JP2002068853A - Lightweight heat insulation and its production method - Google Patents

Lightweight heat insulation and its production method

Info

Publication number
JP2002068853A
JP2002068853A JP2000257317A JP2000257317A JP2002068853A JP 2002068853 A JP2002068853 A JP 2002068853A JP 2000257317 A JP2000257317 A JP 2000257317A JP 2000257317 A JP2000257317 A JP 2000257317A JP 2002068853 A JP2002068853 A JP 2002068853A
Authority
JP
Japan
Prior art keywords
heat
hollow
glass
heat insulator
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000257317A
Other languages
Japanese (ja)
Inventor
Shoji Tezuka
昭二 手塚
Isato Suzuki
勇人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Kogyo Co Ltd
Original Assignee
Tokai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Kogyo Co Ltd filed Critical Tokai Kogyo Co Ltd
Priority to JP2000257317A priority Critical patent/JP2002068853A/en
Publication of JP2002068853A publication Critical patent/JP2002068853A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/242Slab shaped vacuum insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Abstract

PROBLEM TO BE SOLVED: To provide a lightweight heat insulation and its producing method, which is lightweight and excellent in heat resistance, high strength, thermal insulation property and processability. SOLUTION: Plural particles of fine hollow spherical glass material, which contain 70-80% SiO2, 3-8% Na2O, 8-15% CaO and 2-9% B2O3, and Na2O/B2O3 is 0.3-3.0, are charged into molds, molten the surfaces of the hollow spherical material at above the melting point and joined to integrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軽量で、耐熱性、
高強度および断熱性に優れ、しかも加工性にも優れた軽
量断熱体およびその製造方法に関する。
The present invention relates to a light-weight, heat-resistant,
The present invention relates to a lightweight heat insulator excellent in high strength and heat insulation and also excellent in workability, and a method for producing the same.

【0002】[0002]

【従来の技術】住宅、ビルなどの居住空間にはその快適
性の向上のためいろいろな機能をもった素材が使用され
ている。とりわけ、熱、音などの要素がわれわれの生活
に与える影響が大きいことから、断熱材や吸音材は馴染
み深い。最近になりその用途分野も、居住用の床、壁材
などの建築材料から工場などの生産設備、家電製品、レ
ジャー製品にまで及んでいる。
2. Description of the Related Art In living spaces such as houses and buildings, materials having various functions are used in order to improve comfort. In particular, thermal insulation and sound absorbing materials are familiar because factors such as heat and sound greatly affect our lives. In recent years, the fields of application range from building materials such as floors and walls for living use to production facilities such as factories, home appliances and leisure products.

【0003】具体的には、古くは、耐火断熱煉瓦に始ま
り、グラスファイバー、ケイ酸カルシウム、セラミック
ファイバー、アルミナファイバー、そして樹脂系断熱材
として、発泡ウレタンなどがある。このような断熱材に
要求される特性は、熱伝導率が低いことである。つま
り、断熱材の空隙率が大きくなればなるほど材質の密度
は小さくなり断熱性の効果は大きくなる。また、このよ
うな機能材料はいろいろな環境で使用され、例えば、温
度は低温からかなりの高温までと範囲は広い。
[0003] Specifically, in the old days, starting from refractory insulating bricks, there are glass fiber, calcium silicate, ceramic fiber, alumina fiber, and resin-based heat insulating material such as urethane foam. A characteristic required of such a heat insulating material is that the thermal conductivity is low. In other words, as the porosity of the heat insulating material increases, the density of the material decreases, and the effect of the heat insulating property increases. Further, such functional materials are used in various environments, and for example, the temperature ranges from a low temperature to a considerably high temperature.

【0004】熱の伝導を分析すると、主に以下の4つの
形式があげられる。(1)固体伝導、(2)気体の対
流、(3)赤外線による輻射、(4)気体の分子伝導で
ある。断熱材の比重が小さいと熱伝導率は低下し、断熱
性能は向上する。これは、固体部分が少ないため熱の固
体伝導が低下するためである。
[0004] Analyzing the conduction of heat, there are four main types. (1) solid conduction; (2) convection of gas; (3) radiation by infrared radiation; and (4) molecular conduction of gas. If the specific gravity of the heat insulating material is small, the thermal conductivity decreases, and the heat insulating performance improves. This is because the solid portion of the heat is reduced because the solid portion is small.

【0005】ガラス、セラミックス材料の他に、発泡ウ
レタンのように樹脂タイプの断熱材も広く使用されてお
り、特に、建築用途に使用されており、その断熱性の良
さは広く知れわたっている。しかし、樹脂タイプの断熱
材は、樹脂であるがゆえに耐熱性に問題があり、その耐
熱温度は80℃が限界である。
[0005] In addition to glass and ceramic materials, resin-type heat insulating materials such as urethane foam are also widely used, particularly for architectural uses, and their good heat insulating properties are widely known. However, the resin type heat insulating material has a problem in heat resistance because it is a resin, and its heat resistance temperature is limited to 80 ° C.

【0006】このような断熱材の一種として、中空体
(バルーン)の断熱材も知られている。特開昭52−2
5823号公報には、パーライト、アルミナバルーン、
シラスバルーン等の中空体粒子からなる断熱材が記載さ
れている。この公知例には、中空体粒子の粗粒、微粒と
組合せて充填率を高め、ポリビニルアルコール等のバイ
ンダーで造粒成形されている。しかし、この断熱材の熱
伝導率は0.04Kcal/m・h・℃(50℃)であ
り、ファイバー等の断熱材と比較し、格別に断熱性に優
れているとは言い難い。その理由として、バインダーを
使用し造粒するため中空体粒子の充填率がまだまだ低い
ためと思われる。
As one kind of such heat insulating material, a hollow heat insulating material (balloon) is also known. JP-A-52-2
No. 5823 discloses pearlite, alumina balloon,
A heat insulating material composed of hollow particles such as a shirasu balloon is described. In this known example, the filling rate is increased in combination with coarse particles and fine particles of hollow body particles, and granulation is performed with a binder such as polyvinyl alcohol. However, the thermal conductivity of this heat insulating material is 0.04 Kcal / m · h · ° C. (50 ° C.), and it is hard to say that it is particularly excellent in heat insulating properties as compared with heat insulating materials such as fibers. It is considered that the reason is that the packing ratio of the hollow particles is still low due to granulation using a binder.

【0007】また、特開平8−241085号公報に
は、シラスバルーン等の有殻中空粒子を、同様にバイン
ダーを用いて成形し、それを外包材でパッキングし真空
減圧することにより得られた断熱、防音材が開示されて
いる。しかし、かかる材料は、断熱性能は、かなりの程
度優れているものの、生産効率、および形状加工性に問
題があり、実用面では手軽に使用するには難しい。
Japanese Patent Application Laid-Open No. Hei 8-241085 discloses that a hollow particle having a shell, such as a shirasu balloon, is similarly molded using a binder, packed in an outer wrapping material, and decompressed by vacuum. , A soundproofing material is disclosed. However, such a material has a high degree of heat insulation performance, but has problems in production efficiency and shape workability, and is difficult to use easily in practical use.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記した従
来の断熱体の有する問題点を改良し、軽量で、耐熱性、
高強度および断熱性に優れ、しかも加工性にも優れた軽
量断熱体およびその製造方法に関する。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the conventional heat insulator, and is lightweight, heat-resistant,
The present invention relates to a lightweight heat insulator excellent in high strength and heat insulation and also excellent in workability, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、上記課題を
解決すべく研究を行なったところ、従来のシラスバルー
ンなどの中空体からなる断熱体では、いずれの場合も中
空体粒子を接着するためのバインダーが使用されてお
り、バインダーの存在は、断熱体における中空部の占め
る体積を小さくし断熱体性能を低下させることが判明し
た。しかし、シラスバルーンなどは、その材料上軟化点
が極めて大きいので上記バインダーの使用は不可欠であ
る。
Means for Solving the Problems The present inventor has conducted researches to solve the above-mentioned problems. As a result, in any case, a conventional heat insulator made of a hollow body such as a shirasu balloon adheres hollow body particles. It has been found that the presence of the binder reduces the volume occupied by the hollow portion in the heat insulator and lowers the heat insulator performance. However, the use of the above binder is indispensable for shirasu balloons and the like because the softening point is extremely large on the material thereof.

【0010】また、従来の断熱体に使用されるシラスバ
ルーンなどの中空体は、同時に、粒子の大きさが不均一
であり、また、粒子密度が大きい上に、内部の減圧状態
も十分でなく、かつ不均一であることも断熱性能が不十
分である原因になることも判明した。
In addition, the hollow body such as a shirasu balloon used for the conventional heat insulator has a non-uniform particle size at the same time, has a high particle density, and is not sufficiently depressurized inside. It has also been found that non-uniformity is also a cause of insufficient heat insulation performance.

【0011】かくして、本発明は、上記の点を踏まえて
達成されたもので、SiO2:70〜80%、Na2O:
3〜8%、CaO:8〜15%およびB23:2〜9%
を含み、かつB23/Na2O:0.3 〜3.0である
ガラス微小中空球状体の複数の粒子の表面が互いに接合
され、一体化されていることを特徴とする軽量断熱体を
提供する。
Thus, the present invention has been achieved in view of the above-mentioned points, and it has been found that SiO 2 : 70-80%, Na 2 O:
3~8%, CaO: 8~15% and B 2 O 3: 2~9%
And B 2 O 3 / Na 2 O: 0.3 The present invention provides a lightweight heat insulator characterized in that the surfaces of a plurality of particles of a glass micro hollow sphere having a diameter of up to 3.0 are joined together and integrated.

【0012】また、本発明は、SiO2:70〜80
%、Na2O:3〜8%、CaO:8〜15%およびB2
3:2〜9%を含み、かつB23/Na2O:0.3
〜3.0であるガラスの複数の微小中空球状体の粒子を
成形型に充填し、該微小中空球状体の軟化点以上の温度
でその表面を溶融して接合して一体化させること特徴と
する軽量断熱体の製造方法も提供する。
Further, according to the present invention, SiO 2 : 70-80
%, Na 2 O: 3~8% , CaO: 8~15% and B 2
O 3 : 2 to 9%, and B 2 O 3 / Na 2 O: 0.3
A plurality of fine hollow spheres of glass having a particle size of ~ 3.0 are filled in a mold, and the surfaces thereof are melted and joined at a temperature equal to or higher than the softening point of the fine hollow spheres to integrate them. The present invention also provides a method for manufacturing a lightweight heat insulator.

【0013】本発明の断熱体は、特定の組成を有するガ
ラスの微小中空球状体の粒子から形成され、その軟化温
度はそれほど高くないので、従来の断熱体のようにバイ
ンダーを使用しなくても中空体粒子の相互の表面を加熱
により軟化させることにより接合できる。従って、断熱
体における中空体の充填率を極めて大きくできるので断
熱性能を大きくすることができる。しかも、中空体粒子
自体の強度が大きい上に中空体粒子の接合も強固である
ので形成された軽量断熱体は取り扱い、加工性が良好で
ある。
The heat insulator of the present invention is formed from fine hollow sphere particles of glass having a specific composition, and its softening temperature is not so high, so that it does not require the use of a binder as in a conventional heat insulator. Bonding can be performed by softening the mutual surfaces of the hollow particles by heating. Therefore, the filling rate of the hollow body in the heat insulator can be extremely increased, so that the heat insulation performance can be increased. Moreover, since the hollow body particles themselves have high strength and the bonding of the hollow body particles is strong, the formed lightweight heat insulator is excellent in handling and workability.

【0014】かくして、本発明によれば、軽量で、耐熱
性、高強度および断熱性に優れ、しかも加工性にも優れ
た軽量断熱体が得られる。以下本発明について詳細に説
明する。
Thus, according to the present invention, it is possible to obtain a lightweight heat insulator which is lightweight, excellent in heat resistance, high strength and heat insulation, and also excellent in workability. Hereinafter, the present invention will be described in detail.

【0015】[0015]

【発明の実施の形態】本発明における断熱体を形成する
ガラスの微小中空球状体は、特定の組成のガラス質から
なるものであり、その粒子は見掛密度も小さく、ほぼ均
一で、かつ中空部の真空度も大きいものが好ましい。こ
こで、粒子の見掛密度は、粒子の質量を粒子の見掛の体
積で除して得られる値である。ガラス質は、SiO2
70〜80%、Na2O:3〜8%、CaO:8〜15
%およびB23:2〜9%を含み、かつB23/Na2
Oの比率が0.3 〜3.0から構成される。本発明で
は、ガラス成分のパーセントおよび比率は、特に断りの
ない限り、質量基準である。B23/Na2Oの比率は
重要であり、かかる比率が小さい場合には、耐候性が低
下し、逆に大きい場合には コストが上昇し、いずれも
好ましくない。B2 3/Na2Oの特に好ましい比率
は、0.5〜2.0である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Forming a heat insulator in the present invention
Micro hollow spheres of glass are made of glass with a specific composition.
The particles have a small apparent density and are almost uniform.
It is preferable that the first and the degree of vacuum in the hollow portion be large. This
Here, the apparent density of a particle is calculated by dividing the mass of the particle by the apparent body of the particle.
It is the value obtained by dividing by the product. Vitreous is SiOTwo:
70-80%, NaTwoO: 3 to 8%, CaO: 8 to 15
% And BTwoOThree: Containing 2 to 9%, and BTwoOThree/ NaTwo
O ratio is 0.3 ~ 3.0. In the present invention
Indicates the percentage and ratio of glass components,
Unless otherwise indicated, mass is based. BTwoOThree/ NaTwoThe ratio of O is
It is important that if the ratio is small, the weather resistance is low.
Lower, and conversely, higher costs increase
Not preferred. BTwoO Three/ NaTwoParticularly preferred ratio of O
Is 0.5 to 2.0.

【0016】上記ガラス質の各成分は、SiO2、Na2
O、CaOおよびB23の4つの成分の他に、他の成分
を含むことができるが、上記4成分の合計が85質量%
以上であることが好ましく、特には90質量%以上が適
切である。他の成分としては、MgO,LiO,P
25,SO3などが必要に応じて含有され、SO3は、中
空体粒子を形成する場合のブローイング剤として硫黄含
有物質が使用される場合には、0.05〜1.0質量%
含有される。
The vitreous components are SiO 2 , Na 2
In addition to the four components of O, CaO and B 2 O 3 , other components can be contained, and the total of the above four components is 85% by mass.
It is preferable that the content be at least 90% by mass. Other components include MgO, LiO, P
2 O 5 , SO 3 and the like are contained as necessary, and SO 3 is contained in an amount of 0.05 to 1.0% by mass when a sulfur-containing substance is used as a blowing agent for forming hollow particles.
Contained.

【0017】本発明で使用されるガラスの微小中空球状
体は、その全体の90%以上のものの粒径が5〜150
μmであるのが好ましい。以下、粒径を範囲で示す場合
に、粒子全体の90%以上がその範囲にあることを示
す。粒径が5μmよりも小さい場合は、得られる断熱体
の充填率が低下し、断熱性が低下してしまい、150μ
mよりも大きい粒径では、断熱体の粒子間の空間が大き
くなり好ましくない。なかでも、上記の粒径が20〜1
10μmが適切である。また、ガラスの微小中空球状体
は、その全体の90%以上のものの見掛密度が0.5g
/cm3以下であるのが好ましい。見掛密度が上記範囲
よりも大きい場合には、得られる断熱体の断熱性能が低
下してしまい、好ましくない。なかでも、見掛密度は、
0.1〜0.35g/cm3であるのが好適である。あ
まりに、小さい見掛密度は中空体粒子の強度が低下して
しまうので好ましくない。
The micro hollow sphere of glass used in the present invention has a particle diameter of 90% or more of the entire glass having a particle size of 5 to 150%.
It is preferably μm. Hereinafter, when the particle size is shown in a range, it is shown that 90% or more of the whole particle is in the range. When the particle size is smaller than 5 μm, the packing ratio of the obtained heat insulator is reduced, and the heat insulating property is reduced.
If the particle size is larger than m, the space between the particles of the heat insulator becomes large, which is not preferable. Above all, the above particle size is 20 to 1
10 μm is appropriate. In addition, the hollow microsphere of glass has an apparent density of 0.5 g or more of 90% or more of the whole.
/ Cm 3 or less. If the apparent density is larger than the above range, the heat insulating performance of the obtained heat insulator is deteriorated, which is not preferable. Above all, apparent density is
Preferably, it is 0.1 to 0.35 g / cm 3 . Too small an apparent density is not preferred because the strength of the hollow particles decreases.

【0018】本発明で使用される上記特性を有するガラ
スの微小中空体は、特開昭63−176338号公報、
特開平3−265542号公報などに記載される方法で
製造され、市販の製品も使用可能である。
The glass hollow body having the above properties used in the present invention is disclosed in JP-A-63-176338,
It is manufactured by the method described in JP-A-3-265542 and the like, and a commercially available product can also be used.

【0019】本発明の断熱体は、上記した複数のガラス
微小中空体の表面を互いに接合し、一体化せしめること
により形成される。好ましくは、複数のガラス微小中空
体を成形型に充填し、ガラス微小中空体の軟化点以上の
温度に加熱することにより、ガラス微小中空体の表面を
溶融して接合される。成形型の形状は、断熱体の使用形
態に応じて所望の形状が選ばれるが、通常は、板状体が
使用される。
The heat insulator of the present invention is formed by joining the surfaces of the above-mentioned plurality of hollow glass micro-objects together and integrating them. Preferably, a plurality of glass micro hollow bodies are filled in a mold and heated to a temperature equal to or higher than the softening point of the glass micro hollow bodies, whereby the surfaces of the glass micro hollow bodies are melted and joined. A desired shape is selected for the shape of the mold according to the use form of the heat insulator, but a plate-like body is usually used.

【0020】上記における加熱温度は、上記のようにそ
の軟化点以上が使用されるが、過度に高い温度にした場
合には、中空体の形状が失われる。本発明者の検討によ
ると、軟化点以上であって軟化点より50℃以内の温度
が好ましく、特には軟化点より30℃以内の温度が適切
であることが判明した。本発明では、例えば、700〜
730℃にて実施される。
The heating temperature in the above is higher than its softening point as described above, but if the temperature is excessively high, the shape of the hollow body is lost. According to the study by the present inventors, it has been found that a temperature that is higher than the softening point and within 50 ° C. from the softening point is preferable, and a temperature within 30 ° C. from the softening point is particularly suitable. In the present invention, for example, 700 to
Performed at 730 ° C.

【0021】本発明の断熱体を形成する場合、上記のよ
うに、特にバインダーを使用する必要はないが、必要に
応じてバインダーを使用することもできる。かかるバイ
ンダーとしては、例えば、セラミックス質のものがこの
ましく、その融点が上記ガラス中空体よりも同じか、ま
たは小さいものが好ましい。バインダーは、ガラス中空
体に対して、2〜10質量%配合されることが好まし
く、ガラス微小中空球状体と予め混合され、上記の成形
型に充填されることが好ましい。
When the heat insulator of the present invention is formed, it is not necessary to use a binder as described above, but a binder can be used if necessary. As such a binder, for example, a ceramic binder is preferable, and a binder having a melting point equal to or lower than that of the glass hollow body is preferable. The binder is preferably blended in an amount of 2 to 10% by mass with respect to the glass hollow body, and is preferably preliminarily mixed with the glass micro hollow spherical body and filled in the above mold.

【0022】本発明により得られる断熱体は、ガラス中
球体の充填率も高く 断熱材として優れた性能を発揮す
る。断熱性を示す指標として、例えば、熱伝導率が あ
るが、この熱伝導率は、一般的には、雰囲気温度が高く
なればなるほど大 きくなり、断熱効果は低下する。例
えば、シラスバルーン、フライアッシュ バルーンのよ
うに従来の断熱材では、25℃での熱伝導率は0.03
Kcal/m・h・℃であるが、250℃では0.07
Kcal/m・h・℃であ り、優れた断熱性の効果は
発揮できない。しかし、本発明の断熱材は、25℃での
熱伝導率が0.025Kcal/m・h・℃以下であ
り、また、250℃での熱伝導率は、0.03Kcal
/m・h・℃以下であり、極めて断 熱性に優れてい
る。
The heat insulator obtained by the present invention has a high filling ratio of the glass spheres and exhibits excellent performance as a heat insulator. As an index indicating the heat insulating property, for example, there is a thermal conductivity. The thermal conductivity generally increases as the ambient temperature increases, and the heat insulating effect decreases. For example, with a conventional heat insulating material such as a shirasu balloon or a fly ash balloon, the thermal conductivity at 25 ° C. is 0.03.
Kcal / m · h · ° C., but 0.07 at 250 ° C.
Kcal / m · h · ° C., and cannot exhibit an excellent heat insulating effect. However, the heat insulating material of the present invention has a thermal conductivity at 25 ° C. of not more than 0.025 Kcal / m · h · ° C., and a thermal conductivity at 250 ° C. of 0.03 Kcal.
/ M · h · ° C or less, and is extremely excellent in heat insulation.

【0023】また、本発明の断熱体は、その材質がガラ
ス質であるので耐熱性は高く 、少なくとも300℃以
上、場合により700℃以上もの耐熱性を示す。ここ
で、耐熱性を示す耐熱温度とは、当該温度で2時間保持
しても断熱体の嵩密度が変化が5%以下である最大の温
度をいう。また、本発明の断熱体の嵩密度は、その構成
体が見掛密度の小さいガラス微小中空球状体であるた
め、0.5g/cm3以下、特には0.3g/cm3であ
り、軽量である。
The heat insulator of the present invention has a high heat resistance because it is made of glass, and exhibits a heat resistance of at least 300 ° C. or more, and sometimes 700 ° C. or more. Here, the heat-resistant temperature indicating the heat resistance refers to the maximum temperature at which the bulk density of the heat insulator changes by 5% or less even when the temperature is maintained for 2 hours. In addition, the bulk density of the heat insulator of the present invention is 0.5 g / cm 3 or less, particularly 0.3 g / cm 3 , since its constituent is a glass micro hollow sphere having a small apparent density. It is.

【0024】さらに、本発明の断熱体は、上記のように
ガラス中空体粒子が互いに一体的に強固に融着してお
り、かつガラス中空体自体も大きい強度を有するため、
強度的にも優れている。また、本発明の断熱体は、上記
のように適宜の成形型にガラス中空体を充填し、加熱溶
融することにより、成形型に応じた成形された強度の大
きい断熱体を容易に得られる。
Further, in the heat insulating body of the present invention, as described above, the glass hollow body particles are integrally and firmly fused to each other, and the glass hollow body itself has high strength.
Also excellent in strength. In addition, the heat insulator of the present invention can easily obtain a high-strength heat insulator molded in accordance with the mold by filling the hollow glass body into an appropriate mold and heating and melting as described above.

【0025】このようにして得られた断熱成形体は、十
分な融着力をもった一体物であり、加工性も良好で、例
えば板状の断熱体は、鋸などにより容易に切断でき、適
宜の形状の断熱体とすることができる。
The heat-insulated molded body obtained in this way is an integral body having a sufficient fusion force and good workability. For example, a plate-shaped heat insulator can be easily cut by a saw or the like. A heat insulator having the following shape can be obtained.

【0026】本発明で得られる断熱体は、居住用の床、
壁材などの建築材料、工場などの設備、冷蔵庫などの家
電製品の部品、レジャー製品などの多くの分野の断熱材
として使用することができる。
The heat insulator obtained according to the present invention can be used for living floors,
It can be used as a heat insulating material in many fields such as building materials such as wall materials, equipment such as factories, parts of home electric appliances such as refrigerators, leisure products and the like.

【0027】[0027]

【実施例】以下に本発明について実施例および比較例を
示す。 実施例1 SiO2:70.5%、Na2O:4.9%、CaO:1
1.1%およびB23:7.8%、さらに、K2O:
0.8%、ZnO:1.0%、P25:1.8%、Al
23:0.9%,Li2O:0.9%,SO3:0.3%
を含み、かつB23/Na2O:1.6であるガラスの
微小中空球状体の粒子(軟化点:700℃、粒径:23
〜105μm、見掛密度:0.2g/cm3) 12g
を、縦、横がいずれも10cm、深さ1cmの箱型のア
ルミナ製容器に充填した。
EXAMPLES Examples and comparative examples of the present invention are shown below. Example 1 SiO 2 : 70.5%, Na 2 O: 4.9%, CaO: 1
1.1% and B 2 O 3: 7.8%, further, K 2 O:
0.8%, ZnO: 1.0%, P 2 O 5: 1.8%, Al
2 O 3 : 0.9%, Li 2 O: 0.9%, SO 3 : 0.3%
And fine hollow spherical particles of glass having a B 2 O 3 / Na 2 O ratio of 1.6 (softening point: 700 ° C., particle size: 23)
105105 μm, apparent density: 0.2 g / cm 3 ) 12 g
Was filled in a box-shaped alumina container 10 cm in length and width and 1 cm in depth.

【0028】これを電気炉に入れ、700℃に保持して
1時間静置した後、このアルミナ容器より成形体を取り
出した。成形体を構成するガラス中空体は、いずれもそ
の表面が軟化し相互に融着し一体化していることが観察
された。かかる成形体の断熱体としての性能を評価し、
その結果を表1に示した。
This was placed in an electric furnace, kept at 700 ° C. and allowed to stand for 1 hour, and then a molded product was taken out of the alumina container. It was observed that the surface of each of the glass hollow bodies constituting the molded body was softened and mutually fused and integrated. Evaluate the performance of such a molded body as a heat insulator,
The results are shown in Table 1.

【0029】実施例2 実施例1と同じガラス質からなり、見掛密度が0.4g
/cm3であるガラス微小中空球体を使用した他は、実
施例1と同様に実施することにより成形体を製造した。
この成形体の断熱材としての性能を評価し、その結果を
表1に示す。
Example 2 The same glass material as in Example 1 was used, and the apparent density was 0.4 g.
A molded article was produced in the same manner as in Example 1 except that a hollow glass sphere having a diameter of / cm 3 was used.
The performance of this molded body as a heat insulating material was evaluated, and the results are shown in Table 1.

【0030】実施例3 SiO2:73.6%、Na2O:7.7%、CaO:
7.9%およびB23:5.5%、さらに、K2O:
0.4%、ZnO:1.1%、P25:1.8%、Al
23:0.8%,Li2O:0.8%,Fe23:0.
2%,SO3:0.3%を含み、かつB23/Na2O:
0.7であるガラスの微小中空体粒子(軟化点:700
℃、粒径:21〜107μm、見掛密度:0.3/cm
3)を使用した他は、実施例1と同様に実施することに
より成形体を製造した。この成形体の断熱材としての性
能を評価し、その結果を表1に示す。
Example 3 SiO 2 : 73.6%, Na 2 O: 7.7%, CaO:
7.9% and B 2 O 3: 5.5%, further, K 2 O:
0.4%, ZnO: 1.1%, P 2 O 5: 1.8%, Al
2 O 3 : 0.8%, Li 2 O: 0.8%, Fe 2 O 3 : 0.
2%, SO 3 : 0.3%, and B 2 O 3 / Na 2 O:
0.7 hollow glass particles (softening point: 700)
° C, particle size: 21-107 µm, apparent density: 0.3 / cm
A molded article was produced in the same manner as in Example 1 except that 3 ) was used. The performance of this molded body as a heat insulating material was evaluated, and the results are shown in Table 1.

【0031】実施例4 実施例1と同じガラス質からなり、見掛密度が0.7g
/cm3であるガラス微小中空球体を使用した他は、実
施例1と同様に実施することにより成形体を製造した。
この成形体の断熱材としての性能を評価し、その結果を
表1に示す。
Example 4 The same glassy material as in Example 1 was used, and the apparent density was 0.7 g.
A molded article was produced in the same manner as in Example 1 except that a hollow glass sphere having a diameter of / cm 3 was used.
The performance of this molded body as a heat insulating material was evaluated, and the results are shown in Table 1.

【0032】比較例1 実施例1において、ガラス微小中空体の代わりに、見掛
密度が0.7g/cm 3、粒径が2〜30μm、軟化点
が1050℃のシラスバルーン(成分、SiO2:7
0.0%、Na2O:2.3%、CaO:1.9%、K2
O:3.3%、MgO:0.3%、Al23:15.5
%,Fe23:0.2%、LoI:5.0%、なお、L
oIは、1000℃の減量%)を使用し、アルミナ容器
における保持温度を1050℃にして実施した他は実施
例1と同様に実施することにより、成形体を製造した。
この成形体の断熱材としての性能を評価し、その結果を
表2に示す。
Comparative Example 1 In Example 1, instead of the glass micro hollow body, an apparent
0.7g / cm density Three, Particle size is 2-30 μm, softening point
Is a 1050 ° C. shirasu balloon (component, SiOTwo: 7
0.0%, NaTwoO: 2.3%, CaO: 1.9%, KTwo
O: 3.3%, MgO: 0.3%, AlTwoOThree: 15.5
%, FeTwoOThree: 0.2%, LoI: 5.0%, and L
oI: 1000 ° C weight loss%), using an alumina container
Performed except that the holding temperature at
By carrying out in the same manner as in Example 1, a molded article was produced.
The performance of this molded body as a heat insulating material was evaluated, and the results
It is shown in Table 2.

【0033】比較例2 実施例1において、ガラス微小中空体の代わりに、見掛
密度が0.6g/cm 3、粒径が40〜200μm、軟
化点が1020℃のフライアッシュバルーン(成分、S
iO2:60.8%、Na2O:1.8%、CaO:0.
8%、K2O:2.2%、Al23:28.3%、Fe2
3:2.4%、MgO:1.7、LoI:2%,な
お、LoIは、1000℃の減量%)を使用し、アルミ
ナ容器における保持温度を1050℃にした他は実施例
1と同様に実施することにより、成形体を製造した。こ
の成形体の断熱材としての性能を評価し、その結果を表
2に示す。
Comparative Example 2 In Example 1, instead of the glass micro hollow body, an apparent
0.6g / cm density Three, Particle size 40 ~ 200μm, soft
Fly ash balloon having a crystallization point of 1020 ° C (component, S
iOTwo: 60.8%, NaTwoO: 1.8%, CaO: 0.
8%, KTwoO: 2.2%, AlTwoOThree: 28.3%, FeTwo
OThree: 2.4%, MgO: 1.7, LoI: 2%,
In addition, LoI uses 1000 ° C weight loss%) and uses aluminum
Example except that the holding temperature in the container was set to 1050 ° C.
By performing in the same manner as in Example 1, a molded body was produced. This
The performance of the molded body as a heat insulating material was evaluated, and the results were displayed.
It is shown in FIG.

【0034】比較例3 比較例2において、バインダーとして水ガラスをガラス
中空体に対して6質量%を使用した他は比較例1と同様
に実施することにより、成形体を製造した。この成形体
の断熱材としての性能を評価し、その結果を表2に示
す。
Comparative Example 3 A molded article was produced in the same manner as in Comparative Example 2, except that water glass was used as a binder in an amount of 6% by mass based on the glass hollow body. The performance of this molded article as a heat insulating material was evaluated, and the results are shown in Table 2.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明の断熱体は、特定の組成を有する
ガラスの微小中空球状体からなるので、その粒子は見掛
密度も小さく、均一で、かつ中空部の真空度も大きく、
大きさも均一である。その上に中空体の軟化温度も高く
ないので、従来の中空体の断熱体のようにバインダーを
使用せずとも中空体粒子の相互の表面を加熱による融着
により接合するので断熱体における中空体の充填率を極
めて大きくでき、従って断熱性能を極めて大きくするこ
とができる。しかも、中空粒子自体の強度が大きい上に
中空粒子の接合も強固であるので形成された断熱体は取
り扱い、加工性が良好である。
Since the heat insulator of the present invention is made of a fine hollow sphere of glass having a specific composition, the particles have a small apparent density, are uniform, and have a large vacuum degree in the hollow portion.
The size is also uniform. Furthermore, since the softening temperature of the hollow body is not high, the mutual surfaces of the hollow body particles are joined by fusion by heating without using a binder unlike the conventional hollow body heat insulator, so the hollow body in the heat insulator Can be extremely increased, and thus the heat insulation performance can be extremely increased. Moreover, the strength of the hollow particles themselves is high and the bonding of the hollow particles is strong, so that the formed heat insulator is excellent in handling and workability.

【0038】かくして、本発明によれば、軽量で、耐熱
性、高強度および断熱性に優れ、しかも加工性にも優れ
た軽量断熱体およびその製造法が提供される。
Thus, according to the present invention, there is provided a lightweight heat insulator which is lightweight, excellent in heat resistance, high strength and heat insulation, and also excellent in workability, and a method for producing the same.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2E001 DD01 DD05 DH39 FA03 FA11 FA26 GA09 GA12 GA81 GA86 HA11 JA14 4G019 GA01 GA02 LA03 LB02  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2E001 DD01 DD05 DH39 FA03 FA11 FA26 GA09 GA12 GA81 GA86 HA11 JA14 4G019 GA01 GA02 LA03 LB02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】SiO2:70〜80%、Na2O:3〜8
%、CaO:8〜15%およびB23:2〜9%を含
み、かつB23/Na2Oの比率が0.3 〜3.0であ
るガラス微小中空球状体の複数の粒子の表面が互いに接
合され、―体化されていることを特徴とする軽量断熱
体。
1. A SiO 2: 70~80%, Na 2 O: 3~8
% CaO: 8 to 15% and B 2 O 3: comprises 2-9% and B 2 O 3 / Na 2 O ratio of 0.3 A lightweight heat insulator characterized in that the surfaces of a plurality of particles of a hollow glass microsphere having a particle size of up to 3.0 are joined to each other to form a body.
【請求項2】ガラス微小中空球状体の90%以上が、粒
径5〜150μmの範囲にあり、かつ見掛密度0.5g
/cm3以下である請求項1に記載の軽量断熱体。
2. 90% or more of the hollow glass microspheres have a particle size of 5 to 150 μm and an apparent density of 0.5 g.
2 / cm 3 or less.
【請求項3】耐熱温度が300℃以上である請求項1ま
たは2に記載の軽量断熱体
3. The lightweight heat insulator according to claim 1, which has a heat resistant temperature of 300 ° C. or higher.
【請求項4】SiO2:70〜80%、Na2O:3〜8
%、CaO:8〜15%およびB23:2〜9%を含
み、かつB23/Na2Oの比率が0.3 〜3.0であ
るガラス微小中空球状体の複数の粒子を成形型に充填
し、該微小中空球状体の軟化点以上の温度でその表面を
溶融して接合して一体化させることを特徴とする軽量断
熱体の製造方法。
4. SiO 2 : 70-80%, Na 2 O: 3-8
% CaO: 8 to 15% and B 2 O 3: comprises 2-9% and B 2 O 3 / Na 2 O ratio of 0.3 A plurality of particles of a glass micro hollow sphere having a size of ~ 3.0 are filled in a mold, and the surface is melted and joined at a temperature equal to or higher than the softening point of the micro hollow sphere to be integrated. Manufacturing method of lightweight insulation.
【請求項5】前記軟化点以上の温度が、軟化点との差が
50℃の以下である請求項4に記載の軽量断熱体の製造
方法
5. The method for manufacturing a lightweight heat insulator according to claim 4, wherein the difference between the temperature above the softening point and the softening point is 50 ° C. or less.
JP2000257317A 2000-08-28 2000-08-28 Lightweight heat insulation and its production method Withdrawn JP2002068853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000257317A JP2002068853A (en) 2000-08-28 2000-08-28 Lightweight heat insulation and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000257317A JP2002068853A (en) 2000-08-28 2000-08-28 Lightweight heat insulation and its production method

Publications (1)

Publication Number Publication Date
JP2002068853A true JP2002068853A (en) 2002-03-08

Family

ID=18745792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000257317A Withdrawn JP2002068853A (en) 2000-08-28 2000-08-28 Lightweight heat insulation and its production method

Country Status (1)

Country Link
JP (1) JP2002068853A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484892B1 (en) * 2002-08-28 2005-04-28 재단법인서울대학교산학협력재단 Self-foamed Porous Ceramic Compositions and Method for Making Porous Ceramic Using the Same
JP2006501625A (en) * 2002-05-15 2006-01-12 キャボット コーポレイション Heat resistant insulating composite and method of manufacturing the same
CN105314998A (en) * 2014-07-29 2016-02-10 金承黎 Heat-insulation mortar taking ettringite colloid as template agent and preparation method for heat-insulation mortar
US9540276B2 (en) 2012-06-06 2017-01-10 3M Innovative Properties Company Low density glass particles with low boron content
US20170157890A1 (en) * 2015-12-08 2017-06-08 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10605519B2 (en) 2015-12-08 2020-03-31 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006501625A (en) * 2002-05-15 2006-01-12 キャボット コーポレイション Heat resistant insulating composite and method of manufacturing the same
KR100484892B1 (en) * 2002-08-28 2005-04-28 재단법인서울대학교산학협력재단 Self-foamed Porous Ceramic Compositions and Method for Making Porous Ceramic Using the Same
US10697697B2 (en) 2012-04-02 2020-06-30 Whirlpool Corporation Vacuum insulated door structure and method for the creation thereof
US10746458B2 (en) 2012-04-02 2020-08-18 Whirlpool Corporation Method of making a folded vacuum insulated structure
US10663217B2 (en) 2012-04-02 2020-05-26 Whirlpool Corporation Vacuum insulated structure tubular cabinet construction
US10350817B2 (en) 2012-04-11 2019-07-16 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9540276B2 (en) 2012-06-06 2017-01-10 3M Innovative Properties Company Low density glass particles with low boron content
US10828844B2 (en) 2014-02-24 2020-11-10 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
CN105314998B (en) * 2014-07-29 2017-07-11 金承黎 A kind of entringite colloid is thermal insulation mortar of template and preparation method thereof
CN105314998A (en) * 2014-07-29 2016-02-10 金承黎 Heat-insulation mortar taking ettringite colloid as template agent and preparation method for heat-insulation mortar
US10365030B2 (en) 2015-03-02 2019-07-30 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US11243021B2 (en) 2015-03-05 2022-02-08 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US11713916B2 (en) 2015-03-05 2023-08-01 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US10731915B2 (en) 2015-03-11 2020-08-04 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US10345031B2 (en) 2015-07-01 2019-07-09 Whirlpool Corporation Split hybrid insulation structure for an appliance
US11247432B2 (en) 2015-12-08 2022-02-15 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US11009288B2 (en) 2015-12-08 2021-05-18 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10105928B2 (en) 2015-12-08 2018-10-23 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US10661527B2 (en) 2015-12-08 2020-05-26 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
EP3387317A4 (en) * 2015-12-08 2019-10-23 Whirlpool Corporation Insulating material and a method of its formation
US11787151B2 (en) 2015-12-08 2023-10-17 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10605519B2 (en) 2015-12-08 2020-03-31 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10907886B2 (en) 2015-12-08 2021-02-02 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US20170157890A1 (en) * 2015-12-08 2017-06-08 Whirlpool Corporation Super insulating nano-spheres for appliance insulation and method for creating a super insulating nano-sphere material
US11555643B2 (en) 2015-12-09 2023-01-17 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10808987B2 (en) 2015-12-09 2020-10-20 Whirlpool Corporation Vacuum insulation structures with multiple insulators
US10914505B2 (en) 2015-12-21 2021-02-09 Whirlpool Corporation Vacuum insulated door construction
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US10514198B2 (en) 2015-12-28 2019-12-24 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11577446B2 (en) 2015-12-29 2023-02-14 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11752669B2 (en) 2015-12-30 2023-09-12 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
US11009284B2 (en) 2016-04-15 2021-05-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US11609037B2 (en) 2016-04-15 2023-03-21 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
US10712080B2 (en) 2016-04-15 2020-07-14 Whirlpool Corporation Vacuum insulated refrigerator cabinet
US11320193B2 (en) 2016-07-26 2022-05-03 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
US11175090B2 (en) 2016-12-05 2021-11-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US11867452B2 (en) 2016-12-05 2024-01-09 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US11543172B2 (en) 2019-02-18 2023-01-03 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface

Similar Documents

Publication Publication Date Title
JP2002068853A (en) Lightweight heat insulation and its production method
Vakifahmetoglu et al. Closed porosity ceramics and glasses
RU2277075C2 (en) Porous sound-absorbing ceramic article and method of production of such article (versions)
AU590393B2 (en) Inorganic fiber composition
CN103249684B (en) Hollow microspheres and the method preparing hollow microspheres
JPS58156551A (en) Glass bubble
JP2007211963A (en) Inorganic fiber block
US20190337838A1 (en) Chemical Composition for Production of Hollow Spherical Glass Particles with High Compressive Strength
US4054435A (en) Method of crystallizing a two layer glass article
JP2016061421A (en) Thermal insulation material and its process of manufacture
US7354542B1 (en) Lightweight, heat insulating, high mechanical strength shaped product and method of producing the same
JP2002193684A (en) Porous sound absorbing ceramic compact and its manufacturing method
US20020038919A1 (en) Method for the manufacture of foamed materials from inorganic oxygen-containing natural and synthesized crystalline, vitreous or amorphous materials
JPS6116753B2 (en)
JP3994233B2 (en) Porous ceramic product and manufacturing method thereof
JP2007211958A (en) Inorganic fiber block
JPS5828210B2 (en) Kobutsu Sen Imataha Beads Seibutsu
JPH0324414B2 (en)
JPS5815045A (en) Production of foam glass
JPS605534B2 (en) Method for manufacturing inorganic vitreous foam
JPH0224779B2 (en)
CN102690064B (en) Porous glass membrane tube and its preparation method
JPS5815062A (en) Manufacture of ceramic foam
JPH04305030A (en) Production of foamed-glass formed body
JP3875162B2 (en) Acoustic matching layer material

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106