,A4 =-2.8930 ×10-5 ,A6 =6.0475×10-68 =-1.4072 ×10-7 ,A10=0 (第14面)K=0 ,A2 =0 ,A4 =1.6825×10-3 ,A6 =1.0800×10-58 =3.9927×10-6 ,A10=0 無限遠合焦時 f 4.39 7.36 13.28 D1 18.29793 7.99696 1.40000 D2 3.72779 2.79199 3.65481 D3 6.49849 10.56281 18.38607 物点距離100mmに合焦時 f 4.39 7.36 13.28 D1 18.29793 7.99696 1.40000 D2 3.52350 2.27425 1.50000 D3 6.70278 11.08055 20.54088 f2=17.12 ,f3=17.12 ,|fW/f2R|=0.0044 ,f3/fT=1.29 |β23T|=1.46 ,1/β2T=0.22 ,DW/fW=5.52 f2/fW=3.90 ,R2b/f2=0.32 ,Δ2/Δ3=0.99 |f1/f13|=0.125 , |fW/f21|=0.044 |fW/f24|=0.0044 |fW/fp|=0.061(第1群像側レンズ)、0.044(第2群物体側レンズ)、 0.0044(第2群像側レンズ)Example 2 f = 4.39 to 7.36 to 13.28, F number = 2.74 to 3.08 to 3.83 2ω = 59.3 ° to 37.5 ° to 21.3 ° r 1 = 50.0880 d 1 = 2.3000 n 1 = 1.84666 ν 1 = 23.78 r 2 = -35.1849 d 2 = 0.2000 r 3 = -65.7634 d 3 = 1.0000 n 2 = 1.72916 ν 2 = 54.68 r 4 = 4.4610 d 4 = 3.1218 r 5 = 13.0318 (aspherical surface) d 5 = 1.1000 n 3 = 1.49241 ν 3 = 57.66 r 6 = 19.9534 d 6 = D 1 (variable) r 7 = ∞ (aperture) d 7 = 1.0000 r 8 = 14.3782 (aspherical surface) d 8 = 1.0000 n 4 = 1.49241 ν 4 = 57.66 r 9 = 19.8421 d 9 = 0.1000 r 10 = 5.4400 d 10 = 2.5000 n 5 = 1.51633 ν 5 = 64.14 r 11 = -52.8689 d 11 = 1.0000 n 6 = 1.78470 ν 6 = 26.29 r 12 = 14.9521 d 12 = 0.8000 r 13 = -987.0956 d 13 = 1.2000 n 7 = 1.49241 ν 7 = 57.66 r 14 = 982.9308 ( aspherical) d 14 = D 2 (variable) r 15 = 15.7957 d 15 = 1.8000 n 8 = 1.48749 ν 8 = 70.23 r 16 = -17.0241 d 16 = D 3 (Variable) r 17 = ∞ d 17 = 1.9000 n 9 = 1.54771 v 9 = 62.84 r 18 = ∞ d 18 = 0.8000 r 19 = ∞ d 19 = 0.7500 n 10 = 1.51633 v 10 = 64.14 r 20 = ∞ d 20 = 1.15 r 21 = ∞ (image) Aspheric coefficient (fifth surface) K = 0, A 2 = 0, A 4 = 8.6004 × 10 −4 , A 6 = −1.3646 × 10 −5 A 8 = 1.6576 × 10 − 6 , A 10 = 0 (eighth surface) K = 0, A 2 = 0, A 4 = −2.8930 × 10 −5 , A 6 = 6.0475 × 10 −6 A 8 = −1.4072 × 10 −7 , A 10 = 0 (14th surface) K = 0, A 2 = 0, A 4 = 1.6825 × 10 -3 , A 6 = 1.0800 × 10 -5 A 8 = 3.9927 × 10 -6 , A 10 = 0 Infinity focusing Hour f 4.39 7.36 13.28 D 1 18.29793 7.99696 1.40000 D 2 3.72779 2.79199 3.65481 D 3 6.49849 10.56281 18.38607 Focusing on object distance 100 mm f 4.39 7.36 13.28 D 1 18.29793 7.99696 1.40000 D 2 3.52350 2.27425 1.50000 D 3 6.70278 11.08055 20.540 , F3 = 17.12, | fW / f2R | = 0.0044, f3 / f = 1.29 | β23T | = 1.46, 1 / β2T = 0.22, DW / fW = 5.52 f2 / fW = 3.90, R2b / f2 = 0.32, Δ2 / Δ3 = 0.99 | f1 / f13 | = 0.125, | fW / f21 | = 0.044 | fW / f24 | = 0.0044 | fW / fp | = 0.061 (first group image side lens), 0.044 (second group object side lens), 0.0044 (second group image side lens)

【0063】 実施例3 f=4.33〜8.67〜13.10 ,Fナンバー=2.86〜3.80〜4.87 2ω=60°〜32.2°〜21.6° r1 =34.5719 d1 =2.0000 n1 =1.52540 ν1 =56.25 r2 =39.2868 (非球面)d2 =1.3000 r3 =-20.0546 d3 =1.0000 n2 =1.63854 ν2 =55.38 r4 =5.2000 d4 =3.5745 r5 =9.3216 d5 =1.4617 n3 =1.80518 ν3 =25.42 r6 =14.0641 d6 =D1 (可変) r7 =∞(絞り) d7 =0 r8 =4.4179(非球面) d8 =0.8000 n4 =1.52540 ν4 =56.25 r9 =4.0737 d9 =0.6355 r10=5.5000 d10=2.0000 n5 =1.77250 ν5 =49.60 r11=-12.8000 d11=0.8000 n6 =1.80809 ν6 =22.76 r12=23.4461 d12=1.4502 r13=6.0905(非球面) d13=1.0000 n7 =1.52540 ν7 =56.25 r14=5.0127 d14=D2 (可変) r15=-94.6826 d15=1.4000 n8 =1.51633 ν8 =64.14 r16=-14.1789 d16=D3 (可変) r17=∞ d17=0.8000 n9 =1.51633 ν9 =64.14 r18=∞ d18=1.3600 n10=1.54771 ν10=62.84 r19=∞ d19=0.8000 r20=∞ d20=0.7500 n11=1.51633 ν11=94.14 r21=∞ d21=1.2000 r22=∞(像) 非球面係数 (第2面)K=0 ,A2 =0 ,A4 =-6.2517 ×10-4 ,A6 =2.2895×10-68 =4.3661×10-8 ,A10=0 (第8面)K=0 ,A2 =0 ,A4 =-5.3350 ×10-5 ,A6 =4.1213×10-78 =-8.8818 ×10-7 ,A10=0 (第13面)K=0 ,A2 =0 ,A4 =-2.2384 ×10-36 =-6.4370 ×10-5 ,A8 =-3.7447 ×10-710=0 無限遠合焦時 f 4.33 8.67 13.10 D1 13.81397 4.20997 1.28197 D2 2.20675 4.44595 9.13211 D3 1.59012 4.52960 6.08009 f 4.33 8.67 13.10 D1 13.81397 4.20997 1.28197 D2 1.70301 3.03065 6.40508 D3 2.09386 5.94491 8.80712 f2=9.81 ,f3=32.11 ,|fW/f2R|=0.055 ,f3/fT=2.45 |β23T|=1.41 ,1/β2T=-0.488 ,DW/fW=(3.98) f2/fW=(2.27) ,R2b/f2=0.45 ,Δ2/Δ3=2.54 |f1/f11|=0.019 , |fW/f21|=0.0087 |fW/f24|=0.055 |fW/fp|=0.0091 (第1群物体側レンズ)、0.0087(第2群物体側レン ズ)、0.055 (第2群像側レンズ)Example 3 f = 4.33 to 8.67 to 13.10, F-number = 2.86 to 3.80 to 4.87 2ω = 60 ° to 32.2 ° to 21.6 ° r 1 = 34.5719 d 1 = 2.0000 n 1 = 1.52540 ν 1 = 56.25 r 2 = 39.2868 (aspherical surface) d 2 = 1.3000 r 3 = -20.0546 d 3 = 1.0000 n 2 = 1.63854 v 2 = 55.38 r 4 = 5.2000 d 4 = 3.5745 r 5 = 9.3216 d 5 = 1.4617 n 3 = 1.80518 v 3 = 25.42 r 6 = 14.0641 d 6 = D 1 (variable) r 7 = ∞ (aperture) d 7 = 0 r 8 = 4.4179 (aspherical surface) d 8 = 0.8000 n 4 = 1.52540 ν 4 = 56.25 r 9 = 4.0737 d 9 = 0.6355 r 10 = 5.5000 d 10 = 2.0000 n 5 = 1.77250 v 5 = 49.60 r 11 = -12.8000 d 11 = 0.8000 n 6 = 1.80809 v 6 = 22.76 r 12 = 23.4461 d 12 = 1.4502 r 13 = 6.0905 (aspheric surface) ) d 13 = 1.0000 n 7 = 1.52540 ν 7 = 56.25 r 14 = 5.0127 d 14 = D 2 ( variable) r 15 = -94.6826 d 15 = 1.4000 n 8 = 1.51633 ν 8 = 64.14 r 16 = -14.1789 d 16 = D 3 (variable) r 17 = ∞ d 17 = 0.8000 n 9 = 1.51633 v 9 = 64.14 r 18 = ∞ d 18 = 1.3600 n 10 = 1.54771 v 10 = 62.84 r 19 = 19 d 19 = 0.8000 r 20 = ∞ d 20 = 0.7500 n 11 = 1.51633 ν 11 = 94.14 r 21 = ∞ d 21 = 1.2000 r 22 = ∞ (image) Aspheric coefficient (second surface) K = 0, A 2 = 0, A 4 = -6.2517 × 10 -4 , A 6 = 2.2895 × 10 −6 A 8 = 4.3661 × 10 −8 , A 10 = 0 (eighth surface) K = 0, A 2 = 0, A 4 = −5.3350 × 10 −5 , A 6 = 4.1213 × 10 − 7 A 8 = -8.8818 × 10 -7 , A 10 = 0 (13th surface) K = 0, A 2 = 0, A 4 = -2.2384 × 10 -3 A 6 = -6.4370 × 10 -5 , A 8 = -3.74747 × 10 -7 A 10 = 0 at infinity focusing f 4.33 8.67 13.10 D 1 13.81397 4.20997 1.28197 D 2 2.20675 4.44595 9.13211 D 3 1.59012 4.52960 6.08009 f 4.33 8.67 13.10 D 1 13.81397 4.20997 1.28197 D 2 1.70301 3.0306 3 2.09386 5.94491 8.80712 f2 = 9.81, f3 = 32.11, | fW / f2R | = 0.055, f /FT=2.45|β23T|=1.41, 1 / β2T = −0.488, DW / fW = (3.98) f2 / fW = (2.27), R2b / f2 = 0.45, Δ2 / Δ3 = 2.54 | f1 / f11 | = 0.19 , │fW / f21│ = 0.0087 │fW / f24│ = 0.55 │fW / fp│ = 0.0091 (first-group object-side lens), 0.0087 (second-group object-side lens), 0.055 (second-group image-side lens)

【0064】 実施例4 f=4.39〜7.36〜13.28 ,Fナンバー=2.78〜3.28〜4.35 2ω=59.3°〜37.5°〜21.3° r1 =7.2293 d1 =1.5000 n1 =1.52540 ν1 =56.25 r2 =5.8997(非球面) d2 =1.4000 r3 =72.0533 d3 =1.0000 n2 =1.72916 ν2 =54.68 r4 =3.7137 d4 =1.8000 r5 =5.3208 d5 =1.5235 n3 =1.78470 ν3 =26.29 r6 =7.3093 d6 =D1 (可変) r7 =∞(絞り) d7 =1.0000 r8 =4.6247(非球面) d8 =2.5000 n4 =1.69350 ν4 =53.21 r9 =-13.2200 d9 =1.0000 n5 =1.78470 ν5 =26.29 r10=9.8161 d10=0.6000 r11=8.9607(非球面) d11=1.0589 n6 =1.52540 ν6 =56.25 r12=9.9956 d12=D2 (可変) r13=10.8186 d13=1.7000 n7 =1.48749 ν7 =70.23 r14=-34.4570 d14=D3 (可変) r15=∞ d15=1.9000 n8 =1.54771 ν8 =62.84 r16=∞ d16=0.8000 r17=∞ d17=0.7500 n9 =1.51633 ν9 =64.14 r18=∞ d18=1.15 r19=∞(像) 非球面係数 (第2面)K=0 ,A2 =0 ,A4 =-3.2448 ×10-46 =-5.7220 ×10-5 ,A8 =-2.5069 ×10-710=0 (第8面)K=0 ,A2 =0 ,A4 =2.6425×10-4 ,A6 =-1.1410 ×10-58 =1.6780×10-6 ,A10=0 (第11面)K=0 ,A2 =0 ,A4 =-4.3533 ×10-36 =-9.7990 ×10-5 ,A8 =-4.1447 ×10-510=0 無限遠合焦時 f 4.39 7.36 13.28 D1 12.05238 5.51069 1.40000 D2 3.80706 3.23467 3.30769 D3 2.45821 6.38167 13.60995 物点距離100mmに合焦時 f 4.39 7.36 13.28 D1 12.05238 5.51069 1.40000 D2 3.53882 2.65713 1.50000 D3 2.72645 6.95921 15.41765 f2=10.27 ,f3=17.1 ,|fW/f2R|=0.036 ,f3/fT=1.29 |β23T|=1.73 ,1/β2T=0.035 ,DW/fW=(4.26) f2/fW=(2.34) ,R2b/f2=0.45 ,Δ2/Δ3=0.96 |f1/f11|=0.075 , |fW/f23|=0.036 |fW/fp|=0.044(第1群物体側レンズ)、0.036(第2群像側レンズ)Example 4 f = 4.39 to 7.36 to 13.28, F number = 2.78 to 3.28 to 4.35 2ω = 59.3 ° to 37.5 ° to 21.3 ° r 1 = 7.2293 d 1 = 1.5000 n 1 = 1.52540 ν 1 = 56.25 r 2 = 5.8997 (aspherical) d 2 = 1.4000 r 3 = 72.0533 d 3 = 1.0000 n 2 = 1.72916 ν 2 = 54.68 r 4 = 3.7137 d 4 = 1.8000 r 5 = 5.3208 d 5 = 1.5235 n 3 = 1.78470 ν 3 = 26.29 r 6 = 7.3093 d 6 = D 1 (variable) r 7 = ∞ (aperture) d 7 = 1.0000 r 8 = 4.6247 (aspheric surface) d 8 = 2.5000 n 4 = 1.69350 v 4 = 53.21 r 9 = -13.2200 d 9 = 1.0000 n 5 = 1.78470 ν 5 = 26.29 r 10 = 9.8161 d 10 = 0.6000 r 11 = 8.9607 ( aspherical) d 11 = 1.0589 n 6 = 1.52540 ν 6 = 56.25 r 12 = 9.9956 d 12 = D 2 ( variable) r 13 = 10.8186 d 13 = 1.7000 n 7 = 1.48749 ν 7 = 70.23 r 14 = -34.4570 d 14 = D 3 ( variable) r 15 = ∞ d 15 = 1.9000 n 8 = 1.54771 ν 8 = 62.84 r 16 = ∞ d 16 = 0.8000 r 1 7 = ∞ d 17 = 0.7500 n 9 = 1.51633 ν 9 = 64.14 r 18 = ∞ d 18 = 1.15 r 19 = ∞ ( image) aspherical coefficients (second surface) K = 0, A 2 = 0, A 4 = -3.2448 × 10 -4 A 6 = -5.7220 × 10 -5, A 8 = -2.5069 × 10 -7 A 10 = 0 ( eighth surface) K = 0, A 2 = 0, A 4 = 2.6425 × 10 - 4 , A 6 = -1.1410 × 10 -5 A 8 = 1.6780 × 10 -6 , A 10 = 0 (11th surface) K = 0, A 2 = 0, A 4 = -4.3533 × 10 -3 A 6 = -9.7990 × 10 -5 , A 8 = -4.1447 × 10 -5 A 10 = 0 when focused on infinity f 4.39 7.36 13.28 D 1 12.05238 5.51069 1.40000 D 2 3.80706 3.23467 3.30769 D 3 2.45821 6.38167 13.60995 When the object distance is 100 mm In focus f 4.39 7.36 13.28 D 1 12.05238 5.51069 1.40000 D 2 3.53882 2.65713 1.50000 D 3 2.72645 6.95921 15.41765 f2 = 10.27, f3 = 17.1, | fW / f2R | = 0.036, f3 / fT = 1.29 | β23T | = 1.73, 1 / β2T = 0.035, DW / fW = (4.26) f2 / fW = (2.34) R2b / f2 = 0.45, Δ2 / Δ3 = 0.96 | f1 / f11 | = 0.075, | fW / f23 | = 0.036 | fW / fp | = 0.044 (first group object side lens), 0.036 (second unit image side lens)

【0065】 実施例5 f=4.41〜8.82〜13.28 ,Fナンバー=2.73〜3.71〜4.49 2ω=59.1°〜31.6°〜21.3° r1 =-104.2415(非球面)d1 =1.2000 n1 =1.69350 ν1 =53.21 r2 =5.3000 d2 =3.3438 r3 =8.0044 d3 =1.7417 n2 =1.80809 ν2 =22.76 r4 =9.9324 d4 =D1 (可変) r5 =∞(絞り) d5 =0.2000 r6 =12.0603 d6 =1.4500 n3 =1.69350 ν3 =53.21 r7 =-518.8844 d7 =0.6334 r8 =5.9602 d8 =2.2477 n4 =1.74100 ν4 =52.64 r9 =35.0000 d9 =1.0000 n5 =1.84666 ν5 =23.78 r10=6.0288 d10=0.9627 r11=8.4031 d11=0.8000 n6 =1.52540 ν6 =56.25 r12=8.0498 d12=D2 (可変) r13=58.0569 d13=2.0662 n7 =1.51633 ν7 =64.14 r14=-10.8016 d14=D3 (可変) r15=∞ d15=0.8000 n8 =1.51633 ν8 =64.14 r16=∞ d16=1.3600 n9 =1.54771 ν9 =62.84 r17=∞ d17=0.8000 r18=∞ d18=0.7500 n10=1.51633 ν10=64.14 r19=∞ d19=1.2000 r20=∞(像) 非球面係数 (第1面)K=0 ,A2 =0 ,A4 =5.2742×10-4 ,A6 =-1.0626 ×10-58 =1.6927×10-7 ,A10=0 (第12面)K=0 ,A2 =0 ,A4 =2.3060×10-3 ,A6 =8.1827×10-68 =8.0844×10-6 ,A10=0 無限遠合焦時 f 4.41 8.82 13.28 D1 13.91370 5.06449 1.40646 D2 1.11092 4.87076 9.20261 D3 2.51043 5.58000 10.30000 物点距離100mmに合焦時 f 4.41 8.82 13.28 D1 13.91370 5.06449 1.40646 D2 0.81599 3.95939 7.45519 D3 2.80537 6.49136 12.04742 f2=10.7 ,f3=17.82 ,|fW/f2R|=0.0028 ,f3/fT=1.34 |β23T|=1.442,1/β2T=-0.137 ,DW/fW=(4.07) f2/fW=(2.43) ,R2b/f2=0.56 ,Δ2/Δ3=2.04 |fW/f24|=0.0027 |fW/fp|=0.0027(第2群像側レンズ)Example 5 f = 4.41 to 8.82 to 13.28, F number = 2.73 to 3.71 to 4.49 2ω = 59.1 ° to 31.6 ° to 21.3 ° r 1 = -104.2415 (aspherical surface) d 1 = 1.2000 n 1 = 1.69350 ν 1 = 53.21 r 2 = 5.3000 d 2 = 3.3438 r 3 = 8.0044 d 3 = 1.7417 n 2 = 1.80809 ν 2 = 22.76 r 4 = 9.9324 d 4 = D 1 ( variable) r 5 = ∞ (stop) d 5 = 0.2000 r 6 = 12.0603 d 6 = 1.4500 n 3 = 1.69350 ν 3 = 53.21 r 7 = -518.8844 d 7 = 0.6334 r 8 = 5.9602 d 8 = 2.2477 n 4 = 1.74100 ν 4 = 52.64 r 9 = 35.0000 d 9 = 1.0000 n 5 = 1.84666 ν 5 = 23.78 r 10 = 6.0288 d 10 = 0.9627 r 11 = 8.4031 d 11 = 0.8000 n 6 = 1.52540 ν 6 = 56.25 r 12 = 8.0498 d 12 = D 2 ( variable) r 13 = 58.0569 d 13 = 2.0662 n 7 = 1.51633 v 7 = 64.14 r 14 = -10.8016 d 14 = D 3 (variable) r 15 = ∞ d 15 = 0.8000 n 8 = 1.51633 v 8 = 64.14 r 16 = ∞ d 16 = 1.3600 n 9 = 1.54771 ν 9 = 62.84 17 = ∞ d 17 = 0.8000 r 18 = ∞ d 18 = 0.7500 n 10 = 1.51633 ν 10 = 64.14 r 19 = ∞ d 19 = 1.2000 r 20 = ∞ ( image) aspheric coefficients (first surface) K = 0, A 2 = 0, A 4 = 5.2742 × 10 -4 , A 6 = -1.0626 × 10 -5 A 8 = 1.6927 × 10 -7 , A 10 = 0 (Twelfth surface) K = 0, A 2 = 0, A 4 = 2.3060 × 10 -3 , A 6 = 8.1827 × 10 -6 A 8 = 8.0844 × 10 -6 , A 10 = 0 when focused at infinity f 4.41 8.82 13.28 D 1 13.91370 5.06449 1.40646 D 2 1.11092 4.87076 9.20261 D 3 2.51043 5.58000 10.30000 When focused on an object point distance of 100 mm f 4.41 8.82 13.28 D 1 13.91370 5.06449 1.40646 D 2 0.81599 3.95939 7.45519 D 3 2.80537 6.49136 12.04742 f2 = 10.7, f3 = 17.82, | fW / f2R | = 0.0028, f3 / fT = 1.34 | β23T | = 1.442, 1 / β2T = −0.137, DW / fW = (4.07) f2 / fW = (2.43), R2b / f2 = 0.56, Δ2 / Δ3 = 2.04 | fW / f24 | = 0.0027 | f /Fp|=0.0027 (second unit image side lens)

【0066】 実施例6 f=4.39〜7.36〜13.28 ,Fナンバー=2.78〜3.28〜4.37 2ω=59.3°〜37.5°〜21.3° r1 =8.3849 d1 =1.7928 n1 =1.58423 ν1 =30.49 r2 =9.8428(非球面) d2 =0.6000 r3 =28.0540 d3 =1.0000 n2 =1.72916 ν2 =54.68 r4 =3.5362 d4 =3.0222 r5 =12.8838 (非球面)d5 =1.2000 n3 =1.58423 ν3 =30.49 r6 =18.5909 d6 =D1 (可変) r7 =∞(絞り) d7 =1.0000 r8 =26.1792 (非球面)d8 =1.2000 n4 =1.52540 ν4 =56.25 r9 =51.3543 d9 =0.1000 r10=4.6180 d10=3.5500 n5 =1.58913 ν5 =61.14 r11=-7.4000 d11=1.0000 n6 =1.83400 ν6 =37.16 r12=25.0466 d12=0.6000 r13=-16.5805 d13=1.0589 n7 =1.52540 ν7 =56.25 r14=-24.7585(非球面)d14=D2 (可変) r15=7.9289 d15=1.8000 n8 =1.48749 ν8 =70.23 r16=39.2941 d16=D3 (可変) r17=∞ d17=1.9000 n9 =1.54771 ν9 =62.84 r18=∞ d18=0.8000 r19=∞ d19=0.7500 n10=1.51633 ν10=64.14 r20=∞ d20=1.15 r21=∞(像) 非球面係数 (第2面)K=0 ,A2 =0 ,A4 =-5.6589 ×10-56 =-3.9492 ×10-5 ,A8 =6.8699×10-710=0 (第5面)K=0 ,A2 =0 ,A4 =1.3917×10-3 ,A6 =-7.5570 ×10-58 =7.7507×10-6 ,A10=0 (第8面)K=0 ,A2 =0 ,A4 =-8.7478 ×10-5 ,A6 =1.2731×10-58 =9.8692×10-7 ,A10=0 (第14面)K=0 ,A2 =0 ,A4 =3.1309×10-3 ,A6 =1.0134×10-48 =1.5628×10-5 ,A10=0 無限遠合焦時 f 4.39 7.36 13.28 D1 13.24697 5.96984 1.40000 D2 2.77930 2.08223 3.25837 D3 3.44990 7.46635 14.81779 物点距離100mmに合焦時 f 4.39 7.36 13.28 D1 13.24697 5.96984 1.40000 D2 2.51945 1.50000 1.50000 D3 3.70974 8.04858 16.57617 f2=11.72 ,f3=20.0 ,|fW/f2R|=0.044 ,f3/fT=1.51 |β23T|=1.70 ,1/β2T=0.00 ,DW/fW=(4.82) f2/fW=(2.67) ,R2b/f2=0.39 ,Δ2/Δ3=1.04 |f1/f11|=0.117 , |f1/f13|=0.117 |fW/f21|=0.044 ,|fW/f24|=0.044 |fW/fp|=0.066 (第1群物体側レンズ)、0.066 (第1群像側レンズ) 、0.044(第2群物体側レンズ)、0.044 (第2群像側レンズ)Example 6 f = 4.39 to 7.36 to 13.28, F number = 2.78 to 3.28 to 4.37 2ω = 59.3 ° to 37.5 ° to 21.3 ° r 1 = 8.3849 d 1 = 1.7928 n 1 = 1.58423 ν 1 = 30.49 r 2 = 9.8428 (aspheric surface) d 2 = 0.6000 r 3 = 28.0540 d 3 = 1.0000 n 2 = 1.72916 ν 2 = 54.68 r 4 = 3.5362 d 4 = 3.0222 r 5 = 12.88838 (aspheric surface) d 5 = 1.2000 n 3 = 1.58423 ν 3 = 30.49 r 6 = 18.5909 d 6 = D 1 (variable) r 7 = ∞ (aperture) d 7 = 1.0000 r 8 = 26.1792 (aspherical surface) d 8 = 1.2000 n 4 = 1.52540 ν 4 = 56.25 r 9 = 51.3543 d 9 = 0.1000 r 10 = 4.6180 d 10 = 3.5500 n 5 = 1.58913 ν 5 = 61.14 r 11 = -7.4000 d 11 = 1.0000 n 6 = 1.83400 ν 6 = 37.16 r 12 = 25.0466 d 12 = 0.6000 r 13 =- 16.5805 d 13 = 1.0589 n 7 = 1.52540 ν 7 = 56.25 r 14 = -24.7585 ( aspherical) d 14 = D 2 (variable) r 15 = 7.9289 d 15 = 1.8000 n 8 = 1.48749 ν 8 = 70.23 r 16 = 39.2941 d 16 D 3 (variable) r 17 = ∞ d 17 = 1.9000 n 9 = 1.54771 ν 9 = 62.84 r 18 = ∞ d 18 = 0.8000 r 19 = ∞ d 19 = 0.7500 n 10 = 1.51633 ν 10 = 64.14 r 20 = ∞ d 20 = 1.15 r 21 = ∞ (image) Aspheric coefficient (second surface) K = 0, A 2 = 0, A 4 = −5.6589 × 10 −5 A 6 = −3.9492 × 10 −5 , A 8 = 6.8699 × 10 -7 A 10 = 0 (Fifth surface) K = 0, A 2 = 0, A 4 = 1.3917 × 10 -3 , A 6 = -7.5570 × 10 -5 A 8 = 7.7507 × 10 -6 , A 10 = 0 (eighth surface) K = 0, A 2 = 0, A 4 = -8.7478 × 10 -5, A 6 = 1.2731 × 10 -5 A 8 = 9.8692 × 10 -7, A 10 = 0 ( the 14) K = 0, A 2 = 0, A 4 = 3.1309 × 10 -3 , A 6 = 1.0134 × 10 -4 A 8 = 1.5628 × 10 -5 , A 10 = 0 When focused on infinity f 4.39 7.36 13.28 D 1 13.24697 5.96984 1.40000 D 2 2.77930 2.08223 3.25837 D 3 3.44990 7.46635 14.81779 Focused on object distance 100 mm f 4.39 7.36 13.28 D 1 13.24697 5.96984 1.40000 D 2 2.51945 1. 50000 1.50000 D 3 3.70974 8.04858 16.57617 f2 = 11.72, f3 = 20.0, | fW / f2R | = 0.044, f3 / fT = 1.51 | β23T | = 1.70, 1 / β2T = 0.00, DW / fW = (4.82) f2 / fW = (2.67), R2b / f2 = 0.39, Δ2 / Δ3 = 1.04 | f1 / f11 | = 0.117, | f1 / f13 | = 0.117 | fW / f21 | = 0.044, | fW / f24 | = 0.044 | fW / fp | = 0.066 (first group object side lens), 0.066 (first group image side lens), 0.044 (second group object side lens), 0.044 (second group image side lens)

【0067】ただしr1 ,r2 ,・・・ はレンズ各面の曲
率半径、d1 ,d2 ,・・・ は各レンズの肉厚および面間
隔、n1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν
2 ,・・・ は各レンズのアッベ数である。尚f、r1 ,r
2 ,・・・ 、d1 ,d2 ・・・ 等の長さの単位はmmである。
[0067] However r 1, r 2, ··· the radius of curvature of each lens surface, d 1, d 2, ··· wall thickness and spacing of each lens, n 1, n 2, ··· is Refractive index of each lens, ν 1 , ν
2 , ... are Abbe numbers of each lens. Note that f, r 1 , r
2, ···, d 1, d 2 ··· units of length, such as is in mm.

【0068】本発明のズームレンズの実施例1は、図1
に示す通りの構成で、負の屈折力の第1レンズ群G1と
正の屈折力の第2レンズ群G2と正の屈折力の第3レン
ズ群G3とよりなり、広角端から望遠端にかけての変倍
の際にすべてのレンズ群G1、G2、G3および明るさ
絞りSが光軸上を図示するように移動する。そのうち第
3レンズ群G3は、像面Iとの距離が増大するように移
動する。
Embodiment 1 of the zoom lens according to the present invention is shown in FIG.
And a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a positive refractive power, from the wide-angle end to the telephoto end. At the time of zooming, all the lens groups G1, G2, G3 and the aperture stop S move on the optical axis as shown. The third lens group G3 moves so that the distance from the image plane I increases.

【0069】また、第1レンズ群G1は3枚のレンズよ
りなる。つまり物体側より順に、正レンズと負レンズと
屈折力の弱い単レンズとよりなり、屈折力の弱い単レン
ズの物体側の面(r5 )が非球面である。第2レンズ群
G2は単レンズと接合レンズと単レンズとよりなり、最
も像側の単レンズは平面に近い形状の屈折力の弱いレン
ズであり、このレンズの像側の面(r14)は非球面であ
る。第3レンズ群は両凸レンズである。
The first lens group G1 comprises three lenses. That is, in order from the object side, a positive lens, a negative lens, and a single lens having a low refractive power are formed, and the object-side surface (r 5 ) of the single lens having a low refractive power is an aspheric surface. The second lens group G2 includes a single lens, a cemented lens, and a single lens. The single lens closest to the image is a lens having a shape close to a plane and having a low refractive power, and the image-side surface (r 14 ) of this lens is It is an aspheric surface. The third lens group is a biconvex lens.

【0070】この実施例1のズームレンズは、前述のよ
うに第1レンズ群G1の最も像側のレンズと第2レンズ
群G2の最も像側のレンズを非球面レンズにし、これら
レンズの屈折力を弱くしてレンズの厚さを薄くして沈胴
厚を薄くした。
In the zoom lens of the first embodiment, as described above, the most image side lens of the first lens group G1 and the most image side lens of the second lens group G2 are aspherical lenses, and the refractive power of these lenses And the thickness of the lens was reduced to reduce the retracted thickness.

【0071】実施例2は、図2に示す通りの構成であっ
て、負の第1レンズ群G1と正の第2レンズ群G2と正
の第3レンズ群G3とよりなる。
The second embodiment has a configuration as shown in FIG. 2, and includes a first negative lens unit G1, a second positive lens unit G2, and a third positive lens unit G3.

【0072】この実施例2は、実施例1と類似の構成で
あるが、第2レンズ群G2の最も物体側の面(r8 )も
非球面である点で実施例1と相違する。
The second embodiment has a configuration similar to that of the first embodiment, but differs from the first embodiment in that the most object-side surface (r 8 ) of the second lens unit G2 is also aspherical.

【0073】この実施例2のズームレンズは、第1レン
ズ群G1の像側のレンズと第2レンズ群G2の像側のレ
ンズを非球面レンズとし、更に第2レンズ群G2の物体
側のレンズも非球面レンズにし、これらレンズの屈折力
を弱くすると共にその光学系材料をプラスチックにし
た。また、第3レンズ群G3と像面Iとの間隔を大にし
てクイックリターンミラーを配置し得るようにした。
In the zoom lens according to the second embodiment, the image-side lens of the first lens group G1 and the image-side lens of the second lens group G2 are aspherical lenses, and the object-side lens of the second lens group G2. Were made aspherical lenses, the refractive power of these lenses was reduced, and the optical system material was made of plastic. Further, the distance between the third lens group G3 and the image plane I is increased so that the quick return mirror can be disposed.

【0074】実施例3は、図3に示すようなズームレン
ズであって実施例1、2と類似の構成である。
The third embodiment is a zoom lens as shown in FIG. 3 and has a similar configuration to the first and second embodiments.

【0075】この実施例3は、第1レンズ群G1の最も
物体側のレンズの像側の面(r2)と第2レンズ群G2
の最も物体側の面(r8 )と第2レンズ群の最も像側の
レンズの物体側の面である面(r13)が非球面である。
つまり、第1レンズ群G1の最も物体側のレンズ、第2
レンズ群G2の最も物体側のレンズと最も像側のレンズ
が非球面レンズでこれらはプラスチックレンズである。
In the third embodiment, the image-side surface (r 2 ) of the lens closest to the object in the first lens group G1 and the second lens group G2
The surface closest to the object (r 8 ) and the surface closest to the object of the lens closest to the image in the second lens group (r 13 ) are aspherical surfaces.
That is, the lens closest to the object side in the first lens group G1, the second lens
The lens closest to the object and the lens closest to the image in the lens group G2 are aspherical lenses, and these are plastic lenses.

【0076】実施例4は図4に示す通り実施例1、2、
3のズームレンズと類似の構成である。
Embodiment 4 is similar to Embodiments 1 and 2 as shown in FIG.
This is a configuration similar to the zoom lens of No. 3.

【0077】この実施例4は、第1レンズ群G1が正レ
ンズと負レンズと正レンズよりなり、第2レンズ群G2
が両凸レンズと両凹レンズの接合レンズと負のメニスカ
スレンズよりなり、第3レンズ群G3が正レンズ1枚よ
りなる。つまり、第2レンズ群G2の構成が実施例1〜
3と相違する。
In the fourth embodiment, the first lens group G1 comprises a positive lens, a negative lens and a positive lens, and the second lens group G2
Comprises a cemented lens of a biconvex lens and a biconcave lens and a negative meniscus lens, and the third lens group G3 comprises one positive lens. That is, the configuration of the second lens group G2 is the same as that of the first to third embodiments.
3 is different.

【0078】この実施例4は、第1レンズ群G1の最も
物体側のレンズの像側の面である面(r2 )と、第2レ
ンズ群G2の最も物体側のレンズの像側の面(r8
と、第2レンズ群G2の最も像側のレンズの物体側の面
(r11)が非球面である。このように実施例4は実施例
3の第2レンズ群G2の最も物体側のプラスチック非球
面レンズをなくし、接合レンズの物体側の面を非球面に
して収差補正を行なうようにした。これにより第2レン
ズ群G2を薄くし、沈胴厚を薄くした。
In the fourth embodiment, the surface (r 2 ), which is the image-side surface of the lens closest to the object in the first lens group G1, and the image-side surface of the lens closest to the object in the second lens group G2 (R 8 )
And the object-side surface (r 11 ) of the lens closest to the image in the second lens group G2 is an aspheric surface. As described above, in the fourth embodiment, the plastic aspherical lens closest to the object side in the second lens group G2 in the third embodiment is eliminated, and the aberration correction is performed by making the object side surface of the cemented lens aspherical. As a result, the second lens group G2 was made thinner, and the collapsed thickness was made thinner.

【0079】実施例5は、図5に示す通りで、第1レン
ズ群G1が負レンズと正レンズの2枚のレンズにて構成
した点で他の実施例1〜4と相違する。
The fifth embodiment differs from the other first to fourth embodiments in that the first lens group G1 comprises two lenses, a negative lens and a positive lens, as shown in FIG.

【0080】この実施例5は、第1レンズ群G1の最も
物体側のレンズの物体側の面(r 1 )と、第2レンズ群
G2の最も像側のレンズの像側の面(r12)が非球面で
ある。
In the fifth embodiment, the first lens group G1
The object-side surface of the object-side lens (r 1 ) And the second lens group
The image-side surface (r) of the most image-side lens of G212) Is aspheric
is there.

【0081】この実施例5は、第1レンズ群G1を負レ
ンズと正レンズの2枚のレンズにすることによりこの第
1レンズ群G1を薄くして沈胴厚を薄くした。
In the fifth embodiment, the first lens group G1 is made up of two lenses, a negative lens and a positive lens, so that the first lens group G1 is made thin to reduce the collapsed thickness.

【0082】実施例6は、図6に示す通りの構成で、実
施例1等と類似の構成のズームレンズである。
The sixth embodiment is a zoom lens having the same configuration as that of the first embodiment and the like, having the configuration shown in FIG.

【0083】この実施例6は、第1レンズ群G1の最も
物体側のレンズの像側の面(r2)と最も像側のレンズ
の物体側の面(r5 )と、第2レンズ群G2の最も物体
側のレンズの物体側の面(r8 )と最も像側のレンズの
像側の面(r14)が非球面である。
[0083] Example 6 is the most image side surface of the object side of the lens (r 2) and the object side surface of the most image side of the lens and (r 5), the second lens group of the first lens group G1 The object-side surface (r 8 ) of the lens closest to the object and the image-side surface (r 14 ) of the lens closest to the image in G2 are aspherical.

【0084】この実施例6のズームレンズは、第1レン
ズ群G1の物体側および像側、第2レンズ群G2の物体
側および像側にプラスチック非球面レンズを配置して安
価なレンズ系にした。
The zoom lens of the sixth embodiment has an inexpensive lens system by arranging plastic aspheric lenses on the object side and the image side of the first lens group G1 and on the object side and the image side of the second lens group G2. .

【0085】実施例1のズームレンズの無限遠合焦時の
広角端、中間焦点距離及び望遠端における収差状況は、
夫々図7、図8、図9に示す通りであり、収差は良好に
補正されている。
The aberrations of the zoom lens of Embodiment 1 at the wide-angle end, the intermediate focal length, and the telephoto end when focused on infinity are:
As shown in FIG. 7, FIG. 8, and FIG. 9, respectively, the aberration is satisfactorily corrected.

【0086】他の実施例2〜6のズームレンズの収差状
況も、実施例1と同様に良好に補正されている。
The aberrations of the zoom lenses of the second to sixth embodiments are also corrected well as in the first embodiment.

【0087】また、図1〜図6において、Sは明るさ絞
り、F1、F2等は赤外カットフィルター、ローパスフ
ィルター等のフィルター類、Iは像面である。
Also, in FIGS. 1 to 6, S denotes a brightness stop, F1 and F2 denote filters such as an infrared cut filter and a low-pass filter, and I denotes an image plane.

【0088】各実施例にて用いられている非球面の形状
は、光軸上の光が進む方向をx軸、光軸と直交する方向
をy軸とした時、次の式にて表わされる。
The shape of the aspherical surface used in each embodiment is represented by the following equation, where the direction of light on the optical axis is the x-axis and the direction orthogonal to the optical axis is the y-axis. .

【0089】x=(y2/r)/[1+{1−(1+
K)(y/r)21/2]+A22+A44+A66+A
88+・・・ ただし、rは基準球面の曲率半径、Kは円錐係数、
2、A4、A6、A8、・・・は非球面係数である。
X = (y 2 / r) / [1+ {1- (1+
K) (y / r) 2 } 1/2] + A 2 y 2 + A 4 y 4 + A 6 y 6 + A
8 y 8 + ... where r is the radius of curvature of the reference sphere, K is the conic coefficient,
A 2 , A 4 , A 6 , A 8 ,... Are aspherical coefficients.

【0090】図10〜図12は本発明の撮像装置の実施
の形態であるデジタルカメラの概念図を示す。図10は
デジタルカメラ10の外観を示す前方斜視図、図11は
同後方斜視図、図12はデジタルカメラ10の構成を示
す断面図である。この図示するデジタルカメラ10は、
撮影用光路12を有する撮影光学系11と、ファインダ
ー用光路14を有するファインダー光学系13と、シャ
ッターボタン15と、フラッシュ16と、液晶表示モニ
ター17を含み、カメラ10の上部に配置されたシャッ
ターボタン15を押圧すると、それに連動して撮影光学
系11、例えば図1に示す本発明の実施例1のズームレ
ンズを通して撮影が行なわれる。撮影光学系11によっ
て形成された物体像が、ローパスフィルター、赤外カッ
トフィルター等のフィルターF1、F2を介して電子撮
像素子(CCD)19の撮像面上に形成される。このC
CD19で受光された物体像は、処理手段21を介し、
電子画像としてカメラ背面に設けられた液晶表示モニタ
ー17に表示される。また、この処理手段21には記録
手段22が接続され、撮影された電子画像を記録するこ
ともできる。なおこの記録手段22は処理手段21と別
体に設けてもよいし、フロッピー(登録商標)ディスク
やメモリーカード、MO等により電子的に記録書き込み
を行なうように構成してもよい。また、CCD19に代
わって銀塩フィルムを配置した銀塩カメラとして構成し
てもよい。
FIGS. 10 to 12 are conceptual views of a digital camera which is an embodiment of the image pickup apparatus of the present invention. FIG. 10 is a front perspective view showing the appearance of the digital camera 10, FIG. 11 is a rear perspective view of the same, and FIG. The digital camera 10 shown in FIG.
A shutter button including a shooting optical system 11 having a shooting optical path 12, a viewfinder optical system 13 having a viewfinder optical path 14, a shutter button 15, a flash 16, and a liquid crystal display monitor 17, and disposed above the camera 10. When the button 15 is pressed, the photographing is performed in conjunction with the photographing optical system 11, for example, the zoom lens according to the first embodiment of the present invention shown in FIG. An object image formed by the photographing optical system 11 is formed on an imaging surface of an electronic imaging device (CCD) 19 via filters F1 and F2 such as a low-pass filter and an infrared cut filter. This C
The object image received by the CD 19 passes through the processing unit 21,
The image is displayed as an electronic image on a liquid crystal display monitor 17 provided on the back of the camera. Further, a recording unit 22 is connected to the processing unit 21 so that a captured electronic image can be recorded. The recording means 22 may be provided separately from the processing means 21, or may be configured to perform recording and writing electronically using a floppy (registered trademark) disk, a memory card, an MO, or the like. Further, instead of the CCD 19, a silver halide camera in which a silver halide film is arranged may be configured.

【0091】更に、ファインダー用光路14上にはファ
インダー用対物光学系23が配置してある。このファイ
ンダー用対物光学系23によって形成された物体像は、
像正立部材であるポロプリズム25の視野枠27上に形
成される。このポロプリズム25の後方には、正立正像
にされた像を観察者眼球Eに導く接眼光学系29が配置
されている。なお、撮影光学系11及びファインダー用
対物光学系23の入射側、接眼光学系29の射出側にそ
れぞれカバー部材20が配置されている。
Further, a finder objective optical system 23 is arranged on the finder optical path 14. The object image formed by the finder objective optical system 23 is
It is formed on a field frame 27 of a Porro prism 25 which is an image erecting member. Behind the porro prism 25, an eyepiece optical system 29 that guides the erect image into the observer's eyeball E is disposed. Note that cover members 20 are arranged on the incident side of the photographing optical system 11 and the objective optical system 23 for the viewfinder, and on the exit side of the eyepiece optical system 29, respectively.

【0092】このように構成されたデジタルカメラ10
は、撮影光学系11が広画角で高変倍比であり、収差が
良好で、明るく、フィルター等が配置できるバックフォ
ーカスの大きなズームレンズであるので、高性能・低コ
スト化が実現できる。つまり、前述のように図12に示
す撮影光学系は、本発明の実施例1のズームレンズであ
って、第1レンズ群G1と第2レンズ群G2と第3レン
ズ群G3とよりなる。またSは明るさ絞り、F1、F2
はフィルターである。
The digital camera 10 configured as described above
Since the photographing optical system 11 is a zoom lens having a wide angle of view, a high zoom ratio, good aberration, good brightness, and a large back focus on which filters and the like can be arranged, high performance and low cost can be realized. That is, as described above, the photographing optical system shown in FIG. 12 is the zoom lens according to the first embodiment of the present invention, and includes the first lens group G1, the second lens group G2, and the third lens group G3. S is the aperture stop, F1, F2
Is a filter.

【0093】図10〜図12で本発明の撮像装置の例と
してデジタルカメラを示したが、その他の例としては本
発明のズームレンズを備えたビデオカメラがある。ま
た、パソコンのような情報処理装置に付属する画像入力
手段や、電話、特に携帯電話のような通信装置に付属す
る画像入力手段として本発明の撮像装置を使用すること
ができる。
FIGS. 10 to 12 show a digital camera as an example of the image pickup apparatus of the present invention. As another example, there is a video camera equipped with the zoom lens of the present invention. Further, the imaging device of the present invention can be used as an image input unit attached to an information processing device such as a personal computer or an image input unit attached to a telephone, particularly a communication device such as a mobile phone.

【0094】以上述べたように、本発明のズームレンズ
は、特許請求の範囲に記載するもののほか下記の各項に
記載するものも本発明の目的を達成し得るズームレンズ
である。
As described above, the zoom lens according to the present invention is a zoom lens that can achieve the object of the present invention, in addition to those described in the claims and those described in the following items.

【0095】(1)特許請求の範囲の請求項1又は2に
記載するレンズ系で、第2レンズ群が、物体側より順
に、単レンズと接合レンズと単レンズとにて構成され、
最も物体側の単レンズが非球面を有することを特徴とす
るズームレンズ。
(1) In the lens system according to claim 1 or 2, the second lens group includes, in order from the object side, a single lens, a cemented lens, and a single lens;
A zoom lens, wherein the single lens closest to the object has an aspherical surface.

【0096】(2)前記の(1)の項に記載するレンズ
系で、第2群中の接合レンズが物体側に凸面を向けたメ
ニスカス形状であり、下記の条件を満足することを特徴
とするズームレンズ。 |fW/f21|<0.1 ただし、f21は第2群の最も物体側の単レンズの焦点
距離である。
(2) The lens system described in (1) above, wherein the cemented lens in the second group has a meniscus shape with the convex surface facing the object side, and satisfies the following condition. Zoom lens. | FW / f21 | <0.1 where f21 is the focal length of the single lens closest to the object side in the second group.

【0097】(3)特許請求の範囲の請求項1又は2に
記載するレンズ系で、第2レンズ群が、物体側より順
に、接合レンズと単レンズとよりなり、接合レンズの最
も物体側の面が非球面であることを特徴とするズームレ
ンズ。
(3) In the lens system according to claim 1 or 2, the second lens group is composed of a cemented lens and a single lens in order from the object side, and A zoom lens having an aspheric surface.

【0098】(4)特許請求の範囲の請求項1又は2に
記載するレンズ系で、第1レンズ群が、物体側から順
に、非球面を有する単レンズと負の屈折力の単レンズと
物体側に凸面を向けた正のメニスカスレンズとにて構成
され下記の条件式を満足することを特徴とするズームレ
ンズ。 |f1/f11|<0.2 ただし、f11は第1レンズ群中の最も物体側のレンズ
の焦点距離、f1は第1レンズ群の焦点距離である。
(4) In the lens system according to claim 1 or 2, the first lens group includes, in order from the object side, a single lens having an aspheric surface, a single lens having a negative refractive power, and an object. A zoom lens comprising a positive meniscus lens having a convex surface facing the side, and satisfying the following conditional expression. | F1 / f11 | <0.2 where f11 is the focal length of the lens closest to the object in the first lens group, and f1 is the focal length of the first lens group.

【0099】(5)特許請求の範囲の請求項1又は2に
記載するレンズ系で、第1レンズ群が、物体側から順
に、両凸の単レンズと像側に強い凹面を向けた負の屈折
力の単レンズと非球面を有する単レンズとにて構成され
ており、下記の条件式を満足することを特徴とするズー
ムレンズ。 |f1/f13|<0.2 ただし、f13は第1群の最も像側のレンズの焦点距離
である。
(5) In the lens system according to claim 1 or 2, the first lens group includes, in order from the object side, a biconvex single lens and a negative concave surface having a strong concave surface facing the image side. A zoom lens comprising a single lens having a refractive power and a single lens having an aspheric surface, wherein the zoom lens satisfies the following conditional expression. | F1 / f13 | <0.2 where f13 is the focal length of the lens closest to the image in the first unit.

【0100】(6)特許請求の範囲の請求項1又は2に
記載するレンズ系で、第1レンズ群が、非球面を有する
単レンズと像側に強い凹面を向けた負の屈折力の単レン
ズと非球面を有する単レンズとにて構成されており、下
記の条件式を満足することを特徴とするズームレンズ。 |f1/f11|<0.2 |f1/f13|<0.2
(6) In the lens system according to claim 1 or 2, the first lens group includes a single lens having an aspheric surface and a single lens having a negative refractive power with a strong concave surface facing the image side. A zoom lens comprising a lens and a single lens having an aspheric surface, wherein the zoom lens satisfies the following conditional expression. | F1 / f11 | <0.2 | f1 / f13 | <0.2

【0101】(7)特許請求の範囲の請求項1又は2に
記載するレンズ系で、第1レンズ群が非球面を有し像側
に強い凹面を向けた負の屈折力のレンズと像側に凸面を
向けたメニスカスレンズにて構成されていることを特徴
とするズームレンズ。
(7) The lens system according to claim 1 or 2, wherein the first lens unit has an aspherical surface, a lens having a negative refractive power having a strong concave surface facing the image side, and a lens having a negative refractive power. A zoom lens comprising a meniscus lens having a convex surface facing the lens.

【0102】(8)前記の(2)、(4)、(5)、
(6)又は(7)の項に記載するレンズ系で、下記条件
(9)を満足することを特徴とするズームレンズ。 (9) |fW/fp|<0.05 ただし、fpはプラスチックレンズの焦点距離、fWは
広角端における全系の焦点距離である。
(8) The above (2), (4), (5),
A zoom lens according to the item (6) or (7), wherein the following condition (9) is satisfied. (9) | fW / fp | <0.05 where fp is the focal length of the plastic lens, and fW is the focal length of the entire system at the wide-angle end.

【0103】(9)特許請求の範囲の請求項1又は2に
記載するレンズ系で、第3レンズ群を物体側に繰り出す
ことにより近距離の被写体に合焦することを特徴とする
ズームレンズ。
(9) A zoom lens according to claim 1 or 2, wherein the third lens group is moved toward the object side to focus on a short-distance object.

【0104】(10)特許請求の範囲の請求項1又は2
に記載するレンズ系で、第2レンズ群の最も像側のレン
ズが非球面を有することを特徴とするズームレンズ。
(10) Claim 1 or 2 of the claims
A zoom lens, wherein the lens closest to the image in the second lens group has an aspherical surface.

【0105】[0105]

【発明の効果】本発明によれば、沈胴厚が薄く収納性に
優れかつ高倍率でリアーフォーカスにおいても高い結像
性能を有するズームレンズを実現し得る。また本発明の
ズームレンズを備えることによりビデオカメラやデジタ
ルカメラの薄型化を図ることが出来る。
According to the present invention, it is possible to realize a zoom lens having a thin collapsible thickness, excellent storability, high magnification and high imaging performance even in rear focus. The provision of the zoom lens of the present invention makes it possible to reduce the thickness of a video camera or a digital camera.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のズームレンズの実施例1の断面図FIG. 1 is a sectional view of a zoom lens according to a first embodiment of the present invention;

【図2】本発明のズームレンズの実施例2の断面図FIG. 2 is a sectional view of a zoom lens according to a second embodiment of the present invention;

【図3】本発明のズームレンズの実施例3の断面図FIG. 3 is a sectional view of a zoom lens according to a third embodiment of the present invention;

【図4】本発明のズームレンズの実施例4の断面図FIG. 4 is a sectional view of a zoom lens according to a fourth embodiment of the present invention;

【図5】本発明のズームレンズの実施例5の断面図FIG. 5 is a sectional view of a zoom lens according to a fifth embodiment of the present invention;

【図6】本発明のズームレンズの実施例6の断面図FIG. 6 is a sectional view of a zoom lens according to a sixth embodiment of the present invention;

【図7】上記実施例1の無限遠合焦時の広角端における
収差図
FIG. 7 is an aberration diagram at a wide-angle end when focusing on infinity according to the first embodiment.

【図8】上記実施例1の無限遠合焦時の中間焦点距離に
おける収差図
FIG. 8 is an aberration diagram at an intermediate focal length when focusing on infinity according to the first embodiment.

【図9】上記実施例1の無限遠合焦時の望遠端における
収差図
FIG. 9 is an aberration diagram at a telephoto end when focusing on infinity according to the first embodiment.

【図10】本発明の撮像装置の前方斜視図FIG. 10 is a front perspective view of the imaging device of the present invention.

【図11】上記撮像装置の後方斜視図FIG. 11 is a rear perspective view of the imaging device.

【図12】上記撮像装置の断面図FIG. 12 is a cross-sectional view of the imaging device.

フロントページの続き Fターム(参考) 2H054 AA01 2H087 KA03 MA14 PA06 PA07 PA18 PB07 PB08 QA02 QA03 QA06 QA07 QA12 QA14 QA19 QA21 QA22 QA25 QA32 QA34 QA41 QA42 QA46 RA05 RA12 RA13 RA36 RA43 SA14 SA16 SA19 SA62 SA63 SA64 SB03 SB04 SB15 SB22 UA01 5C022 AB43 AB66 AC32 AC42 AC52 AC54 AC78 Continued on the front page F-term (reference) 2H054 AA01 2H087 KA03 MA14 PA06 PA07 PA18 PB07 PB08 QA02 QA03 QA06 QA07 QA12 QA14 QA19 QA21 QA22 QA25 QA32 QA34 QA41 QA42 QA46 RA05 RA12 RA13 SB16 SA14 SA16 SA16 SA16 5C022 AB43 AB66 AC32 AC42 AC52 AC54 AC78

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、負の屈折力を有する第1
レンズ群と、正の屈折力を有する第2レンズ群と、正の
屈折力を有する第3レンズ群とよりなり、広角端から望
遠端に変倍する際に前記第3レンズ群と像面との間隔が
大になるように第3レンズ群を移動するレンズ系で、第
3レンズ群が正レンズ1枚よりなり、下記条件(1)、
(2)、(3)、(4)を満足するズームレンズ。 (1) |fW/f2R|<0.1 (2) 0.89<f3/fT<2.8 (3) 1.1<|β23T|<2 (4) 1/β2T<0.25 ただし、f2Rは第2レンズ群の最も像側のレンズの焦
点距離、f3は第3レンズ群の焦点距離、β23Tは望
遠端における第2レンズ群と第3レンズ群の合成倍率、
β2Tは望遠端における第2レンズ群の倍率、fWは広
角端におけるズームレンズ全系の焦点距離、fTは望遠
端におけるズームレンズ全系の焦点距離である。
1. A first lens having a negative refractive power in order from the object side.
A lens group, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the third lens group and the image plane Is a lens system that moves the third lens group so that the distance between the lenses becomes large. The third lens group is composed of one positive lens.
A zoom lens that satisfies (2), (3) and (4). (1) | fW / f2R | <0.1 (2) 0.89 <f3 / fT <2.8 (3) 1.1 <| β23T | <2 (4) 1 / β2T <0.25 f2R is the focal length of the lens closest to the image in the second lens group, f3 is the focal length of the third lens group, β23T is the combined magnification of the second and third lens groups at the telephoto end,
β2T is the magnification of the second lens group at the telephoto end, fW is the focal length of the entire zoom lens system at the wide-angle end, and fT is the focal length of the entire zoom lens system at the telephoto end.
【請求項2】条件(1)、(2)、(3)、(4)の代
りに下記条件(1−1)、(2−1)、(3−1)、
(4−1)を満足する請求項1のズームレンズ。 (1−1) |fW/f2R|<0.05 (2−1) 1.1<f3/fT<2 (3−1) 1.2<|β23T|<1.8 (4−1) 1/β2T<0.1
2. Conditions (1), (2), (3) and (4) are replaced by the following conditions (1-1), (2-1), (3-1),
The zoom lens according to claim 1, which satisfies (4-1). (1-1) | fW / f2R | <0.05 (2-1) 1.1 <f3 / fT <2 (3-1) 1.2 <| β23T | <1.8 (4-1) 1 /Β2T<0.1
【請求項3】ズームレンズと撮像手段とを備え、前記ズ
ームレンズが物体側より順に、負の屈折力を有する第1
レンズ群と、正の屈折力を有する第2レンズ群と、正の
屈折力を有する第3レンズ群とよりなり、広角端から望
遠端に変倍する際に前記第3レンズ群と像面との間隔が
大になるように第3レンズ群を移動するレンズ系で、第
3レンズ群が正レンズ1枚よりなり、下記条件(1)、
(2)、(3)、(4)を満足する撮像装置。 (1) |fW/f2R|<0.1 (2) 0.89<f3/fT<2.8 (3) 1.1<|β23T|<2 (4) 1/β2T<0.25 ただし、f2Rは第2レンズ群の最も像側のレンズの焦
点距離、f3は第3レンズ群の焦点距離、β23Tは望
遠端における第2レンズ群と第3レンズ群の合成の倍
率、β2Tは望遠端における第2レンズ群の倍率、fW
は広角端におけるズームレンズ全系の焦点距離、fTは
望遠端におけるズームレンズ全系の焦点距離である。
3. A zoom lens comprising a zoom lens and an image pickup means, wherein the zoom lens has a negative refractive power in order from the object side.
A lens group, a second lens group having a positive refractive power, and a third lens group having a positive refractive power. When zooming from the wide-angle end to the telephoto end, the third lens group and the image plane Is a lens system that moves the third lens group so that the distance between the lenses becomes large. The third lens group is composed of one positive lens.
An imaging device that satisfies (2), (3), and (4). (1) | fW / f2R | <0.1 (2) 0.89 <f3 / fT <2.8 (3) 1.1 <| β23T | <2 (4) 1 / β2T <0.25 f2R is the focal length of the lens closest to the image in the second lens group, f3 is the focal length of the third lens group, β23T is the magnification of the combination of the second and third lens groups at the telephoto end, and β2T is the focal length at the telephoto end. Magnification of the second lens group, fW
Is the focal length of the entire zoom lens system at the wide-angle end, and fT is the focal length of the entire zoom lens system at the telephoto end.
JP2001210118A 2000-07-13 2001-07-11 Zoom lens and image pickup apparatus equipped with zoom lens Expired - Fee Related JP4503886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001210118A JP4503886B2 (en) 2000-07-13 2001-07-11 Zoom lens and image pickup apparatus equipped with zoom lens

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-212773 2000-07-13
JP2000212773 2000-07-13
JP2001210118A JP4503886B2 (en) 2000-07-13 2001-07-11 Zoom lens and image pickup apparatus equipped with zoom lens

Publications (3)

Publication Number Publication Date
JP2002090625A true JP2002090625A (en) 2002-03-27
JP2002090625A5 JP2002090625A5 (en) 2007-01-11
JP4503886B2 JP4503886B2 (en) 2010-07-14

Family

ID=26595964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001210118A Expired - Fee Related JP4503886B2 (en) 2000-07-13 2001-07-11 Zoom lens and image pickup apparatus equipped with zoom lens

Country Status (1)

Country Link
JP (1) JP4503886B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277740A (en) * 2001-03-19 2002-09-25 Asahi Optical Co Ltd Zoom lens system
US7215483B2 (en) 2004-09-16 2007-05-08 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having the same
JP2007279384A (en) * 2006-04-06 2007-10-25 Fujinon Corp Projection lens and projection type display device using the same
JP2009092740A (en) * 2007-10-04 2009-04-30 Sony Corp Zoom lens and image pickup apparatus
JP2010152316A (en) * 2008-11-26 2010-07-08 Hoya Corp Zoom lens system and electronic imaging device using the same
JP2011257465A (en) * 2010-06-07 2011-12-22 Olympus Imaging Corp Variable magnification optical system and image pickup apparatus using the same
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
KR101933088B1 (en) 2017-04-26 2018-12-27 주식회사 삼양옵틱스 Lens optical system and photographing apparatus having the same
JP2021096448A (en) * 2019-12-13 2021-06-24 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109009A (en) * 1988-10-18 1990-04-20 Nikon Corp Kepler-type zoom finder optical system
JPH10133115A (en) * 1996-09-09 1998-05-22 Ricoh Co Ltd Compact zoom lens
JP2000121937A (en) * 1998-10-16 2000-04-28 Olympus Optical Co Ltd Two-group zoom lens
JP2001042218A (en) * 1999-08-03 2001-02-16 Nikon Corp Zoom lens
JP2001281545A (en) * 1999-10-06 2001-10-10 Canon Inc Zoom lens and optical equipment using the same
JP2002014285A (en) * 2000-06-29 2002-01-18 Asahi Optical Co Ltd Endoscopic objective variable power optical system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109009A (en) * 1988-10-18 1990-04-20 Nikon Corp Kepler-type zoom finder optical system
JPH10133115A (en) * 1996-09-09 1998-05-22 Ricoh Co Ltd Compact zoom lens
JP2000121937A (en) * 1998-10-16 2000-04-28 Olympus Optical Co Ltd Two-group zoom lens
JP2001042218A (en) * 1999-08-03 2001-02-16 Nikon Corp Zoom lens
JP2001281545A (en) * 1999-10-06 2001-10-10 Canon Inc Zoom lens and optical equipment using the same
JP2002014285A (en) * 2000-06-29 2002-01-18 Asahi Optical Co Ltd Endoscopic objective variable power optical system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277740A (en) * 2001-03-19 2002-09-25 Asahi Optical Co Ltd Zoom lens system
US7215483B2 (en) 2004-09-16 2007-05-08 Canon Kabushiki Kaisha Zoom lens system and image pickup apparatus having the same
JP2007279384A (en) * 2006-04-06 2007-10-25 Fujinon Corp Projection lens and projection type display device using the same
JP2009092740A (en) * 2007-10-04 2009-04-30 Sony Corp Zoom lens and image pickup apparatus
JP2010152316A (en) * 2008-11-26 2010-07-08 Hoya Corp Zoom lens system and electronic imaging device using the same
JP2011257465A (en) * 2010-06-07 2011-12-22 Olympus Imaging Corp Variable magnification optical system and image pickup apparatus using the same
US9122041B2 (en) 2011-09-02 2015-09-01 Samsung Electronics Co., Ltd. Zoom lens and photographing apparatus including the same
KR101933088B1 (en) 2017-04-26 2018-12-27 주식회사 삼양옵틱스 Lens optical system and photographing apparatus having the same
JP2021096448A (en) * 2019-12-13 2021-06-24 エーエーシー オプティックス ソリューションズ ピーティーイー リミテッド Image capturing optical lens
US11513322B2 (en) * 2019-12-13 2022-11-29 Aac Optics Solutions Pte. Ltd. Camera optical lens including eight lenses of +−+−−−+− refractive powers

Also Published As

Publication number Publication date
JP4503886B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP4900924B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4901270B2 (en) Zoom lens
JP4859186B2 (en) Zoom lens and image pickup apparatus including the same
JP4900923B2 (en) Zoom lens and electronic imaging apparatus using the same
JP4766933B2 (en) Optical path folding zoom lens and image pickup apparatus having the same
JP2012208378A (en) Zoom lens and imaging apparatus using the same
JP2006098686A (en) Zoom lens and electronic imaging apparatus using the same
JP4906439B2 (en) Zoom lens and electronic imaging apparatus using the same
JP2011252962A (en) Imaging optical system and imaging apparatus having the same
JP2006220715A (en) Zoom lens and imaging apparatus using the same
JP4690052B2 (en) Zoom lens and imaging apparatus using the same
US7277233B2 (en) Zoom lens and imaging system incorporating it
JP4245783B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
US8165463B2 (en) Zoom optical system and electronic imaging apparatus using the same
JP4605698B2 (en) Zoom lens and image pickup apparatus equipped with the same
JP2004013169A (en) Variable magnification group in zoom lens, zoom lens, and camera system
JP5450256B2 (en) Imaging optical system and electronic imaging apparatus having the same
JP2003035868A (en) Variable power group for zoom lens, zoom lens and camera device
US7403340B2 (en) Zoom optical system and electronic imaging apparatus using the same
JP4503886B2 (en) Zoom lens and image pickup apparatus equipped with zoom lens
JP4947992B2 (en) Zoom lens and imaging apparatus using the same
JP2006194975A (en) Zoom lens and imaging apparatus using the same
JP2003287679A (en) Zoom lens and camera device
JP4884054B2 (en) Zoom lens
JP4605699B2 (en) Zoom lens and image pickup apparatus equipped with the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees