JP2002076024A - Iii-v nitride compound semiconductor device - Google Patents
Iii-v nitride compound semiconductor deviceInfo
- Publication number
- JP2002076024A JP2002076024A JP2000266117A JP2000266117A JP2002076024A JP 2002076024 A JP2002076024 A JP 2002076024A JP 2000266117 A JP2000266117 A JP 2000266117A JP 2000266117 A JP2000266117 A JP 2000266117A JP 2002076024 A JP2002076024 A JP 2002076024A
- Authority
- JP
- Japan
- Prior art keywords
- compound semiconductor
- layer
- semiconductor layer
- binary compound
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、窒化物系III−
V族化合物半導体装置に関し、特に、チャネル層(電子
走行層)とバリア層(障壁層)のヘテロ接合の界面にお
ける組成や障壁高さのゆらぎのない窒化物系III−V
族化合物半導体装置の構造に関する。TECHNICAL FIELD The present invention relates to a nitride III-
The present invention relates to a group III compound semiconductor device, particularly, a nitride III-V without fluctuation in composition or barrier height at an interface of a heterojunction between a channel layer (electron transit layer) and a barrier layer (barrier layer).
The present invention relates to a structure of a group III compound semiconductor device.
【0002】[0002]
【従来の技術】HFET(Hetero Field Effect Transi
stor)構造における材料の組合せとしては、GaNをチ
ャネル層とし、AlGaNをバリア層として、これらを
ヘテロ接合したものが最も一般的に用いられている(U.
S.Patent No.5192987および特開平10−189
944号公報など)。2. Description of the Related Art HFET (Hetero Field Effect Transi)
As a combination of materials in a stor) structure, a material in which GaN is used as a channel layer and AlGaN is used as a barrier layer and a heterojunction of these is most commonly used (U.S.
S. Patent No. 592987 and JP-A-10-189
944).
【0003】[0003]
【発明が解決しようとする課題】一般に、2つの元素か
ら成る二元化合物半導体(たとえば、AlN、GaN、
InNなど)と、この二元化合物半導体とは異なる二元
化合物半導体との接合界面は、成長条件にも依存する
が、急峻な界面が得られやすい。一方、二元化合物半導
体と3つの元素から成る三元混晶半導体(たとえば、A
lGaN,GaInN,AlInNなど)を組合せて接
合する場合において、三元混晶半導体の成分が二元化合
物半導体の成分と重なっている場合(たとえば、GaN
とAlGaN、あるいはGaNとGaInNなど)は、
急峻な界面は得られない。これは、たとえば図3に示す
ようなGaNとAlGaNとのヘテロ接合では、2つの
半導体の境界にまたがって同一の元素(Ga)が存在す
るためである。このため、チャネル層であるはずのGa
Nとバリア層であるAlGaNの中のGaNが急峻な界
面の形成を阻害し、ヘテロ接合の特性に悪影響を与え、
移動度の低下などの問題が生じる。Generally, binary compound semiconductors composed of two elements (eg, AlN, GaN,
Although a junction interface between InN and a binary compound semiconductor different from this binary compound semiconductor depends on the growth conditions, a steep interface is easily obtained. On the other hand, a ternary mixed crystal semiconductor composed of a binary compound semiconductor and three elements (for example, A
In the case of bonding by combining lGaN, GaInN, AlInN, etc., when the component of the ternary mixed crystal semiconductor overlaps the component of the binary compound semiconductor (for example, GaN
And AlGaN or GaN and GaInN)
A steep interface cannot be obtained. This is because, for example, in a heterojunction of GaN and AlGaN as shown in FIG. 3, the same element (Ga) exists over the boundary between two semiconductors. For this reason, Ga, which should be a channel layer,
N and GaN in AlGaN which is a barrier layer inhibits formation of a steep interface, adversely affecting the characteristics of the heterojunction,
Problems such as a decrease in mobility occur.
【0004】本発明の目的は、急峻な界面を有し、移動
度などの特性に優れた窒化物系III−V族化合物半導
体装置を提供することである。An object of the present invention is to provide a nitride III-V compound semiconductor device having a steep interface and excellent characteristics such as mobility.
【0005】[0005]
【課題を解決するための手段】本発明は、ヘテロ構造を
有する窒化物系III−V族化合物半導体装置におい
て、チャネル層を構成する第1の二元化合物半導体層と
バリア層を構成する三元混晶半導体層との間に第2の二
元化合物半導体層が介在されることを特徴とする窒化物
系III−V族化合物半導体装置である。According to the present invention, there is provided a nitride III-V compound semiconductor device having a heterostructure, wherein a first binary compound semiconductor layer forming a channel layer and a ternary compound semiconductor layer forming a barrier layer are formed. A nitride-based III-V compound semiconductor device, wherein a second binary compound semiconductor layer is interposed between the semiconductor device and the mixed crystal semiconductor layer.
【0006】本発明に従えば、二元化合物半導体同士の
接合では、原子拡散がない限り界面は急峻となるため、
ヘテロ構造を有する窒化物系III−V族化合物半導体
装置において、チャネル層を構成する第1の二元化合物
半導体層とバリア層を構成する三元混晶半導体層の間に
第2の二元化合物半導体層を介在させることにより、ヘ
テロ接合の界面における急峻性が改善される。According to the present invention, at the junction between binary compound semiconductors, the interface becomes steep unless atomic diffusion occurs.
In a nitride III-V compound semiconductor device having a hetero structure, a second binary compound is provided between a first binary compound semiconductor layer constituting a channel layer and a ternary mixed crystal semiconductor layer constituting a barrier layer. The steepness at the interface of the heterojunction is improved by interposing the semiconductor layer.
【0007】また、窒化物系の半導体にこのような構造
を適用した場合、界面におけるピエゾ効果がさらに大き
くなり、2次元電子ガスのキャリアの濃度をより大きく
することができるといったAlGaAs/GaAsヘテ
ロ構造には現れない効果があり、より電気的特性を向上
させることができる。When such a structure is applied to a nitride-based semiconductor, the piezo effect at the interface is further increased, and the carrier concentration of the two-dimensional electron gas can be further increased. Has an effect that does not appear, and the electrical characteristics can be further improved.
【0008】また本発明は、前記第2の二元化合物半導
体層のバンドギャップが、前記第1の二元化合物半導体
層のバンドギャップよりも大きいことを特徴とする。Further, the present invention is characterized in that the band gap of the second binary compound semiconductor layer is larger than the band gap of the first binary compound semiconductor layer.
【0009】第2の二元化合物半導体層のバンドギャッ
プが第1の二元化合物半導体層のエネルギーギャップよ
りも小さいと、第2の二元化合物半導体が新たなチャネ
ル層となってしまい、また、第2の二元化合物半導体と
三元混晶半導体の接合の界面が急峻とならないが、本発
明に従えば、第2の二元化合物半導体層のバンドギャッ
プが、第1の二元化合物半導体層のバンドギャップより
も大きいので、これらの接合界面が急峻性が保たれる。If the band gap of the second binary compound semiconductor layer is smaller than the energy gap of the first binary compound semiconductor layer, the second binary compound semiconductor becomes a new channel layer, and Although the interface at the junction between the second binary compound semiconductor and the ternary mixed crystal semiconductor does not become steep, according to the present invention, the band gap of the second binary compound semiconductor layer is changed to the first binary compound semiconductor layer. Is larger than the band gap, the steepness of these junction interfaces is maintained.
【0010】また本発明は、前記第1の二元化合物半導
体層は、InN、GaN、LaN、CeN、PrN、N
dN、PmN、SmN、EnN、GdN、TbN、Dy
N、HoN、ErN、TmN、YbN、LuNのうちの
1つであることを特徴とする。Also, in the present invention, the first binary compound semiconductor layer is preferably made of InN, GaN, LaN, CeN, PrN, N
dN, PmN, SmN, EnN, GdN, TbN, Dy
N, HoN, ErN, TmN, YbN, or LuN.
【0011】本発明に従えば、第1の二元化合物半導体
層として、バンドギャップが2〜3.4eVの半導体で
あるInN、GaN、LaN、CeN、PrN、Nd
N、PmN、SmN、EnN、GdN、TbN、Dy
N、HoN、ErN、TmN、YbN、LuNのうちの
1つを用いることができる。また、バリア層を構成する
三元混晶半導体層のバンドギャップの大きさによって、
どの材料を用いるかが決まる。According to the present invention, as the first binary compound semiconductor layer, a semiconductor having a band gap of 2 to 3.4 eV, such as InN, GaN, LaN, CeN, PrN, Nd.
N, PmN, SmN, EnN, GdN, TbN, Dy
One of N, HoN, ErN, TmN, YbN, and LuN can be used. Further, depending on the size of the band gap of the ternary mixed crystal semiconductor layer constituting the barrier layer,
Which material to use is determined.
【0012】また本発明は、前記第2の二元化合物半導
体層は、AlN、InN、GaN、LaN、CeN、P
rN、NdN、PmN、SmN、EnN、GdN、Tb
N、DyN、HoN、ErN、TmN、YbN、LuN
のうちの1つであることを特徴とする。Further, in the present invention, the second binary compound semiconductor layer is preferably made of AlN, InN, GaN, LaN, CeN, P
rN, NdN, PmN, SmN, EnN, GdN, Tb
N, DyN, HoN, ErN, TmN, YbN, LuN
Is one of the above.
【0013】本発明に従えば、第2の二元化合物半導体
層として、AlN、InN、GaN、LaN、CeN、
PrN、NdN、PmN、SmN、EuN、GdN、T
bN、DyN、HoN、ErN、TmN、YbN、Lu
Nのうちの1つを用いることができる。また、チャネル
層を構成する第1の二元化合物半導体層のバンドギャッ
プの大きさによって、どの材料を用いるかが決まる。According to the present invention, as the second binary compound semiconductor layer, AlN, InN, GaN, LaN, CeN,
PrN, NdN, PmN, SmN, EuN, GdN, T
bN, DyN, HoN, ErN, TmN, YbN, Lu
One of N can be used. Further, which material is used depends on the band gap of the first binary compound semiconductor layer forming the channel layer.
【0014】また本発明は、前記第2の二元化合物半導
体層は、層厚が1分子層以上4分子層以下のAlNであ
ることを特徴とする。Further, the present invention is characterized in that the second binary compound semiconductor layer is made of AlN having a thickness of one to four molecular layers.
【0015】第2の二元化合物半導体層にAlNを用い
る場合、AlNは6.2eVという極めて大きなバンド
ギャップを有しており、その層厚が厚くなり過ぎるとバ
リア層からチャネル層への電流注入が阻害され、ヘテロ
構造として機能しなくなる。本発明に従えば、膜厚が1
分子層以上4分子層以下のAlNを第2の二元化合物半
導体層に用いることによって、接合界面の急峻性を維持
しつつ、トンネル効果によって充分なキャリア輸送が行
える。よって、電気的特性に優れた窒化物III−V族
化合物半導体装置が得られる。In the case where AlN is used for the second binary compound semiconductor layer, AlN has an extremely large band gap of 6.2 eV. If the layer thickness is too large, current injection from the barrier layer to the channel layer is performed. Is inhibited, and does not function as a heterostructure. According to the present invention, when the film thickness is 1
By using AlN of at least a molecular layer and at most 4 molecular layers for the second binary compound semiconductor layer, sufficient carrier transport can be performed by a tunnel effect while maintaining the steepness of the junction interface. Therefore, a nitride III-V compound semiconductor device having excellent electric characteristics can be obtained.
【0016】[0016]
【発明の実施の形態】次に、本発明の具体的形態を実施
例により説明するが、これら実施例により何ら制限を受
けるものではない。以下に、実施例を示す。Next, specific embodiments of the present invention will be described with reference to examples, but the present invention is not limited by these examples. An example is described below.
【0017】(実施例1)図1は、本発明の実施例であ
る窒化物系III−V族化合物半導体装置10の概要を
示す断面図である。窒化物系III−V族化合物半導体
装置10は、半絶縁性SiC基板1の(0001)結晶
面に、AlNエピタキシャルバッファ層2、第1の二元
化合物半導体層でありキャリア濃度が1×1016cm-3
のGaNチャネル層3、第2の二元化合物半導体層であ
るAlNバリア特性改善層4、三元混晶半導体層であり
キャリア濃度が2×1017cm-3のAl0.2Ga0.8Nバ
リア層5、がこの順に積層され、この上にソース電極6
a、ドレイン電極6b、およびゲート電極7が形成され
構成される。(Embodiment 1) FIG. 1 is a sectional view showing an outline of a nitride III-V compound semiconductor device 10 according to an embodiment of the present invention. The nitride III-V compound semiconductor device 10 includes an AlN epitaxial buffer layer 2 and a first binary compound semiconductor layer on a (0001) crystal plane of a semi-insulating SiC substrate 1 and a carrier concentration of 1 × 10 16. cm -3
The GaN channel layer 3, the second AlN barrier properties improve layer 4 is a binary compound semiconductor layer, Al 0.2 Ga 0.8 carrier concentration is ternary mixed crystal semiconductor layer is 2 × 10 17 cm -3 N barrier layer 5 Are stacked in this order, and the source electrode 6 is formed thereon.
a, a drain electrode 6b, and a gate electrode 7 are formed.
【0018】このような層構造を形成するための結晶成
長方法としては、有機金属気相成長法(Metalorganic
Chemical Vapor Deposition−MOCVD法)あるいは
プラズマ励起した窒素を用いた分子線エピタキシー法
(Radio Frequency−MolecularBeam Epitaxy、RF−M
BEあるいはElectron Cyclotron Resonance−MBE、
ECR−MBE)などを用いることができる。As a crystal growth method for forming such a layer structure, a metalorganic vapor phase epitaxy method (Metalorganic
Chemical Vapor Deposition-MOCVD method or molecular beam epitaxy method using plasma-excited nitrogen (Radio Frequency-Molecular Beam Epitaxy, RF-M)
BE or Electron Cyclotron Resonance-MBE,
ECR-MBE) can be used.
【0019】本実施例では、MOCVD法により、以下
のような工程で作製した。はじめに、水素雰囲気中にお
いて基板温度1000℃で半絶縁性SiC基板1の表面
のクリーニングを10分間行った。次に、基板温度11
00℃で厚さ20nmのAlNエピタキシャルバッファ
層2を成長させ、引き続いて基板温度1000℃で厚さ
1μmのGaNチャネル層3を成長させた。その後、基
板温度1000℃でAlNバリア特性改善層4を成長さ
せた。前記AlNバリア特性改善層4を形成するAlN
のエネルギーバンドギャップは6.2eVという極めて
大きなバンドギャップを有しているので、この層厚が厚
くなり過ぎるとバリア層からチャネル層への電流の注入
が阻害され、ヘテロ接合として機能しなくなる。つま
り、界面急峻性を維持しつつ、トンネル効果によって十
分なキャリア輸送を行える厚さにする必要がある。この
ため、AlNヘテロ特性性改善層4の膜厚は1分子層〜
4分子層にすることが好ましい。本実施例では、この膜
厚を2分子層〜5Åとしている。さらに、基板温度を1
100℃に上げてAl0.2Ga0.8Nバリア層5を成長さ
せた。In this embodiment, the semiconductor device was manufactured by the MOCVD method in the following steps. First, the surface of the semi-insulating SiC substrate 1 was cleaned in a hydrogen atmosphere at a substrate temperature of 1000 ° C. for 10 minutes. Next, the substrate temperature 11
An AlN epitaxial buffer layer 2 having a thickness of 20 nm was grown at 00 ° C., and a GaN channel layer 3 having a thickness of 1 μm was subsequently grown at a substrate temperature of 1000 ° C. Thereafter, an AlN barrier characteristic improving layer 4 was grown at a substrate temperature of 1000 ° C. AlN for forming the AlN barrier characteristic improving layer 4
Has an extremely large energy band gap of 6.2 eV. If the layer thickness is too large, injection of current from the barrier layer to the channel layer is hindered, and the layer does not function as a heterojunction. That is, it is necessary to keep the interface steepness and the thickness so that sufficient carrier transport can be performed by the tunnel effect. For this reason, the thickness of the AlN hetero-characteristic improving layer 4 is from one molecular layer to
It is preferable to form a four molecular layer. In the present embodiment, the thickness is set to 2 molecular layers to 5 °. Further, when the substrate temperature is 1
The temperature was raised to 100 ° C., and the Al 0.2 Ga 0.8 N barrier layer 5 was grown.
【0020】この後、フォトリソグラフィー法を用いて
ソース電極6a、ドレイン電極6bおよびゲート電極7
を形成して窒化物系III−V族化合物半導体装置10
を作製した。また、第2の二元化合物半導体層を介在さ
せた本実施形態の窒化物系III−V族化合物半導体装
置10の特性を従来型の化合物半導体装置の特性と比較
するためAlNヘテロ特性改善層4を介在させない構造
の化合物半導体装置も同様な工程で作製した。Thereafter, the source electrode 6a, the drain electrode 6b and the gate electrode 7 are formed by photolithography.
Forming a nitride III-V compound semiconductor device 10
Was prepared. Further, in order to compare the characteristics of the nitride III-V compound semiconductor device 10 of the present embodiment with the second binary compound semiconductor layer interposed therebetween to the characteristics of the conventional compound semiconductor device, the AlN hetero characteristic improving layer 4 is used. A compound semiconductor device having no intervening structure was manufactured in the same process.
【0021】デバイス特性の測定に先立ち、半導体層の
電気的特性をホール測定によって調べた。AlNヘテロ
特性改善層4をGaNチャネル層3とAlGaNバリア
層5との間に介在させた場合と介在させない場合の移動
度を表1に示す。Prior to the measurement of the device characteristics, the electrical characteristics of the semiconductor layer were examined by Hall measurement. Table 1 shows the mobility when the AlN hetero characteristic improving layer 4 is interposed between the GaN channel layer 3 and the AlGaN barrier layer 5 and when it is not interposed.
【0022】[0022]
【表1】 [Table 1]
【0023】表1から、測定温度が室温である300K
では、AlNヘテロ特性改善層4を介在させた場合は、
AlNヘテロ特性改善層4を介在させない場合に比べ
て、移動度の改善が見られた。また、測定温度が液体窒
素(LN2)温度である77Kにおいては、移動度の差
が顕著に現れており、AlNヘテロ特性改善層4によっ
て界面特性が改善されていることが判る。From Table 1, it is found that the measurement temperature is 300K at room temperature.
Then, when the AlN hetero characteristic improving layer 4 is interposed,
The mobility was improved as compared with the case where the AlN hetero characteristic improving layer 4 was not interposed. At 77 K, which is the measurement temperature of liquid nitrogen (LN 2 ), a significant difference in mobility appears, indicating that the AlN hetero characteristic improving layer 4 has improved the interface characteristics.
【0024】次に、ゲート電極7の長さが1μm、ソー
ス電極6aおよびドレイン6b電極間の距離が5μmの
HFETを作製し、その特性を評価した結果、AlNヘ
テロ特性改善層4を介在させた場合、最大発振周波数f
max=25GHz、トランスコンダクタンスgm=200
mS/mm、介在させない場合はfmax=20GHz、
gm=150mS/mmであり、AlNヘテロ特性改善
層4の効果が見られた。Next, an HFET in which the length of the gate electrode 7 was 1 μm and the distance between the source electrode 6a and the drain electrode 6b was 5 μm was fabricated, and its characteristics were evaluated. As a result, the AlN hetero characteristic improving layer 4 was interposed. The maximum oscillation frequency f
max = 25 GHz, transconductance g m = 200
mS / mm, f max = 20 GHz when not interposed,
g m = 150 mS / mm, and the effect of the AlN hetero characteristic improving layer 4 was observed.
【0025】以上のように、第1の二元化合物半導体お
よび3元混晶半導体のヘテロ接合面に第2の二元化合物
半導体を介在させることによって界面急峻性が改善で
き、また、界面におけるピエゾ効果がさらに大きくなる
ことによって、2次元電子ガスのキャリア濃度をより大
きくすることができため電気的特性に優れた窒化物系I
II−V族化合物半導体装置が実現できる。As described above, the interfacial steepness can be improved by interposing the second binary compound semiconductor at the heterojunction surface of the first binary compound semiconductor and the ternary mixed crystal semiconductor, and the piezo at the interface can be improved. By further increasing the effect, the carrier concentration of the two-dimensional electron gas can be further increased, so that the nitride-based I
A II-V compound semiconductor device can be realized.
【0026】(実施例2)図2は、本発明の他の実施形
態である窒化物系III−V族化合物半導体装置20の
概要を示す断面図である。窒化物系III−V族化合物
半導体装置20は、半絶縁性SiC基板11の(000
1)結晶面に、AlNエピタキシャルバッファ層12、
キャリア濃度が1×1016cm-3のGaN層13、第1
の二元化合物半導体層でありキャリア濃度が5×1016
cm-3のGaNチャネル層14、第2の二元化合物半導
体層であるGaNヘテロ特性改善層15、三元混晶半導
体層でありキャリア濃度が2×1017cm-3のAl0.2
Ga0.8Nバリア層16、がこの順に積層され、この上
にソース電極17a、ドレイン電極17b、およびゲー
ト電極18が形成され構成される。(Example 2) FIG. 2 is a sectional view showing an outline of a nitride-based III-V compound semiconductor device 20 according to another embodiment of the present invention. The nitride-based III-V compound semiconductor device 20 is made of the semi-insulating SiC substrate
1) AlN epitaxial buffer layer 12,
GaN layer 13 having a carrier concentration of 1 × 10 16 cm −3 ,
Having a carrier concentration of 5 × 10 16
cm −3 GaN channel layer 14, GaN hetero-characteristic improvement layer 15 as a second binary compound semiconductor layer, and ternary mixed crystal semiconductor layer as Al 0.2 with a carrier concentration of 2 × 10 17 cm −3 .
A Ga 0.8 N barrier layer 16 is stacked in this order, and a source electrode 17a, a drain electrode 17b, and a gate electrode 18 are formed thereon.
【0027】このような層構造を形成するための結晶成
長方法としては、有機金属気相成長法(Metalorganic
Chemical Vapor Deposition−MOCVD法)あるいは
プラズマ励起した窒素を用いた分子線エピタキシ法(Ra
dio Frequency−MolecularBeam Epitaxy、RF−MBE
あるいはElectron Cyclotron Resonance−MBE、EC
R−MBE)などを用いることができる。As a crystal growth method for forming such a layer structure, a metalorganic vapor phase epitaxy method (Metalorganic
Chemical Vapor Deposition-MOCVD) or molecular beam epitaxy using plasma-excited nitrogen (Ra
dio Frequency-MolecularBeam Epitaxy, RF-MBE
Or Electron Cyclotron Resonance-MBE, EC
R-MBE) can be used.
【0028】本実施例では、RF−MBE法により以下
の工程で作製した。はじめに、真空中で基板温度100
0℃にて半絶縁性SiC基板11の表面のクリーニング
を10分間行った。次に、基板温度800℃で厚さ20
nmのAlNエピタキシャルバッファ層12を成長さ
せ、引き続いて基板温度700℃で厚さ1μmのGaN
層13を成長させた。その後、基板温度700℃で厚さ
30nmのGaNチャネル層14、GaNヘテロ特性改
善層15、Al0.2Ga0.8Nバリア層16を続けて成長
させた。In this example, the semiconductor device was manufactured by the following steps by the RF-MBE method. First, a substrate temperature of 100 in vacuum
The surface of the semi-insulating SiC substrate 11 was cleaned at 0 ° C. for 10 minutes. Next, at a substrate temperature of 800 ° C. and a thickness of 20
nm AlN epitaxial buffer layer 12 is grown, followed by a 1 μm thick GaN
Layer 13 was grown. Thereafter, a GaN channel layer 14, a GaN hetero characteristic improving layer 15, and an Al 0.2 Ga 0.8 N barrier layer 16 having a thickness of 30 nm were successively grown at a substrate temperature of 700 ° C.
【0029】この後、フォトリソグラフィーを用いてソ
ース電極17a、ドレイン電極17bおよびゲート電極
18を形成して窒化物系III−V族化合物半導体装置
20を作製した。また、第2の二元化合物半導体層を介
在させた本実施形態の窒化物系III−V化合物半導体
装置20の特性を従来型の化合物半導体装置の特性と比
較するためAlNヘテロ特性改善層4を介在させない構
造の化合物半導体装置も同様な工程で作製した。Thereafter, the source electrode 17a, the drain electrode 17b, and the gate electrode 18 were formed by photolithography, and a nitride III-V compound semiconductor device 20 was manufactured. Further, in order to compare the characteristics of the nitride III-V compound semiconductor device 20 of the present embodiment with the second binary compound semiconductor layer interposed therebetween to the characteristics of the conventional compound semiconductor device, A compound semiconductor device having a structure with no interposition was also manufactured in the same process.
【0030】デバイス特性の測定に先立ち、半導体層の
電気的特性をホール測定によって調べた。GaNヘテロ
特性改善層15をGaNチャネル層14とAlGaNバ
リア層16との間に介在させた場合と介在させない場合
の移動度を表2に示す。Prior to the measurement of the device characteristics, the electrical characteristics of the semiconductor layer were examined by Hall measurement. Table 2 shows the mobility when the GaN hetero characteristic improving layer 15 is interposed between the GaN channel layer 14 and the AlGaN barrier layer 16 and when it is not interposed.
【0031】[0031]
【表2】 [Table 2]
【0032】表2から、測定温度が室温である300K
では、GaNヘテロ特性改善層15を介在された場合
は、GaNヘテロ特性改善層15を介在させない場合に
比べて、移動度の改善が見られた。また、測定温度が液
体窒素(LN2)温度である77Kにおいては、移動度
の差が顕著に現れており、GaNヘテロ特性改善層15
によって界面特性が改善されていることが判る。From Table 2, it is found that the measurement temperature is 300K at room temperature.
In the example, when the GaN hetero characteristic improving layer 15 was interposed, the mobility was improved as compared with the case where the GaN hetero characteristic improving layer 15 was not interposed. At 77 K, which is the measurement temperature of liquid nitrogen (LN 2 ), a significant difference in mobility appears, and the GaN hetero-characteristic improving layer 15
It can be seen that the interface characteristics have been improved by this.
【0033】次に、ゲート電極18の長さを1μm、ソ
ース電極17aおよびドレイ電極17bの間の距離が5
μmのHFETを作製し、その特性を評価した結果、G
aNヘテロ特性改善層15を介在させた場合、最大発振
周波数fmax=30GHz、トランスコンダクタンスgm
=250mS/mm、介在させない場合はfmax=22
GHz、gm=180mS/mmであり、GaNヘテロ
特性改善層15の効果が見られた。Next, the length of the gate electrode 18 is 1 μm, and the distance between the source electrode 17a and the drain electrode 17b is 5 μm.
μm HFET was fabricated and its characteristics were evaluated.
When the aN hetero characteristic improving layer 15 is interposed, the maximum oscillation frequency f max = 30 GHz and the transconductance g m
= 250 mS / mm, f max = 22 when not interposed
GHz, g m = 180 mS / mm, and the effect of the GaN hetero characteristic improving layer 15 was observed.
【0034】以上のように、第1の二元化合物半導体お
よび3元混晶半導体のヘテロ接合面に第2の二元化合物
半導体を介在させることによって界面急峻性が改善で
き、また、界面におけるピエゾ効果がさらに大きくなる
ことによって、2次元電子ガスのキャリア濃度をより大
きくすることができため電気的特性に優れた窒化物系I
II−V族化合物半導体装置が実現できる。As described above, the steepness of the interface can be improved by interposing the second binary compound semiconductor at the heterojunction surface of the first binary compound semiconductor and the ternary mixed crystal semiconductor, and the piezo at the interface can be improved. By further increasing the effect, the carrier concentration of the two-dimensional electron gas can be further increased, so that the nitride-based I
A II-V compound semiconductor device can be realized.
【0035】また、前記実施例1および2では、第1の
二元化合物化合物半導体層にGaNを用いたが、バリア
層を構成する三元混晶半導体層のバンドギャップの大き
さによってInN、LaN、CeN、PrN、NdN、
PmN、SmN、EnN、GdN、TbN、DyN、H
oN、ErN、TmN、YbN、LuNのいずれかを用
いてもよい。この場合、どの材料を用いるかはバリア層
を構成する三元混晶半導体層のバンドギャップの大きさ
によって決まる。また、前記第1および2では、第2の
二元化合物半導体層にAlNおよびGaNを用いたが、
GaN、AlN、InN、LaN、CeN、PrN、N
dN、PmN、SmN、EnN、GdN、TbN、Dy
N、HoN、ErN、TmN、YbN、LuNのいずれ
かを用いてもよい。この場合、どの材料を用いるかはチ
ャネル層を構成する第1の二元化合物半導体層のバンド
ギャップの大きさによって決まる。In the first and second embodiments, GaN is used for the first binary compound semiconductor layer. However, depending on the band gap of the ternary mixed crystal semiconductor layer constituting the barrier layer, InN and LaN are used. , CeN, PrN, NdN,
PmN, SmN, EnN, GdN, TbN, DyN, H
Any of oN, ErN, TmN, YbN, and LuN may be used. In this case, which material is used depends on the size of the band gap of the ternary mixed crystal semiconductor layer forming the barrier layer. In the first and second embodiments, AlN and GaN are used for the second binary compound semiconductor layer.
GaN, AlN, InN, LaN, CeN, PrN, N
dN, PmN, SmN, EnN, GdN, TbN, Dy
Any of N, HoN, ErN, TmN, YbN, and LuN may be used. In this case, which material to use is determined by the band gap of the first binary compound semiconductor layer forming the channel layer.
【0036】[0036]
【発明の効果】本発明によれば、ヘテロ構造を有する窒
化物系III−V族化合物半導体装置において、チャネ
ル層を構成する第1の二元化合物半導体層とバリア層を
構成する三元混晶半導体層の間に第2の二元化合物半導
体層を介在させるので、ヘテロ接合の界面における急峻
性が改善される。According to the present invention, in a nitride III-V compound semiconductor device having a heterostructure, a ternary mixed crystal forming a first binary compound semiconductor layer forming a channel layer and a barrier layer is formed. Since the second binary compound semiconductor layer is interposed between the semiconductor layers, the steepness at the interface of the hetero junction is improved.
【0037】また、接合の界面におけるピエゾ効果がさ
らに大きくなり、2次元電子ガスのキャリア濃度をより
大きくすることができるので、より電気的特性を向上さ
せることができる。Further, since the piezo effect at the junction interface is further increased and the carrier concentration of the two-dimensional electron gas can be further increased, the electrical characteristics can be further improved.
【0038】また本発明によれば、第2の二元化合物半
導体層のバンドギャップが、第1の二元化合物半導体層
のバンドギャップよりも大きいので、これらの接合界面
が急峻性が保たれる。Further, according to the present invention, since the band gap of the second binary compound semiconductor layer is larger than the band gap of the first binary compound semiconductor layer, steepness of these junction interfaces is maintained. .
【0039】また本発明によれば、第1の二元化合物半
導体層として、バンドギャップが2〜3.4eVの半導
体であるInN、GaN、LaN、CeN、PrN、N
dN、PmN、SmN、EnN、GdN、TbN、Dy
N、HoN、ErN、TmN、YbN、LuNのうちの
1つを用いることができる。また、バリア層を構成する
三元混晶半導体層のバンドギャップの大きさによって、
どの材料を用いるかが決まる。According to the present invention, as the first binary compound semiconductor layer, a semiconductor having a band gap of 2 to 3.4 eV, such as InN, GaN, LaN, CeN, PrN, N
dN, PmN, SmN, EnN, GdN, TbN, Dy
One of N, HoN, ErN, TmN, YbN, and LuN can be used. Further, depending on the size of the band gap of the ternary mixed crystal semiconductor layer constituting the barrier layer,
Which material to use is determined.
【0040】また本発明によれば、第2の二元化合物半
導体層として、AlN、InN、GaN、LaN、Ce
N、PrN、NdN、PmN、SmN、EuN、Gd
N、TbN、DyN、HoN、ErN、TmN、Yb
N、LuNのうちの1つを用いることができる。また、
チャネル層を構成する第1の二元化合物半導体層のバン
ドギャップの大きさによって、どの材料を用いるかが決
まる。According to the invention, AlN, InN, GaN, LaN, Ce can be used as the second binary compound semiconductor layer.
N, PrN, NdN, PmN, SmN, EuN, Gd
N, TbN, DyN, HoN, ErN, TmN, Yb
One of N and LuN can be used. Also,
The material to be used is determined depending on the band gap of the first binary compound semiconductor layer included in the channel layer.
【0041】また本発明によれば、膜厚が1分子層以上
4分子層以下のAlNを第2の二元化合物半導体層に用
いることによって、接合界面の急峻性を維持しつつ、ト
ンネル効果によって充分なキャリア輸送が行える。よっ
て、電気的特性に優れた窒化物III−V族化合物半導
体装置が得られる。Further, according to the present invention, by using AlN having a film thickness of not less than one molecular layer and not more than four molecular layers for the second binary compound semiconductor layer, the junction effect can be maintained by the tunnel effect while maintaining the steepness of the junction interface. Sufficient carrier transport can be performed. Therefore, a nitride III-V compound semiconductor device having excellent electric characteristics can be obtained.
【図1】本発明の実施例1における窒化物系III−V
族半導体装置10の構造を示す断面図である。FIG. 1 shows a nitride III-V in Example 1 of the present invention.
FIG. 1 is a cross-sectional view illustrating a structure of a group III semiconductor device 10.
【図2】本発明の実施例2における窒化物系III−V
族半導体装置20の構造を示す断面図である。FIG. 2 shows a nitride III-V in Example 2 of the present invention.
1 is a cross-sectional view illustrating a structure of a group III semiconductor device 20.
【図3】二元化合物半導体とこの二元化合物半導体の成
分を含む三元混晶半導体の接合界面を示す図である。FIG. 3 is a diagram showing a junction interface between a binary compound semiconductor and a ternary mixed crystal semiconductor containing a component of the binary compound semiconductor.
1,11 半絶縁性SiC基板 2,12 AlNエピタキシャルバッファ層 3,14 GaNチャネル層 4 AlNヘテロ特性改善層 5,16 AlGaNバリア層 6a,17a ソース電極 6b,17b ドレイン電極 7,18 ゲート電極 10,20 窒化物系III−V族化合物半導体装置 13 GaN層 15 GaNヘテロ特性改善層 Reference Signs List 1,11 Semi-insulating SiC substrate 2,12 AlN epitaxial buffer layer 3,14 GaN channel layer 4 AlN hetero characteristic improving layer 5,16 AlGaN barrier layer 6a, 17a Source electrode 6b, 17b Drain electrode 7,18 Gate electrode 10, Reference Signs List 20 nitride-based III-V compound semiconductor device 13 GaN layer 15 GaN hetero characteristic improving layer
Claims (5)
族化合物半導体装置において、チャネル層を構成する第
1の二元化合物半導体層とバリア層を構成する三元混晶
半導体層との間に第2の二元化合物半導体層が介在され
ることを特徴とする窒化物系III−V族化合物半導体
装置。1. A nitride III-V having a heterostructure
In a group III compound semiconductor device, a second binary compound semiconductor layer is interposed between a first binary compound semiconductor layer forming a channel layer and a ternary mixed crystal semiconductor layer forming a barrier layer. A nitride III-V compound semiconductor device.
ギャップが、前記第1の二元化合物半導体層のバンドギ
ャップよりも大きいことを特徴とする請求項1記載の窒
化物系III−V族化合物半導体装置。2. The nitride III-V according to claim 1, wherein a band gap of the second binary compound semiconductor layer is larger than a band gap of the first binary compound semiconductor layer. Group compound semiconductor device.
N、GaN、LaN、CeN、PrN、NdN、Pm
N、SmN、EnN、GdN、TbN、DyN、Ho
N、ErN、TmN、YbN、LuNのうちの1つであ
ることを特徴とする請求項1または2記載の窒化物系I
II−V族化合物半導体装置。3. The method according to claim 1, wherein the first binary compound semiconductor layer is formed of In.
N, GaN, LaN, CeN, PrN, NdN, Pm
N, SmN, EnN, GdN, TbN, DyN, Ho
3. The nitride-based I according to claim 1, wherein the nitride-based I is one of N, ErN, TmN, YbN, and LuN.
II-V compound semiconductor devices.
N、InN、GaN、Lan、CeN、PrN、Nd
N、PmN、SmN、EnN、GdN、TbN、Dy
N、HoN、ErN、TmN、YbN、LuNのうちの
1つであることを特徴とする請求項1〜3のいずれか1
つに記載の窒化物系III−V族化合物半導体装置。4. The method according to claim 1, wherein the second binary compound semiconductor layer is formed of Al.
N, InN, GaN, Lan, CeN, PrN, Nd
N, PmN, SmN, EnN, GdN, TbN, Dy
4. One of N, HoN, ErN, TmN, YbN, and LuN.
6. The nitride-based III-V compound semiconductor device according to any one of the above.
が1分子層以上4分子層以下のAlNであることを特徴
とする請求項4記載の窒化物系III−V族化合物半導
体装置。5. The nitride-based III-V compound semiconductor according to claim 4, wherein said second binary compound semiconductor layer is made of AlN having a layer thickness of not less than 1 molecular layer and not more than 4 molecular layers. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000266117A JP3708810B2 (en) | 2000-09-01 | 2000-09-01 | Nitride III-V compound semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000266117A JP3708810B2 (en) | 2000-09-01 | 2000-09-01 | Nitride III-V compound semiconductor device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004044960A Division JP4072858B2 (en) | 2004-02-20 | 2004-02-20 | Nitride III-V compound semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002076024A true JP2002076024A (en) | 2002-03-15 |
JP3708810B2 JP3708810B2 (en) | 2005-10-19 |
Family
ID=18753264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000266117A Expired - Fee Related JP3708810B2 (en) | 2000-09-01 | 2000-09-01 | Nitride III-V compound semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3708810B2 (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002359256A (en) * | 2001-05-31 | 2002-12-13 | Fujitsu Ltd | Field effect compound semiconductor device |
JP2003045900A (en) * | 2001-05-25 | 2003-02-14 | Sharp Corp | Nitride based iii-v compound semiconductor device |
KR20040049744A (en) * | 2002-12-07 | 2004-06-12 | 한국전자통신연구원 | Heterostructure field-effect transistor |
JP2005512327A (en) * | 2001-12-03 | 2005-04-28 | クリー インコーポレイテッド | Heterojunction transistor and manufacturing method thereof |
JP2005235935A (en) * | 2004-02-18 | 2005-09-02 | Furukawa Electric Co Ltd:The | High electron mobility transistor |
JP2005277047A (en) * | 2004-03-24 | 2005-10-06 | Ngk Insulators Ltd | Semiconductor lamination structure and transistor element |
JP2005277358A (en) * | 2004-03-26 | 2005-10-06 | Ngk Insulators Ltd | Semiconductor multilayer structure, transistor element, and method of manufacturing the same |
JP2006032911A (en) * | 2004-06-15 | 2006-02-02 | Ngk Insulators Ltd | Semiconductor laminated structure, semiconductor device, and hemt element |
JP2006080338A (en) * | 2004-09-10 | 2006-03-23 | Tokyo Institute Of Technology | Magnetic sensor for high temperature |
JP2006286698A (en) * | 2005-03-31 | 2006-10-19 | Furukawa Electric Co Ltd:The | Electronic device and power converter |
JP2006286942A (en) * | 2005-03-31 | 2006-10-19 | Eudyna Devices Inc | Semiconductor device and method of manufacturing the same |
JP2007200975A (en) * | 2006-01-24 | 2007-08-09 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device and method for manufacturing the same |
JP2008532290A (en) * | 2005-02-25 | 2008-08-14 | クリー インコーポレイテッド | Method for forming vias in silicon carbide, and resulting devices and circuits |
JP2009076861A (en) * | 2007-08-28 | 2009-04-09 | Ngk Insulators Ltd | Magnetic sensor, hall element, hall ic, magnetoresistive effect element, method of fabricating hall element, and method of fabricating magnetoresistive effect element |
JP2009152349A (en) * | 2007-12-20 | 2009-07-09 | Mitsubishi Electric Corp | Hetero-junction field effect transistor and method of producing the same |
JP2009206163A (en) * | 2008-02-26 | 2009-09-10 | Oki Electric Ind Co Ltd | Heterojunction-type field effect transistor |
US7745852B2 (en) | 2006-06-27 | 2010-06-29 | Sharp Kabushiki Kaisha | Hetero junction field effect transistor and method of fabricating the same |
JP2011138807A (en) * | 2009-12-25 | 2011-07-14 | Sharp Corp | Field effect transistor |
JPWO2009119357A1 (en) * | 2008-03-24 | 2011-07-21 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element |
US8026718B2 (en) * | 2007-08-28 | 2011-09-27 | Ngk Insulators, Ltd. | Magnetic sensor, hall element, hall IC, magnetoresistive effect element, method of fabricating hall element, and method of fabricating magnetoresistive effect element |
JP2011210751A (en) * | 2010-03-26 | 2011-10-20 | Nec Corp | Group iii nitride semiconductor element, method of manufacturing group iii nitride semiconductor element, and electronic device |
US8212290B2 (en) | 2007-03-23 | 2012-07-03 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
JP2012156538A (en) * | 2001-05-11 | 2012-08-16 | Cree Inc | High electron mobility transistor(hemt) |
US8669589B2 (en) | 2005-09-07 | 2014-03-11 | Cree, Inc. | Robust transistors with fluorine treatment |
US8872226B2 (en) | 2008-03-24 | 2014-10-28 | Ngk Insulators, Ltd. | Group III nitride epitaxial substrate for semiconductor device, semiconductor device, and process for producing group III nitride epitaxial substrate for semiconductor device |
WO2014179808A1 (en) * | 2013-05-03 | 2014-11-06 | Texas Instruments Incorporated | Resurf iii-n high electron mobility transistor |
US9041064B2 (en) | 2006-11-21 | 2015-05-26 | Cree, Inc. | High voltage GaN transistor |
US9419124B2 (en) | 2001-07-24 | 2016-08-16 | Cree, Inc. | Insulating gate AlGaN/GaN HEMT |
CN107195773A (en) * | 2017-06-26 | 2017-09-22 | 中国科学技术大学 | P-type semiconductor's hetero-junctions Hall rod, its preparation and application and purposes |
KR20170137128A (en) * | 2015-03-31 | 2017-12-12 | 스웨간 에이비 | heterostructure and method of its production |
JP2018098356A (en) * | 2016-12-13 | 2018-06-21 | 三菱電機株式会社 | Method for manufacturing group iii-v nitride semiconductor epitaxial wafer |
JP2021108395A (en) * | 2016-06-24 | 2021-07-29 | クリー インコーポレイテッドCree Inc. | Gallium-nitride high-electron-mobility transistor having p-type layer deeply injected into silicon carbide substrate |
US11430882B2 (en) | 2016-06-24 | 2022-08-30 | Wolfspeed, Inc. | Gallium nitride high-electron mobility transistors with p-type layers and process for making the same |
US11862719B2 (en) | 2016-06-24 | 2024-01-02 | Wolfspeed, Inc. | Group III-nitride high-electron mobility transistors with buried p-type layers and process for making the same |
US11929428B2 (en) | 2021-05-17 | 2024-03-12 | Wolfspeed, Inc. | Circuits and group III-nitride high-electron mobility transistors with buried p-type layers improving overload recovery and process for implementing the same |
-
2000
- 2000-09-01 JP JP2000266117A patent/JP3708810B2/en not_active Expired - Fee Related
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2282347B1 (en) * | 2001-05-11 | 2020-06-03 | Cree, Inc. | Group iii nitride based high electron mobility transistor (hemt) with barrier/spacer layer |
EP2282346B1 (en) * | 2001-05-11 | 2019-10-30 | Cree, Inc. | Group-iii nitride based hemt with a spacer layer |
JP2012156538A (en) * | 2001-05-11 | 2012-08-16 | Cree Inc | High electron mobility transistor(hemt) |
JP2003045900A (en) * | 2001-05-25 | 2003-02-14 | Sharp Corp | Nitride based iii-v compound semiconductor device |
JP4663156B2 (en) * | 2001-05-31 | 2011-03-30 | 富士通株式会社 | Compound semiconductor device |
JP2002359256A (en) * | 2001-05-31 | 2002-12-13 | Fujitsu Ltd | Field effect compound semiconductor device |
US9419124B2 (en) | 2001-07-24 | 2016-08-16 | Cree, Inc. | Insulating gate AlGaN/GaN HEMT |
US10224427B2 (en) | 2001-07-24 | 2019-03-05 | Cree, Inc. | Insulting gate AlGaN/GaN HEMT |
US8153515B2 (en) | 2001-12-03 | 2012-04-10 | Cree, Inc. | Methods of fabricating strain balanced nitride heterojunction transistors |
JP2005512327A (en) * | 2001-12-03 | 2005-04-28 | クリー インコーポレイテッド | Heterojunction transistor and manufacturing method thereof |
KR20040049744A (en) * | 2002-12-07 | 2004-06-12 | 한국전자통신연구원 | Heterostructure field-effect transistor |
JP4728582B2 (en) * | 2004-02-18 | 2011-07-20 | 古河電気工業株式会社 | High electron mobility transistor |
JP2005235935A (en) * | 2004-02-18 | 2005-09-02 | Furukawa Electric Co Ltd:The | High electron mobility transistor |
JP2005277047A (en) * | 2004-03-24 | 2005-10-06 | Ngk Insulators Ltd | Semiconductor lamination structure and transistor element |
JP2005277358A (en) * | 2004-03-26 | 2005-10-06 | Ngk Insulators Ltd | Semiconductor multilayer structure, transistor element, and method of manufacturing the same |
JP4642366B2 (en) * | 2004-03-26 | 2011-03-02 | 日本碍子株式会社 | Semiconductor stacked structure, transistor element, and method of manufacturing transistor element |
JP2006032911A (en) * | 2004-06-15 | 2006-02-02 | Ngk Insulators Ltd | Semiconductor laminated structure, semiconductor device, and hemt element |
JP2006080338A (en) * | 2004-09-10 | 2006-03-23 | Tokyo Institute Of Technology | Magnetic sensor for high temperature |
JP2008532290A (en) * | 2005-02-25 | 2008-08-14 | クリー インコーポレイテッド | Method for forming vias in silicon carbide, and resulting devices and circuits |
JP2006286942A (en) * | 2005-03-31 | 2006-10-19 | Eudyna Devices Inc | Semiconductor device and method of manufacturing the same |
JP2006286698A (en) * | 2005-03-31 | 2006-10-19 | Furukawa Electric Co Ltd:The | Electronic device and power converter |
US8669589B2 (en) | 2005-09-07 | 2014-03-11 | Cree, Inc. | Robust transistors with fluorine treatment |
JP2007200975A (en) * | 2006-01-24 | 2007-08-09 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor device and method for manufacturing the same |
US7745852B2 (en) | 2006-06-27 | 2010-06-29 | Sharp Kabushiki Kaisha | Hetero junction field effect transistor and method of fabricating the same |
US7973338B2 (en) | 2006-06-27 | 2011-07-05 | Sharp Kabushiki Kaisha | Hetero junction field effect transistor and method of fabricating the same |
US9450081B2 (en) | 2006-11-21 | 2016-09-20 | Cree, Inc. | High voltage GaN transistor |
US9041064B2 (en) | 2006-11-21 | 2015-05-26 | Cree, Inc. | High voltage GaN transistor |
US8212290B2 (en) | 2007-03-23 | 2012-07-03 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
US9240473B2 (en) | 2007-03-23 | 2016-01-19 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
US8026718B2 (en) * | 2007-08-28 | 2011-09-27 | Ngk Insulators, Ltd. | Magnetic sensor, hall element, hall IC, magnetoresistive effect element, method of fabricating hall element, and method of fabricating magnetoresistive effect element |
JP2009076861A (en) * | 2007-08-28 | 2009-04-09 | Ngk Insulators Ltd | Magnetic sensor, hall element, hall ic, magnetoresistive effect element, method of fabricating hall element, and method of fabricating magnetoresistive effect element |
JP2009152349A (en) * | 2007-12-20 | 2009-07-09 | Mitsubishi Electric Corp | Hetero-junction field effect transistor and method of producing the same |
JP2009206163A (en) * | 2008-02-26 | 2009-09-10 | Oki Electric Ind Co Ltd | Heterojunction-type field effect transistor |
US8890208B2 (en) | 2008-03-24 | 2014-11-18 | Ngk Insulators, Ltd. | Group III nitride epitaxial substrate for semiconductor device, semiconductor device, and process for producing group III nitride epitaxial substrate for semiconductor device |
JPWO2009119357A1 (en) * | 2008-03-24 | 2011-07-21 | 日本碍子株式会社 | Epitaxial substrate for semiconductor element, semiconductor element, and method for producing epitaxial substrate for semiconductor element |
US8872226B2 (en) | 2008-03-24 | 2014-10-28 | Ngk Insulators, Ltd. | Group III nitride epitaxial substrate for semiconductor device, semiconductor device, and process for producing group III nitride epitaxial substrate for semiconductor device |
JP2014053639A (en) * | 2008-03-24 | 2014-03-20 | Ngk Insulators Ltd | Manufacturing method of epitaxial substrate for semiconductor element |
JP2011138807A (en) * | 2009-12-25 | 2011-07-14 | Sharp Corp | Field effect transistor |
JP2011210751A (en) * | 2010-03-26 | 2011-10-20 | Nec Corp | Group iii nitride semiconductor element, method of manufacturing group iii nitride semiconductor element, and electronic device |
WO2014179808A1 (en) * | 2013-05-03 | 2014-11-06 | Texas Instruments Incorporated | Resurf iii-n high electron mobility transistor |
KR20170137128A (en) * | 2015-03-31 | 2017-12-12 | 스웨간 에이비 | heterostructure and method of its production |
JP2018514946A (en) * | 2015-03-31 | 2018-06-07 | スウェガン、アクチボラグSwegan Ab | Heterostructure and method for producing the same |
KR102330910B1 (en) * | 2015-03-31 | 2021-11-24 | 스웨간 에이비 | heterostructure and method of its production |
JP2021108395A (en) * | 2016-06-24 | 2021-07-29 | クリー インコーポレイテッドCree Inc. | Gallium-nitride high-electron-mobility transistor having p-type layer deeply injected into silicon carbide substrate |
US11430882B2 (en) | 2016-06-24 | 2022-08-30 | Wolfspeed, Inc. | Gallium nitride high-electron mobility transistors with p-type layers and process for making the same |
JP7198305B2 (en) | 2016-06-24 | 2022-12-28 | ウルフスピード インコーポレイテッド | Gallium Nitride High Electron Mobility Transistor with Deeply Implanted P-type Layer in Silicon Carbide Substrate |
US11862719B2 (en) | 2016-06-24 | 2024-01-02 | Wolfspeed, Inc. | Group III-nitride high-electron mobility transistors with buried p-type layers and process for making the same |
JP2018098356A (en) * | 2016-12-13 | 2018-06-21 | 三菱電機株式会社 | Method for manufacturing group iii-v nitride semiconductor epitaxial wafer |
CN107195773A (en) * | 2017-06-26 | 2017-09-22 | 中国科学技术大学 | P-type semiconductor's hetero-junctions Hall rod, its preparation and application and purposes |
US11929428B2 (en) | 2021-05-17 | 2024-03-12 | Wolfspeed, Inc. | Circuits and group III-nitride high-electron mobility transistors with buried p-type layers improving overload recovery and process for implementing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3708810B2 (en) | 2005-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3708810B2 (en) | Nitride III-V compound semiconductor device | |
JP4022708B2 (en) | Semiconductor device | |
JP3393602B2 (en) | Semiconductor device | |
US8809138B2 (en) | Method of forming a semiconductor device | |
US9954087B2 (en) | Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor | |
JP4592938B2 (en) | Semiconductor device | |
US6177685B1 (en) | Nitride-type III-V HEMT having an InN 2DEG channel layer | |
JP4154558B2 (en) | Semiconductor device | |
JP3960957B2 (en) | Semiconductor electronic device | |
US20120238063A1 (en) | Termination and Contact Structures for a High Voltage Gan-Based Heterojunction Transistor | |
WO2011099097A1 (en) | Nitride semiconductor device and process for production thereof | |
KR101933230B1 (en) | Semiconductor device, hemt device, and method of manufacturing semiconductor device | |
WO2002021601A1 (en) | Semiconductor device | |
JP2003059948A (en) | Semiconductor device and production method therefor | |
JP2005509274A (en) | III-nitride high electron mobility transistor (HEMT) with barrier / spacer layer | |
JP6731584B2 (en) | Nitride semiconductor device and nitride semiconductor substrate | |
US20230402525A1 (en) | Manufacturing method for n-polar gan transistor structure and semiconductor structure | |
JP2003151996A (en) | Electronic device using two-dimensional electronic gas | |
US10505013B2 (en) | Process of forming epitaxial substrate having N-polar gallium nitride | |
US20240322007A1 (en) | Semiconductor device and method for forming the same | |
JP4832722B2 (en) | Semiconductor laminated structure and transistor element | |
JP2005285869A (en) | Epitaxial substrate and semiconductor device using the same | |
JP3848548B2 (en) | Field effect transistor | |
JP4072858B2 (en) | Nitride III-V compound semiconductor device | |
JP5223202B2 (en) | Semiconductor substrate and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040220 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040315 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20040220 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20040409 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050701 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3708810 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080812 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090812 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090812 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100812 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110812 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120812 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120812 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130812 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |