JP2002075338A - Positive electrode mix compact and battery - Google Patents
Positive electrode mix compact and batteryInfo
- Publication number
- JP2002075338A JP2002075338A JP2000264212A JP2000264212A JP2002075338A JP 2002075338 A JP2002075338 A JP 2002075338A JP 2000264212 A JP2000264212 A JP 2000264212A JP 2000264212 A JP2000264212 A JP 2000264212A JP 2002075338 A JP2002075338 A JP 2002075338A
- Authority
- JP
- Japan
- Prior art keywords
- mixture
- positive electrode
- battery
- particles
- electrode mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y02E60/12—
Landscapes
- Primary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は正極合剤成形体お
よびこの成形体を用いて構成される電池に関し、特にア
ルカリマンガン電池または非水系電解液電池に適用して
有効なものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode mixture molded product and a battery constituted by using the molded product, and more particularly to a battery which is effective when applied to an alkaline manganese battery or a non-aqueous electrolyte battery.
【0002】[0002]
【従来の技術】たとえばLRの型名で呼ばれている円筒
形アルカリマンガン電池は、正極端子を兼ねる有底筒状
電池缶内に、この電池缶の内形状に合わせて形成された
環状あるいは貫通筒状の正極合剤成形体いわゆる合剤成
形体を嵌合装填し、さらにその成形体の内側にセパレー
タおよび負極合剤を装填および充填するとともに、アル
カリ電解液を注入して発電要素を形成した後、負極端子
および集電子などを組込んだ封口体で上記電池缶の開口
を密閉封止することにより構成される。2. Description of the Related Art For example, a cylindrical alkaline manganese battery called a model LR has an annular or penetrating shape formed in a cylindrical battery can with a bottom also serving as a positive electrode terminal in accordance with the internal shape of the battery can. A cylindrical positive electrode mixture molded body, a so-called mixture molded body, was fitted and charged, and a separator and a negative electrode mixture were further loaded and filled inside the molded body, and an alkaline electrolyte was injected to form a power generating element. Thereafter, the opening of the battery can is hermetically sealed with a sealing member incorporating a negative electrode terminal and a current collector.
【0003】上記正極合剤成形体は、正極活物質となる
二酸化マンガンと、導電剤となる黒鉛を主成分とする合
剤をプレス成形によって所定の成形体の形状に形成した
ものである。この場合、そのプレス成形では、成形型へ
の充填性や取り扱い性などの作業効率を向上させるため
に、上記主成分を有する合剤粒を被成形材料として使用
する。この合剤粒は、上記主成分を含む混合材料をロー
ル圧延した後、解砕機による解砕造粒と篩分けによる粒
度選別を行って作製される。The above-mentioned positive electrode mixture molded product is formed by press molding a mixture mainly composed of manganese dioxide as a positive electrode active material and graphite as a conductive agent into a predetermined molded product. In this case, in the press molding, in order to improve work efficiency such as filling property into a mold and handling property, a mixture particle having the above-mentioned main component is used as a material to be molded. The mixture particles are produced by subjecting a mixed material containing the above main component to roll rolling, and then performing crushing granulation by a crusher and particle size sorting by sieving.
【0004】上述のようにして作製された正極合剤成形
体は、合剤粒が固結一体化された多粒構造をなしている
が、上記合剤粒を作製する際の圧延およびその合剤粒を
所定の成形体の形状にプレス成形する際の各工程条件を
それぞれ適切に選ぶことにより、所定の成形強度および
所定の微細空隙構造(とくに空隙率)を備えることがで
きる。[0004] The positive electrode mixture molded body produced as described above has a multi-particle structure in which the mixture particles are consolidated and integrated. By appropriately selecting the respective process conditions for press-molding the agent particles into the shape of a predetermined molded body, a predetermined molding strength and a predetermined fine void structure (particularly, a porosity) can be provided.
【0005】[0005]
【発明が解決しようとする課題】上述した正極合剤成形
体を使用した電池の放電性能を向上させる手段として
は、(1)活物質の量を増やす、(2)活物質の利用率
を高めるなどの方法がある。(1)は、活物質の増量に
よる放電容量の向上が期待されるが、その増量は電池の
規格サイズ内で行う必要がある。この制約下で活物質を
増量するためには、活物質の配合割合を多くするか、あ
るいは成形体の成形密度を高くすればよい。しかし、前
者は、導電剤の配合割合が減ることにより内部抵抗が増
大し、高負荷放電性能(大電流放電特性)が低下してし
まうという問題が生じる。後者は、成形体を高密度化し
た分、成形体内部の空隙体積が減少して電解液の吸液含
浸量が少なくなり、これにより活物質の利用率が低下す
るとともに、高負荷放電性能が低下してしまうという問
題が生じる。(2)は、正極合剤成形体に吸液含浸させ
る電解液の量を多くすれば良いことが知られている。電
解液を多く含浸させることができれば、活物質の利用率
が高められて、高負荷放電性能の向上が期待される。電
解液の含浸量を多くするためには、正極合剤成形体内の
微細空隙体積を大きくすればよく、このためにはその成
形体の成形密度を低くすればよいとされていた。しか
し、上記空隙体積を大きくした分、活物質量が目減りし
て放電容量が低下してしまうという問題が生じる。ま
た、上記空隙体積を大きくするために成形密度を低くす
ると、電解液の吸液含浸による成形体のゆるみが起こ
り、これによる内部抵抗の増大によって、高負荷放電性
能の向上もそれほどは期待できなかった。The means for improving the discharge performance of a battery using the above-mentioned positive electrode mixture molded article include (1) increasing the amount of the active material, and (2) increasing the utilization rate of the active material. And so on. In (1), the discharge capacity is expected to be improved by increasing the active material, but the increase must be performed within the standard size of the battery. In order to increase the amount of the active material under this restriction, the mixing ratio of the active material may be increased or the molding density of the molded body may be increased. However, in the former, there is a problem that the internal resistance increases due to a decrease in the mixing ratio of the conductive agent, and the high-load discharge performance (large-current discharge characteristics) decreases. In the latter case, as the density of the molded body is increased, the void volume inside the molded body is reduced and the amount of impregnation of the electrolyte is reduced, thereby reducing the utilization rate of the active material and improving the high-load discharge performance. This causes a problem of lowering. In (2), it is known that the amount of the electrolyte to be impregnated into the molded article of the positive electrode mixture may be increased. If a large amount of the electrolyte can be impregnated, the utilization rate of the active material is increased, and improvement in high-load discharge performance is expected. It has been stated that in order to increase the amount of impregnation of the electrolytic solution, it is necessary to increase the volume of the fine voids in the molded article of the positive electrode mixture, and to reduce the molding density of the molded article. However, an increase in the void volume causes a problem that the amount of the active material is reduced and the discharge capacity is reduced. Further, when the molding density is reduced to increase the void volume, the molded body is loosened due to the impregnation of the electrolyte with the liquid, and the internal resistance is increased, so that the improvement in the high-load discharge performance cannot be expected much. Was.
【0006】このように、従来の正極合剤成形体では、
正極活物質を増量させることと、電解液の含浸量を多く
することとが互いに背反関係にあって、放電容量と高負
荷放電性能を両立して向上させることは、困難であると
されていた。As described above, in the conventional positive electrode mixture molded product,
Increasing the amount of the positive electrode active material and increasing the amount of the electrolyte impregnated are in conflict with each other, and it has been considered difficult to improve both the discharge capacity and the high-load discharge performance. .
【0007】この発明は、以上のような問題に鑑みてな
されたもので、その目的は、正極活物質と含浸電解液を
共に増量させることを可能にし、これにより、放電容量
と高負荷放電性能を両立して向上させることを可能にし
た正極合剤成形体および電池を提供することにある。[0007] The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to increase both the amount of a positive electrode active material and an impregnated electrolyte, thereby improving discharge capacity and high load discharge performance. It is an object of the present invention to provide a positive electrode mixture molded article and a battery, which are capable of improving both of them.
【0008】[0008]
【課題を解決するための手段】前述した課題を解決する
ための手段は、本発明では次のとおりである。Means for solving the above problems are as follows in the present invention.
【0009】===正極合剤成形体=== <手段1>電極活物質と導電剤を主成分とし、かつ電解
液を吸液含浸するための微細空隙構造を有する正極合剤
成形体において、上記主成分を有しかつ上記微細空隙構
造を有する合剤粒が所定形状に固結されて上記成形体が
形成されているとともに、上記電解液の含浸に対して上
記合剤粒が合剤粒間よりも高強度に形成されていること
を特徴とする正極合剤成形体。 <手段2>手段1の正極合剤成形体において、前記正極
活物質が二酸化マンガンであることを特徴とする。 <手段3>手段1または2の正極合剤成形体において、
前記導電剤が黒鉛であることを特徴とする。 <手段4>手段1から3のいずれかの正極合剤成形体に
おいて、前記電解液の含浸による微小亀裂が前記合剤粒
間において優先的に生じるように前記合剤粒を形成した
ことを特徴とする。 <手段5>手段1から4のいずれかの正極合剤成形体に
おいて、前記合剤粒間の微細空隙がその合剤粒内の微細
空隙よりも多いことを特徴とする。 <手段6>手段1から5のいずれかの正極合剤成形体に
おいて、前記合剤粒内の密度がその合剤粒間の密度より
も高いことを特徴とする。 <手段7>手段1から6のいずれかの正極合剤成形体に
おいて、前記合剤粒は、長径と短径の比が2以上の異径
合剤粒を20重量%以上含むことを特徴とする。 <手段8>手段1から7のいずれかの正極合剤成形体に
おいて、前記合剤粒は、空気透過法により測定される換
算平均粒子径が1.5μm以下であることを特徴とす
る。 <手段9>手段1から8のいずれかの正極合剤成形体に
おいて、前記合剤粒は、材料のBET比表面積とその配
合比から求められる理論比表面積に対するBET比表面
積の比が85%以下であることを特徴とする。=== Positive electrode mixture molded article === <Means 1> In a positive electrode mixture molded article having an electrode active material and a conductive agent as main components and having a fine void structure for absorbing and impregnating an electrolyte. The mixture having the main component and having the fine void structure is consolidated into a predetermined shape to form the compact, and the mixture is impregnated with the electrolytic solution. A positive electrode mixture molded product characterized by being formed with a higher strength than between grains. <Means 2> In the molded positive electrode mixture of Means 1, the positive electrode active material is manganese dioxide. <Means 3> In the positive electrode mixture molded product of the means 1 or 2,
The conductive agent is graphite. <Means 4> In the positive electrode mixture molded body according to any one of the means 1 to 3, the mixture particles are formed such that microcracks due to the impregnation of the electrolytic solution are preferentially generated between the mixture particles. And <Means 5> In the positive electrode mixture molded product according to any one of the means 1 to 4, the number of fine voids between the mixture particles is larger than the number of fine voids in the mixture particles. <Means 6> In the positive electrode mixture molded body according to any one of the means 1 to 5, the density in the mixture particles is higher than the density between the mixture particles. <Means 7> In the positive electrode mixture molded product according to any one of the means 1 to 6, the mixture particles include 20% by weight or more of different-diameter mixture particles having a ratio of a major axis to a minor axis of 2 or more. I do. <Means 8> In the positive electrode mixture molded product according to any one of the means 1 to 7, the mixture particles have a reduced average particle diameter measured by an air permeation method of 1.5 μm or less. <Means 9> In the positive electrode mixture molded product according to any one of means 1 to 8, the mixture particles have a BET specific surface area of the material and a ratio of a BET specific surface area to a theoretical specific surface area obtained from a compounding ratio of 85% or less. It is characterized by being.
【0010】===電池=== <手段10>正極活物質として手段1〜9のいずれかの
正極合剤成形体を使用するとともに、その成形体が電解
液含浸前に有していた初期空隙体積以上の電解液を含浸
できることを特徴とする電池。 <手段11>手段10の電池において、密閉封止された
電池缶内にて、この電池缶の内形状に合わせて形成され
た前記正極合剤成形体が嵌合装填されて、セパレータ、
負極および電解液と共に発電要素を形成していることを
特徴とする。 <手段12>手段10の電池において、密閉封止された
電池缶内にて、この電池缶の内形状に合わせて、前記正
極合剤成形体が缶内成形により形成されており、セパレ
ータ、負極および電解液と共に発電要素を形成している
ことを特徴とする。 <手段13>手段10から12のいずれかの電池におい
て、前記電解液がアルカリ電解液であることを特徴とす
る。 <手段14>手段10から12のいずれかの電池におい
て、前記電解液が非水系電解液であることを特徴とす
る。 <手段15>手段10から14のいずれかの電池におい
て、合剤成形体の単位高さ当たりの強度として8.3N
/cm以上の強度を付与された前記正極合剤成形体を使
用して単一サイズ(例えばJIS規格のR20型)の電
池を構成したことを特徴とする。 <手段16>手段10から14のいずれかの電池におい
て、合剤成形体の単位高さ当たりの強度として5.8N
/cm以上の強度を付与された前記正極合剤成形体を使
用して単二サイズ(例えばJIS規格のR14型)の電
池を構成したことを特徴とする。 <手段17>手段10から14のいずれかの電池におい
て、合剤成形体の単位高さ当たりの強度として4.8N
/cm以上の強度を付与された前記正極合剤成形体を使
用して単三サイズ(例えばJIS規格のR6型)の電池
を構成したことを特徴とする。 <手段18>手段10から14のいずれかの電池におい
て、合剤成形体の単位高さ当たりの強度として4.6N
/cm以上の強度を付与された前記正極合剤成形体を使
用して単四サイズ(例えばJIS規格のR03型)の電
池を構成したことを特徴とする。=== Battery === <Means 10> The positive electrode mixture formed body according to any one of the means 1 to 9 is used as a positive electrode active material, and the formed body has an initial shape which was held before impregnation with an electrolyte. A battery characterized in that it can be impregnated with an electrolytic solution having a void volume or more. <Means 11> In the battery of the means 10, the positive electrode mixture molded body formed according to the inner shape of the battery can is fitted and loaded in a hermetically sealed battery can, and a separator,
A power generating element is formed together with the negative electrode and the electrolyte. <Means 12> In the battery of the means 10, the positive electrode mixture molded body is formed in the hermetically sealed battery can according to the internal shape of the battery can by molding in the can. And a power generation element is formed together with the electrolyte. <Means 13> In any one of the batteries according to the means 10 to 12, the electrolyte is an alkaline electrolyte. <Means 14> In the battery according to any one of the means 10 to 12, the electrolyte is a non-aqueous electrolyte. <Means 15> In any one of the batteries of the means 10 to 14, the strength of the mixture molded body per unit height is 8.3 N.
A battery of a single size (for example, JIS standard R20 type) is formed using the above-mentioned positive electrode mixture molded body having a strength of not less than / cm. <Means 16> In any one of the batteries of the means 10 to 14, the strength of the mixture molded body per unit height is 5.8 N.
A battery of a size C (for example, R14 type according to JIS) is formed by using the above-mentioned positive electrode mixture molded body having a strength of not less than / cm. <Means 17> In any one of the batteries according to the means 10 to 14, the strength of the mixture molded body per unit height is 4.8 N.
A battery of AA size (for example, R6 type according to JIS standard) is formed using the above-mentioned positive electrode material mixture molded body having a strength of not less than / cm. <Means 18> In any one of the batteries of the means 10 to 14, the strength per unit height of the mixture molded product is 4.6 N.
A battery of a size AAA (for example, R03 type according to JIS) is formed by using the above-mentioned positive electrode mixture molded body having a strength of not less than / cm.
【0011】[0011]
【発明の実施の形態】以下、本発明の代表的な実施形態
を添付図面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, typical embodiments of the present invention will be described with reference to the accompanying drawings.
【0012】===正極合剤成形体=== 図1は、本発明による正極合剤成形体の全体図および部
分拡大図を示す。同図に示す正極合剤成形体1は、円筒
形電池に使用されるものであって、円環コア状に成形さ
れている。この成形体1は、二酸化マンガンと黒鉛を主
成分とする合剤粒2がプレス成形により所定形状(上記
コア状)に固結一体化されたものであって、一種の多粒
構造をなしている。この成形体1は、電解液を吸液含浸
する微細空隙構造を有する。この微細空隙構造は、比較
的微細空隙が少ない合剤粒2内と比較的微細空隙が多い
合剤粒2間の二つの部分に形成されている。電解液は、
まず、合剤粒2間の微細空隙に吸液されて成形体1内の
全体に粗く行き渡った後、各合剤粒2内の微細空隙に細
かく分散して含浸されると考えられる。=== Positive electrode mixture molded article === FIG. 1 shows an overall view and a partially enlarged view of a positive electrode mixture molded article according to the present invention. The molded positive electrode mixture 1 shown in FIG. 1 is used for a cylindrical battery, and is formed in an annular core shape. The molded body 1 is obtained by press-molding a mixture particle 2 mainly composed of manganese dioxide and graphite into a predetermined shape (the above-mentioned core shape) and integrally formed, and forms a kind of multi-particle structure. I have. The molded body 1 has a fine void structure in which the electrolyte is absorbed and impregnated. This fine void structure is formed in two portions between the mixture particles 2 having relatively few fine voids and the mixture particles 2 having relatively many fine voids. The electrolyte is
First, it is considered that the liquid is absorbed in the fine voids between the mixture particles 2 and spreads over the entire inside of the molded article 1 roughly, and then finely dispersed in the fine voids in each of the mixture particles 2 to be impregnated.
【0013】合剤粒2は、二酸化マンガンと黒鉛を主成
分とする混合物から造粒されたものであって、上記主成
分を含む混合材料をロール圧延した後、解砕機による解
砕造粒と篩分けによる粒度選別を行って作製される。The mixture granules 2 are granulated from a mixture containing manganese dioxide and graphite as main components. After rolling the mixed material containing the above main components, the mixture is subjected to crushing granulation by a crusher. It is produced by performing particle size sorting by sieving.
【0014】ここで、合剤粒2は、合剤粒2間よりも高
い密度および強度を持つように形成されている。高強度
化された合剤粒2は、電解液を含浸しても、造粒時に形
成された初期の微細空隙形状をほぼそのまま保持する。
他方、その合剤粒2よりも低強度となっている合剤粒2
間は、電解液を含浸したときに、膨潤して微小亀裂が生
じる。この微小亀裂は合剤粒2間に新たな空隙空間を形
成する。この空間に電解液が入り込んで、さらに新たな
空隙空間が生じ、ここにまた電解液が入り込む。これに
より、成形体1が電解液含浸前に有していた初期空隙体
積以上の電解液が吸液含浸されるようになる。Here, the mixture particles 2 are formed to have higher density and strength than between the mixture particles 2. Even when the mixture particles 2 having high strength are impregnated with the electrolytic solution, the initial fine void shape formed at the time of granulation is maintained substantially as it is.
On the other hand, the mixture particles 2 having a lower strength than the mixture particles 2
During the interval, when impregnated with the electrolytic solution, swells and microcracks are generated. This microcrack forms a new void space between the mixture particles 2. The electrolyte enters into this space, and a new void space is generated, into which the electrolyte again enters. As a result, the electrolyte solution having a volume equal to or greater than the initial void volume that the molded body 1 has before the electrolyte solution impregnation is impregnated with the liquid solution.
【0015】このとき、成形体1全体は、合剤粒2を高
密度化することにより、高密度に形成することができ
る。合剤粒2は高密度化するほど硬く高強度になるが、
これに伴って、合剤粒2間の接合強度は相対的に低くな
る。したがって、成形体1に電解液を吸液含浸させる
と、その電解液の含浸による膨潤および微小亀裂は合剤
粒2間にて優先的に生じるようになる。At this time, the whole compact 1 can be formed at a high density by increasing the density of the mixture particles 2. The mixture particles 2 become harder and stronger as the density increases,
Accordingly, the bonding strength between the mixture particles 2 becomes relatively low. Therefore, when the molded body 1 is impregnated with the electrolyte, the swelling and micro-cracks due to the impregnation of the electrolyte occur preferentially between the mixture particles 2.
【0016】高密度化された合剤粒2内の微細空隙は合
剤粒2間の微細空隙よりも少なくなるが、合剤粒2間の
微細空隙に含浸された電解液が、その電解液の含浸によ
って新たに形成される空隙空間を通して各合剤粒2に満
遍なく行き渡ることにより、成形体1全体としても多量
の電解液を均等に含浸することができる。Although the fine voids in the densified mixture particles 2 are smaller than the fine voids between the mixture particles 2, the electrolytic solution impregnated in the fine voids between the mixture particles 2 By spreading the mixture particles 2 evenly through the void space newly formed by the impregnation, a large amount of the electrolytic solution can be evenly impregnated even in the molded body 1 as a whole.
【0017】合剤粒2間は電解液の含浸によって微小亀
裂が生じるが、合剤粒2の高密度化のため、合剤粒2に
亀裂は生じることは無く、成形体1の導電性は良好に保
たれる。したがって、この場合は、前述した成形体のゆ
るみが起きた場合とは違って、成形体1の内部抵抗が増
大するようなことはなく、これにより、良好な高負荷放
電性能を得ることができる。Although microcracks are formed between the mixture particles 2 by the impregnation of the electrolyte, the mixture particles 2 are not densely cracked due to the high density of the mixture particles 2 and the conductivity of the molded body 1 is reduced. It is kept good. Therefore, in this case, unlike the case where the molded article is loosened, the internal resistance of the molded article 1 does not increase, and thus, a good high-load discharge performance can be obtained. .
【0018】また、高密度化された合剤粒2は成形体1
にしたときの成形強度も高くすることができる。これに
より、通常の成形体では実現できない成形強度を実現す
ることができる。合剤粒2間の接合強度も、電解液を吸
液する前の状態では、成形時の高強度を保つことができ
る。したがって、割れや欠けは生じにくく、これによっ
て電池の組立作業性を大幅に向上させることができる。Further, the mixture particles 2 having a high density are
In this case, the molding strength can be increased. Thereby, it is possible to realize a molding strength that cannot be achieved with a normal molded body. The bonding strength between the mixture particles 2 can also maintain a high strength at the time of molding before the electrolyte solution is absorbed. Accordingly, cracking and chipping are unlikely to occur, which can greatly improve the workability of assembling the battery.
【0019】さらに、上記成形体1では、その成形材料
として使用する合剤粒2に、長径と短径の比が2以上の
異径合剤粒を20重量%以上含ませることにより、成形
強度を大幅を向上させられることが判明した。これは、
上記異径合剤粒を20重量%以上含む合剤粒は見掛け比
重が低くなり、これを所定寸法の合剤成形体に成形する
ためには、従来の合剤成形よりも高い成形圧力が必要と
なることに加えて、球状の合剤粒を成形した場合に比べ
て、合剤粒同士の絡み合いが密になることによる。これ
により、合剤成形体の強度をさらに高めて電池の組立作
業性を一層向上させることができる。Furthermore, in the above-mentioned molded article 1, the mixture granules 2 used as the molding material contain 20% by weight or more of different-diameter mixture particles having a ratio of the major axis to the minor axis of 2 or more, thereby increasing the molding strength. It turns out that it can be greatly improved. this is,
The mixture particles containing the above-mentioned mixture particles of 20% by weight or more have a low apparent specific gravity, and a molding pressure higher than that of the conventional mixture molding is required in order to form the mixture particles into a mixture molding having a predetermined size. In addition to the above, the entanglement between the mixture particles becomes denser than when spherical mixture particles are formed. Thereby, the strength of the mixture molded body can be further increased, and the assembling workability of the battery can be further improved.
【0020】以上のように、この発明による正極合剤成
形体では、正極活物質と含浸電解液を共に増量させるこ
とが可能であって、これにより、電池の放電容量と高負
荷放電性能を両立して向上させることを可能にしてい
る。また、吸液前の状態での成形体強度を従来よりも大
幅に高めることができるので、電池の組立作業性を大幅
に向上させるという効果も併せて得ることができる。As described above, in the molded article of the positive electrode mixture according to the present invention, it is possible to increase both the amount of the positive electrode active material and the impregnated electrolyte, thereby achieving both the discharge capacity of the battery and the high load discharge performance. And improve it. Further, since the strength of the molded body before the liquid absorption can be greatly increased as compared with the related art, the effect of greatly improving the workability of assembling the battery can also be obtained.
【0021】===電池=== 図2は、上述した正極合剤成形体1を使用したアルカリ
マンガン電池の実施形態を示す。同図に示す電池3は、
正極端子を兼ねる有底筒状の金属製電池缶31内に、そ
の電池缶31の内形状に合わせて形成されたコア状の正
極合剤成形体1を嵌合装填し、さらにその合剤成形体1
の内側にセパレータ32および負極33を装填および充
填するとともに、アルカリ電解液を注入して発電要素3
4を形成した後、負極端子35、集電子36およびガス
ケット37などを組込んだ封口体38で上記電池缶31
の開口を密閉封止することにより構成される。正極合剤
成形体1には前述したものが使用されている。この成形
体1には電解液含浸前に有していた初期空隙体積以上の
電解液が含浸されている。これにより、この電池3は、
放電容量と高負荷放電性能が共に向上させられている。=== Battery === FIG. 2 shows an embodiment of an alkaline manganese battery using the above-described positive electrode mixture molded body 1. The battery 3 shown in FIG.
A core-shaped positive electrode mixture molded body 1 formed in accordance with the inner shape of the battery can 31 is fitted and loaded into a bottomed cylindrical metal battery can 31 also serving as a positive electrode terminal, and the mixture molding is further performed. Body 1
A separator 32 and a negative electrode 33 are loaded and filled inside the battery, and an alkaline electrolyte is injected into the power generating element 3.
After the formation of the battery can 31, the battery can 31 is closed with a sealing body 38 in which a negative electrode terminal 35, a current collector 36 and a gasket 37 are incorporated.
Is hermetically sealed. The above-described thing is used for the positive electrode mixture molded body 1. The molded body 1 is impregnated with an electrolytic solution having a volume equal to or greater than the initial void volume that the molded body 1 had before impregnation. Thereby, this battery 3
The discharge capacity and the high load discharge performance are both improved.
【0022】[0022]
【実施例】以下、本発明のさらに具体的な実施例を示
す。EXAMPLES Hereinafter, more specific examples of the present invention will be described.
【0023】(比較例1) ・合剤成形体(単三サイズ用)の作製 正極活物質としての電解二酸化マンガン90.5重量%
と、導電剤としての人造黒鉛4.5重量部と電解液(4
0%濃度の水酸化カリウム水溶液)5重量部を良く混合
し、これをロール間隙3mmのロール圧延機で線圧2.
5t/cmの圧力を加えながら圧延した後、解砕機で粉
砕して篩分けし、粒径を180〜1000μmに揃えた
合剤粒を作製した。この合剤粒を成形金型に入れて加圧
成形し、外径13.5mm、内径9.0mm、高さ1
3.4mmの貫通円筒状で密度3.2g/cm3の合剤
成形体をバインダー無添加で作製した。(Comparative Example 1) Preparation of mixture molded body (for AA size) 90.5% by weight of electrolytic manganese dioxide as positive electrode active material
And 4.5 parts by weight of artificial graphite as a conductive agent and electrolyte (4
5% by weight of a 0% aqueous solution of potassium hydroxide) was mixed well, and the mixture was subjected to a linear pressure of 2.
After rolling while applying a pressure of 5 t / cm, the mixture was pulverized with a crusher and sieved to prepare a mixture particle having a particle size of 180 to 1000 μm. The mixture particles are put into a molding die and pressure-molded, and the outer diameter is 13.5 mm, the inner diameter is 9.0 mm, and the height is 1 mm.
A mixture molded body having a penetration cylindrical shape of 3.4 mm and a density of 3.2 g / cm 3 was produced without adding a binder.
【0024】・アルカリマンガン電池(単三サイズ)の
作製 上記合剤成形体を、正極端子を兼ねる有底円筒状の金属
製電池缶内に3個重ねて嵌合装填する。装填後、装填作
業のために拡開されていた電池缶の開口をビーディング
加工で縮径する。次に、成形体の中空部にビニロン繊維
不織布からなる有底円筒状セパレータを挿入する。この
後、セパレータ中空部に40%濃度の水酸化カリウム水
溶液からなる電解液を注液する。ここで吸液時間を40
分とることで、0.54cc(0.75g)の電解液を
合剤成形体(セパレータ吸液分は除く)に吸液させるこ
とができた。この吸液の後、ゲル状負極合剤を5.8g
充填する。ゲル状負極合剤は、亜鉛合金粉末200重量
部、ゲル化剤としてのポリアクリル酸を1.3重量部、
ポリアクリル酸ナトリウムを0.7重量部、水58重量
部、酸化亜鉛0.7重量部、水酸化カリウム4.2重量
部からなる。この後、電池缶を封口体で密閉封止する。
封口体は、内側面に真鍮製の棒状集電子が溶接された負
極端子板と、この端子板と電池缶の間に介装される絶縁
性ガスケットなどをあらかじめ一体に組立てた集合部品
である。この封口体を電池缶開口部に嵌着した後、その
電池缶の開口部を内側にかしめ加工することによって、
電池缶内部を密閉封止する。このとき、負極端子の内側
に溶接された集電子はゲル状負極中に挿入される。Preparation of Alkaline Manganese Batteries (AA Size) Three of the above-mentioned mixture mixture bodies are fitted and loaded in a bottomed cylindrical metal battery can also serving as a positive electrode terminal. After loading, the opening of the battery can that has been expanded for the loading operation is reduced in diameter by beading. Next, a bottomed cylindrical separator made of vinylon fiber nonwoven fabric is inserted into the hollow portion of the molded body. Thereafter, an electrolyte composed of a 40% aqueous solution of potassium hydroxide is injected into the hollow portion of the separator. Here, the absorption time is 40
As a result, 0.54 cc (0.75 g) of the electrolyte solution could be absorbed by the mixture molding (excluding the separator absorption). After this liquid absorption, 5.8 g of a gelled negative electrode mixture was obtained.
Fill. The gelled negative electrode mixture was 200 parts by weight of zinc alloy powder, 1.3 parts by weight of polyacrylic acid as a gelling agent,
It comprises 0.7 parts by weight of sodium polyacrylate, 58 parts by weight of water, 0.7 parts by weight of zinc oxide, and 4.2 parts by weight of potassium hydroxide. Thereafter, the battery can is hermetically sealed with a sealing body.
The sealing body is a collective component in which a negative electrode terminal plate having a rod-shaped current collector made of brass welded to the inner surface thereof and an insulating gasket or the like interposed between the terminal plate and the battery can are integrally assembled in advance. After fitting this sealing body into the opening of the battery can, by caulking the opening of the battery can inward,
The inside of the battery can is hermetically sealed. At this time, the current collector welded inside the negative electrode terminal is inserted into the gelled negative electrode.
【0025】(実施例1) ・合剤成形体(単三サイズ用)の作製 比較例1と同様の正極活物質と黒鉛を使用し、同様の組
成の合剤を作製した。この合剤をロール間隙0.1mm
のロール圧延機で線圧6t/cmの圧力を加えるなどの
適当な条件を設定して、圧延を行った。ロール圧延され
た合剤は解砕機で粉砕して篩分けし、粒径を180〜1
000μmに揃えた合剤粒に造粒した。この圧延操作に
より、合剤粒は針状に解砕された。この合剤粒を金型に
入れて加圧成形し、比較例1と同じ外形状、サイズ、重
量および密度の合剤成形体をバインダー無添加で作製し
た。(Example 1) Preparation of mixture molded body (for AA size) Using the same cathode active material and graphite as in Comparative Example 1, a mixture having the same composition was prepared. The mixture is rolled with a roll gap of 0.1 mm
Rolling was performed by setting appropriate conditions such as applying a linear pressure of 6 t / cm with a roll rolling mill of No. The roll-rolled mixture is pulverized with a crusher and sieved to have a particle size of 180-1.
The mixture was granulated to a particle size of 000 μm. By this rolling operation, the mixture particles were broken into needles. The mixture granules were placed in a mold and press-molded to produce a mixture molded body having the same outer shape, size, weight and density as Comparative Example 1 without the addition of a binder.
【0026】・アルカリマンガン電池(単三サイズ)の
作製 上記合剤成形体を比較例1と同様に用いて電池を作製し
たが、この実施例では、吸液時間40分で0.67cc
(0.94g)の電解液を合剤成形体に吸液させること
ができた。Preparation of Alkaline Manganese Battery (AA Size) A battery was prepared using the above-mentioned mixture molded body in the same manner as in Comparative Example 1, but in this example, 0.67 cc was obtained with a liquid absorption time of 40 minutes.
(0.94 g) of the electrolyte solution could be absorbed by the mixture molding.
【0027】(比較例2)比較例1と同様の方法で、外
径9.75mm、内径6.4mm、高さ11.05m
m、重量1.54gの合剤成形体を作製し、これを用い
て単四サイズのアルカリマンガン電池を作製した。この
場合、合剤成形体への電解液の吸液量は0.21cc
(0.30g)であった。Comparative Example 2 An outer diameter of 9.75 mm, an inner diameter of 6.4 mm and a height of 11.05 m were obtained in the same manner as in Comparative Example 1.
m, a mixture molded body weighing 1.54 g was produced, and a AAA size alkaline manganese battery was produced using this. In this case, the amount of electrolyte absorbed into the mixture molded body was 0.21 cc.
(0.30 g).
【0028】(実施例2)実施例1と同様の操作を行っ
て作製した合剤粒を用いて、比較例2と同じ外形状、サ
イズ、重量および密度の合剤成形体を作製し、これを用
いて比較例2と同タイプの電池を作製した。この場合、
合剤成形体への電解液の吸液量は0.29cc(0.4
0g)であった。(Example 2) A mixture compact having the same outer shape, size, weight and density as in Comparative Example 2 was produced using the mixture granules produced by performing the same operation as in Example 1, and Was used to fabricate a battery of the same type as Comparative Example 2. in this case,
The amount of electrolyte absorbed into the mixture mixture was 0.29 cc (0.4
0 g).
【0029】(比較例3)比較例1と同様の方法で、外
径24.8mm、内径17mm、高さ18.5mm、重
量15.2gの合剤成形体を作製し、これを2個重ねで
用いて単二サイズのアルカリマンガン電池を作製した。
この場合、合剤成形体への電解液の吸液量は1.84c
c(2.57g)であった。(Comparative Example 3) In the same manner as in Comparative Example 1, a mixture molded body having an outer diameter of 24.8 mm, an inner diameter of 17 mm, a height of 18.5 mm and a weight of 15.2 g was produced, and two of them were stacked. A single-size alkaline manganese battery was fabricated using
In this case, the liquid absorption of the electrolytic solution into the mixture molding is 1.84 c.
c (2.57 g).
【0030】(実施例3)実施例1と同様の操作を行っ
て作製した合剤粒を用いて、比較例3と同じ外形状、サ
イズ、重量および密度の合剤成形体を作製し、これを比
較例3と同じく2個重ねで用いて同タイプの電池を作製
した。この場合、合剤成形体への電解液の吸液量は2.
16cc(3.02g)であった。(Example 3) Using the mixture particles produced by performing the same operation as in Example 1, a mixture molded body having the same outer shape, size, weight and density as Comparative Example 3 was produced. Was used in the same manner as in Comparative Example 3 to form a battery of the same type. In this case, the amount of electrolyte absorbed into the mixture molded body is 2.
It was 16 cc (3.02 g).
【0031】(比較例4)比較例1と同様の方法で、外
径32.2mm、内径21.7mm、高さ18.5m
m、重量32.0gの合剤成形体を作製し、これを2個
重ねで用いて単一サイズのアルカリマンガン電池を作製
した。この場合、合剤成形体への電解液の吸液量は4.
14cc(5.79g)であった。Comparative Example 4 In the same manner as in Comparative Example 1, the outer diameter was 32.2 mm, the inner diameter was 21.7 mm, and the height was 18.5 m.
m, a mixture molded body having a weight of 32.0 g was prepared, and two of them were used to form a single-sized alkaline manganese battery. In this case, the amount of electrolyte absorbed into the mixture molded body is 4.
It was 14 cc (5.79 g).
【0032】(実施例4)実施例1と同様の操作を行っ
て作製した合剤粒を用いて、比較例4と同じ外形状、サ
イズ、重量および密度の合剤成形体を作製し、これを比
較例4と同じく2個重ねで用いて同タイプの電池を作製
した。この場合、合剤成形体への電解液の吸液量は5.
28cc(7.38g)であった。Example 4 Using the mixture particles produced by performing the same operation as in Example 1, a mixture molded body having the same outer shape, size, weight and density as in Comparative Example 4 was produced. Was used in the same manner as in Comparative Example 4 to form a battery of the same type. In this case, the amount of electrolyte solution absorbed into the mixture molded body is 5.
It was 28 cc (7.38 g).
【0033】上記比較例1〜4と実施例1〜4にてそれ
ぞれ作製した合剤成形体と電池の特性を表1に示す。Table 1 shows the characteristics of the mixture molded articles and the batteries produced in Comparative Examples 1 to 4 and Examples 1 to 4, respectively.
【0034】[0034]
【表1】 [Table 1]
【0035】表1からあきらかなように、比較例1〜4
に対して、実施例1〜4ではそれぞれ、合剤成形体の成
形密度および成形強度が大幅に高められ、これに応じて
電解液の吸液量も大幅に増加している。とくに電解液に
ついては、いずれも、初期空隙体積以上の量が吸液され
ている。また、各々の単一から単四サイズでの高負荷放
電特性が向上している。As apparent from Table 1, Comparative Examples 1 to 4
On the other hand, in each of Examples 1 to 4, the molding density and molding strength of the mixture molded body were significantly increased, and the amount of electrolyte absorbed also increased significantly. In particular, in all cases, the electrolyte solution is absorbed in an amount equal to or larger than the initial void volume. In addition, the high-load discharge characteristics in each of the single to single size are improved.
【0036】また、上記実施例1〜4などの結果から、
バインダー無添加で加圧成形して得られる合剤成形体の
強度(成形体の高さ当たりの強度)は、単一サイズのア
ルカリマンガン電池に使用される合剤成形体では8.3
N/cm以上、単二サイズのアルカリマンガン電池に使
用される合剤成形体では、5.8N/cm以上、単三サ
イズのアルカリマンガン電池に使用される合剤成形体で
は4.8N/cm以上、単四サイズのアルカリマンガン
電池に使用される合剤成形体では4.6N/cm以上が
それぞれ、合剤成形体の高密度化と電解液吸液量の増加
による放電性能の向上にとくに有効であることが判明し
た。Also, from the results of the above Examples 1-4,
The strength (strength per height of the molded article) of the mixture molded article obtained by pressure molding without the addition of a binder is 8.3 for the mixture molded article used for a single-size alkaline manganese battery.
N / cm or more, for a mixture molded body used for a C-size alkaline manganese battery, 5.8 N / cm or more, for a mixture molded body used for an AA size alkaline manganese battery, 4.8 N / cm. As described above, in the case of a mixture molded body used for a AAA-size alkaline manganese battery, the ratio of 4.6 N / cm or more is particularly effective for improving the discharge performance by increasing the density of the mixture molded body and increasing the amount of electrolyte absorption. It turned out to be effective.
【0037】次に、合剤成形体について、さらに具体的
な実施例を示す。Next, more specific examples of the mixture molded body will be described.
【0038】(実施例5)比較例1と同様の合剤を使用
し、ロール圧延機の条件(ロール線圧、回転数など)を
A、Bでは比較例1と同様な種々の条件で圧延を行い、
C、Dでは実施例1と同様な種々の条件で圧延を行っ
た。これを粉砕・篩分け(180〜1000μm)し
て、以下の4種類(A〜D)の合剤粒を作製した。Example 5 The same mixture as in Comparative Example 1 was used, and the conditions (roll linear pressure, rotation speed, etc.) of the roll rolling mill were changed to A and B under various conditions similar to Comparative Example 1. Do
In C and D, rolling was performed under various conditions similar to those in Example 1. This was pulverized and sieved (180 to 1000 μm) to produce the following four types (A to D) of mixture granules.
【0039】 A:長径と短径の比が2以上の異径合剤粒の比率 5重量% B: 同 12重量% C: 同 20重量% D: 同 31重量%A: Ratio of different-diameter mixture granules having a ratio of major axis to minor axis of 2 or more 5% by weight B: 12% by weight C: 20% by weight D: 31% by weight
【0040】各合剤粒(A〜D)ごとにそれぞれ、成形
密度3.2g/cm3、外径13.5mm、内径9m
m、高さ13.4mmの貫通円筒状合剤成形体を作製
し、これを3個重ねで用いて単三サイズのアルカリマン
ガン電池を作製した。電池の作製に際しては、40%濃
度の水酸化カリウムからなるアルカリ電解液を使用し
た。また、ゲル状負極は電池ごとに6g充填した。A molding density of 3.2 g / cm 3 , an outer diameter of 13.5 mm, and an inner diameter of 9 m were obtained for each of the mixture particles (A to D).
m and a height of 13.4 mm, a through-cylindrical mixture compact was produced, and three AA-size alkaline manganese batteries were produced. In producing the battery, an alkaline electrolyte composed of 40% concentration of potassium hydroxide was used. In addition, 6 g of the gelled negative electrode was filled for each battery.
【0041】各合剤粒(A〜D)ごとに作製された合剤
成形体と電池の特性をそれぞれ調べたところ、表2のよ
うな結果が得られた。When the characteristics of the composite compact and the battery prepared for each of the composite particles (A to D) were examined, the results shown in Table 2 were obtained.
【0042】[0042]
【表2】 [Table 2]
【0043】表2において、成形強度は、合剤成形体の
径方向破壊強度である。電解液吸液量は、電池1個分の
合剤成形体が吸液する電解液量である。電池作製時に
は、その吸液量にセパレータの吸液量を加えた量を注液
した。表2からもあきらかなように、長径と短径の比が
2以上の異径合剤粒を20重量%以上含ませることによ
り、合剤成形体の成形強度と電解液吸液量を格段に増大
させることができ、これにより、放電性能も大幅に向上
させることができる。In Table 2, the molding strength is the radial breaking strength of the mixture molding. The amount of electrolyte absorbed is the amount of electrolyte absorbed by the mixture molded body for one battery. During the production of the battery, an amount obtained by adding the liquid absorption amount of the separator to the liquid absorption amount was injected. As is clear from Table 2, by including 20% by weight or more of different-diameter mixture particles having a ratio of the major axis to the minor axis of 2 or more, the molding strength of the molded mixture and the amount of electrolyte absorbed are remarkably improved. The discharge performance can be greatly improved.
【0044】(実施例6)比較例1と同様の合剤を使用
し、ロール圧延機の条件(ロール線圧、回転数など)を
E、Fでは比較例1と同様な種々の条件で圧延を行い、
G、Hでは実施例1と同様な種々の条件で圧延を行っ
た。これを粉砕・篩分け(180〜1000μm)し
て、空気透過法により測定される平均粒子径によって分
別される以下の4種類(E〜H)の合剤粒を作製した。(Example 6) The same mixture as in Comparative Example 1 was used, and the conditions (roll linear pressure, rotation speed, etc.) of the roll rolling mill were changed to E and F under various conditions similar to Comparative Example 1. Do
In G and H, rolling was performed under various conditions similar to those in Example 1. This was pulverized and sieved (180 to 1000 μm) to produce the following four (E to H) mixture granules separated by an average particle diameter measured by an air permeation method.
【0045】 E:空気透過法による換算平均粒子径 1.89μm F: 同 1.72μm G: 同 1.50μm H: 同 1.22μmE: reduced average particle size by air permeation method 1.89 μm F: 1.72 μm G: 1.50 μm H: 1.22 μm
【0046】この平均粒子径は、恒圧空気透過法に基づ
く粉体比表面積測定装置(島津製作所製:SS−10
0)を用い、水面圧力差157gf/cm2の条件で2
cm2の空気が試料を透過する時間を測定した。測定に
際しては、合剤粒(E〜H)ごとに、直径14mm、厚
さ約4mmの試料層を作成した。この測定結果から、次
の式1(Kozeny-Carmanの式)を用いて換算平均粒子径
dを算出した。式1に示すように、この換算平均粒子径
dは、試料の比表面積と試料密度の積に逆比例する。し
たがって、換算平均粒子径dが小さいものほど、高密度
あるいは構造が緻密であると見ることができる。The average particle diameter is measured by a powder specific surface area measuring device (SS-10 manufactured by Shimadzu Corporation) based on a constant pressure air permeation method.
0) using a 2 in the conditions of water pressure differential 157gf / cm 2
The time for cm 2 of air to pass through the sample was measured. At the time of measurement, a sample layer having a diameter of 14 mm and a thickness of about 4 mm was prepared for each mixture particle (E to H). From this measurement result, the converted average particle diameter d was calculated using the following equation 1 (Kozeny-Carman equation). As shown in Equation 1, the reduced average particle diameter d is inversely proportional to the product of the specific surface area of the sample and the sample density. Therefore, it can be seen that the smaller the reduced average particle diameter d, the higher the density or the denser the structure.
【0047】[0047]
【数1】 (Equation 1)
【0048】この測定方法では、試料層の密度が大きく
なると換算平均粒子径の値は小さくなる傾向にある。し
かし、試料層の密度をさらに高めると逆に換算平均粒子
径の値は大きくなる。これは、試料層に大きな亀裂が生
じたためと考えられる。したがって、この実施例の試験
では、試料層密度を高めていって換算平均粒子径が最小
となった値を採用した。つまり、亀裂が生じる直前の換
算平均粒子径の値を採用した。In this measuring method, the value of the reduced average particle size tends to decrease as the density of the sample layer increases. However, when the density of the sample layer is further increased, the value of the reduced average particle diameter increases. This is probably because a large crack was generated in the sample layer. Therefore, in the test of this example, the value at which the sample layer density was increased and the reduced average particle diameter was minimized was adopted. That is, the value of the reduced average particle diameter immediately before the occurrence of a crack was adopted.
【0049】各合剤粒(E〜H)ごとにそれぞれ、成形
密度3.2g/cm3、外径13.5mm、内径9m
m、高さ13.4mmの貫通円筒状合剤成形体を作製
し、これを3個重ねで用いて単三サイズのアルカリマン
ガン電池を作製した。電池の作製に際しては、40%濃
度の水酸化カリウムからなるアルカリ電解液を使用し
た。また、ゲル状負極は電池ごとに6g充填した。Each of the mixture particles (E to H) has a molding density of 3.2 g / cm 3 , an outer diameter of 13.5 mm, and an inner diameter of 9 m.
m and a height of 13.4 mm, a through-cylindrical mixture compact was produced, and three AA-size alkaline manganese batteries were produced. In producing the battery, an alkaline electrolyte composed of 40% concentration of potassium hydroxide was used. In addition, 6 g of the gelled negative electrode was filled for each battery.
【0050】各合剤粒(E〜H)ごとに作製された合剤
成形体と電池の特性をそれぞれ調べたところ、表3のよ
うな結果が得られた。When the characteristics of the mixture compact and the battery prepared for each mixture particle (E to H) were examined, the results shown in Table 3 were obtained.
【0051】[0051]
【表3】 [Table 3]
【0052】表3において、成形強度は、合剤成形体の
径方向破壊強度である。電解液吸液量は、電池1個分の
合剤成形体が吸液する電解液量である。電池作製時に
は、その吸液量にセパレータの吸液量を加えた量を注液
した。表3からもあきらかなように、本発明の合剤粒G
とHは、他の合剤粒EとFに比べて、合剤成形体の成形
強度、電解液吸液量、放電性能をそれぞれ大幅に向上さ
せている。これにより、上記換算平均粒子径dは1.5
μm以下とすることが、本発明の効果を高める上で、と
くに有効であることが判明した。In Table 3, the molding strength is the radial breaking strength of the mixture mixture. The amount of electrolyte absorbed is the amount of electrolyte absorbed by the mixture molded body for one battery. During the production of the battery, an amount obtained by adding the liquid absorption amount of the separator to the liquid absorption amount was injected. As is clear from Table 3, the mixture granules G of the present invention
And H significantly improve the molding strength, electrolyte absorption, and discharge performance of the mixture molded product, respectively, as compared with the other mixture particles E and F. Thereby, the reduced average particle diameter d is 1.5
It has been found that setting the thickness to μm or less is particularly effective in enhancing the effects of the present invention.
【0053】(実施例7)比較例1と同様の合剤を使用
し、ロール圧延機の条件(ロール線圧、回転数など)を
I、Jでは比較例1と同様な種々の条件で圧延を行い、
K、Lでは実施例1と同様な種々の条件で圧延を行っ
た。これを粉砕・篩分け(180〜1000μm)し
て、材料のBET比表面積とその配合比から求められる
理論比表面積に対するBET比表面積の比(%)によっ
て分別される以下の4種類(I〜L)の合剤粒を作製し
た。(Example 7) Using the same mixture as in Comparative Example 1, the conditions (roll linear pressure, number of rotations, etc.) of the roll mill were changed under I and J under various conditions similar to Comparative Example 1. Do
For K and L, rolling was performed under various conditions similar to those in Example 1. This is pulverized and sieved (180 to 1000 μm), and the following four types (I to L) which are separated based on the BET specific surface area of the material and the ratio (%) of the BET specific surface area to the theoretical specific surface area obtained from the compounding ratio thereof ) Was prepared.
【0054】 BET比表面積 理論比表面積に対する比 I:34m2/g 99% J:30m2/g 94% K:25m2/g 85% L:25m2/g 65% ただし、二酸化マンガンのBET比表面積を31m2/
g、黒鉛のBET比表面積を21m2/gとし、合剤の
理論比表面積は29m2/gとした。BET specific surface area Ratio to theoretical specific surface area I: 34 m 2 / g 99% J: 30 m 2 / g 94% K: 25 m 2 / g 85% L: 25 m 2 / g 65% However, BET ratio of manganese dioxide 31m 2 /
g, the BET specific surface area of graphite was 21 m 2 / g, and the theoretical specific surface area of the mixture was 29 m 2 / g.
【0055】各合剤粒(I〜L)ごとにそれぞれ、成形
密度3.2g/cm3、外径13.5mm、内径9m
m、高さ13.4mmの貫通円筒状合剤成形体を作製
し、これを3個重ねで用いて単三サイズのアルカリマン
ガン電池を作製した。電池の作製に際しては、40%濃
度の水酸化カリウムからなるアルカリ電解液を使用し
た。また、ゲル状負極は電池ごとに6g充填した。A molding density of 3.2 g / cm 3 , an outer diameter of 13.5 mm and an inner diameter of 9 m were obtained for each of the mixture particles (I to L).
m and a height of 13.4 mm, a through-cylindrical mixture compact was produced, and three AA-size alkaline manganese batteries were produced. In producing the battery, an alkaline electrolyte composed of 40% concentration of potassium hydroxide was used. In addition, 6 g of the gelled negative electrode was filled for each battery.
【0056】各合剤粒(I〜L)ごとに作製された合剤
成形体と電池の特性をそれぞれ調べたところ、表4のよ
うな結果が得られた。When the characteristics of the mixture compact and the battery prepared for each mixture particle (I to L) were examined, the results shown in Table 4 were obtained.
【0057】[0057]
【表4】 [Table 4]
【0058】表4において、成形強度は、合剤成形体の
径方向破壊強度である。電解液吸液量は、電池1個分の
合剤成形体が吸液する電解液量である。電池作製時に
は、その吸液量にセパレータの吸液量を加えた量を注液
した。表4からもあきらかなように、本発明の合剤粒K
およびLは、他の合剤粒I〜Jに比べて、合剤成形体の
成形強度、電解液吸液量、放電性能をそれぞれ大幅に向
上させている。これにより、上記理論比表面積に対する
BET比表面積の比(%)が85%以下とすることが、
本発明の効果をさらに高める上で、とくに有効であるこ
とが判明した。In Table 4, the molding strength is the radial breaking strength of the mixture molding. The amount of electrolyte absorbed is the amount of electrolyte absorbed by the mixture molded body for one battery. During the production of the battery, an amount obtained by adding the liquid absorption amount of the separator to the liquid absorption amount was injected. As is apparent from Table 4, the mixture granules K of the present invention were obtained.
And L significantly improve the molding strength, electrolyte absorption, and discharge performance of the mixture molded product, respectively, as compared with the other mixture particles I to J. Thereby, the ratio (%) of the BET specific surface area to the theoretical specific surface area is set to 85% or less,
In order to further enhance the effect of the present invention, it has been found to be particularly effective.
【0059】以上、本発明をその代表的な実施態様に基
づいて説明してきたが、本発明は上述した以外にも種々
の態様が可能である。たとえば、二酸化マンガン以外の
正極活物質、あるいは黒鉛以外の導電剤を使用した正極
合剤成形体および電池にも本発明は適用可能である。ま
た、アルカリ電解液以外の電解液、例えば非水系電解液
を用いる電池にも適用可能である。As described above, the present invention has been described based on the typical embodiments. However, the present invention can have various aspects other than the above. For example, the present invention is applicable to a positive electrode mixture molded article and a battery using a positive electrode active material other than manganese dioxide or a conductive agent other than graphite. Further, the present invention can be applied to a battery using an electrolyte other than the alkaline electrolyte, for example, a non-aqueous electrolyte.
【0060】[0060]
【発明の効果】以上説明したように、本発明の正極合剤
成形体によれば、正極活物質と含浸電解液を共に増量さ
せることを可能にし、これにより、放電容量と高負荷放
電性能を両立して向上させることができる。また、成形
強度を高めて電池組立作業性を向上させることができ
る。As described above, according to the positive electrode mixture molded article of the present invention, it is possible to increase both the positive electrode active material and the impregnated electrolyte, thereby improving the discharge capacity and high load discharge performance. Both can be improved. Further, the molding strength can be increased to improve the battery assembly workability.
【0061】また、本発明の電池によれば、正極合剤成
形体に初期空隙体積以上の電解液を含浸させたことによ
り、放電容量と高負荷放電特性を共に向上させることが
できる。According to the battery of the present invention, both the discharge capacity and the high-load discharge characteristics can be improved by impregnating the positive electrode mixture molded body with the electrolytic solution having a volume not smaller than the initial void volume.
【図1】この発明による正極合剤成形体の実施態様を示
す断面図である。FIG. 1 is a sectional view showing an embodiment of a molded article of a positive electrode mixture according to the present invention.
【図2】この発明による電池の全体構成を示す断面図で
ある。FIG. 2 is a cross-sectional view showing the overall configuration of a battery according to the present invention.
1 合剤成形体 2 合剤粒 3 電池 31 金属製電池缶 32 セパレータ 33 負極 34 発電要素 35 負極端子 36 集電子 37 ガスケット 38 封口体 REFERENCE SIGNS LIST 1 mixture molded article 2 mixture particles 3 battery 31 metal battery can 32 separator 33 negative electrode 34 power generation element 35 negative electrode terminal 36 current collector 37 gasket 38 sealing body
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 6/16 H01M 6/16 B (72)発明者 松井 一雄 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 (72)発明者 中村 光宏 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 Fターム(参考) 5H024 AA03 AA14 CC02 DD18 EE03 FF07 FF11 FF31 5H050 AA02 AA08 BA04 BA06 CA02 CB13 DA02 DA09 DA10 DA17 DA19 EA09 EA23 FA07 FA17 HA01 HA05 HA07 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 6/16 H01M 6/16 B (72) Inventor Kazuo Matsui 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. (72) Inventor Mitsuhiro Nakamura 5-36-11 Shimbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd. F-term (reference) 5H024 AA03 AA14 CC02 DD18 EE03 FF07 FF11 FF31 5H050 AA02 AA08 BA04 BA06 CA02 CB13 DA02 DA09 DA10 DA17 DA19 EA09 EA23 FA07 FA17 HA01 HA05 HA07
Claims (18)
電解液を吸液含浸するための微細空隙構造を有する正極
合剤成形体において、上記主成分を有しかつ上記微細空
隙構造を有する合剤粒が所定形状に固結されて上記成形
体が形成されているとともに、上記電解液の含浸に対し
て上記合剤粒が合剤粒間よりも高強度に形成されている
ことを特徴とする正極合剤成形体。1. A positive electrode mixture molded body comprising an electrode active material and a conductive agent as main components and having a fine void structure for absorbing and impregnating an electrolytic solution, comprising: The mixture particles having the mixture particles are consolidated into a predetermined shape to form the compact, and the mixture particles are formed to have a higher strength than between the mixture particles with respect to the impregnation of the electrolytic solution. A molded positive electrode material mixture.
て、前記正極活物質が二酸化マンガンであることを特徴
とする。2. The molded positive electrode mixture according to claim 1, wherein the positive electrode active material is manganese dioxide.
体において、前記導電剤が黒鉛であることを特徴とす
る。3. The positive electrode mixture molded product according to claim 1, wherein the conductive agent is graphite.
合剤成形体において、前記電解液の含浸による微小亀裂
が前記合剤粒間において優先的に生じるように前記合剤
粒を形成したことを特徴とする。4. The positive electrode mixture molded product according to claim 1, wherein the mixture particles are formed such that microcracks due to the impregnation of the electrolytic solution are preferentially generated between the mixture particles. It is characterized by having done.
合剤成形体において、前記合剤粒間の微細空隙がその合
剤粒内の微細空隙よりも多いことを特徴とする。5. The molded positive electrode mixture according to claim 1, wherein the number of fine voids between the mixture particles is larger than the number of fine voids in the mixture particles.
合剤成形体において、前記合剤粒内の密度がその合剤粒
間の密度よりも高いことを特徴とする。6. The positive electrode mixture molded product according to claim 1, wherein a density in the mixture particles is higher than a density between the mixture particles.
合剤成形体において、前記合剤粒は、長径と短径の比が
2以上の異径合剤粒を20重量%以上含むことを特徴と
する。7. The positive electrode mixture molded product according to claim 1, wherein the mixture particles include at least 20% by weight of different-diameter mixture particles having a ratio of a major axis to a minor axis of 2 or more. It is characterized by the following.
合剤成形体において、前記合剤粒は、空気透過法により
測定される換算平均粒子径が1.5μm以下であること
を特徴とする。8. The molded positive electrode mixture according to claim 1, wherein the average particle diameter of the mixture particles measured by an air permeation method is 1.5 μm or less. And
合剤成形体において、前記合剤粒は、材料のBET比表
面積とその配合比から求められる理論比表面積に対する
BET比表面積の比が85%以下であることを特徴とす
る。9. The positive electrode mixture molded product according to claim 1, wherein the mixture particles have a ratio of a BET specific surface area to a theoretical specific surface area obtained from a BET specific surface area of a material and a compounding ratio thereof. Is 85% or less.
れかに記載の正極合剤成形体を使用するとともに、その
成形体が電解液含浸前に有していた初期空隙体積以上の
電解液を含浸できることを特徴とする電池。10. A positive electrode active material comprising the positive electrode mixture molded article according to claim 1 or more, and an electrolytic solution having a volume equal to or greater than an initial void volume of the molded article before impregnation with the electrolytic solution. A battery characterized in that it can be impregnated.
閉封止された電池缶内にて、この電池缶の内形状に合わ
せて形成された前記正極合剤成形体が嵌合装填されて、
セパレータ、負極および電解液と共に発電要素を形成し
ていることを特徴とする。11. The battery according to claim 10, wherein the positive electrode mixture molded body formed in accordance with the inner shape of the battery can is fitted and loaded in a hermetically sealed battery can,
A power generating element is formed together with the separator, the negative electrode, and the electrolyte.
閉封止された電池缶内にて、この電池缶の内形状に合わ
せて、前記正極合剤成形体が缶内成形により形成されて
おり、セパレータ、負極および電解液と共に発電要素を
形成していることを特徴とする。12. The battery according to claim 10, wherein the positive electrode mixture molded body is formed in a hermetically sealed battery can according to the internal shape of the battery can by in-can molding. , A separator, a negative electrode, and an electrolytic solution to form a power generating element.
の電池において、前記電解液がアルカリ電解液であるこ
とを特徴とする。13. The battery according to claim 10, wherein the electrolytic solution is an alkaline electrolytic solution.
の電池において、前記電解液が非水系電解液であること
を特徴とする。14. The battery according to claim 10, wherein the electrolyte is a non-aqueous electrolyte.
の電池において、合剤成形体の単位高さ当たりの強度と
して8.3N/cm以上の強度を付与された前記正極合
剤成形体を使用して単一サイズの電池を構成したことを
特徴とする。15. The battery according to any one of claims 10 to 14, wherein the positive electrode mixture molded article having a strength per unit height of 8.3 N / cm or more is provided. It is characterized in that it is used to form a single size battery.
の電池において、合剤成形体の単位高さ当たりの強度と
して5.8N/cm以上の強度を付与された前記正極合
剤成形体を使用して単二サイズの電池を構成したことを
特徴とする。16. The battery according to claim 10, wherein the positive electrode mixture molded article having a strength per unit height of 5.8 N / cm or more is provided. It is characterized in that it is used to form a C-size battery.
の電池において、合剤成形体の単位高さ当たりの強度と
して4.8N/cm以上の強度を付与された前記正極合
剤成形体を使用して単三サイズの電池を構成したことを
特徴とする。17. The battery according to claim 10, wherein the positive electrode mixture molded article having a strength per unit height of 4.8 N / cm or more is provided. It is characterized by using it to form an AA size battery.
の電池において、合剤成形体の単位高さ当たりの強度と
して4.6N/cm以上の強度を付与された前記正極合
剤成形体を使用して単四サイズの電池を構成したことを
特徴とする。18. The battery according to any one of claims 10 to 14, wherein the positive electrode mixture molded article having a strength per unit height of 4.6 N / cm or more is provided. It is characterized in that it is used to form a AAA battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000264212A JP4739493B2 (en) | 2000-08-31 | 2000-08-31 | Positive electrode mixture molded body and battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000264212A JP4739493B2 (en) | 2000-08-31 | 2000-08-31 | Positive electrode mixture molded body and battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002075338A true JP2002075338A (en) | 2002-03-15 |
JP4739493B2 JP4739493B2 (en) | 2011-08-03 |
Family
ID=18751660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000264212A Expired - Lifetime JP4739493B2 (en) | 2000-08-31 | 2000-08-31 | Positive electrode mixture molded body and battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4739493B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2113956A1 (en) * | 2008-04-25 | 2009-11-04 | Panasonic Corporation | Alkaline Battery |
WO2011001603A1 (en) | 2009-06-29 | 2011-01-06 | パナソニック株式会社 | Alkali dry cell |
US8206851B2 (en) | 2008-04-18 | 2012-06-26 | Panasonic Corporation | AA alkaline battery and AAA alkaline battery |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5259818A (en) * | 1975-11-12 | 1977-05-17 | Fuji Electrochemical Co Ltd | Method of forming laminated positive plate for alkaline battery |
JPS5549863A (en) * | 1978-10-03 | 1980-04-10 | Hitachi Maxell Ltd | Manufacturing method for alkaline manganese battery |
JPH02210757A (en) * | 1989-02-09 | 1990-08-22 | Fuji Elelctrochem Co Ltd | Lithium battery |
JPH10228899A (en) * | 1997-02-14 | 1998-08-25 | Fuji Elelctrochem Co Ltd | Electrode electrode mix for alkaline battery |
JPH11329419A (en) * | 1998-05-14 | 1999-11-30 | Toshiba Battery Co Ltd | Positive electrode mixture for alkaline battery |
JP2000106176A (en) * | 1998-07-28 | 2000-04-11 | Fuji Elelctrochem Co Ltd | Manufacture of positive electrode mix for battery, and the positive electrode mix for battery and alkali- manganese battery |
JP2000195512A (en) * | 1998-12-25 | 2000-07-14 | Mitsubishi Materials Corp | Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof |
-
2000
- 2000-08-31 JP JP2000264212A patent/JP4739493B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5259818A (en) * | 1975-11-12 | 1977-05-17 | Fuji Electrochemical Co Ltd | Method of forming laminated positive plate for alkaline battery |
JPS5549863A (en) * | 1978-10-03 | 1980-04-10 | Hitachi Maxell Ltd | Manufacturing method for alkaline manganese battery |
JPH02210757A (en) * | 1989-02-09 | 1990-08-22 | Fuji Elelctrochem Co Ltd | Lithium battery |
JPH10228899A (en) * | 1997-02-14 | 1998-08-25 | Fuji Elelctrochem Co Ltd | Electrode electrode mix for alkaline battery |
JPH11329419A (en) * | 1998-05-14 | 1999-11-30 | Toshiba Battery Co Ltd | Positive electrode mixture for alkaline battery |
JP2000106176A (en) * | 1998-07-28 | 2000-04-11 | Fuji Elelctrochem Co Ltd | Manufacture of positive electrode mix for battery, and the positive electrode mix for battery and alkali- manganese battery |
JP2000195512A (en) * | 1998-12-25 | 2000-07-14 | Mitsubishi Materials Corp | Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8206851B2 (en) | 2008-04-18 | 2012-06-26 | Panasonic Corporation | AA alkaline battery and AAA alkaline battery |
EP2113956A1 (en) * | 2008-04-25 | 2009-11-04 | Panasonic Corporation | Alkaline Battery |
WO2011001603A1 (en) | 2009-06-29 | 2011-01-06 | パナソニック株式会社 | Alkali dry cell |
Also Published As
Publication number | Publication date |
---|---|
JP4739493B2 (en) | 2011-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100194186B1 (en) | Manganese dioxide cathode for rechargeable battery and battery containing same | |
JP5361712B2 (en) | New silver positive electrode for alkaline storage batteries | |
US11094935B2 (en) | Zinc electrode for use in rechargeable batteries | |
US3271195A (en) | Electrodes and methods of making same | |
US3427203A (en) | Large surface area electrodes and a method for preparing them | |
US20060194106A1 (en) | Negative electrode plate for nickel-metal hydride storage battery, method for producing the same and nickel-metal hydride storage battery using the same | |
US4783384A (en) | Electrochemical cell | |
US3671319A (en) | Battery electrode and battery embodying same | |
US8206851B2 (en) | AA alkaline battery and AAA alkaline battery | |
JP2002075338A (en) | Positive electrode mix compact and battery | |
EP1408567A1 (en) | Alkaline dry battery | |
JP3192105B2 (en) | Positive electrode mixture for alkaline batteries | |
JP3114402B2 (en) | Manufacturing method of alkaline storage battery | |
JP2003151539A (en) | Alkaline dry cell | |
JP3156485B2 (en) | Nickel electrode for alkaline storage battery | |
JP2000306575A (en) | Alkaline dry battery and manufacture of positive electrode mixture thereof | |
JP2000285922A (en) | Alkaline storage battery, and manufacture of its electrode | |
JP3186071B2 (en) | Method for producing electrode plate for lead-acid battery and aggregated particles | |
WO2011001603A1 (en) | Alkali dry cell | |
JP2001068121A (en) | Cylindrical alkaline battery | |
JP2008098164A (en) | Alkaline battery | |
JP2004179044A (en) | Anode activator for alkaline primary cell and alkaline primary cell using it | |
KR100477718B1 (en) | Hydrogen storage alloy for nickel hydrogen battery | |
JP2006092892A (en) | Alkaline battery | |
JP2708088B2 (en) | Nickel electrode for battery, method for producing the same, and alkaline storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040917 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070201 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100525 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100721 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101019 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101124 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110405 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4739493 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140513 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |