JP2002075365A - Positive electrode active material and lithium secondary battery - Google Patents

Positive electrode active material and lithium secondary battery

Info

Publication number
JP2002075365A
JP2002075365A JP2000262634A JP2000262634A JP2002075365A JP 2002075365 A JP2002075365 A JP 2002075365A JP 2000262634 A JP2000262634 A JP 2000262634A JP 2000262634 A JP2000262634 A JP 2000262634A JP 2002075365 A JP2002075365 A JP 2002075365A
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
particles
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000262634A
Other languages
Japanese (ja)
Inventor
Takeshi Hatanaka
剛 畑中
Yasutaka Furuyui
康隆 古結
Takaya Saito
貴也 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Battery Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Battery Industrial Co Ltd filed Critical Matsushita Battery Industrial Co Ltd
Priority to JP2000262634A priority Critical patent/JP2002075365A/en
Publication of JP2002075365A publication Critical patent/JP2002075365A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a positive electrode active material consisting of lithium manganate material well balanced, having a high capacity, and excellent in the high-rate charge-discharge characteristics and cyclic characteristics and also provide a lithium secondary battery. SOLUTION: The positive electrode active material for lithium secondary battery consists of complex oxide of manganese having spinell type crystal structure expressed by Li1-xMn1-x-yMyO4, (provided that 0<=x<=0.4 and 0<=y<=0.15, and in the formula, M represents a metal or metals selected among Ni, Co, Cr, and Al), wherein a void is formed inside each particle of the positive electrode active material in such an arrangement that the ratio of the void section area to the particle section area lies within the range of 3.0-20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マンガン複合酸化
物から成るリチウム二次電池用の正極活物質とそれを用
いたリチウム二次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode active material comprising a manganese composite oxide for a lithium secondary battery and a lithium secondary battery using the same.

【0002】その結晶構造はスピネル型であり、化学式
Li1-x Mn1-x-y M y O4で(0≦x≦0.4,0≦y ≦
0.15,式中のM はNi,Co,Cr,Alから選ば
れた少なくとも一種以上の金属)表され、その平均粒径
は30μm から5 μmの範囲にあり、BET 批評面積は
0.5m/gから2.5m/gの範囲に有る、その粒子
内部に多量の空孔を有したマンガン複合酸化物である。
[0002] The crystal structure is spinel, by the chemical formula Li 1-x Mn 1-xy M y O 4 (0 ≦ x ≦ 0.4,0 ≦ y ≦
0.15, where M is at least one metal selected from the group consisting of Ni, Co, Cr and Al), the average particle size is in the range of 30 μm to 5 μm, and the critical area for BET is 0.5 m. / G to 2.5 m / g is a manganese composite oxide having a large amount of pores inside the particle.

【0003】[0003]

【従来の技術】携帯電話やパーソナルコンピューターな
どの機器の普及に伴い、リチウム二次電池の更なる小型
軽量化、低価格化が強く要望されている。その要望に答
える形で、正極材料に化学式LiCoO2 で表されるコ
バルト酸リチウムを、負極材料にはリチウムイオンの吸
蔵放出可能な炭素材料を用いたリチウムイオン二次電池
の開発が進められ、実用化されている。また、化学式L
iNiO2 で表されるニッケル酸リチウムも正極材料と
して期待され、活発に研究開発が進められている。
2. Description of the Related Art With the spread of devices such as mobile phones and personal computers, there is a strong demand for further reduction in size, weight and cost of lithium secondary batteries. In response to this demand, the development of lithium ion secondary batteries using lithium cobaltate represented by the chemical formula LiCoO 2 for the positive electrode material and a carbon material capable of storing and releasing lithium ions for the negative electrode material has been promoted. Has been Also, the chemical formula L
Lithium nickelate represented by iNiO 2 is also expected as a positive electrode material, and is being actively researched and developed.

【0004】しかし、LiCoO2 に関しては原材料の
コバルトが高価であること、LiNiO2 に関しては材
料合成が難しいという問題がある。また両電池とも過充
電時の安全性に問題があり、電池パックに安全回路を組
み込むことが不可欠となっており、電池の低価格化の妨
げになっている。
However, there is a problem that cobalt as a raw material is expensive for LiCoO 2, and it is difficult to synthesize a material for LiNiO 2 . In addition, both batteries have a problem in safety at the time of overcharging, and it is essential to incorporate a safety circuit into the battery pack, which hinders cost reduction of the batteries.

【0005】これに対し、化学式LiMn2 4 で表さ
れるマンガン酸リチウムはLiCoO2 やLiNiO2
と同様に4V級の電池電圧を示す材料であること、合成
が容易であること、しかも原料であるマンガンが資源的
に豊富で安価であることなどの特徴がある。また、材料
の物性面からは熱的な安定性がLiCoO2 やLiNi
2 に比べて高いこと、電気化学的には含有するリチウ
ムのほぼ全てが充放電反応に使われるため、過充電され
たとしても負極上に金属リチウムが析出しにくいことな
どから電池として比較的安全性が高く、保護回路の設置
を必要としなくなる可能性が有る。これらのことから、
LiMn2 4 は、LiCoO2 やLiNiO2 に代わ
るリチウム二次電池の新しい活物質として期待されてい
る。
On the other hand, lithium manganate represented by the chemical formula LiMn 2 O 4 is LiCoO 2 or LiNiO 2
It is characterized by the fact that it is a material showing a battery voltage of 4V class, that it is easy to synthesize, and that manganese as a raw material is abundant and inexpensive as resources. In addition, from the viewpoint of the physical properties of the material, thermal stability is LiCoO 2 or LiNi.
Since it is higher than O 2, and almost all of the lithium contained electrochemically is used for the charge / discharge reaction, even if overcharged, it is difficult for metallic lithium to precipitate on the negative electrode. It is highly safe and may not require installation of a protection circuit. from these things,
LiMn 2 O 4 is expected as a new active material for a lithium secondary battery replacing LiCoO 2 and LiNiO 2 .

【0006】このLiMn2 4 を正極活物質として用
いたリチウム二次電池は、充放電サイクルに伴う容量劣
化が大きいという問題がある。この原因としては、充放
電反応に伴う結晶格子の膨張・収縮によって局部的な結
晶構造の崩壊あるいは粒子の微細化に伴う導電性の低下
や、アセチレンブラックなどの導電助剤または集電体と
の接触不良などが考えられた。
A lithium secondary battery using this LiMn 2 O 4 as a positive electrode active material has a problem that the capacity is greatly deteriorated due to charge / discharge cycles. This may be caused by local collapse of the crystal structure due to expansion and contraction of the crystal lattice due to the charge / discharge reaction, or a decrease in conductivity due to finer particles, or a problem with conductive aids or current collectors such as acetylene black. Poor contact was considered.

【0007】この問題を解決する手法として、マンガン
の一部を他の金属元素で置換する方法が提案されてい
る。例えば、特開平3−219571号公報、特開平4
―160769号公報、特開平8−217452号公報
では、マンガンの一部をCo、Cr、Fe、Niで置換
した材料が提案されている。これらの提案は、マンガン
の一部を他の金属元素で置換することによって結晶の格
子定数を小さくし、充放電サイクルによる結晶の破壊を
防ぐことを目的にしたものである。
As a method for solving this problem, a method has been proposed in which part of manganese is replaced with another metal element. For example, JP-A-3-219571 and JP-A-4
Japanese Patent Application Laid-Open No. 160760/1996 and Japanese Patent Application Laid-Open No. 8-217452 propose a material in which part of manganese is replaced with Co, Cr, Fe, and Ni. These proposals aim at reducing the lattice constant of the crystal by substituting a part of manganese with another metal element, and preventing the crystal from being destroyed by a charge / discharge cycle.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、コード
レス機器の普及に伴い、リチウム二次電池には高容量化
およびハイレート特性の向上が求められている。しかる
に、上記公報に開示された手法では、金属元素を固溶し
たマンガン酸リチウムを活物質に用いることで、サイク
ル特性の向上は見られるが、電気化学的反応に関与する
Mn元素が減少するため容量の低下は避けられないとい
う問題がある。
However, with the spread of cordless devices, lithium secondary batteries are required to have higher capacity and higher rate characteristics. However, in the method disclosed in the above publication, by using lithium manganate in which a metal element is dissolved as a solid material as an active material, although cycle characteristics are improved, the Mn element involved in the electrochemical reaction is reduced. There is a problem that a reduction in capacity cannot be avoided.

【0009】これに対して、正極活物質を集電体に塗工
する厚みを厚くすることによって電池に充填できる活物
質総量を増加させ、電池容量の低下を防ぐことが考えら
れるが、この方法では決められた電池ケースの中に挿入
することのできる極板の長さが短くなり、見かけの電流
密度が増加してしまい、その結果としてハイレート充放
電には対応できないという問題が発生する。
On the other hand, it is conceivable to increase the thickness of the positive electrode active material applied to the current collector so as to increase the total amount of the active material that can be filled in the battery and prevent the battery capacity from decreasing. In such a case, the length of the electrode plate that can be inserted into the determined battery case is shortened, and the apparent current density is increased. As a result, there is a problem that high-rate charging and discharging cannot be performed.

【0010】また、単純に微細化して比表面積を上げた
活物質を使用しても、ハイレート充放電特性は改善しな
い。この原因としては、活物質を微細化することによっ
て極板中の活物質が緻密に充填され電解液を介したイオ
ンの移動が十分に行えないと考えられる。
[0010] Further, even if an active material having a higher specific surface area is simply obtained by miniaturization, the high-rate charge / discharge characteristics are not improved. It is considered that the reason for this is that the active material in the electrode plate is densely filled by miniaturization of the active material, so that ions cannot be sufficiently moved through the electrolytic solution.

【0011】以上のように、マンガンの一部を他の金属
元素で置換してサイクル特性を改善したマンガン酸リチ
ウムではサイクル性の改善は図れるものの、同時に電池
容量の低下あるいはハイレート充放電特性の低下を招い
ている。
As described above, although the cycle characteristics can be improved with lithium manganate having improved cycle characteristics by partially replacing manganese with another metal element, at the same time, the battery capacity is reduced or the high-rate charge / discharge characteristics are reduced. Has been invited.

【0012】本発明は、上記従来の問題点に鑑み、高容
量でハイレート充放電特性およびサイクル特性に優れて
バランスのとれたマンガン酸リチウム材料から成る正極
活物質およびリチウム二次電池を提供することを目的と
する。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a positive electrode active material and a lithium secondary battery comprising a lithium manganate material having a high capacity and a high balance of charge / discharge characteristics and cycle characteristics and being well balanced. With the goal.

【0013】[0013]

【課題を解決するための手段】上記課題を解決すること
を目的に検討を行った結果、新規なマンガン酸リチウム
から成る正極活物質を開発した。具体的には、化学式L
1-x Mn1-x-y y4 (0≦x≦0.4、0≦y≦
0.15、式中のMはNi、Co、Cr、Alから選ば
れた少なくとも一種以上の金属)で表されるマンガン複
合酸化物から成る正極活物質であって、図1(a)に示
すように、従来例では図1(b)に示すように中実状態
の正極活物質の粒子Aであったのに対して、正極活物質
の粒子Aの内部に空孔Hが形成されており、その量は粒
子Aの断面積に対する空孔Hの断面積の比率が3.0%
〜20%の範囲にあるものを見いだした。この正極活物
質の粒子Aをリチウム二次電池に用いることでサイクル
特性、レート特性に優れた高容量の電池を完成するに至
った。
As a result of investigations aimed at solving the above problems, a new positive electrode active material comprising lithium manganate was developed. Specifically, the chemical formula L
i 1-x Mn 1-xy M y O 4 (0 ≦ x ≦ 0.4,0 ≦ y ≦
0.15, where M is a positive electrode active material composed of a manganese composite oxide represented by the following formula: M is at least one metal selected from Ni, Co, Cr, and Al. As described above, in the conventional example, as shown in FIG. 1B, the particles A of the positive electrode active material were in a solid state, whereas the holes A were formed inside the particles A of the positive electrode active material. The ratio of the cross-sectional area of the pores H to the cross-sectional area of the particles A is 3.0%.
Something in the range of ~ 20% was found. By using the particles A of the positive electrode active material in a lithium secondary battery, a high-capacity battery excellent in cycle characteristics and rate characteristics was completed.

【0014】以下、詳しく説明すると、マンガン酸リチ
ウムは一般には次のようにして得られる。化学式MnC
3 で表される炭酸マンガン鉱を溶解した硫酸水溶液を
水酸化ナトリウムで中和して化学式Mn(OH)2 で表
される水酸化マンガンを沈殿させる。さらに沈殿した水
酸化マンガンを酸化処理することで酸化マンガンを得る
が、酸化条件によって最終生成物を二酸化マンガン、三
酸化二マンガン、四酸化三マンガンに調整することがで
きる。
To explain in detail, lithium manganate is generally obtained as follows. Chemical formula MnC
The aqueous solution of sulfuric acid in which manganese ore represented by O 3 is dissolved is neutralized with sodium hydroxide to precipitate manganese hydroxide represented by the chemical formula Mn (OH) 2 . Furthermore, manganese oxide is obtained by oxidizing the precipitated manganese hydroxide, and the final product can be adjusted to manganese dioxide, dimanganese trioxide, and trimanganese tetroxide depending on the oxidation conditions.

【0015】このときの中和条件、具体的には中和槽の
PHや反応温度や添加剤によって、得られる水酸化マン
ガンの粒径や密度などの性状が決まり、これが酸化マン
ガンの性状およびマンガン酸リチウムの性状を決めるこ
とになる。この中和条件を調整することによって、水酸
化マンガン粒子の内部に多量の空孔を設けることができ
る。
The properties of the obtained manganese hydroxide, such as the particle size and density, are determined by the neutralization conditions at this time, specifically, the pH of the neutralization tank, the reaction temperature, and the additives. The properties of the lithium oxide will be determined. By adjusting the neutralization conditions, a large amount of pores can be provided inside the manganese hydroxide particles.

【0016】この様にして得られた水酸化マンガンから
酸化マンガンを得、さらに化学式Li1-x Mn1-x-y
y 4 (0≦x≦0.4、0≦y≦0.15、式中のM
はNi、Co、Cr、Alから選ばれた少なくとも一種
以上の金属)で表されるマンガン酸リチウムを合成する
と、水酸化マンガンと同様に粒子内部に多量の空孔を有
した材料が得られる。
Manganese oxide is obtained from the manganese hydroxide thus obtained, and further obtained by the chemical formula Li 1-x Mn 1-xy M
y O 4 (0 ≦ x ≦ 0.4, 0 ≦ y ≦ 0.15, M in the formula
When lithium manganate represented by at least one metal selected from the group consisting of Ni, Co, Cr and Al) is synthesized, a material having a large amount of pores inside the particles can be obtained in the same manner as manganese hydroxide.

【0017】このマンガン酸リチウムを正極活物質とし
て用いた電池ではサイクル寿命の向上がみられる。その
理由に関しては次のように考えている。一般にマンガン
酸リチウムを正極に用いたリチウム二次電池で充放電を
行うと、正極活物質結晶格子の膨張収縮によるストレス
によって粒子の微細化が発生し、粒子間の導電構造の変
化や活物質と集電体あるいは活物質と導電助剤との接触
不良が原因となりサイクル寿命の低下が発生する。しか
し、上記活物質では粒子内に形成された空孔が粒子に加
わるストレスを吸収し前述したような微細化が起こりに
くくなり、サイクル寿命劣化が抑制されると考えられ
る。
In the battery using this lithium manganate as a positive electrode active material, the cycle life is improved. We consider the reason as follows. Generally, when charging and discharging in a lithium secondary battery using lithium manganate for the positive electrode, the particles are refined due to the stress caused by the expansion and contraction of the positive electrode active material crystal lattice, causing a change in the conductive structure between the particles and a change in the active material. Poor contact between the current collector or active material and the conductive additive causes a reduction in cycle life. However, in the active material, it is considered that the pores formed in the particles absorb the stress applied to the particles, and the miniaturization as described above does not easily occur, and the cycle life deterioration is suppressed.

【0018】また、上記マンガン酸リチウムを正極活物
質として用いた電池ではハイレート放電特性に優れると
いう特徴を持つ。これは、従来の活物質では粒子表面か
ら内部へ向かって、あるいは粒子内部から表面に向かっ
てイオンが固体内を拡散し、電解液との界面で電荷移動
反応が起こる。しかし、上記活物質では内部に多量の空
孔が形成されているために、電解液が活物質粒子内部に
浸透しており、従来の材料に比べてイオンの拡散距離が
短いうえ、反応表面積は広くなるので実際の電流密度が
小さくなる。以上の点から本発明のマンガン酸リチウム
は、ハイレート放電特性に優れると考えられる。
A battery using the above-mentioned lithium manganate as a positive electrode active material is characterized by having excellent high-rate discharge characteristics. This is because in the conventional active material, ions diffuse from the particle surface to the inside or from the particle inside to the surface in the solid, and a charge transfer reaction occurs at the interface with the electrolytic solution. However, since a large amount of pores are formed inside the active material, the electrolytic solution penetrates into the active material particles, the diffusion distance of ions is shorter than that of conventional materials, and the reaction surface area is smaller. The actual current density is reduced because of the widening. From the above points, it is considered that the lithium manganate of the present invention is excellent in high-rate discharge characteristics.

【0019】さらに本発明者の検討によれば、リチウム
二次電池は正極はアルミニウム芯材、負極は銅芯材に活
物質を主原料としたペーストを薄く塗着し、溶媒を除去
して極板を作成している。この正負極をセパレーターを
介して渦巻き状に構成して電池ケースに挿入している。
このとき活物質層が厚いほど定まったサイズの電池ケー
スに充填できる活物質量が多くなる、すなわち電池容量
が大きくなるが、この様に活物質層を厚くしていくと、
サイクル寿命が短くなるという欠点がある。その原因と
しては、正極活物質層が厚くなると電解液が極板表面か
ら内部への拡散距離が長くなり充放電反応速度に拡散速
度が追随できず、極板の厚み方向に反応の不均一化が起
きてしまうことが原因と考えられる。そのため実際の電
池では、サイクル寿命特性と電池容量のバランスを考慮
した電池設計にならざるを得ない。この様な理由から多
くの場合、正極板厚みは250μm 以下に設計されてい
る。しかし本発明の活物質を電池に用いた場合、活物質
自体がその空孔に多くの電解液を保持しているため、活
物質層を厚くしてもサイクル劣化が小さく抑えられるの
である。
According to the study of the present inventor, the lithium secondary battery has a positive electrode made of an aluminum core material and a negative electrode made of a copper core material, which is made by applying a thin paste of an active material as a main material, removing a solvent, and removing the solvent. I am creating a board. The positive and negative electrodes are spirally formed with a separator interposed therebetween, and inserted into the battery case.
At this time, as the active material layer is thicker, the amount of active material that can be filled in a battery case of a fixed size increases, that is, the battery capacity increases, but when the active material layer is made thicker like this,
There is a disadvantage that the cycle life is shortened. The reason is that the thicker the positive electrode active material layer, the longer the diffusion distance of the electrolyte from the electrode plate surface to the inside becomes, and the diffusion speed cannot follow the charge / discharge reaction speed, and the reaction becomes uneven in the thickness direction of the electrode plate. The cause is considered to be the occurrence of Therefore, in an actual battery, a battery design must be made in consideration of a balance between cycle life characteristics and battery capacity. For this reason, in many cases, the thickness of the positive electrode plate is designed to be 250 μm or less. However, when the active material of the present invention is used in a battery, the active material itself holds a large amount of electrolyte in its pores, so that even if the active material layer is thickened, cycle deterioration can be suppressed to a small level.

【0020】[0020]

【発明の実施の形態】以下、本発明の正極活物質及びそ
れを用いたリチウム二次電池の実施形態について説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the positive electrode active material of the present invention and a lithium secondary battery using the same will be described.

【0021】図2において、1は負極材料を銅箔の両面
に塗着して乾燥し、圧延した後所定の大きさに切断した
負極、2は負極1にスポット溶接したニッケル製の負極
リードである。3は正極活物質に導電剤カーボンブラッ
クと結着剤PVDFを重量比で100:3:4の割合で
混合したものをアルミニウム箔の両面に塗着して乾燥し
圧延後所定の大きさに切断した正極、4は正極3に超音
波溶接したアルミ製の正極リードである。5は微多孔フ
ィルムからなるセパレータで、負極1と正極3の缶に介
在させて渦巻き状に巻回することにより極板群を構成し
ている。6は極板群の上部に配したプロピレン製の上部
絶縁板、7は極板群の下部に配した下部絶縁板、8は極
板群を収納したケースで、鉄にニッケルメッキを施した
ものである。そして、正極リード4をアルミ製の封口板
10に、負極リード2をケース8の底部にスポット溶接
した後、所定量の非水電解液をケース8内の極板群に注
入し、ガスケット9を介して封口板10により封口した
完成電池とする。11は封口板10の外面に設けられた
電池の正極端子で、負極端子はケース8が兼ねている。
In FIG. 2, reference numeral 1 denotes a negative electrode which is formed by coating a negative electrode material on both sides of a copper foil, dried, rolled and cut into a predetermined size, and 2 denotes a nickel negative electrode lead spot-welded to the negative electrode 1. is there. No. 3 was prepared by mixing a conductive agent carbon black and a binder PVDF in a weight ratio of 100: 3: 4 to a positive electrode active material, applying the mixture on both sides of an aluminum foil, drying, rolling and cutting into a predetermined size. The positive electrode 4 is an aluminum positive electrode lead ultrasonically welded to the positive electrode 3. Reference numeral 5 denotes a separator made of a microporous film, which is interposed between cans of the negative electrode 1 and the positive electrode 3 and spirally wound to constitute an electrode group. Reference numeral 6 denotes an upper insulating plate made of propylene disposed above the electrode plate group, 7 denotes a lower insulating plate disposed below the electrode plate group, and 8 denotes a case housing the electrode plate, which is nickel-plated on iron. It is. Then, after the positive electrode lead 4 is spot-welded to the aluminum sealing plate 10 and the negative electrode lead 2 is spot-welded to the bottom of the case 8, a predetermined amount of a non-aqueous electrolyte is injected into the electrode group in the case 8, and the gasket 9 is removed. The completed battery is sealed by the sealing plate 10 through the intermediary. Reference numeral 11 denotes a positive electrode terminal of the battery provided on the outer surface of the sealing plate 10, and the case 8 also serves as a negative electrode terminal.

【0022】このような構造の円筒形の非水電解液二次
電池を評価電池とし、さらに具体的には次に示す手順に
したがって試作した。
The cylindrical non-aqueous electrolyte secondary battery having such a structure was used as an evaluation battery, and more specifically, a prototype was produced according to the following procedure.

【0023】(試作手順1)正極活物質である化学式L
1-x Mn1-x-y y 4 で(x=0.1、y=0.05 、
M=Al)で表わされるマンガン酸リチウム粉末の重量
に対して、アセチレンブラック(AB)を2.5重量%
混合し、これに結着剤ポリフッ化ビニリデン(PVD
F)とN−メチルピロリドン(NMP)の混合物を、P
VDFがマンガン酸リチウムに対して3.0から6.0
重量%、固形分率が50から70重量%となるように加
え、練合を90分間行い、粘度が15000から250
00cpsであるペースト状の正極ペーストを作製し
た。
(Prototype Production Procedure 1) Chemical Formula L as Positive Electrode Active Material
i 1-x Mn 1-xy M y O 4 at (x = 0.1, y = 0.05 ,
Acetylene black (AB) is 2.5% by weight based on the weight of the lithium manganate powder represented by M = Al).
Mix and add the binder polyvinylidene fluoride (PVD)
F) and N-methylpyrrolidone (NMP)
VDF is 3.0 to 6.0 for lithium manganate
% By weight and a solid content ratio of 50 to 70% by weight, kneading is performed for 90 minutes, and the viscosity is 15,000 to 250%.
A paste-like positive electrode paste of 00 cps was prepared.

【0024】(試作手順2)負極活物質には人造黒鉛を
用いた。この人造黒鉛の重量に対して、正極と同じ結着
剤をPVDFが9重量%となるように混合した後、NM
Pを加えてから練合を行い、ペースト状の負極ペースト
を作製した。
(Trial Production Procedure 2) As the negative electrode active material, artificial graphite was used. After mixing the same binder as that of the positive electrode with respect to the weight of the artificial graphite so that PVDF becomes 9% by weight, NM
After adding P, kneading was performed to produce a paste-like negative electrode paste.

【0025】(試作手順3)正極ペーストを厚さ0.0
2 mm のアルミ箔の両面に塗工し、乾燥後圧延して正極
合剤密度2.8g/cc、幅37 mm の正極板とした。
なお極板厚みと極板の長さは所定の値に調整した。
(Trial Production Procedure 3) A positive electrode paste having a thickness of 0.0
It was coated on both sides of a 2 mm aluminum foil, dried and rolled to obtain a positive electrode plate having a positive electrode mixture density of 2.8 g / cc and a width of 37 mm.
The electrode plate thickness and the electrode plate length were adjusted to predetermined values.

【0026】(試作手順4)負極ペーストを厚さ0.0
14 mm の銅箔の両面に塗工し、乾燥後圧延して負極板
とした。このときの負極塗工量は、単位面積あたりの負
極活物質重量が対抗する単位面積あたりの正極活物質重
量の3.5倍になるように調整した。
(Prototype Production Procedure 4) A negative electrode paste having a thickness of 0.0
A 14 mm copper foil was coated on both sides, dried and rolled to obtain a negative electrode plate. At this time, the coating amount of the negative electrode was adjusted such that the weight of the negative electrode active material per unit area was 3.5 times the weight of the corresponding positive electrode active material per unit area.

【0027】(試作手順5)正極板にはアルミニウム
製、負極板にはニッケル製のリードをそれぞれ取り付
け、厚さ0.036 mm 、幅40 mm 、長さ1100 m
m のポリプロピレンとポリエチレンを主原料とするセパ
レータを介して渦巻き状に巻回して極板群を構成し、直
径17 mm 、高さ50 mm の電池ケースに納入した。
(Prototype 5) A lead made of aluminum was attached to the positive electrode plate, and a nickel lead was attached to the negative electrode plate. The thickness was 0.036 mm, the width was 40 mm, and the length was 1100 m.
The electrode plates were spirally wound through a separator made of polypropylene and polyethylene as main materials, and delivered to a battery case having a diameter of 17 mm and a height of 50 mm.

【0028】電解液には、エチレンカーボネート(E
C)とジメチルカーボネート(DMC)とエチルメチル
カーボネート(EMC)を混合した溶媒に1.5mol/l
のLiPF6 を溶解したものを用い、これを注液した
後、封口し電池とした。
As the electrolytic solution, ethylene carbonate (E
C), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a mixed solvent of 1.5 mol / l
After dissolving LiPF 6 in the above solution and injecting the solution, the cell was sealed to obtain a battery.

【0029】(実施例1)上記の試作手順1から5に従
って、活物質粒子内に形成された空孔率の異なる6種類
の電池を試作した。使用した正極活物質であるマンガン
酸リチウムの粒子内部に形成された空孔率をそれぞれ
(1)1.0%、 (2)3.0%、 (3)7.0%、 (4)15
%、 (5)20%、 (6)25%に調整した。このときの極
板厚みは0.2mm、極板長は360mmであった。
(Example 1) Six types of batteries having different porosity formed in the active material particles were trial-produced in accordance with the above-mentioned trial production procedures 1 to 5. The porosity formed inside the particles of the lithium manganate, a positive electrode active material used, was
(1) 1.0%, (2) 3.0%, (3) 7.0%, (4) 15
%, (5) 20%, and (6) 25%. At this time, the electrode plate thickness was 0.2 mm, and the electrode plate length was 360 mm.

【0030】(実施例2)マンガン酸リチウム粒子内の
空孔率を7%に固定して試作手順1に従って調整した正
極ペーストを用い、乾燥後の極板厚みが (1)0.15m
m、 (2)0.20mm、 (3)0.25mm、 (4)0.3
0mm、 (5)0.35mmになるように塗工した。その
後は手順2から手順5に従って電池を試作した。
(Example 2) The positive electrode paste adjusted according to the trial production procedure 1 with the porosity in the lithium manganate particles fixed at 7% was used, and the thickness of the electrode plate after drying was (1) 0.15 m
m, (2) 0.20 mm, (3) 0.25 mm, (4) 0.3
0 mm and (5) 0.35 mm. Thereafter, a battery was prototyped according to Procedures 2 to 5.

【0031】(比較例1)上記の試作手順1から5に従
って、粒子内に空孔が1.0%未満で、空孔がほとんど
存在しないマンガン酸リチウムを正極活物質に用いて電
池を試作した。このときの極板厚みは0.2mm、極板
長は360mmであった。
(Comparative Example 1) According to the above-mentioned trial production procedures 1 to 5, a battery was trial-produced using lithium manganate having less than 1.0% of voids in the particles and having almost no voids as the positive electrode active material. . At this time, the electrode plate thickness was 0.2 mm, and the electrode plate length was 360 mm.

【0032】(比較例2)粒子内の空孔が1.0%未満
のマンガン酸リチウムを正極活物質で試作手順1に従っ
て調整した正極ペーストを用い、乾燥後の極板厚みが
(1)0.15mm、(2)0.20mm、 (3)0.25m
m、 (4)0.30mm、 (5)0.35mmになるように
塗工した。その後は手順2から手順5に従って電池を試
作した。なお、空孔率の測定は、正極板をエポキシ樹脂
で固めた後、研磨によって断面を出し、その画像を処理
することによって粒界による空孔を取り除いた上で、活
物質と空孔の比率を算出した。
(Comparative Example 2) A positive electrode paste prepared by preparing lithium manganate having less than 1.0% of pores in the particles with a positive electrode active material according to the trial production procedure 1 was used.
(1) 0.15mm, (2) 0.20mm, (3) 0.25m
m, (4) 0.30 mm, and (5) 0.35 mm. Thereafter, a battery was prototyped according to Procedures 2 to 5. The porosity was measured by solidifying the positive electrode plate with epoxy resin, polishing the cross section, removing the porosity due to grain boundaries by processing the image, and then measuring the ratio of active material to porosity. Was calculated.

【0033】これらの試作した電池は初期充放電を4サ
イクル行い、2 5℃で放電状態で7日保存後、充放電サ
イクル寿命試験またはレート特性試験をを行った。
These prototype batteries were subjected to an initial charge / discharge cycle of 4 cycles, stored for 7 days in a discharged state at 25 ° C., and then subjected to a charge / discharge cycle life test or a rate characteristic test.

【0034】本発明の実施例1及び比較例1の電池を各
3セルずつについてサイクル特性評価を行った結果を表
1に示す。サイクル特性評価は25℃において充電上限
電圧4.3V 、放電終止電圧3.0Vの0.2C定電流
充放電を行い、1 サイクル目の容量の80 %を下回った時
点をサイクル末期とした。なお結果は評価した3セルの
平均値を示す。
Table 1 shows the results of the cycle characteristics evaluation of the batteries of Example 1 and Comparative Example 1 of the present invention for each three cells. The cycle characteristics were evaluated at 25 ° C. by charging and discharging at a constant current of 0.2 C with a charge upper limit voltage of 4.3 V and a discharge end voltage of 3.0 V. The results show the average value of the three evaluated cells.

【0035】[0035]

【表1】 表1の結果から比較例に比べ、実施例(2) から(5) の電
池はサイクル特性に優れることが明らかである。これ
は、サイクルを重ねた電池の正極板をSEM写真で観察
すると、比較例の正極活物質は微細化しているのに対し
て、実施例の極板ではそのような変化は少ないことか
ら、充放電のマンガン酸スピネルの膨張収縮のストレス
が原因となって従来の活物質では粒子の割れが進むのに
対して、本発明の活物質では粒子内の空孔が前記のスト
レスを緩和して活物質の割れが少ないためということ
と、活物質内に形成された空孔が電解液を含み、充放電
反応が極板全体に均一に進行したためであると考えてい
る。ただし、実施例(1) では効果が見られないのは、活
物質粒子内に形成された空孔が少なく、その効果が現れ
なかったものと思われる。また実施例(6) では、空孔が
多く極板を製造する際の圧延工程時に活物質粒子が粉砕
されることが分かった。つまり粒子内の空孔が減少する
ことと、粉砕によって活物質の一部が微粒子化してしま
い、反応が不均一になりサイクル寿命が短くなったと考
えられる。
[Table 1] From the results in Table 1, it is clear that the batteries of Examples (2) to (5) are superior to the comparative example in the cycle characteristics. This is because, when the positive electrode plate of the cycled battery is observed with an SEM photograph, the positive electrode active material of the comparative example is finer, whereas such change is small in the electrode plate of the example. In the active material of the present invention, the cracking of the particles progresses due to the stress caused by the expansion and contraction of the manganate spinel in the discharge. It is considered that the reason for this is that there is little cracking of the material and that the pores formed in the active material contain the electrolyte and the charge / discharge reaction has progressed uniformly over the entire electrode plate. However, the reason why no effect was observed in Example (1) is considered that the number of pores formed in the active material particles was small and the effect was not exhibited. Further, in Example (6), it was found that the active material particles were pulverized during the rolling step when producing an electrode plate having many holes. In other words, it is considered that the pores in the particles are reduced, and a part of the active material is finely divided by the pulverization, so that the reaction becomes uneven and the cycle life is shortened.

【0036】1サイクル目の容量については、比較例に
比べ実施例1の(2) から(5) の電池は容量が大きくなっ
ている。この原因も粒子内の空孔に電解液が含まれるこ
とによって、活物質の利用効率が上昇すると考えられ
る。
Regarding the capacity in the first cycle, the batteries of Examples 1 (2) to (5) have a larger capacity than the comparative example. It is considered that the use efficiency of the active material is also increased because the pores in the particles contain the electrolytic solution.

【0037】これらの結果から、活物質内にもうける空
孔量は活物質断面積に対して、空孔断面積が3%から2
0%の範囲であることが好ましい。
From these results, it is found that the amount of vacancies in the active material is from 3% to 2% of the active material cross-sectional area.
It is preferably in the range of 0%.

【0038】次に、実施例2と比較例2における各電池
の2.0C定電流で放電した放電容量と0.2C定電流
で放電した放電容量の比率を表2に示す。このレート特
性評価は25℃で上限電圧4.3V の0.2C定電流充
電を行い。放電は所定の電流値で終止電圧3.0Vで放
電容量を求めた。
Next, Table 2 shows the ratio of the discharge capacity discharged at a constant current of 2.0 C to the discharge capacity discharged at a constant current of 0.2 C for each battery in Example 2 and Comparative Example 2. In this rate characteristic evaluation, a constant current charge of 0.2 C with an upper limit voltage of 4.3 V was performed at 25 ° C. The discharge capacity was determined at a predetermined current value and a final voltage of 3.0 V.

【0039】[0039]

【表2】 表2からレート特性に関しては、実施例(1) から(5) が
従来例(1) から(5) に比べ向上していることが分かる。
放電電流が大きくなると電解液中のイオンの拡散速度が
反応速度に追いつかず放電容量が小さくなる。しかし活
物質と電解液の接触面積が大きくなればレート特性は改
善できる。本発明の活物質では、粒子内部の空孔が電解
液を含むことが出来るので、反応面積が増加し高率放電
での放電容量の低下が従来例に比べて小さく抑えられた
ものと思われる。
[Table 2] From Table 2, it can be seen that the rate characteristics of the examples (1) to (5) are improved as compared with the conventional examples (1) to (5).
When the discharge current increases, the diffusion rate of ions in the electrolytic solution cannot catch up with the reaction rate, and the discharge capacity decreases. However, if the contact area between the active material and the electrolyte increases, the rate characteristics can be improved. In the active material of the present invention, since the pores inside the particles can contain the electrolyte, it is considered that the reaction area is increased and the decrease in the discharge capacity at high rate discharge is suppressed to be smaller than that in the conventional example. .

【0040】なお、実施例1の(6) の正極活物質を用い
た電池について正極板厚みを変化させたものについて
も、従来例に比してレート特性の向上が見られた。これ
は、上記のように圧延によって活物質は粉砕され空孔は
減少したと考えられるが、粒子の微細化によって比表面
積は大きくなったものと考えている。
In the battery using the positive electrode active material of Example 1 (6), the rate characteristics were also improved as compared with the conventional example in which the thickness of the positive electrode plate was changed. This is thought to be because the active material was pulverized and the pores were reduced by the rolling as described above, but the specific surface area was increased by the finer particles.

【0041】次に、実施例2と比較例2の1サイクル目
容量とサイクル特性を、表3に示す。これらの電池のサ
イクル特性評価は上記の条件と同様に行った。
Next, Table 3 shows the first cycle capacity and cycle characteristics of Example 2 and Comparative Example 2. The cycle characteristics of these batteries were evaluated under the same conditions as described above.

【0042】[0042]

【表3】 表3から、本発明の活物質を用いた電池では、正極板の
活物質層が厚くなってもサイクル寿命の低下が従来例に
比べて小さいことが分かる。特に極板厚みが0.15m
m、0.20mm、0.25mmの極板ではサイクル寿
命にほとんど違いはない。一方、比較例の電池では正極
板厚みが厚くなるとサイクル寿命が明らかに短くなって
いる。
[Table 3] From Table 3, it can be seen that in the battery using the active material of the present invention, even if the active material layer of the positive electrode plate is thickened, the decrease in cycle life is smaller than in the conventional example. Especially the thickness of the electrode plate is 0.15m
There is almost no difference in cycle life between the electrode plates of m, 0.20 mm and 0.25 mm. On the other hand, in the battery of the comparative example, when the thickness of the positive electrode plate was increased, the cycle life was clearly shortened.

【0043】極板厚みがサイクル寿命に関係することは
経験からわかっている。これは、活物質層が厚くなると
リチウムイオンの拡散距離が長くなって、充放電時に極
板の厚さ方向で反応が不均一に進行することが原因であ
ると考えられている。しかし本発明の活物質では、活物
質粒子に形成された空孔が電解液を含むことによって、
極板が厚くなってもイオンの拡散が円滑に進むものと考
えられる。
Experience has shown that the thickness of the electrode plate is related to the cycle life. This is considered to be because the thicker the active material layer is, the longer the diffusion distance of lithium ions is, and the reaction proceeds unevenly in the thickness direction of the electrode plate during charging and discharging. However, in the active material of the present invention, the pores formed in the active material particles contain the electrolytic solution,
It is considered that the diffusion of ions proceeds smoothly even when the electrode plate becomes thick.

【0044】活物質層を厚くすると決められたサイズの
電池ケースに多くの活物質を充填することが出来るので
容量の大きな電池を作成することが可能になるという利
点も生まれる。
By increasing the thickness of the active material layer, a battery case of a predetermined size can be filled with a large amount of active material, so that there is an advantage that a battery having a large capacity can be manufactured.

【0045】以上のように本発明のマンガン酸リチウム
活物質を用いると、サイクル特性およびレート特性に優
れた、大容量の電池が得られることになる。
As described above, when the lithium manganate active material of the present invention is used, a large-capacity battery having excellent cycle characteristics and rate characteristics can be obtained.

【0046】[0046]

【発明の効果】本発明によれば、以上のように正極活物
質の粒子内部に空孔を形成し、その量を粒子断面積に対
する空孔の断面積の比率が3.0%〜20%の範囲にし
たので、保液性が高く、充放電反応による活物質粒子の
破壊が少ないリチウムイオン二次電池用の正極板が得ら
れ、高容量でハイレート充放電特性およびサイクル特性
に優れたリチウム二次電池を得ることができる。
According to the present invention, as described above, pores are formed inside the particles of the positive electrode active material, and the amount of the pores is adjusted so that the ratio of the cross-sectional area of the pores to the particle cross-sectional area is 3.0% to 20%. Therefore, a positive electrode plate for a lithium ion secondary battery having a high liquid retention property and a small destruction of active material particles due to a charge / discharge reaction can be obtained. A secondary battery can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】正極活物質の粒子を示し、(a)は本発明にお
ける正極活物質の粒子の模式図、(b)は従来例の正極
活物質の粒子の模式図である。
1 shows particles of a positive electrode active material, (a) is a schematic view of particles of a positive electrode active material in the present invention, and (b) is a schematic view of particles of a conventional positive electrode active material.

【図2】リチウム二次電池の縦断面図である。FIG. 2 is a longitudinal sectional view of a lithium secondary battery.

【符号の説明】[Explanation of symbols]

A 正極活物質の粒子 H 空孔 A Particles of positive electrode active material H Vacancies

───────────────────────────────────────────────────── フロントページの続き (72)発明者 齊藤 貴也 大阪府守口市松下町1番1号 松下電池工 業株式会社内 Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK03 AL07 AM03 AM05 AM07 DJ14 DJ16 DJ17 HJ02 HJ06 HJ07 HJ09 5H050 AA02 AA07 AA08 BA17 CA09 FA15 FA17 FA19 HA02 HA06 HA07 HA09  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Takaya Saito 1-1, Matsushita-cho, Moriguchi-shi, Osaka Matsushita Battery Industry Co., Ltd. F-term (reference) 5H029 AJ02 AJ03 AJ05 AK03 AL07 AM03 AM05 AM07 DJ14 DJ16 DJ17 HJ02 HJ06 HJ07 HJ09 5H050 AA02 AA07 AA08 BA17 CA09 FA15 FA17 FA19 HA02 HA06 HA07 HA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 結晶構造がスピネル型の、化学式Li
1-X Mn1-x-y y 4 (0≦x≦0.4、0≦y≦
0.15、式中のMはNi、Co、Cr、Alから選ば
れた少なくとも一種以上の金属)で表されるマンガン複
合酸化物から成るリチウム二次電池用の正極活物質であ
って、正極活物質の粒子内部に空孔が形成されており、
その量は粒子断面積に対する空孔の断面積の比率が3.
0%〜20%の範囲にあることを特徴とする正極活物
質。
1. The chemical formula Li having a crystal structure of spinel type
1-XMn1-xyMyO Four(0 ≦ x ≦ 0.4, 0 ≦ y ≦
0.15, where M is selected from Ni, Co, Cr, and Al
Manganese complex represented by at least one or more metals)
Positive electrode active material for lithium secondary batteries composed of composite oxide
Thus, pores are formed inside the particles of the positive electrode active material,
The amount is the ratio of the cross-sectional area of the pores to the cross-sectional area of the particles.
Positive electrode active material in the range of 0% to 20%
quality.
【請求項2】 結晶構造がスピネル型の、化学式Li
1-x Mn1-x-y y 4 (0≦x≦0.4、0≦y≦
0.15、式中のMはNi、Co、Cr、Alから選ば
れた少なくとも一種以上の金属)で表されるマンガン複
合酸化物で、かつその粒子内部に空孔が形成され、その
量が粒子断面積に対する空孔の断面積の比率が3.0%
〜20%の範囲にあるマンガン複合酸化物を正極活物質
として用いたことを特徴とするリチウム二次電池。
2. The chemical formula Li having a spinel type crystal structure.
1-xMn1-xyMyO Four(0 ≦ x ≦ 0.4, 0 ≦ y ≦
0.15, where M is selected from Ni, Co, Cr, and Al
Manganese complex represented by at least one or more metals)
Voids are formed in the composite oxide and inside the particles.
When the ratio of the cross-sectional area of the pores to the cross-sectional area of the particles is 3.0%.
Manganese composite oxide in the range of 20% to 20%
A lithium secondary battery characterized by being used as a lithium secondary battery.
JP2000262634A 2000-08-31 2000-08-31 Positive electrode active material and lithium secondary battery Pending JP2002075365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000262634A JP2002075365A (en) 2000-08-31 2000-08-31 Positive electrode active material and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000262634A JP2002075365A (en) 2000-08-31 2000-08-31 Positive electrode active material and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2002075365A true JP2002075365A (en) 2002-03-15

Family

ID=18750289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000262634A Pending JP2002075365A (en) 2000-08-31 2000-08-31 Positive electrode active material and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2002075365A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232187A (en) * 2010-06-07 2010-10-14 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2012029803A1 (en) 2010-08-31 2012-03-08 日本碍子株式会社 Positive-electrode active material for lithium secondary battery
WO2013039133A1 (en) 2011-09-16 2013-03-21 日本碍子株式会社 Positive electrode active material precursor particles and method for manufacturing same, and method for manufacturing positive electrode active material for lithium secondary cell
US8821765B2 (en) 2010-08-31 2014-09-02 Ngk Insulators, Ltd. Cathode active material for lithium secondary battery
US9209459B2 (en) 2010-10-15 2015-12-08 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9246168B2 (en) 2012-09-04 2016-01-26 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery
US9837663B2 (en) 2011-05-06 2017-12-05 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
JP2018045759A (en) * 2016-08-31 2018-03-22 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US10020507B2 (en) 2012-10-15 2018-07-10 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery and positive electrode including same
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004975A1 (en) * 1999-07-07 2001-01-18 Showa Denko K.K. Positive plate active material, method for producing the same, and secondary cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004975A1 (en) * 1999-07-07 2001-01-18 Showa Denko K.K. Positive plate active material, method for producing the same, and secondary cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010232187A (en) * 2010-06-07 2010-10-14 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
WO2012029803A1 (en) 2010-08-31 2012-03-08 日本碍子株式会社 Positive-electrode active material for lithium secondary battery
US8821765B2 (en) 2010-08-31 2014-09-02 Ngk Insulators, Ltd. Cathode active material for lithium secondary battery
US9209459B2 (en) 2010-10-15 2015-12-08 Toyota Jidosha Kabushiki Kaisha Secondary battery
US9837663B2 (en) 2011-05-06 2017-12-05 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery
WO2013039133A1 (en) 2011-09-16 2013-03-21 日本碍子株式会社 Positive electrode active material precursor particles and method for manufacturing same, and method for manufacturing positive electrode active material for lithium secondary cell
US9115005B2 (en) 2011-09-16 2015-08-25 Ngk Insulators, Ltd. Cathode active material precursor particle, method for producing thereof and method for producing cathode active material for lithium secondary battery
US9246168B2 (en) 2012-09-04 2016-01-26 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery
US10020507B2 (en) 2012-10-15 2018-07-10 Ngk Insulators, Ltd. Positive electrode active material for lithium secondary battery and positive electrode including same
JP2018045759A (en) * 2016-08-31 2018-03-22 住友化学株式会社 Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
US11417879B2 (en) 2016-08-31 2022-08-16 Sumitomo Chemical Company, Limited Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
US10923719B2 (en) 2017-11-20 2021-02-16 Sumitomo Chemical Company, Limited Positive-electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Similar Documents

Publication Publication Date Title
JP4878687B2 (en) Lithium secondary battery
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP4072126B2 (en) Electrode active material, electrode, lithium ion secondary battery, method for producing electrode active material, and method for producing lithium ion secondary battery
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JP5214202B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP2007250198A (en) Nonaqueous electrolyte secondary battery
JP2003109592A (en) Lithium secondary battery and manufacturing method of the same
TW200301022A (en) Lithium ion secondary battery
KR20110025678A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using same, and method for producing same
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2007103246A (en) Non-aqueous electrolyte secondary battery
JP2002075365A (en) Positive electrode active material and lithium secondary battery
JP4145138B2 (en) Nonaqueous electrolyte secondary battery
JP2014067587A (en) Nonaqueous electrolyte secondary battery
JP2007172879A (en) Battery and its manufacturing method
JP3475759B2 (en) Non-aqueous electrolyte secondary battery
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JP2007172878A (en) Battery and its manufacturing method
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
KR20140025159A (en) Composite negative electrode active material, method for preparing the same, and lithium battery including the same
JP2002203606A (en) Nonaqueous electrolyte solution battery
JPH08180878A (en) Lithium secondary battery
JPH1145742A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091228

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20100120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118