JP2004179044A - Anode activator for alkaline primary cell and alkaline primary cell using it - Google Patents

Anode activator for alkaline primary cell and alkaline primary cell using it Download PDF

Info

Publication number
JP2004179044A
JP2004179044A JP2002345379A JP2002345379A JP2004179044A JP 2004179044 A JP2004179044 A JP 2004179044A JP 2002345379 A JP2002345379 A JP 2002345379A JP 2002345379 A JP2002345379 A JP 2002345379A JP 2004179044 A JP2004179044 A JP 2004179044A
Authority
JP
Japan
Prior art keywords
zinc powder
alkaline primary
particle size
active material
primary cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002345379A
Other languages
Japanese (ja)
Inventor
Jun Sato
佐藤  淳
Hiromi Tamakoshi
博美 玉腰
Hisanori Sugawara
久典 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002345379A priority Critical patent/JP2004179044A/en
Publication of JP2004179044A publication Critical patent/JP2004179044A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anode activator for an alkaline primary cell made of zinc powder which has fine liquidity when turned into a paste, capable of securing excellent productivity by restraining troubles such as injection failure, contributing to the improvement of large-current discharge characteristics of a cell with a large reaction area, and an alkaline primary cell using the same. <P>SOLUTION: A specific surface area of zinc powder measured by a specific surface area measuring method such as BET method is 0.06 m<SP>2</SP>/g or more. If the value falls below 0.06m<SP>2</SP>/g, a reaction area of the active material is too small to improve the large-current discharge characteristics of the cell. If an average particle size of the zinc powder falls below 80 μm, liquidity when turned into the paste is degraded, it tends to generate troubles such as injection failure, and makes it hard to secure the productivity. If it exceeds 140 μm, the dispersibility of zinc particles is degraded which tends to give rise to solid-liquid separation. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、亜鉛粉末からなるアルカリ一次電池用負極活物質およびそれを用いたアルカリ一次電池に関する。
【0002】
【従来の技術】
水素吸蔵合金を負極活物質とするアルカリ二次電池の従来例に、特許文献1や特許文献2がある。特許文献1では、平均粒径が32μm、粒度分布幅が2〜150μmの多孔質粉を負極活物質としてペースト式電極を作製している。特許文献2では、平均粒径が7μm、粒度分布幅が1〜30μmの微粉末を負極活物質として、円柱状の電極を形成している。これら特許文献1および2のごとく、粒径の小さな微粉末を用いると、活物質の反応面積が増大するため、電池の大電流放電特性の向上を図ることができる。
【0003】
【特許文献1】
特開2000−21396号公報(段落番号0019)
【特許文献2】
特開2000−17302号公報(段落番号0016)
【0004】
【発明が解決しようとする課題】
本発明者等は、亜鉛粉末からなるアルカリ一次電池用の負極活物質の開発にたずさわっている。そこで特許文献1や特許文献2のごとく、粒径の小さな、いわゆる微粒亜鉛を活物質とする電池の作製を試みた。しかし、この種の微粒亜鉛を用いた亜鉛ペーストは流動性に乏しく、生産ラインにおけるペースト注入工程において注入不良などのトラブルを引き起こしやすく、良好な生産性を確保できないことがわかった。
【0005】
本発明は、以上のような問題点を解決するためになされたものであり、ペースト化した際に良好な流動性を発揮し、以て注入不良などのトラブルを抑えて良好な生産性を確保できるとともに、反応面積が大きく、電池の大電流放電特性の向上に寄与し得る亜鉛粉末からなるアルカリ一次電池用の負極活物質、およびこれを用いたアルカリ一次電池を得るにある。
【0006】
【課題を解決するための手段】
本発明は、亜鉛粉末からなるアルカリ一次電池用の負極活物質を対象とする。そして、当該亜鉛粉末が、比表面積0.06m /g以上、平均粒径80μm以上140μm以下の範囲にあることを特徴とする。比表面積は、BET法等により得られた値である。平均粒径は、マイクロトラックにより得られた値である。
【0007】
かかる亜鉛粉末は、平均粒径5μm〜30μmの極めて微細な亜鉛粉末を金型に入れてプレス成形した後、真空中で燒結して多孔性亜鉛燒結体を作製し、これをボールミル粉砕、分級して得ることができる。
【0008】
すなわち、従来に係る亜鉛粉末が球状、或いは楕円状の表面が円滑な粒子であるのに対し、本発明に係る亜鉛粉末は、微細な亜鉛粉末を燒結したものであるため多孔性となり、比表面積は従来の亜鉛粉末よりも大きなものとなる。このように比表面積が増大すると、反応表面積を大きくできるので、電極反応の分極が低減でき、その結果、電池を放電したときに、特に大電流放電時の負極亜鉛の利用率が向上し、より大きな放電容量を引き出すことができる。
【0009】
また、亜鉛粉末の平均粒径を80〜140μmの範囲とすることにより、ペースト化した際の流動性の低下を抑えて、生産性を確保できる。すなわち、亜鉛粉末とゲル化剤とアルカリ電解液とを混合してなる負極ペーストは、従来の亜鉛粉末を混合してなるペーストと同様の流動性を発揮し、従って電池作製の際に注入不良などのトラブルがなく、良好な生産性を確保できる。
【0010】
前記亜鉛粉末は、アルミニウム、ビスマス、インジウム、マグネシウム、カルシウムのうち1種類以上の元素を含む合金とすることが望ましく、これにより、亜鉛の腐食反応の進行を抑制して、水素ガスの発生を少なくすることができる。
【0011】
また、本発明は、請求項1又は2記載の活物質を用いたアルカリ一次電池を対象とする。
【0012】
【発明の作用効果】
本発明に係る亜鉛粉末の比表面積は、BET法などの比表面積測定法を用いて測定した値が、0.06m /g以上、好ましくは、0.07m /g以上とする。0.06m /gを下回ると、活物質の反応面積が小さく、電池の大電流放電特性の向上を図ることができない。亜鉛粉末の平均粒径が80μmを下回ると、ペースト化した際の流動性が低下して、注入不良などのトラブルを起こしやすく、生産性を確保できない。140μmを上回ると、亜鉛粒子の分散性が低下して、固液分離が起こり易くなる。以上より、亜鉛粉末の比表面積および平均粒径を上記数値範囲とすることにより、大電流放電特性の向上と生産性の確保の両立が可能となる。
【0013】
【実施例】
〈実施例1〉
図1に本発明の実施例に係るアルカリ一次電池の構造を示す。このアルカリ一次電池は単三形の乾電池であって、正極端子を兼ねる有底円筒状の正極缶1内に収納された円筒状の正極2と、正極2の筒孔の内周面に接するように配置されたセパレータ3と、該セパレータ3を介して正極2の筒孔内に充填されたゲル状の負極4と、セパレータ3に含浸された電解液(図示せず)とを備える。正極缶2の外表面は、樹脂外装体5で覆ってある。電池の封口部分6には、内圧の異常上昇防止用、つまり防爆用の安全機構を有する樹脂製封口体7と、これを内側から支える金属ワッシャー8および樹脂ワッシャー9と、図中の下方に向けて凸状(ハット状)に形成された負極端子板10とが装着されている。正極缶1の下面は、絶縁キャップ11で覆われている。符号12は、電池の中心部に配置された釘状の負極集電棒を示す。
【0014】
詳しくは、二酸化マンガン100重量部に黒鉛10重量部、ポリテトラフルオロエチレン0.5重量部を加えた後、攪拌機で乾式混合し、さらに円筒形に加圧成形して正極2とした。セパレータ3としては、ビニロンとレーヨンを主体とする不織布からなる公知のアルカリ乾電池用セパレータを用いた。アルカリ電解液としては、40%水酸化カリウム水溶液を用いた。以上の構成は、公知のアルカリ乾電池の構成である。
【0015】
そのうえで、負極4は以下のようにして得た。すなわち、平均粒径5μm、粒度分布幅0.5〜20μmの亜鉛の微粒粉末を金型に入れ、圧力40kg/cm で円柱状(直径15mm、長さ50mm)に成形した。得られた成形体を真空燒結炉にセットし、10〜4tоrrの真空下で燒結温度405℃で2時間の燒結を行った。得られた燒結体のかさ密度は4.4g/cm 、空隙率は38%であった。燒結体の断面写真は、図2(a)・(b)に示すごとくであり、表面に凹凸形状を有する多孔質体となっていた。この多孔性亜鉛燒結体をボールミル粉砕、分級により平均粒径110μm、粒度分布幅75〜450μm、BET比表面積1.2m /gの多孔性の亜鉛粉末を得た。この亜鉛粉末とアルカリ電解液とゲル化剤とを混合して、ゲル状の負極4を得た。
【0016】
〈実施例2〉
平均粒径10μm、粒度分布幅1〜50μmの亜鉛の微粒粉末を用いたこと以外は、実施例1と同様の方法で負極活物質である多孔性の亜鉛粉末を得た。この多孔性亜鉛粉末の平均粒径は105μm、粒度分布幅75〜450μm、BET比表面積は0.81m /gであった。この亜鉛粉末を用いて、実施例1と同様の構成のアルカリ一次電池を作製した。
【0017】
〈実施例3〉
平均粒径32μm、粒度分布幅10〜100μmの亜鉛の微粒粉末を用いたこと以外は実施例1と同様の方法で、負極活物質である多孔性の亜鉛粉末を得た。亜鉛粉末の平均粒径は120μm、粒度分布幅75〜450μm、BET比表面積は0.22m /gであった。この亜鉛粉末を用いて、実施例1と同様の構成のアルカリ一次電池を作製した。
【0018】
〈実施例4〉
平均粒径50μm、粒度分布幅20〜150μmの亜鉛の微粒粉末を用いたこと以外は実施例1と同様の方法で、負極活物質である多孔性亜鉛粉末を得た。亜鉛粉末の平均粒径は110μm、粒度分布幅75〜450μm、BET比表面積は0.075m /gであった。この亜鉛粉末を用いて、実施例1と同様の構成のアルカリ一次電池を作製した。
【0019】
〈比較例1〉
負極活物質として、平均粒径120μm、粒度分布幅75〜450μm、BET比表面積0.05m /gの亜鉛粉末を用いて、実施例1と同様の構成のアルカリ一次電池を作製した。
【0020】
〈比較例2〉
負極活物質として、平均粒径82μm、粒度分布幅75〜450μm、BET比表面積0.06m /gの亜鉛粉末を用いて、実施例1と同様の構成のアルカリ一次電池を作製した。
【0021】
〈比較例3〉
負極活物質として、平均粒径150μm、粒度分布幅75〜450μm、BET比表面積0.07m /gの亜鉛粉末を用いて、実施例1と同様の構成のアルカリ一次電池を作製した。
【0022】
上記実施例1〜4および比較例1〜3にかかるアルカリ一次電池を、室温において、放電容量1Aで連続放電し、放電電圧が0.9Vに低下するまで放電させた。その後、電池の放電を終了し、放電時間を記録した。
【0023】
また、上記実施例1〜4および比較例1〜3にかかるアルカリ一次電池における生産性を評価した。評価基準は、以下のごとくとした。
○:直立された内径10mmのノズルの先端部から亜鉛ペーストを落下させたときに、40g/10秒間以上落下し、かつ固液分離が起こらない。
×:上記条件で10秒間に落下するペーストの量が40gより少ないか、又は固液分離が目視で観測される。
これら放電時間の測定結果、および生産性にかかる評価結果を表1に示す。
【0024】
【表1】

Figure 2004179044
【0025】
表1より、亜鉛粉末の比表面積は、BET法などの比表面積測定法を用いて測定した値が、0.06m /g以上であることが必要であることがわかる。0.06m /gを下回ると、活物質の反応面積が小さく、電池の大電流放電特性の向上を図ることができない。また、亜鉛粉末の平均粒径が80μmを下回ると、亜鉛ペーストの流動性が低下して、注入不良などのトラブルを起こしやすく、良好な生産性を確保できない。140μmを上回ると、亜鉛粒子の分散性が低下して、固液分離が起こり易くなる。
【図面の簡単な説明】
【図1】本発明に係るアルカリ一次電池の構成を示す縦断側面図である。
【図2】燒結後の燒結体の断面写真である。
【符号の説明】
2 正極
3 セパレータ
4 ゲル状の負極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode active material for an alkaline primary battery comprising zinc powder and an alkaline primary battery using the same.
[0002]
[Prior art]
Patent Literature 1 and Patent Literature 2 are conventional examples of alkaline secondary batteries using a hydrogen storage alloy as a negative electrode active material. In Patent Document 1, a paste-type electrode is manufactured using a porous powder having an average particle size of 32 μm and a particle size distribution width of 2 to 150 μm as a negative electrode active material. In Patent Document 2, a columnar electrode is formed using fine powder having an average particle size of 7 μm and a particle size distribution width of 1 to 30 μm as a negative electrode active material. As described in Patent Documents 1 and 2, when a fine powder having a small particle size is used, the reaction area of the active material increases, so that the high-current discharge characteristics of the battery can be improved.
[0003]
[Patent Document 1]
JP 2000-21396 A (paragraph number 0019)
[Patent Document 2]
JP-A-2000-17302 (paragraph number 0016)
[0004]
[Problems to be solved by the invention]
The present inventors are engaged in the development of a negative electrode active material for an alkaline primary battery, which is made of zinc powder. Thus, as in Patent Document 1 and Patent Document 2, an attempt was made to manufacture a battery using so-called fine zinc as an active material having a small particle size. However, it has been found that zinc paste using fine zinc powder of this kind has poor fluidity, easily causes troubles such as poor injection in a paste injection step in a production line, and cannot ensure good productivity.
[0005]
The present invention has been made to solve the above-described problems, and exhibits good fluidity when pasted, thereby suppressing problems such as poor injection and securing good productivity. An object of the present invention is to provide a negative electrode active material for an alkaline primary battery, which is made of zinc powder and has a large reaction area and can contribute to improvement of a large current discharge characteristic of the battery, and an alkaline primary battery using the same.
[0006]
[Means for Solving the Problems]
The present invention is directed to a negative electrode active material composed of zinc powder for an alkaline primary battery. The zinc powder has a specific surface area of 0.06 m 2 / g or more and an average particle size of 80 μm or more and 140 μm or less. The specific surface area is a value obtained by a BET method or the like. The average particle size is a value obtained by Microtrack.
[0007]
Such zinc powder is prepared by pressing an extremely fine zinc powder having an average particle size of 5 μm to 30 μm into a mold, press-sintering the same, and producing a sintered porous zinc body in a vacuum. Can be obtained.
[0008]
That is, while the conventional zinc powder has a spherical or elliptical surface with smooth particles, the zinc powder according to the present invention is porous because of sintering fine zinc powder, and has a specific surface area. Is larger than conventional zinc powder. When the specific surface area is increased in this way, the reaction surface area can be increased, so that the polarization of the electrode reaction can be reduced. As a result, when the battery is discharged, the utilization rate of the negative electrode zinc particularly at the time of discharging a large current is improved. A large discharge capacity can be obtained.
[0009]
Further, by setting the average particle size of the zinc powder in the range of 80 to 140 μm, it is possible to suppress a decrease in fluidity when the paste is formed and to secure productivity. That is, the negative electrode paste obtained by mixing the zinc powder, the gelling agent, and the alkaline electrolyte exhibits the same fluidity as the paste obtained by mixing the conventional zinc powder, so that, for example, poor injection during battery fabrication. No problems and good productivity can be ensured.
[0010]
The zinc powder is preferably an alloy containing one or more elements of aluminum, bismuth, indium, magnesium and calcium, thereby suppressing the progress of the zinc corrosion reaction and reducing the generation of hydrogen gas. can do.
[0011]
Further, the present invention is directed to an alkaline primary battery using the active material according to claim 1 or 2.
[0012]
Effects of the Invention
The specific surface area of the zinc powder according to the present invention is a value measured using a specific surface area measuring method such as the BET method, 0.06 m 2 / g or more, preferably, to 0.07 m 2 / g or more. If it is less than 0.06 m 2 / g, the reaction area of the active material is small, and it is not possible to improve the high current discharge characteristics of the battery. If the average particle size of the zinc powder is less than 80 μm, the fluidity at the time of forming a paste is reduced, and troubles such as poor injection are likely to occur, and productivity cannot be secured. If it exceeds 140 μm, the dispersibility of the zinc particles decreases, and solid-liquid separation easily occurs. As described above, by setting the specific surface area and the average particle diameter of the zinc powder within the above numerical ranges, it is possible to simultaneously improve the large-current discharge characteristics and ensure the productivity.
[0013]
【Example】
<Example 1>
FIG. 1 shows a structure of an alkaline primary battery according to an embodiment of the present invention. This alkaline primary battery is an AA dry battery, and is in contact with a cylindrical positive electrode 2 housed in a bottomed cylindrical positive electrode can 1 also serving as a positive electrode terminal, and an inner peripheral surface of a cylindrical hole of the positive electrode 2. , A gelled negative electrode 4 filled in the cylindrical hole of the positive electrode 2 through the separator 3, and an electrolytic solution (not shown) impregnated in the separator 3. The outer surface of the positive electrode can 2 is covered with a resin exterior body 5. The sealing portion 6 of the battery has a resin sealing member 7 having a safety mechanism for preventing an internal pressure from abnormally rising, that is, an explosion proof, a metal washer 8 and a resin washer 9 for supporting the sealing member from the inside, and facing downward in the figure. And a negative electrode terminal plate 10 formed in a convex shape (hat shape). The lower surface of the positive electrode can 1 is covered with an insulating cap 11. Numeral 12 indicates a nail-shaped negative electrode current collecting rod arranged at the center of the battery.
[0014]
Specifically, 10 parts by weight of graphite and 0.5 parts by weight of polytetrafluoroethylene were added to 100 parts by weight of manganese dioxide, followed by dry mixing with a stirrer, and further pressure-molded into a cylindrical shape to obtain a positive electrode 2. As the separator 3, a known alkaline dry battery separator made of a nonwoven fabric mainly composed of vinylon and rayon was used. As the alkaline electrolyte, a 40% aqueous potassium hydroxide solution was used. The above configuration is a configuration of a known alkaline dry battery.
[0015]
Then, the negative electrode 4 was obtained as follows. That is, zinc fine powder having an average particle size of 5 μm and a particle size distribution width of 0.5 to 20 μm was placed in a mold and molded into a columnar shape (diameter 15 mm, length 50 mm) at a pressure of 40 kg / cm 2 . The obtained molded body was set in a vacuum sintering furnace and sintered at a sintering temperature of 405 ° C. for 2 hours under a vacuum of 10 to 4 torr. The bulk density of the obtained sintered body was 4.4 g / cm 3 , and the porosity was 38%. Cross-sectional photographs of the sintered body are as shown in FIGS. 2 (a) and 2 (b), and the sintered body was a porous body having an uneven shape on the surface. This porous zinc sintered body was subjected to ball mill pulverization and classification to obtain a porous zinc powder having an average particle size of 110 μm, a particle size distribution of 75 to 450 μm, and a BET specific surface area of 1.2 m 2 / g. The zinc powder, the alkaline electrolyte and the gelling agent were mixed to obtain a gelled negative electrode 4.
[0016]
<Example 2>
A porous zinc powder as a negative electrode active material was obtained in the same manner as in Example 1, except that a fine zinc powder having an average particle diameter of 10 µm and a particle size distribution width of 1 to 50 µm was used. The average particle size of the porous zinc powder was 105 μm, the particle size distribution was 75 to 450 μm, and the BET specific surface area was 0.81 m 2 / g. Using this zinc powder, an alkaline primary battery having the same configuration as in Example 1 was produced.
[0017]
<Example 3>
A porous zinc powder as a negative electrode active material was obtained in the same manner as in Example 1 except that zinc fine powder having an average particle size of 32 μm and a particle size distribution width of 10 to 100 μm was used. The average particle size of the zinc powder was 120 μm, the particle size distribution width was 75 to 450 μm, and the BET specific surface area was 0.22 m 2 / g. Using this zinc powder, an alkaline primary battery having the same configuration as in Example 1 was produced.
[0018]
<Example 4>
A porous zinc powder as a negative electrode active material was obtained in the same manner as in Example 1, except that a fine zinc powder having an average particle diameter of 50 μm and a particle size distribution width of 20 to 150 μm was used. The average particle size of the zinc powder was 110 μm, the particle size distribution was 75 to 450 μm, and the BET specific surface area was 0.075 m 2 / g. Using this zinc powder, an alkaline primary battery having the same configuration as in Example 1 was produced.
[0019]
<Comparative Example 1>
Using a zinc powder having an average particle size of 120 μm, a particle size distribution width of 75 to 450 μm, and a BET specific surface area of 0.05 m 2 / g as the negative electrode active material, an alkaline primary battery having the same configuration as in Example 1 was produced.
[0020]
<Comparative Example 2>
Using a zinc powder having an average particle diameter of 82 μm, a particle size distribution width of 75 to 450 μm, and a BET specific surface area of 0.06 m 2 / g as the negative electrode active material, an alkaline primary battery having the same configuration as in Example 1 was produced.
[0021]
<Comparative Example 3>
Using a zinc powder having an average particle diameter of 150 μm, a particle size distribution width of 75 to 450 μm, and a BET specific surface area of 0.07 m 2 / g as the negative electrode active material, an alkaline primary battery having the same configuration as in Example 1 was produced.
[0022]
The alkaline primary batteries according to Examples 1 to 4 and Comparative Examples 1 to 3 were continuously discharged at room temperature with a discharge capacity of 1 A, and discharged until the discharge voltage dropped to 0.9 V. Thereafter, the discharge of the battery was terminated, and the discharge time was recorded.
[0023]
Further, the productivity of the alkaline primary batteries according to Examples 1 to 4 and Comparative Examples 1 to 3 was evaluated. The evaluation criteria were as follows.
:: When the zinc paste was dropped from the tip of an upright nozzle having an inner diameter of 10 mm, the zinc paste dropped for 40 g / 10 seconds or more, and solid-liquid separation did not occur.
×: Under the above conditions, the amount of the paste falling in 10 seconds is less than 40 g, or solid-liquid separation is visually observed.
Table 1 shows the measurement results of these discharge times and the evaluation results related to productivity.
[0024]
[Table 1]
Figure 2004179044
[0025]
Table 1 shows that the specific surface area of the zinc powder needs to be 0.06 m 2 / g or more as measured by a specific surface area measurement method such as the BET method. If it is less than 0.06 m 2 / g, the reaction area of the active material is small, and it is not possible to improve the high current discharge characteristics of the battery. On the other hand, when the average particle size of the zinc powder is less than 80 μm, the fluidity of the zinc paste is reduced, so that troubles such as poor injection are likely to occur, and good productivity cannot be secured. If it exceeds 140 μm, the dispersibility of zinc particles decreases, and solid-liquid separation easily occurs.
[Brief description of the drawings]
FIG. 1 is a vertical sectional side view showing a configuration of an alkaline primary battery according to the present invention.
FIG. 2 is a cross-sectional photograph of a sintered body after sintering.
[Explanation of symbols]
2 Positive electrode 3 Separator 4 Gelled negative electrode

Claims (3)

亜鉛粉末からなるアルカリ一次電池用の負極活物質であって、
前記亜鉛粉末は、比表面積が0.06m /g以上、平均粒径が80〜140μmの範囲にあることを特徴とするアルカリ一次電池用負極活物質。
A negative electrode active material for an alkaline primary battery composed of zinc powder,
The negative electrode active material for an alkaline primary battery, wherein the zinc powder has a specific surface area of 0.06 m 2 / g or more and an average particle diameter in a range of 80 to 140 μm.
前記亜鉛粉末が、アルミニウム、ビスマス、インジウム、マグネシウム、カルシウムのうち1種類以上の元素を含む合金である請求項1記載のアルカリ一次電池用負極活物質。2. The negative electrode active material for an alkaline primary battery according to claim 1, wherein the zinc powder is an alloy containing at least one element among aluminum, bismuth, indium, magnesium, and calcium. 3. 請求項1又は2記載の活物質を用いたことを特徴とするアルカリ一次電池。An alkaline primary battery using the active material according to claim 1.
JP2002345379A 2002-11-28 2002-11-28 Anode activator for alkaline primary cell and alkaline primary cell using it Pending JP2004179044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345379A JP2004179044A (en) 2002-11-28 2002-11-28 Anode activator for alkaline primary cell and alkaline primary cell using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345379A JP2004179044A (en) 2002-11-28 2002-11-28 Anode activator for alkaline primary cell and alkaline primary cell using it

Publications (1)

Publication Number Publication Date
JP2004179044A true JP2004179044A (en) 2004-06-24

Family

ID=32706569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345379A Pending JP2004179044A (en) 2002-11-28 2002-11-28 Anode activator for alkaline primary cell and alkaline primary cell using it

Country Status (1)

Country Link
JP (1) JP2004179044A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029678A1 (en) * 2008-09-12 2010-03-18 パナソニック株式会社 Mercury-free alkaline dry battery
WO2010029679A1 (en) * 2008-09-12 2010-03-18 パナソニック株式会社 Mercury-free alkaline dry battery
JP4560129B1 (en) * 2009-09-07 2010-10-13 パナソニック株式会社 Alkaline battery
JP2011216218A (en) * 2010-03-31 2011-10-27 Panasonic Corp Alkaline dry battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029678A1 (en) * 2008-09-12 2010-03-18 パナソニック株式会社 Mercury-free alkaline dry battery
WO2010029679A1 (en) * 2008-09-12 2010-03-18 パナソニック株式会社 Mercury-free alkaline dry battery
CN102150308A (en) * 2008-09-12 2011-08-10 松下电器产业株式会社 Mercury-free alkaline dry battery
JP4560129B1 (en) * 2009-09-07 2010-10-13 パナソニック株式会社 Alkaline battery
WO2011027485A1 (en) * 2009-09-07 2011-03-10 パナソニック株式会社 Alkaline battery
JP2011060440A (en) * 2009-09-07 2011-03-24 Panasonic Corp Alkaline battery
US8343658B2 (en) 2009-09-07 2013-01-01 Panasonic Corporation Alkaline battery having improved high rate discharge capability
JP2011216218A (en) * 2010-03-31 2011-10-27 Panasonic Corp Alkaline dry battery

Similar Documents

Publication Publication Date Title
JP3341693B2 (en) Active material powder for electrode of silver oxide battery, electrode material and production method thereof
JPH0855622A (en) Alkali storage battery closed hermetically
JP2004179044A (en) Anode activator for alkaline primary cell and alkaline primary cell using it
JP2008210746A (en) Manganese dioxide and battery using the same
JP3192105B2 (en) Positive electrode mixture for alkaline batteries
WO2003009406A1 (en) Alkaline dry battery
US20210305559A1 (en) Positive electrode for alkaline secondary battery, and alkaline secondary battery
JP2009259707A (en) Aa alkaline dry cell and aaa alkaline dry cell
JP4255762B2 (en) Zinc alkaline battery
US20040214083A1 (en) Nickel-metal hydride storage battery and method for producing negative electrode thereof
JP3077473B2 (en) Alkaline storage battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JP4739493B2 (en) Positive electrode mixture molded body and battery
WO2007122939A1 (en) Alkaline cell
US10263251B2 (en) Battery negative electrode, battery, and manufacturing method of battery negative electrode
JP3778685B2 (en) Hydrogen storage alloy electrode and manufacturing method thereof
JPH1021904A (en) Alkaline storage battery
WO2011001603A1 (en) Alkali dry cell
JPS61124054A (en) Manufacture of hydrogen occlusion electrode
JPH03263760A (en) Hydrogen storage alloy electrode
JP2001068170A (en) Zinc air battery
CA1263437A (en) Cadmium negative electrode
JPH0642374B2 (en) Metal-hydrogen alkaline storage battery
JP2006012493A (en) Alkaline battery
JP2021002499A (en) Alkali battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050418

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20061103

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Effective date: 20090114

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090513