JP2002069631A - Sputtering method and equipment therefor - Google Patents

Sputtering method and equipment therefor

Info

Publication number
JP2002069631A
JP2002069631A JP2000259378A JP2000259378A JP2002069631A JP 2002069631 A JP2002069631 A JP 2002069631A JP 2000259378 A JP2000259378 A JP 2000259378A JP 2000259378 A JP2000259378 A JP 2000259378A JP 2002069631 A JP2002069631 A JP 2002069631A
Authority
JP
Japan
Prior art keywords
support plate
deposited film
substrate support
substrate
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000259378A
Other languages
Japanese (ja)
Inventor
憲史 ▲柳▼田
Norifumi Yanagida
Tomoyuki Kiyono
知之 清野
Satoshi Umehara
諭 梅原
Koji Okuda
浩司 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000259378A priority Critical patent/JP2002069631A/en
Publication of JP2002069631A publication Critical patent/JP2002069631A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve conventional sputtering equipments in which it is difficult to simultaneously satisfy a uniform film thickness and the formation of a deposition film parallel magnetized in one direction. SOLUTION: The method is characterized by the rotation of a substrate holding plate 10 and a magnetic field generating device such as 11 (in the figure) at a same speed while the deposition film 7a is formed. Thus, the deposition film 7a that has uniform thickness and is magnetized in one direction is formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタ装置に係
り、例えば堆積膜を形成する時に、形成する膜の良好な
磁気特性を得るために外部から平行な磁場を印加しなが
ら堆積膜を形成するスパッタ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering apparatus and, for example, when forming a deposited film, forms a deposited film while applying a parallel magnetic field from the outside in order to obtain good magnetic characteristics of the film to be formed. It relates to a sputtering apparatus.

【0002】[0002]

【従来の技術】スパッタ装置は、種々の材料を堆積膜化
する手段の一つとして、各方面でニーズが高まってい
る。このスパッタ装置によるスパッタリング法は、不活
性ガス等を放電させて、この時生じたイオンでターゲッ
トをスパッタリングして、飛散したスパッタ粒子をター
ゲットに対向した位置に配置されている基板上に堆積さ
せて堆積膜を形成する方法であり、これを用いたスパッ
タ装置は、用途に応じて様々なタイプが考えられ、実用
化されている。
2. Description of the Related Art There is an increasing need in various fields for a sputtering apparatus as one of means for forming various materials into a deposited film. The sputtering method using this sputtering apparatus discharges an inert gas or the like, sputters a target with ions generated at this time, and deposits scattered sputter particles on a substrate disposed at a position facing the target. This is a method of forming a deposited film, and various types of sputtering devices using the same are considered depending on the application and are put into practical use.

【0003】例えば、パーソナルコンピュータ等に搭載
されるハードディスク装置の磁気ヘッド製造にも、スパ
ッタ装置が使用されている。その製造工程の一部では、
堆積膜の形成時に、形成する膜に一方向性の磁場を磁化
するために、基板面に一方向性の磁場を印加しながら形
成するのが一般的である。また、この基板面に外部磁場
を印加する方法として、基板の周囲に永久磁石(例えば
特開平6−207270号公報や特開平10−8196
3号公報)や電磁石(例えば特開平3−87365号公
報)を配置する方法が知られている。
For example, a sputtering device is also used for manufacturing a magnetic head of a hard disk device mounted on a personal computer or the like. In part of the manufacturing process,
In order to magnetize a film to be formed with a unidirectional magnetic field when forming the deposited film, the film is generally formed while applying a unidirectional magnetic field to the substrate surface. As a method of applying an external magnetic field to the substrate surface, a permanent magnet (for example, JP-A-6-207270 or JP-A-10-8196) is provided around the substrate.
No. 3) and a method of arranging an electromagnet (for example, Japanese Patent Application Laid-Open No. 3-87365) is known.

【0004】[0004]

【発明が解決しようとする課題】しかし、電磁石は永久
磁石に比べて容積が大きいため、真空容器内に配置する
場、真空容器自身も大型化しなければならない。真空容
器内壁及び電磁石の構成材から多量のアウトガスが発生
する。これは到達真空度を低下させ、形成する堆積膜を
劣化させる。
However, the volume of the electromagnet is larger than that of the permanent magnet, and therefore, when the electromagnet is disposed in the vacuum container, the size of the vacuum container itself must be increased. A large amount of outgas is generated from the inner wall of the vacuum vessel and the components of the electromagnet. This lowers the ultimate vacuum and deteriorates the deposited film to be formed.

【0005】また、電磁石を真空容器内に配置すると、
スパッタリングの過程における熱的影響によってヨーク
材の温度が上昇する。その結果、ヨーク材の透磁率が減
少し、基板面に印加される磁場が弱くなる問題がある。
この場合、ヨーク材の温度上昇に対応して、磁場強度が
一定となるように外部から調節する等の工夫が必要とな
るが、ヨーク材を真空容器内部に配置している限りは熱
的影響を免れることはできないので、磁場強度が一定な
堆積膜を形成できない。
When an electromagnet is arranged in a vacuum vessel,
The temperature of the yoke material rises due to thermal effects in the process of sputtering. As a result, there is a problem that the magnetic permeability of the yoke material decreases and the magnetic field applied to the substrate surface becomes weak.
In this case, it is necessary to devise measures such as external adjustment so that the magnetic field intensity becomes constant in response to the rise in the temperature of the yoke material. Therefore, a deposited film having a constant magnetic field intensity cannot be formed.

【0006】特開平9−186141号公報には真空容
器外に回転ステージに複数の永久磁石を配置したダイポ
ールリングマグネットを設け、このダイポールリングマ
グネットを回転させている。このため、一方向の平行磁
場を堆積膜に透過するために、回転ステージの全周に沿
って永久磁石を配置しているので、永久磁石の重量が増
し、駆動装置に大きな動力を必要とするばかりか、また
ウエハに均一な堆積膜と堆積膜に平行な磁場を磁化する
のを同時に行うための配慮がなされていない。
In Japanese Patent Application Laid-Open No. 9-186141, a dipole ring magnet having a plurality of permanent magnets disposed on a rotary stage is provided outside a vacuum vessel, and the dipole ring magnet is rotated. For this reason, the permanent magnet is arranged along the entire circumference of the rotary stage in order to transmit a parallel magnetic field in one direction to the deposited film, so that the weight of the permanent magnet increases and a large power is required for the driving device. In addition, no consideration is given to simultaneously magnetizing a uniform deposited film on the wafer and a magnetic field parallel to the deposited film.

【0007】本発明の目的は、被処理体に均一な堆積膜
と堆積膜に平行な磁場を同時に行うことができるスパッ
タ装置を提供しようとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a sputtering apparatus capable of simultaneously applying a uniform deposited film to a workpiece and a magnetic field parallel to the deposited film.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るスパッタ装置は、基板支持板より真空
容器の外側にロッドを延ばし、ロッドに環状ヨークを連
結し、環状ヨークを基板と対向する真空容器の外側に真
空容器を包囲するように配置し、環状ヨークに基板を挟
んで一対のコイルを対向するように巻回して電磁石をな
し、ロッドに設けられた回転駆動部により基板支持板及
び電磁石を同期速度で回転させることにある。
In order to achieve the above object, a sputter apparatus according to the present invention extends a rod from a substrate support plate to the outside of a vacuum vessel, connects an annular yoke to the rod, and connects the annular yoke to a substrate. An electromagnet is formed by surrounding a vacuum vessel outside the facing vacuum vessel so as to surround the vacuum vessel, and winding a pair of coils so as to face each other with the substrate sandwiched by an annular yoke. It consists in rotating the plate and the electromagnet at a synchronous speed.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例に係るスパ
ッタ装置を図1に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a sputtering apparatus according to an embodiment of the present invention will be described in detail with reference to FIG.

【0010】図1は本発明の一実施例を示すスパッタ装
置の断面図である。図2は磁場印加機構11の詳細を示
した断面図である。成膜室を形成する真空容器1はその
内部の下側にターゲット電極2が、絶縁材3を介して固
定されている。ターゲット電極2の表面にはターゲット
4が取付けられている。ターゲット4は堆積膜を形成す
る母材からなる。ターゲット4と一定の距離を保ってア
ースシールド5が取付けられている。ターゲット電極2
には高圧電源6が接続されている。
FIG. 1 is a sectional view of a sputtering apparatus showing one embodiment of the present invention. FIG. 2 is a cross-sectional view showing details of the magnetic field application mechanism 11. A vacuum chamber 1 forming a film forming chamber has a target electrode 2 fixed to a lower side of the inside thereof via an insulating material 3. A target 4 is mounted on the surface of the target electrode 2. The target 4 is made of a base material for forming a deposited film. An earth shield 5 is attached at a certain distance from the target 4. Target electrode 2
Is connected to a high-voltage power supply 6.

【0011】基板7はターゲット4に対向して配置さ
れ、基板搬送口8より搬送され、基板チャッキング機構
9によって基板支持体10に固定される。尚、基板搬送
口8は基板搬送時のみ開いており、それ以外の時には閉
鎖しておく。
The substrate 7 is arranged so as to face the target 4, is conveyed through a substrate conveyance port 8, and is fixed to a substrate support 10 by a substrate chucking mechanism 9. The substrate transfer port 8 is open only during the transfer of the substrate, and is closed at other times.

【0012】真空容器内の基板支持板10に支持された
ロッド10Aは真空容器1の外部に延びている。ロッド
10Aと真空容器1との間には真空シール14を設け、
真空シール14により真空容器内を気密に保持してい
る。ロッド10Aには回転機構13及び固定治具12を
取付けている。回転機構13はロッド10Aを回転させ
る。固定治具12は基板支持板10及び基板7に対向す
る真空容器の外周を包囲する図2に示す磁場印加機構1
1を設けている。
A rod 10 A supported by a substrate support plate 10 in the vacuum vessel extends outside the vacuum vessel 1. A vacuum seal 14 is provided between the rod 10A and the vacuum vessel 1,
The inside of the vacuum container is kept airtight by a vacuum seal 14. The rotating mechanism 13 and the fixing jig 12 are attached to the rod 10A. The rotation mechanism 13 rotates the rod 10A. The fixing jig 12 surrounds the outer periphery of the vacuum vessel facing the substrate support plate 10 and the substrate 7 and the magnetic field applying mechanism 1 shown in FIG.
1 is provided.

【0013】磁場印加機構11は次のように構成されて
いる。即ち、基板7及び基板支持板10と対向する真空
容器1の外側に真空容器1を包囲するように環状ヨーク
17を配置している。環状ヨーク17は基板7を挟んで
一対のコイル18,19を対向するように巻回してなる
電磁石20Aを構成している。従って、回転駆動部13
によりロッド10Aを回転すれば、基板支持板10及び
電磁石20Aを同速度で回転することができる。
The magnetic field applying mechanism 11 is configured as follows. That is, the annular yoke 17 is arranged outside the vacuum vessel 1 facing the substrate 7 and the substrate support plate 10 so as to surround the vacuum vessel 1. The annular yoke 17 forms an electromagnet 20A formed by winding a pair of coils 18 and 19 so as to face each other with the substrate 7 interposed therebetween. Therefore, the rotation drive unit 13
By rotating the rod 10A, the substrate support plate 10 and the electromagnet 20A can be rotated at the same speed.

【0014】次に、本発明のスパッタ装置により基板7
に堆積膜7aを形成する場合を説明する。真空容器1に
は例えばアルゴンガスGを注入する注入弁14が設けら
れ、排気装置16より真空容器1を真空にした後、注入
弁14からアルゴンガスGを注入し、例えば0.1Pa
程度のアルゴンガスGを真空容器1内に満たすようにし
ている。アルゴンガスGを注入後、磁場印加機構11を
通電すると共に、回転機構13によりロッド10Aを回
転し、基板7及び基板支持板10及び電磁石20Aを同
速度で回転させる。
Next, the substrate 7 is deposited by the sputtering apparatus of the present invention.
The case where the deposited film 7a is formed on the substrate will be described. The vacuum container 1 is provided with an injection valve 14 for injecting, for example, argon gas G. After the vacuum container 1 is evacuated from the exhaust device 16, argon gas G is injected from the injection valve 14, for example, at 0.1 Pa.
A degree of argon gas G is filled in the vacuum vessel 1. After injecting the argon gas G, the magnetic field application mechanism 11 is energized, and the rod 10A is rotated by the rotation mechanism 13, thereby rotating the substrate 7, the substrate support plate 10, and the electromagnet 20A at the same speed.

【0015】一方、高圧電源6を作動させてターゲット
4と基板7との間に高電圧を印加する。これにより、タ
ーゲット4と基板7との間にグロー放電が発生し、グロ
ー放電による電子が放電空間のアルゴンガスGに衝突
し、アルゴンプラズマが形成される。このアルゴンプラ
ズマ中のアルゴン正イオンがターゲット4近傍の電位降
下領域で加速され、ターゲット4の表面に衝突し、ター
ゲット4からターゲット4を構成する堆積膜粒子がはじ
き出されて蒸気化する。この蒸気化されたスパッタ粒子
が基板7に付着し、堆積膜7aを形成する。この堆積膜
7aに磁場印加機構11によって図2に示すように基板
7に磁場が印加されているので、スパッタ粒子が基板7
に付着する際に各スパッタ粒子に磁力線22が平行方向
に透過される。その結果、基板7の表面に形成された堆
積膜7aにも平行方向の磁場が磁化される。
On the other hand, the high voltage power supply 6 is operated to apply a high voltage between the target 4 and the substrate 7. As a result, a glow discharge is generated between the target 4 and the substrate 7, and electrons generated by the glow discharge collide with the argon gas G in the discharge space to form an argon plasma. The argon positive ions in the argon plasma are accelerated in a potential drop region near the target 4 and collide with the surface of the target 4, and the deposited film particles constituting the target 4 are repelled from the target 4 and vaporized. The vaporized sputter particles adhere to the substrate 7 to form a deposited film 7a. Since a magnetic field is applied to the substrate 7 by the magnetic field applying mechanism 11 as shown in FIG.
When adhering to the sputtered particles, the lines of magnetic force 22 are transmitted to the sputtered particles in a parallel direction. As a result, a magnetic field in a parallel direction is magnetized also on the deposited film 7a formed on the surface of the substrate 7.

【0016】このように本発明では、回転機構13によ
り基板7及び基板支持板10と磁場印加機構11とを同
期回転させることによ、均一な膜厚の堆積膜7aを基板
全体に形成できると同時に、平行方向の磁力線が堆積膜
7aを透過するので、堆積膜7aを一方向に磁化する。
従って、均一な膜厚と一方向に磁化された品質及び性能
を向上した堆積膜7aを生産することができるようにな
った。
As described above, according to the present invention, by rotating the substrate 7 and the substrate support plate 10 and the magnetic field applying mechanism 11 synchronously by the rotating mechanism 13, a deposited film 7a having a uniform thickness can be formed on the entire substrate. At the same time, the lines of magnetic force in the parallel direction pass through the deposited film 7a, so that the deposited film 7a is magnetized in one direction.
Therefore, it is possible to produce a deposited film 7a having a uniform film thickness, a quality magnetized in one direction, and improved performance.

【0017】また本発明では、磁場印加機構11を真空
容器の外側に配置したので、真空容器内の真空度を低下
させたり、環状ヨークの透磁率が減少し、基板面に印加
される磁場が弱くなる等の問題がなくなり、堆積膜7a
を劣化させることがなくなり、更に堆積膜7aの性能を
向上させることができるようになった。
In the present invention, since the magnetic field applying mechanism 11 is disposed outside the vacuum vessel, the degree of vacuum in the vacuum vessel is reduced, the permeability of the annular yoke is reduced, and the magnetic field applied to the substrate surface is reduced. Problems such as weakening are eliminated, and the deposited film 7a
Is not deteriorated, and the performance of the deposited film 7a can be further improved.

【0018】図2の実施例により、本発明による磁場印
加構11を説明する。即ち、磁場印加構11は角型形状
の環状ヨーク17が、その中心が基板7の中心と一致す
るように配置されており、環状ヨーク17は基板7を介
して対称する位置にコイル18,19を巻回している。
このコイル18,19には各々ギャップ20,21を設
けている。環状ヨーク17はロッド10Aの直角方向の
断面し対して断面形状が正方形である。
The magnetic field applying structure 11 according to the present invention will be described with reference to the embodiment shown in FIG. That is, the magnetic field applying structure 11 has a rectangular-shaped annular yoke 17 arranged so that the center thereof coincides with the center of the substrate 7, and the annular yokes 17 are located at symmetrical positions via the substrate 7. Has been wound.
The coils 18 and 19 are provided with gaps 20 and 21, respectively. The cross-sectional shape of the annular yoke 17 is square with respect to the cross section of the rod 10A in a direction perpendicular to the rod 10A.

【0019】対向する2つのコイル18,19は互いに
磁束が衝突する方向に電流をそれぞれに流すと、磁束Φ
が発生する。この磁束Φは環状ヨーク17内を回ること
ができず、コイル18,19を巻いていない環状ヨーク
17にそれぞれN極とS極を作出す。N極からの磁力線
22が基板7を介してS極に透過し、基板7の堆積膜を
平行方向に磁化する。
The two opposing coils 18 and 19 cause a magnetic flux Φ when current flows in a direction in which the magnetic flux collides with each other.
Occurs. This magnetic flux Φ cannot rotate in the annular yoke 17 and creates an N pole and an S pole respectively in the annular yoke 17 on which the coils 18 and 19 are not wound. Lines of magnetic force 22 from the N pole penetrate through the substrate 7 to the S pole, and magnetize the deposited film on the substrate 7 in a parallel direction.

【0020】磁力線22は多少基準線24側に膨らんで
N極からS極に透過する傾向がある。そこで、ギャップ
20,21を設けて、新たに磁極S,Nが作り出され
る。この新たに磁極S,Nに磁力線22を引き寄せ、膨
らんだ磁力線22を平行な磁力線22になるように是正
する働きをするので、基板7において全体的に磁場分布
が平行になる。従って、平行方向に堆積膜が均一に磁化
され、性能を向上した堆積膜7aを生産することができ
るようになった。
The lines of magnetic force 22 tend to swell slightly toward the reference line 24 and transmit from the N pole to the S pole. Then, gaps 20 and 21 are provided, and magnetic poles S and N are newly created. Since the magnetic lines of force 22 are attracted to the magnetic poles S and N, and the swelling magnetic lines of force 22 are corrected so as to become parallel magnetic lines of magnetic force 22, the magnetic field distribution in the substrate 7 is generally parallel. Therefore, the deposited film is uniformly magnetized in the parallel direction, and the deposited film 7a with improved performance can be produced.

【0021】また、ギャップ20,21を特定の長さに
することにより、基板7の全領域で平行性の高い磁場を
印加できる。その長さは環状ヨーク17の寸法によって
変化するが、例えば環状ヨーク17の一辺の長さが35
0mmにおける最適ギャップ長は、90mmである。
By setting the gaps 20 and 21 to specific lengths, a magnetic field with high parallelism can be applied to the entire region of the substrate 7. The length varies depending on the size of the annular yoke 17, and for example, the length of one side of the annular yoke 17 is 35.
The optimum gap length at 0 mm is 90 mm.

【0022】以上により、本発明の磁場印加機構11は
スパッタリングの過程における熱的影響を受けることな
く、基板7に磁力線22を平行に透過し、平行方向に磁
化された良好な堆積膜7aを形成することができる。
As described above, the magnetic field applying mechanism 11 of the present invention allows the magnetic flux lines 22 to pass through the substrate 7 in parallel and forms a good deposited film 7a magnetized in the parallel direction without being thermally affected in the process of sputtering. can do.

【0023】更に、図3に本発明の他の実施例を示し説
明する。本実施例は、図3に示すように環状ヨーク23
の角部に面取り加工部23Aを施した場合である。この
ような形状とした理由は、次の通りである。堆積膜を形
成時、均一性が良く成膜するために基板7を回転させる
が、その基板7と同期して環状ヨーク23も回転させる
必要があり、その場合、図2の実施例に比べ少しでも回
転半径を小さくするためである。本実施例において、基
板7へ印加する磁場の方向性は、図2の実施例とほとん
ど変わらない。また環状ヨーク23は円形形状にしても
良い。
FIG. 3 shows another embodiment of the present invention. In the present embodiment, as shown in FIG.
This is a case where the chamfered portion 23A is applied to the corners of FIG. The reason for adopting such a shape is as follows. When the deposited film is formed, the substrate 7 is rotated in order to form a film with good uniformity. However, it is necessary to rotate the annular yoke 23 in synchronization with the substrate 7, in which case, the rotation is slightly smaller than in the embodiment of FIG. However, this is to reduce the turning radius. In the present embodiment, the directionality of the magnetic field applied to the substrate 7 is almost the same as in the embodiment of FIG. The annular yoke 23 may have a circular shape.

【0024】更に本発明では、図4に示すように真空容
器1の外周側に基板7及び基板支持板10を包囲するよ
うに環状支持板30を設け、この環状支持板30に基板
支持板10と対向するように一対の永久磁石31,32
を配置している。左側の永久磁石31及び右側の永久磁
石32はN極及びS極である。
Further, according to the present invention, as shown in FIG. 4, an annular support plate 30 is provided on the outer peripheral side of the vacuum vessel 1 so as to surround the substrate 7 and the substrate support plate 10. And a pair of permanent magnets 31 and 32
Has been arranged. The left permanent magnet 31 and the right permanent magnet 32 have north and south poles.

【0025】回転機構13により、基板7及び基板支持
板10及び永久磁石31,32は常に同速度で回転して
いるから、N極からの磁力線は基板7を挟んでS極に平
行に透過し、上記実施例と同様な効果を達成できる他
に、回転ステージの全周に永久磁石を配置した従来技術
(特開平9−186141号公報)に比べて、本発明で
は基板7及び基板支持板10及び永久磁石31,32は
常に同速度で回転しているから、N極の永久磁石31か
ら基板7を介して平行方向の磁力線22が常にS極の永
久磁石31に透過しているので、永久磁石31,32は
基板7と対向する環状支持板30にのみ配置すればよ
い。従って、本実施例では従来技術に比べて永久磁石の
数は少なくできるので、回転機構13の駆動力を小さく
できるので、回転機構13を小型化できるようになっ
た。尚、この実施例では環状支持板30を使用したが、
永久磁石31,32を支持する支持板であれば良い。
Since the substrate 7, the substrate support plate 10, and the permanent magnets 31 and 32 are always rotating at the same speed by the rotating mechanism 13, the magnetic field lines from the N pole penetrate the substrate 7 in parallel with the S pole. In addition to achieving the same effects as those of the above-described embodiment, the present invention provides a substrate 7 and a substrate support plate 10 in comparison with the prior art (Japanese Patent Laid-Open No. Hei 9-186141) in which permanent magnets are arranged all around the rotary stage. Since the permanent magnets 31 and 32 are always rotating at the same speed, the magnetic field lines 22 in the parallel direction are always transmitted from the N-pole permanent magnet 31 via the substrate 7 to the S-pole permanent magnet 31. The magnets 31 and 32 may be arranged only on the annular support plate 30 facing the substrate 7. Therefore, in the present embodiment, the number of permanent magnets can be reduced as compared with the prior art, and the driving force of the rotating mechanism 13 can be reduced, so that the rotating mechanism 13 can be downsized. Although the annular support plate 30 is used in this embodiment,
Any support plate that supports the permanent magnets 31, 32 may be used.

【0026】[0026]

【発明の効果】以上のように、本発明のスパッタ装置に
よれば、均一な膜厚と均一に磁化された品質及び性能を
有する堆積膜を生産することができるようになった。
As described above, according to the sputtering apparatus of the present invention, it is possible to produce a deposited film having a uniform film thickness and a quality and performance uniformly magnetized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例として示したスパッタ装置の断
面図。
FIG. 1 is a sectional view of a sputtering apparatus shown as an embodiment of the present invention.

【図2】図1の磁場印加機構の詳細を示した平面図。FIG. 2 is a plan view showing details of a magnetic field application mechanism in FIG. 1;

【図3】本発明の他の実施例としてを示した磁場印加機
構の平面図。
FIG. 3 is a plan view of a magnetic field applying mechanism according to another embodiment of the present invention.

【図4】本発明の他の実施例としてを示した磁場印加機
構の平面図。
FIG. 4 is a plan view of a magnetic field applying mechanism according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…真空容器、2…ターゲット電極、3…絶縁材、4…
ターゲット、5…アースシールド、6…高圧電源、7…
基板、7a…堆積膜、8…基板搬送口、9…基板チャッ
キング機構、10…基板支持体、11…磁場印加機構、
12…固定治具、13…回転機構、14…注入弁、15
…排気装置、17,23…ヨーク材、18,19…コイ
ル、20,21…ギャップ、22…磁力線、30…環状
支持板、31,32…永久磁石。
DESCRIPTION OF SYMBOLS 1 ... Vacuum container, 2 ... Target electrode, 3 ... Insulation material, 4 ...
Target, 5 ... Earth shield, 6 ... High voltage power supply, 7 ...
Substrate, 7a: deposited film, 8: substrate transfer port, 9: substrate chucking mechanism, 10: substrate support, 11: magnetic field applying mechanism,
12: fixing jig, 13: rotating mechanism, 14: injection valve, 15
... Exhaust device, 17,23 ... Yoke material, 18,19 ... Coil, 20,21 ... Gap, 22 ... Line of magnetic force, 30 ... Ring support plate, 31,32 ... Permanent magnet.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 梅原 諭 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所半導体製造装置推進本部内 (72)発明者 奥田 浩司 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所半導体製造装置推進本部内 Fターム(参考) 4K029 BC06 CA05 DC00 JA02  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Satoshi Umehara 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Semiconductor Manufacturing Equipment Promotion Division, Hitachi, Ltd. 1-chome F-term (reference) 4K029 BC06 CA05 DC00 JA02 in Semiconductor Manufacturing Equipment Promotion Division Hitachi, Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 放電ガスを有する真空容器内に堆積膜部
材からなるターゲットと基板支持板とを対向配置し、前
記ターゲットと前記基板との間に電圧を印加し、グロー
放電によるプラズマ中の正イオンを衝突させたターゲッ
トからのスパッタ粒子を堆積した堆積膜を前記基板支持
板に形成し、前記真空容器に設けた電磁石からの磁力線
を前記堆積膜に透過せしめ、前記堆積膜を磁化するスパ
ッタ方法において、前記基板支持板の側面と対向する前
記真空容器に磁界発生手段を設け、前記堆積膜を形成時
に前記基板支持板と磁界発生手段を同速度で回転せしめ
均一な膜厚と一方向に磁化された堆積膜を形成すること
を特徴とするスパッタ方法。
1. A target made of a deposited film member and a substrate support plate are arranged opposite to each other in a vacuum vessel having a discharge gas, a voltage is applied between the target and the substrate, and a positive A sputtering method in which a deposited film on which sputtered particles are deposited from a target that has been bombarded by ions is formed on the substrate support plate, lines of magnetic force from an electromagnet provided in the vacuum vessel are transmitted through the deposited film, and the deposited film is magnetized. Wherein a magnetic field generating means is provided in the vacuum vessel facing the side surface of the substrate support plate, and the substrate support plate and the magnetic field generating means are rotated at the same speed when forming the deposited film, so that a uniform film thickness and unidirectional magnetization are provided. A sputtering method characterized by forming a deposited film.
【請求項2】 放電ガスを有する真空容器内に堆積膜部
材からなるターゲットと基板支持板とを対向配置し、前
記ターゲットと前記基板との間に電圧を印加し、グロー
放電によるプラズマ中の正イオンを衝突させたターゲッ
トからのスパッタ粒子を堆積した堆積膜を前記基板に形
成し、前記真空容器に設けた電磁石からの磁力線を前記
堆積膜に透過せしめ、前記堆積膜を磁化するスパッタ装
置において、前記基板支持板を前記真空容器の外側に延
びるロッドに連結し、前記基板支持板の側面と対向する
前記真空容器の外側に真空容器を包囲するように環状ヨ
ークを配置し、前記環状ヨークに前記基板を挟んで一対
のコイルを対向するように巻回し、前記基板支持板及び
前記環状ヨークを同速度で回転させることを特徴とする
スパッタ装置。
2. A target made of a deposited film member and a substrate support plate are disposed opposite to each other in a vacuum vessel having a discharge gas, and a voltage is applied between the target and the substrate to form a positive electrode in the plasma by glow discharge. A sputter device that forms a deposited film on which sputtered particles are deposited from a target that has been bombarded by ions and that transmits magnetic flux lines from an electromagnet provided in the vacuum vessel to the deposited film to magnetize the deposited film, The substrate support plate is connected to a rod extending outside the vacuum container, and an annular yoke is disposed outside the vacuum container facing a side surface of the substrate support plate so as to surround the vacuum container. A sputtering apparatus, wherein a pair of coils are wound so as to face each other across a substrate, and the substrate support plate and the annular yoke are rotated at the same speed.
【請求項3】 放電ガスを有する真空容器内に堆積膜部
材からなるターゲットと基板支持板とを対向配置し、前
記ターゲットと前記基板との間に電圧を印加し、グロー
放電によるプラズマ中の正イオンを衝突させたターゲッ
トからのスパッタ粒子を堆積した堆積膜を前記基板支持
板に形成し、前記真空容器に設けた電磁石からの磁力線
を前記堆積膜に透過せしめ、前記堆積膜を磁化するスパ
ッタ装置において、前記基板支持板を前記真空容器の外
側に延びるロッドに連結し、前記基板支持板の側面と対
向する前記真空容器の外側に真空容器を包囲するように
環状ヨークを配置し、前記環状ヨークに前記基板支持板
を挟んで一対のコイルを対向するように巻回し、前記一
対のコイルの各々にギャップを設けることを特徴とする
スパッタ装置。
3. A target made of a deposited film member and a substrate support plate are arranged opposite to each other in a vacuum vessel having a discharge gas, and a voltage is applied between the target and the substrate to form a positive electrode in the plasma by glow discharge. A sputtering apparatus for forming a deposited film on which sputtered particles are deposited from a target that has been bombarded by ions, on the substrate support plate, transmitting magnetic field lines from an electromagnet provided in the vacuum vessel to the deposited film, and magnetizing the deposited film. In the above, the substrate support plate is connected to a rod extending outside the vacuum container, and an annular yoke is disposed outside the vacuum container facing a side surface of the substrate support plate so as to surround the vacuum container. A pair of coils are wound so as to face each other with the substrate support plate interposed therebetween, and a gap is provided in each of the pair of coils.
【請求項4】 放電ガスを有する真空容器内に堆積膜部
材からなるターゲットと基板支持板とを対向配置し、前
記ターゲットと前記基板との間に電圧を印加し、グロー
放電によるプラズマ中の正イオンを衝突させたターゲッ
トからのスパッタ粒子を堆積した堆積膜を前記基板支持
板に形成し、前記真空容器に設けた電磁石からの磁力線
を前記堆積膜に透過せしめ、前記堆積膜を磁化するスパ
ッタ装置において、前記基板支持板を前記真空容器の外
側に延びるロッドに連結し、前記基板支持板と対向する
真空容器の外側に支持板を配置し、前記支持板に前記基
板支持板を挟んで対向するように一対の永久磁石を配置
し、前記基板支持板及び前記支持板を同速度で回転させ
ることを特徴とするスパッタ装置。
4. A target composed of a deposited film member and a substrate support plate are disposed opposite to each other in a vacuum vessel having a discharge gas, and a voltage is applied between the target and the substrate to generate a positive electrode in a plasma by glow discharge. A sputtering apparatus for forming a deposited film on which sputtered particles are deposited from a target that has been bombarded by ions, on the substrate support plate, transmitting magnetic field lines from an electromagnet provided in the vacuum vessel to the deposited film, and magnetizing the deposited film. In the above, the substrate support plate is connected to a rod extending outside the vacuum vessel, a support plate is arranged outside the vacuum vessel facing the substrate support plate, and faces the support plate with the substrate support plate interposed therebetween. A pair of permanent magnets, and rotating the substrate support plate and the support plate at the same speed.
【請求項5】 前記基板支持板及び前記環状ヨーク又は
前記支持板とを前記ロッドに連結し、前記ロッドに回転
駆動部を設けることを特徴とする請求項1から4のいず
れか1項に記載のスパッタ方法及びスパッタ装置。
5. The device according to claim 1, wherein the substrate support plate and the annular yoke or the support plate are connected to the rod, and the rod is provided with a rotation drive unit. Sputtering method and sputtering apparatus.
【請求項6】 前記環状ヨークは前記ロッドの直角方向
に断面した断面方向から見た形状が正方形であることを
特徴とする請求項2又は3に記載のスパッタ装置。
6. The sputtering apparatus according to claim 2, wherein the annular yoke has a square shape as viewed from a cross-sectional direction of the rod in a direction perpendicular to the rod.
JP2000259378A 2000-08-24 2000-08-24 Sputtering method and equipment therefor Pending JP2002069631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000259378A JP2002069631A (en) 2000-08-24 2000-08-24 Sputtering method and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000259378A JP2002069631A (en) 2000-08-24 2000-08-24 Sputtering method and equipment therefor

Publications (1)

Publication Number Publication Date
JP2002069631A true JP2002069631A (en) 2002-03-08

Family

ID=18747564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000259378A Pending JP2002069631A (en) 2000-08-24 2000-08-24 Sputtering method and equipment therefor

Country Status (1)

Country Link
JP (1) JP2002069631A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064493A1 (en) * 2008-12-03 2010-06-10 キヤノンアネルバ株式会社 Plasma processing apparatus, apparatus for manufacturing magnetoresistive element, method for forming magnetic thin film and program for controlling film formation
WO2010073711A1 (en) * 2008-12-26 2010-07-01 キヤノンアネルバ株式会社 Sputtering equipment, sputtering method and method for manufacturing an electronic device
JP2015183264A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Sputtering film deposition apparatus
JP2019533767A (en) * 2016-10-31 2019-11-21 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Magnetic thin film deposition chamber and thin film deposition apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064493A1 (en) * 2008-12-03 2010-06-10 キヤノンアネルバ株式会社 Plasma processing apparatus, apparatus for manufacturing magnetoresistive element, method for forming magnetic thin film and program for controlling film formation
US8377270B2 (en) 2008-12-03 2013-02-19 Canon Anelva Corporation Plasma processing apparatus, magnetoresistive device manufacturing apparatus, magnetic thin film forming method, and film formation control program
JP4727764B2 (en) * 2008-12-03 2011-07-20 キヤノンアネルバ株式会社 Plasma processing apparatus, magnetoresistive element manufacturing apparatus, magnetic thin film forming method and film forming control program
JP4739464B2 (en) * 2008-12-26 2011-08-03 キヤノンアネルバ株式会社 Sputtering apparatus, sputtering method, and electronic device manufacturing method
JP2011149104A (en) * 2008-12-26 2011-08-04 Canon Anelva Corp Sputtering equipment, sputtering method and method for manufacturing electronic device
CN102227514A (en) * 2008-12-26 2011-10-26 佳能安内华股份有限公司 Sputtering equipment, sputtering method and method for manufacturing electronic device
WO2010073711A1 (en) * 2008-12-26 2010-07-01 キヤノンアネルバ株式会社 Sputtering equipment, sputtering method and method for manufacturing an electronic device
KR101272009B1 (en) 2008-12-26 2013-06-05 캐논 아네르바 가부시키가이샤 Sputtering equipment, sputtering method and method for manufacturing an electronic device
KR101271843B1 (en) 2008-12-26 2013-06-07 캐논 아네르바 가부시키가이샤 Sputtering equipment, sputtering method and method for manufacturing an electronic device
US8906208B2 (en) 2008-12-26 2014-12-09 Canon Anelva Corporation Sputtering apparatus, sputtering method, and electronic device manufacturing method
JP2015183264A (en) * 2014-03-25 2015-10-22 Tdk株式会社 Sputtering film deposition apparatus
JP2019533767A (en) * 2016-10-31 2019-11-21 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Magnetic thin film deposition chamber and thin film deposition apparatus
JP7030804B2 (en) 2016-10-31 2022-03-07 北京北方華創微電子装備有限公司 Magnetic thin film deposition chamber and thin film deposition equipment

Similar Documents

Publication Publication Date Title
US5865961A (en) Magnetron sputtering apparatus and method
JP2009149973A (en) Sputtering apparatus and sputtering method
JP2019535899A (en) Magnetron, magnetron sputtering chamber and magnetron sputtering apparatus
US9028659B2 (en) Magnetron design for extended target life in radio frequency (RF) plasmas
JP2002069631A (en) Sputtering method and equipment therefor
JPH11158625A (en) Magnetron sputtering film forming device
JP3411312B2 (en) Magnetron sputter cathode and method of adjusting film thickness distribution
KR960011245B1 (en) Sputtering apparatus
JPS61288067A (en) Sputtering device
JPH04276069A (en) Method and device for sputtering
CN107447195B (en) Magnetron and magnetron sputtering system
JP2835462B2 (en) Sputtering equipment
JPH11140639A (en) Magnetron device and sputtering device
JP2004124171A (en) Plasma processing apparatus and method
JP4056112B2 (en) Magnetron sputtering equipment
KR100456287B1 (en) Sputter gun of sputtering system for film deposition
JP2789251B2 (en) Sputtering equipment using dipole ring type magnetic circuit
TWI839503B (en) Sputtering apparatus, thin-film forming method
JP2001152332A (en) Sputter deposition apparatus
JPS63223173A (en) Method and apparatus for forming sputtered film
CN211897094U (en) Hardware configuration and system for physical sputtering
JPH04329875A (en) Sputter deposition apparatus
JPH09310174A (en) Sputtering device
JPH03183123A (en) Sputtering apparatus
JP2002004044A (en) Sputtering system