JP2016061421A - Thermal insulation material and its process of manufacture - Google Patents

Thermal insulation material and its process of manufacture Download PDF

Info

Publication number
JP2016061421A
JP2016061421A JP2014192216A JP2014192216A JP2016061421A JP 2016061421 A JP2016061421 A JP 2016061421A JP 2014192216 A JP2014192216 A JP 2014192216A JP 2014192216 A JP2014192216 A JP 2014192216A JP 2016061421 A JP2016061421 A JP 2016061421A
Authority
JP
Japan
Prior art keywords
fiber
heat insulating
inorganic
insulating material
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014192216A
Other languages
Japanese (ja)
Other versions
JP5683739B1 (en
Inventor
晋也 黒瀬
Shinya Kurose
晋也 黒瀬
誉道 鈴木
Takamichi Suzuki
誉道 鈴木
角村 尚紀
Hisanori Tsunomura
尚紀 角村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isolite Insulating Products Co Ltd
Original Assignee
Isolite Insulating Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isolite Insulating Products Co Ltd filed Critical Isolite Insulating Products Co Ltd
Priority to JP2014192216A priority Critical patent/JP5683739B1/en
Application granted granted Critical
Publication of JP5683739B1 publication Critical patent/JP5683739B1/en
Publication of JP2016061421A publication Critical patent/JP2016061421A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a less-expensive thermal insulation material comprising inorganic fiber, fumed silica and/or fumed alumina and inorganic powder; showing a low coefficient of thermal conductivity, a superior heat insulation property and at the same time a superior processability or workability, a low dust emission, providing both vibration resistance and water resistance, a low shrinkage in thickness direction after repeated heating and in particular a superior strength.SOLUTION: This invention shows that a weight ratio between ceramic fiber and glass fiber is 0.2 to 2.0, a glass fiber melts and adheres other compositions through calcination, three-point flexure strength at normal temperature is 0.9 MPa or more, thermal conductivity [600°C] is 0.085 W/[m*K] or less. If inorganic fiber with a total amount of non-fibrous particles (shot) being reduced to 20 wt% or less of the entire fiber is used, it is possible that three-point flexure strength at normal temperature is 0.9 MPa or more and thermal conductivity is 0.065 W/[m*K] or less.SELECTED DRAWING: None

Description

本発明は、無機繊維を使用した断熱材及びその製造方法に関し、更に詳しくは低熱伝導率であって放熱によるエネルギーロスを抑制することができると共に、耐水性に優れ、加工性が高く、しかも優れた強度を有する無機繊維質の断熱材及びその製造方法に関する。   The present invention relates to a heat insulating material using inorganic fibers and a method for producing the same, and more specifically, has low thermal conductivity and can suppress energy loss due to heat dissipation, and is excellent in water resistance, high workability, and excellent. The present invention relates to an inorganic fibrous heat insulating material having high strength and a method for producing the same.

近年、省エネルギー化の観点から放熱によるエネルギーロスを抑制するため、工業炉等の産業設備に使用する断熱材には益々低熱伝導率の断熱材が望まれている。また、例えば燃料電池やその改質器に使用されるような断熱材料としては、数百度から800℃程度までの中温域におけるエネルギーロスの抑制に加えて、低発塵性、繰り返し加熱での形状安定性や強度を兼ね備える必要があり、これらの要求を満たす断熱材も求められている。   In recent years, in order to suppress energy loss due to heat dissipation from the viewpoint of energy saving, heat insulating materials with low thermal conductivity are increasingly desired as heat insulating materials used in industrial equipment such as industrial furnaces. In addition, as a heat insulating material used in, for example, a fuel cell and its reformer, in addition to suppressing energy loss in the middle temperature range from several hundred degrees to about 800 ° C., it has a low dust generation property and a shape by repeated heating. It is necessary to combine stability and strength, and a heat insulating material that satisfies these requirements is also demanded.

従来から、産業設備に使用する断熱材としては、無機繊維を母材として構成した断熱材が使用されてきた。例えば特許文献1には、シリカアルミナ繊維等の無機繊維を水に分散させたスラリーに無機粒子を加え、更にシリカゾルのような無機バインダーと凝集剤を添加して、脱水成形することにより製造された無機繊維質の断熱材が記載されている。この種の断熱材は、高温まで使用でき且つ強度的に優れているが、600℃での熱伝導率は0.10W/(m・K)を超え、満足できる断熱性能とはいえなかった。   Conventionally, as a heat insulating material used for industrial equipment, a heat insulating material composed of inorganic fibers as a base material has been used. For example, Patent Document 1 is manufactured by adding inorganic particles to a slurry in which inorganic fibers such as silica alumina fibers are dispersed in water, adding an inorganic binder such as silica sol, and an aggregating agent, followed by dehydration molding. An inorganic fibrous insulation is described. This type of heat insulating material can be used up to a high temperature and is excellent in strength, but the heat conductivity at 600 ° C. exceeds 0.10 W / (m · K), and it cannot be said that the heat insulating performance is satisfactory.

一方、特許文献2には、粒径50nm以下の微粒子シリカを用いて粒子間の空隙サイズを小さくし、気体の伝導伝熱を抑制することで低熱伝導率化させ、補強のために無機繊維を混合して圧縮成形した断熱材が記載されている。この粒径50nm以下の微粒子シリカを使用した断熱材は、微細な多孔構造を有することで断熱性能が最大限になるように設計されている。このような断熱材はマイクロポーラス断熱材と称され、600℃での熱伝導率が0.045W/(m・K)を下回り、優れた断熱性能を有している反面、強度が低く、特に粉塵が発生しやすく、粉立ち(表面に微粉が付着し、また付着している微粉が飛散する現象)が多いため、加工性が悪い、施工性に劣るなどの問題があった。   On the other hand, in Patent Document 2, the size of voids between particles is reduced using fine particle silica having a particle size of 50 nm or less, the thermal conductivity is reduced by suppressing the conduction heat transfer of gas, and inorganic fibers are used for reinforcement. A heat insulating material mixed and compression molded is described. The heat insulating material using the fine particle silica having a particle size of 50 nm or less is designed so that the heat insulating performance is maximized by having a fine porous structure. Such a heat insulating material is called a microporous heat insulating material, and its thermal conductivity at 600 ° C. is less than 0.045 W / (m · K), and has excellent heat insulating performance, but its strength is low. There are problems such as poor workability and inferior workability because dust is likely to be generated and there is a lot of dusting (a phenomenon in which fine powder adheres to the surface and the adhering fine powder scatters).

このようなマイクロポーラス断熱材の問題点を補うために、上記特許文献2では断熱材を金属容器に充填している。また、特許文献3には、一般的な無機繊維を母材とする断熱材について、繊維製の被覆材で覆うことにより崩壊や粉塵の発生を防止する方法が記載されている。更に、特許文献4には、ナノ無機粒子を圧縮成形してなる断熱性成形体上にリン酸アルミニウムを含む下地層を形成し、その上にモルタル層を形成することによって、表層の欠けや割れを防止する方法が記載されている。しかし、上記した断熱材を金属容器や被覆材で覆う方法や、断熱材上にモルタル層等を形成する方法は、作製に手間がかかりコストアップを招くうえ、寸法精度が低下してしまうという問題があった。   In order to make up for the problem of such a microporous heat insulating material, in Patent Document 2, the heat insulating material is filled in a metal container. Patent Document 3 describes a method of preventing collapse and generation of dust by covering a general heat insulating material made of inorganic fibers with a covering material made of fiber. Furthermore, in Patent Document 4, a base layer containing aluminum phosphate is formed on a heat insulating molded body formed by compression molding of nano-inorganic particles, and a mortar layer is formed thereon, whereby the surface layer is chipped or cracked. A method for preventing this is described. However, the method of covering the above-mentioned heat insulating material with a metal container or a covering material, and the method of forming a mortar layer etc. on the heat insulating material are troublesome to produce and increase the cost, and the dimensional accuracy is reduced. was there.

特開2012−140311号公報JP 2012-144031 A 特許第4860005号公報Japanese Patent No. 4860005 特開2012−149658号公報JP 2012-149658 A 特開2014−088015号公報JP 2014-088015 A

上記したように、従来の無機繊維質の断熱材は、常温での3点曲げ強度が0.4〜0.5MPaと強度的には優れているが、600℃における熱伝導率は0.120〜0.140W/(m・K)であるため断熱性能が不十分であった。一方、マイクロポーラス断熱材は、600℃における熱伝導率が0.045W/(m・K)以下で優れた断熱性能を持つが、常温での3点曲げ強度が0.15MPa以下と低いためハンドリング時に端部の欠けや割れなどが生じやすく、また脆いために加工性や施工性に劣っている。   As described above, the conventional inorganic fibrous heat insulating material is excellent in strength at a three-point bending strength of 0.4 to 0.5 MPa at room temperature, but the thermal conductivity at 600 ° C. is 0.120. Since it was ˜0.140 W / (m · K), the heat insulating performance was insufficient. On the other hand, the microporous heat insulating material has excellent heat insulation performance at 600 ° C. with a thermal conductivity of 0.045 W / (m · K) or less, but the three-point bending strength at room temperature is as low as 0.15 MPa or less. Occasionally chipping or cracking of the end portion is likely to occur, and since it is brittle, it is inferior in workability and workability.

また、従来の無機繊維質の断熱材及びマイクロポーラス断熱材は、表層が脆く発塵性があるため、粉立ち(表面に微粉が付着したり、付着している微粉が飛散したりする現象)が起こりやすいことが問題となっており、特にマイクロポーラス断熱材では顕著である。断熱材を繊維製被覆材で被覆して発塵を防止したり、モルタル層等を形成して割れや欠けを防いだりすることは可能であるが、繊維製被覆材やモルタル層等の形成には寸法精度や手間等の問題があり、コスト面や使用面での新たな課題も生じている。   In addition, the conventional inorganic fibrous heat insulating material and microporous heat insulating material are dusty because the surface layer is brittle and dusty (a phenomenon in which fine powder adheres to the surface, or the fine powder that adheres scatters) This is a problem, especially in the case of a microporous heat insulating material. It is possible to prevent the generation of dust by covering the heat insulating material with a fiber coating material, or to prevent cracking and chipping by forming a mortar layer, etc., but for the formation of a fiber coating material or a mortar layer, etc. There are problems such as dimensional accuracy and labor, and new problems in terms of cost and use have also arisen.

特に最近では、工業炉、溶解炉、加熱炉のほか、燃料電池用の断熱材として上記無機繊維質の断熱材やマイクロポーラス断熱材が期待され、組み合わせや複合構造での低熱伝導率化が行われているが、それぞれの部材で低い熱伝導率と十分な強度とを同時に満足することはできず、発塵の抑制も不十分であった。また、燃料電池用の断熱材では更に耐水性や耐振動性が要求されるが、特にマイクロポーラス断熱材では満足し得るものではなかった。更に、繰り返し加熱後の厚み方向の収縮が小さいことも燃料電池用断熱材には要求されている。   In particular, in addition to industrial furnaces, melting furnaces, and heating furnaces, the above-mentioned inorganic fibrous heat insulating materials and microporous heat insulating materials are expected as heat insulating materials for fuel cells, and low thermal conductivity has been achieved in combinations and composite structures. However, each member cannot satisfy both low thermal conductivity and sufficient strength at the same time, and the suppression of dust generation is insufficient. Further, the heat insulating material for the fuel cell is required to have further water resistance and vibration resistance, but the microporous heat insulating material is not satisfactory. Further, the heat insulation material for fuel cells is required to have small shrinkage in the thickness direction after repeated heating.

本発明は、上記した従来の無機繊維質断熱材やマイクロポーラス断熱材の問題点に鑑みてなされたものであり、熱伝導率が低く断熱性能に優れていると同時に、加工性や施工性にも優れ、低い発塵性と、耐振動性及び耐水性を兼ね備え、繰り返し加熱後の厚み方向の収縮が小さく、特に強度において優れた断熱材を安価に提供することを目的とする。   The present invention has been made in view of the problems of the above-described conventional inorganic fibrous heat insulating materials and microporous heat insulating materials, and has low heat conductivity and excellent heat insulating performance, and at the same time, has excellent workability and workability. Another object of the present invention is to provide a heat insulating material that has low dust generation, vibration resistance, and water resistance, has small shrinkage in the thickness direction after repeated heating, and is particularly excellent in strength at low cost.

上記目的を達成するため、本発明が提供する第1の断熱材は、無機繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とからなる断熱材であって、無機繊維としてセラミックファイバー及びガラス繊維を含み、セラミックファイバーとガラス繊維の重量比が0.2〜2.0の範囲内にあり、かさ密度が320〜600kg/m、常温での3点曲げ強度が0.9MPa以上、600℃における熱伝導率が0.085W/(m・K)以下であることを特徴とする。 In order to achieve the above object, the first heat insulating material provided by the present invention is a heat insulating material comprising inorganic fibers, fumed silica and / or fumed alumina, and inorganic powder particles, and ceramics are used as the inorganic fibers. Including fiber and glass fiber, the weight ratio of ceramic fiber to glass fiber is in the range of 0.2-2.0, bulk density is 320-600kg / m 3 , 3-point bending strength at room temperature is 0.9MPa As described above, the thermal conductivity at 600 ° C. is 0.085 W / (m · K) or less.

また、本発明が提供する第2の断熱材は、無機繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とからなる断熱材であって、無機繊維に含まれる非繊維状粒子(ショットとも言う)の合計量が該繊維全体の20重量%以下であり、無機繊維としてセラミックファイバー及びガラス繊維を含み、セラミックファイバーとガラス繊維の重量比が0.2〜2.0の範囲内にあり、かさ密度が320〜600kg/m、常温での3点曲げ強度が0.9MPa以上、600℃における熱伝導率が0.065W/(m・K)以下であることを特徴とする。 Moreover, the second heat insulating material provided by the present invention is a heat insulating material comprising inorganic fibers, fumed silica and / or fumed alumina, and inorganic powder particles, and non-fibrous particles contained in the inorganic fibers. The total amount of (also referred to as a shot) is 20% by weight or less of the entire fiber, includes ceramic fiber and glass fiber as inorganic fiber, and the weight ratio of ceramic fiber to glass fiber is in the range of 0.2 to 2.0 The bulk density is 320 to 600 kg / m 3 , the three-point bending strength at normal temperature is 0.9 MPa or more, and the thermal conductivity at 600 ° C. is 0.065 W / (m · K) or less. .

また、本発明が提供する断熱材の製造方法は、無機繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とを原料とする断熱材の製造方法であって、上記無機繊維としてセラミックファイバー及びガラス繊維を用い、上記各原料を混合し且つセラミックファイバーとガラス繊維の重量比が0.2〜2.0の範囲内となるように調整し、かさ密度が320〜600kg/mとなるように型を用いて圧縮成形した後、800〜950℃の温度で焼成することを特徴とする。 Moreover, the manufacturing method of the heat insulating material provided by the present invention is a method for manufacturing a heat insulating material using inorganic fibers, fumed silica and / or fumed alumina, and inorganic powder particles as raw materials. Using ceramic fiber and glass fiber, the above raw materials are mixed and the weight ratio of ceramic fiber and glass fiber is adjusted to be in the range of 0.2 to 2.0, and the bulk density is 320 to 600 kg / m 3. It is characterized by firing at a temperature of 800 to 950 ° C. after compression-molding using a mold.

本発明によれば、熱伝導率(600℃)が0.085W/(m・K)以下と低く、マイクロポーラス断熱材と同等程度の優れた断熱性能を有すると同時に、常温での3点曲げ強度が0.9MPa以上と高く、従来の無機繊維質断熱材よりも優れた強度を備え、加工性や施工性に優れているうえ、低発塵性及び耐水性を兼ね備えた第1の断熱材を安価に提供することができる。   According to the present invention, the thermal conductivity (600 ° C.) is as low as 0.085 W / (m · K) or less, and has excellent heat insulation performance comparable to that of a microporous heat insulating material, and at the same time, three-point bending at room temperature The first heat insulating material having a strength as high as 0.9 MPa or more, superior strength to conventional inorganic fibrous heat insulating materials, excellent workability and workability, and also has low dust generation and water resistance. Can be provided at low cost.

また、本発明によれば、非繊維状粒子(ショット)の合計量を繊維全体の20重量%以下に低減した無機繊維を用いることによって、熱伝導率(600℃)を0.065W/(m・K)以下と第1の断熱材よりも一層の低下させた第2の断熱材を提供することができる。従って、本発明の断熱材は、工業炉等の産業設備用としては勿論のこと、燃料電池用としても極めて有用である。   Moreover, according to the present invention, by using inorganic fibers in which the total amount of non-fibrous particles (shots) is reduced to 20% by weight or less of the total fibers, the thermal conductivity (600 ° C.) is 0.065 W / (m K) It is possible to provide a second heat insulating material that is further lowered than the following and the first heat insulating material. Therefore, the heat insulating material of the present invention is extremely useful not only for industrial facilities such as industrial furnaces but also for fuel cells.

本発明による断熱材は、無機繊維としてのセラミックファイバー及びガラス繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とからなる断熱材であって、セラミックファイバーとガラス繊維の重量比が0.2〜2.0の範囲内にある。特に、無機繊維としてセラミックファイバーと共に軟化温度の低いガラス繊維を使用し、焼成によりガラス繊維を溶融させることによって、セラミックファイバー、フュームドシリカやフュームドアルミナ、無機粉末粒子を互いに融着させることで、断熱性に優れるだけでなく、常温での3点曲げ強度が0.9MPa以上の高強度化を達成しており、その結果、端部の欠け抵抗性が向上している。   The heat insulating material according to the present invention is a heat insulating material comprising ceramic fibers and glass fibers as inorganic fibers, fumed silica and / or fumed alumina, and inorganic powder particles, wherein the weight ratio of the ceramic fibers to the glass fibers is It is in the range of 0.2 to 2.0. In particular, by using glass fibers having a low softening temperature together with ceramic fibers as inorganic fibers, by melting the glass fibers by firing, the ceramic fibers, fumed silica, fumed alumina, and inorganic powder particles are fused together, Not only is it excellent in heat insulation, but it has also achieved a high strength with a three-point bending strength of 0.9 MPa or more at room temperature, and as a result, the chip resistance at the end is improved.

上記した熱伝導率及び強度などの優れた特性を有する本発明の断熱材を得るためには、原料である無機繊維としてのセラミックファイバーとガラス繊維の重量比、即ちセラミックファイバー/ガラス繊維の重量比が0.2〜2.0の範囲内にあることが必要であり、更にはセラミックファイバー/ガラス繊維の重量比が0.5〜1.0の範囲内にあることが好ましい。セラミックファイバー/ガラス繊維の重量比が0.2未満では焼成の際に断熱材の収縮が大きくなり、焼成による融着後の固体伝導が高くなるため熱伝導率が高くなってしまう。また、セラミックファイバー/ガラス繊維の重量比が2.0を超えても、更なる高強度化の効果は得られない。   In order to obtain the heat insulating material of the present invention having excellent characteristics such as the above-described thermal conductivity and strength, the weight ratio of ceramic fibers and glass fibers as inorganic fibers as raw materials, that is, the weight ratio of ceramic fibers / glass fibers. In the range of 0.2 to 2.0, and the weight ratio of ceramic fiber / glass fiber is preferably in the range of 0.5 to 1.0. When the weight ratio of ceramic fiber / glass fiber is less than 0.2, the thermal insulation shrinks at the time of firing, and the solid conductivity after fusion by firing becomes high, so that the thermal conductivity becomes high. Moreover, even if the weight ratio of ceramic fiber / glass fiber exceeds 2.0, the effect of further strengthening cannot be obtained.

また、一般には、断熱材の内部に大きな気孔が存在すると、気体の対流伝熱及び気体分子の衝突による伝熱が促進されるため熱伝導率は高くなるが、逆に断熱材内部の気孔が小さいと、比表面積が増大して熱反射効果が大きくなるため、熱伝導率が低下することになる。従って、上記断熱材の原料については、無機粒子として通常の無機粉末粒子と共に、平均粒子径が50nm以下と小さいフュームドシリカ及び/又はフュームドアルミナを使用することにより、内部の気孔を小さくし、気体の対流伝熱や気体分子の衝突による伝熱を抑制して、熱伝導率の低下を図っている。   In general, if there are large pores inside the heat insulating material, the heat conductivity is increased because the convective heat transfer of gas and the heat transfer by collision of gas molecules are promoted. If it is small, the specific surface area is increased and the heat reflection effect is increased, so that the thermal conductivity is lowered. Therefore, for the heat insulating material, by using fumed silica and / or fumed alumina having an average particle size of 50 nm or less as well as normal inorganic powder particles as inorganic particles, the internal pores are reduced, Thermal conductivity is reduced by suppressing convective heat transfer of gas and heat transfer caused by collision of gas molecules.

本発明の断熱材では、無機繊維として上記したようにセラミックファイバーとガラス繊維を併用する。ここで、セラミックファイバーは、耐火物としての実用温度が1000℃以上の耐熱繊維であり、アルミナ繊維、シリカ繊維、シリカアルミナ繊維、シリカアルミナジルコニア繊維、ジルコニア繊維、生体溶解性繊維などがある。また、ガラス繊維は、溶融したガラスを繊維化したものであり、Cガラス繊維、Dガラス繊維、Eガラス繊維等がある。これらガラス繊維の軟化温度は組成により異なるが、一般的に750〜850℃程度である。   In the heat insulating material of the present invention, ceramic fibers and glass fibers are used in combination as inorganic fibers as described above. Here, the ceramic fiber is a heat-resistant fiber having a practical temperature as a refractory of 1000 ° C. or higher, and includes alumina fiber, silica fiber, silica-alumina fiber, silica-alumina zirconia fiber, zirconia fiber, biosoluble fiber, and the like. Further, the glass fiber is obtained by fiberizing molten glass, and includes C glass fiber, D glass fiber, E glass fiber, and the like. Although the softening temperature of these glass fibers changes with compositions, it is generally about 750-850 degreeC.

また、フュームドシリカは、平均粒子径50nm以下の酸化ケイ素粉末粒子を意味し、火炎加水分解法、アーク法、プラズマ法などにより得られる。フュームドアルミナは、平均粒子径50nm以下の酸化アルミニウム粉末粒子を意味し、火炎噴霧熱分解法などの噴霧法により得られる。また、無機粉末粒子とは、平均粒子径が0.1〜20μm程度の通常の無機粉末粒子であり、例えばシリカ、アルミナ、二酸化チタン、ケイ酸ジルコニウム、酸化ジルコニウム、炭化ケイ素などがあり、これらを単独で又は混合して用いることができる。   Further, fumed silica means silicon oxide powder particles having an average particle diameter of 50 nm or less, and can be obtained by a flame hydrolysis method, an arc method, a plasma method, or the like. Fumed alumina means aluminum oxide powder particles having an average particle diameter of 50 nm or less, and is obtained by a spraying method such as a flame spray pyrolysis method. The inorganic powder particles are ordinary inorganic powder particles having an average particle diameter of about 0.1 to 20 μm, such as silica, alumina, titanium dioxide, zirconium silicate, zirconium oxide, silicon carbide, and the like. They can be used alone or in combination.

本発明の断熱材におけるセラミックファイバーは、繊維長が1〜30mm及び平均繊維径が5.0μm以下であることが好ましく、平均繊維径は1.5〜5.0μmであることが更に好ましい。ガラス繊維は、繊維長が1〜5mm及び平均繊維径が20μm以下であり、平均繊維径が5.0〜20μmであることが好ましい。フュームドシリカ及びフュームドアルミナは粒径が50nm以下であることが好ましい。ガラス繊維は繊維長が5mmを超えると融着による連続的な繋がりが生じやすくなり、熱が伝わりやすくなるため熱伝導率が高くなる。   The ceramic fiber in the heat insulating material of the present invention preferably has a fiber length of 1 to 30 mm and an average fiber diameter of 5.0 μm or less, and more preferably an average fiber diameter of 1.5 to 5.0 μm. The glass fiber preferably has a fiber length of 1 to 5 mm, an average fiber diameter of 20 μm or less, and an average fiber diameter of 5.0 to 20 μm. The fumed silica and fumed alumina preferably have a particle size of 50 nm or less. When the fiber length of the glass fiber exceeds 5 mm, continuous connection due to fusion tends to occur, and heat is easily transmitted, so that the thermal conductivity is increased.

また、これら各原料の配合割合は、セラミックファイバーが4〜27重量%、ガラス繊維が8〜33重量%、フュームドシリカ及び/又はヒュームドアルミナが5〜40重量%、無機粉末粒子が20〜70重量%であることが好ましい。更に好ましくは、セラミックファイバーが8〜20重量%、ガラス繊維が13〜27重量%である。尚、セラミックファイバーの繊維径はSEM(走査電子顕微鏡)を使用して測定し、繊維200〜300本の平均値をもって平均繊維径とした。ガラス繊維は、JIS R3420に準拠して測定することができる。   The blending ratio of these raw materials is 4 to 27% by weight for ceramic fibers, 8 to 33% by weight for glass fibers, 5 to 40% by weight for fumed silica and / or fumed alumina, and 20 to 20% for inorganic powder particles. It is preferably 70% by weight. More preferably, the ceramic fiber is 8 to 20% by weight and the glass fiber is 13 to 27% by weight. In addition, the fiber diameter of the ceramic fiber was measured using SEM (scanning electron microscope), and the average value of 200 to 300 fibers was defined as the average fiber diameter. Glass fiber can be measured according to JIS R3420.

また、一般に無機繊維中には繊維の製造過程で生成する非繊維状粒子(ショット)が50〜60重量%含まれ、その粒径は9割以上が45μm以上である。このように粒径の大きな非繊維状粒子が多量に存在すると、断熱材中に大きな気孔が生じやすくなり、気体の対流伝熱や気体分子の衝突による伝熱が促進されて熱伝導率が高くなることが分かった。そこで本発明の断熱材においては、無機繊維として、非繊維状粒子の合計を繊維全体の20重量%以下とした無機繊維や、またシリカファイバー等の長繊維及びそのチョップド繊維、アルミナファイバー等の非繊維状粒子が存在しない無機繊維を使用することにより、熱伝導率の更なる低下を図ることができる。   In general, inorganic fibers contain 50 to 60% by weight of non-fibrous particles (shots) produced in the fiber production process, and 90% or more of the particle diameter is 45 μm or more. When a large amount of non-fibrous particles having a large particle size are present in this manner, large pores are likely to be generated in the heat insulating material, and heat transfer due to gas convection heat transfer or gas molecule collision is promoted, resulting in high thermal conductivity. I found out that Therefore, in the heat insulating material of the present invention, as inorganic fibers, inorganic fibers in which the total of non-fibrous particles is 20% by weight or less of the total fibers, long fibers such as silica fibers, and chopped fibers thereof, alumina fibers and the like are used. By using inorganic fibers in which no fibrous particles are present, the thermal conductivity can be further reduced.

無機繊維中に含まれている非繊維状粒子(ショット)を取り除く方法としては、無機繊維を水に分散させて分離する方法(分級処理)が簡便であり好ましい。即ち、無機繊維を水に分散されると、無機繊維は浮上するが、非繊維状粒子の多くは水中に沈降する。従って、非繊維状粒子が十分に沈降した後、水面近くに浮上している無機繊維を回収することによって、簡単且つ効率的に非繊維状粒子を取り除くことができる。尚、無機繊維中の非繊維状粒子の含有量は、ISO10635の10(Determination of shot)に準拠して測定することができる。   As a method for removing non-fibrous particles (shots) contained in inorganic fibers, a method of separating inorganic fibers by dispersing them in water (classification treatment) is simple and preferable. That is, when inorganic fiber is dispersed in water, the inorganic fiber floats, but most of the non-fibrous particles settle in water. Accordingly, after the non-fibrous particles have sufficiently settled, the non-fibrous particles can be easily and efficiently removed by collecting the inorganic fibers that have floated near the water surface. In addition, content of the non-fibrous particle | grains in an inorganic fiber can be measured based on ISO10635 10 (Determination of shot).

次に、本発明による断熱材の製造方法について説明する。まず、原料である無機繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とを秤量し、所定の配合割合で混合する。その際、無機繊維としてのセラミックファイバーとガラス繊維の重量比を0.2〜2.0の範囲に調整する。得られた混合原料を、かさ密度が320〜600kg/mとなるように、更に好ましくは350〜450kg/mとなるように、型を用いて乾式で圧縮成形する。 Next, the manufacturing method of the heat insulating material by this invention is demonstrated. First, the inorganic fiber which is a raw material, fumed silica and / or fumed alumina, and inorganic powder particles are weighed and mixed at a predetermined blending ratio. In that case, the weight ratio of the ceramic fiber and glass fiber as an inorganic fiber is adjusted to the range of 0.2-2.0. The obtained mixed raw material is compression-molded by a dry method using a mold so that the bulk density is 320 to 600 kg / m 3 , more preferably 350 to 450 kg / m 3 .

上記各原料の配合割合としては、セラミックファイバーを4〜27重量%、ガラス繊維を8〜33重量%、フュームドシリカ及び/又はフュームドアルミナを5〜40重量%、無機粉末粒子を20〜70重量%とすることが好ましい。更に好ましいのは、セラミックファイバーが8〜20重量%、ガラス繊維が13〜27重量%である。また、原料の無機繊維(セラミックファイバー及びガラス繊維)として、無機繊維に含まれる非繊維状粒子の合計量を繊維全体の20重量%以下に低減させた無機繊維を使用することもできる。   The blending ratio of each raw material is 4 to 27% by weight of ceramic fiber, 8 to 33% by weight of glass fiber, 5 to 40% by weight of fumed silica and / or fumed alumina, and 20 to 70 inorganic powder particles. It is preferable to set it as weight%. More preferably, the ceramic fiber is 8 to 20% by weight and the glass fiber is 13 to 27% by weight. Moreover, the inorganic fiber which reduced the total amount of the non-fibrous particle contained in an inorganic fiber to 20 weight% or less of the whole fiber can also be used as a raw material inorganic fiber (ceramic fiber and glass fiber).

上記各原料を圧縮成形した後、得られた成形体を800〜950℃の温度で焼成することにより、本発明の断熱材を製造することができる。上記焼成温度が800℃未満では、ガラス繊維の軟化が不十分であるため、セラミックファイバー、フュームドシリカやフュームドアルミナ、無機粉末粒子を十分に融着させることができず、所望の強度を得ることができなくなる。また、焼成温度が950℃を超えると、フュームドシリカやフュームドアルミナの固体焼結が進み、収縮率が大きくなると共に、熱伝導率が上昇してしまう。   After compression-molding each said raw material, the heat insulating material of this invention can be manufactured by baking the obtained molded object at the temperature of 800-950 degreeC. When the firing temperature is less than 800 ° C., the glass fiber is not sufficiently softened, so that the ceramic fiber, fumed silica, fumed alumina, and inorganic powder particles cannot be sufficiently fused, and a desired strength is obtained. I can't do that. On the other hand, when the firing temperature exceeds 950 ° C., solid sintering of fumed silica or fumed alumina proceeds, the shrinkage rate increases, and the thermal conductivity increases.

本発明の断熱材は、上記した方法により製造することができ、熱伝導率(600℃)が0.085W/(m・K)以下と低く、特に無機繊維に含まれる非繊維状粒子(ショット)の合計量を繊維全体の20重量%以下に低減させた無機繊維を使用することで0.065W/(m・K)以下とすることができ、断熱性能に優れている。しかも、常温での3点曲げ強度が0.9MPa以上という高い強度を有するため、端部の欠け抵抗性に優れ、加工性や施工性にも優れている。更に、低発塵性及び耐振動性に優れ、耐水性を兼ね備えた断熱材とすることができる。従って、本発明の断熱材は、工業炉等の産業設備用として好適であると同時に、繰り返し加熱後の厚み方向の収縮が小さいことが必要な燃料電池用の断熱材としても極めて優れている。   The heat insulating material of the present invention can be produced by the above-described method, and the thermal conductivity (600 ° C.) is as low as 0.085 W / (m · K) or less, particularly non-fibrous particles (shot) contained in inorganic fibers. ) Is reduced to 0.065 W / (m · K) or less by using inorganic fibers having a total amount reduced to 20% by weight or less of the entire fiber, and the heat insulation performance is excellent. Moreover, since the three-point bending strength at room temperature is as high as 0.9 MPa or more, the chip has excellent chipping resistance at the end, and is excellent in workability and workability. Furthermore, it can be set as the heat insulating material which is excellent in low dust generation property and vibration resistance, and also has water resistance. Therefore, the heat insulating material of the present invention is suitable for industrial equipment such as an industrial furnace, and at the same time, is extremely excellent as a heat insulating material for a fuel cell that requires small shrinkage in the thickness direction after repeated heating.

セラミックファイバーとして、イソライト工業(株)製のシリカアルミナ繊維であるイソウール(商品名;Al:46重量%、Al+SiO:99重量%、平均繊維径:2.3μm、非繊維状粒子(ショット)含有量53重量%)又は非繊維状粒子含有量を繊維全体の12重量%以下に低減させたイソウールを使用した。また、ガラス繊維としてEガラス繊維、フュームドシリカ、無機粉末粒子としてシリカ粒子(平均粒子径:20μm)を使用して、下記試料1〜6の各断熱材を製造した。 As a ceramic fiber, Isowool (a product name: Al 2 O 3 : 46 wt%, Al 2 O 3 + SiO 2 : 99 wt%, average fiber diameter: 2.3 μm, non-silica alumina fiber manufactured by Isolite Industry Co., Ltd.) Isowool having a fibrous particle (shot) content of 53 wt%) or a non-fibrous particle content reduced to 12 wt% or less of the total fiber was used. Moreover, each heat insulating material of the following samples 1-6 was manufactured using E glass fiber and fumed silica as glass fiber, and silica particle (average particle diameter: 20 micrometers) as inorganic powder particle.

具体的には、試料1として、セラミックファイバーとして非繊維状粒子(ショット)含有量を繊維全体の12重量%以下に低減させたイソウール15重量%、Eガラス繊維15重量%(セラミックファイバー/ガラス繊維の重量比1.0)、フュームドシリカ35重量%、無機粉末粒子(シリカ)35重量%を乾式混合し、かさ密度が400kg/mとなるよう乾式圧縮成形して、175×175×25mmの成形体を得た。この成形体を900℃で1時間焼成することにより、試料1の断熱材を製造した。 Specifically, as sample 1, the non-fibrous particle (shot) content of ceramic fiber was reduced to 12% by weight or less of the total fiber, 15% by weight of isowool, 15% by weight of E glass fiber (ceramic fiber / glass fiber) 1.0), fumed silica 35% by weight, and inorganic powder particles (silica) 35% by weight are dry-mixed and dry compression molded to a bulk density of 400 kg / m 3 and 175 × 175 × 25 mm A molded body of was obtained. The molded body was fired at 900 ° C. for 1 hour to produce a heat insulating material of Sample 1.

また、非繊維状粒子(ショット)含有量を繊維全体の12重量%以下に低減させたイソウールを10重量%、Eガラス繊維を20重量%(セラミックファイバー/ガラス繊維の重量比0.5)、フュームドシリカを35重量%、無機粉末粒子を35重量%とした以外は上記試料1の場合と同様にして、試料2の断熱材を製造した。   Further, isowool having a non-fibrous particle (shot) content reduced to 12% by weight or less of the whole fiber is 10% by weight, E glass fiber is 20% by weight (ceramic fiber / glass fiber weight ratio is 0.5), A heat insulating material of Sample 2 was manufactured in the same manner as in Sample 1 except that 35% by weight of fumed silica and 35% by weight of inorganic powder particles were used.

更に、上記イソウール(非繊維状粒子(ショット)含有量53重量%)15重量%、Eガラス繊維15重量%(セラミックファイバー/ガラス繊維の重量比1.0)、フュームドシリカ35重量%、無機粉末粒子35重量%とした以外は上記試料1の場合と同様にして、試料3の断熱材を製造した。   Furthermore, the isowool (non-fibrous particle (shot) content 53% by weight) 15% by weight, E glass fiber 15% by weight (ceramic fiber / glass fiber weight ratio 1.0), fumed silica 35% by weight, inorganic A heat insulating material of Sample 3 was manufactured in the same manner as in Sample 1 except that 35% by weight of powder particles was used.

次に比較例として、ガラス繊維を使用せず、セラミックファイバーとして非繊維状粒子(ショット)含有量を繊維全体の12重量%以下に低減させたイソウール30重量%、フュームドシリカ35重量%、無機粉末粒子35重量%とした以外は上記試料1の場合と同様にして、試料4の断熱材を製造した。   Next, as a comparative example, glass fiber is not used, non-fibrous particle (shot) content as ceramic fiber is reduced to 12% by weight or less of isowool 30% by weight, fumed silica 35% by weight, inorganic A heat insulating material of Sample 4 was manufactured in the same manner as in Sample 1 except that 35% by weight of powder particles was used.

また、セラミックファイバーとして非繊維状粒子(ショット)含有量を繊維全体の12重量%以下に低減させたイソウール25重量%、Eガラス繊維5重量%(セラミックファイバー/ガラス繊維の重量比5.0)、フュームドシリカ35重量%、無機粉末粒子35重量%とした以外は上記試料1の場合と同様にして、試料5の断熱材を製造した。   In addition, the content of non-fibrous particles (shot) as ceramic fiber is reduced to 12% by weight or less of the total fiber, 25% by weight of isowool, and 5% by weight of E glass fiber (ceramic fiber / glass fiber weight ratio 5.0). A heat insulating material of Sample 5 was manufactured in the same manner as in Sample 1 except that 35% by weight of fumed silica and 35% by weight of inorganic powder particles were used.

更に、セラミックファイバーを使用せず、Eガラス繊維30重量%、フュームドシリカ35重量%、無機粉末粒子35重量%とした以外は上記試料1の場合と同様にして、試料6の断熱材を製造した。   Further, a heat insulating material of Sample 6 is manufactured in the same manner as in Sample 1 except that no ceramic fiber is used and 30% by weight of E glass fiber, 35% by weight of fumed silica, and 35% by weight of inorganic powder particles are used. did.

得られた実施例の試料1〜3及び比較例の試料4〜6の各断熱材について、かさ密度、600℃での熱伝導率及び常温での3点曲げ強度を測定し、得られた結果を下記表1に示した。尚、かさ密度は断熱材の重さと体積を測定して算出した。熱伝導率(600℃)はJIS A1412(熱絶縁材の熱抵抗及び熱伝導率の測定方法、第2部:熱流計法(HFM法)の付属書A(規定)平板法)により、常温での3点曲げ強度はJIS R2619(耐火断熱れんがの曲げ強度の試験方法)に準拠して測定した。   About each heat insulating material of samples 1 to 3 of the obtained examples and samples 4 to 6 of the comparative examples, the bulk density, the thermal conductivity at 600 ° C., and the three-point bending strength at room temperature were measured, and the obtained results Is shown in Table 1 below. The bulk density was calculated by measuring the weight and volume of the heat insulating material. Thermal conductivity (600 ° C) is measured at room temperature according to JIS A1412 (Method for measuring thermal resistance and thermal conductivity of thermal insulation materials, Part 2: Appendix A (normative) flat plate method of the heat flow meter method (HFM method)). The three-point bending strength was measured in accordance with JIS R2619 (Test method for bending strength of refractory heat-insulating brick).

Figure 2016061421
Figure 2016061421

本発明による試料1〜2の各断熱材は、熱伝導率(600℃)が0.065W/(m・K)以下と低く断熱性能に優れていると同時に、常温での3点曲げ強度が0.9MPa以上と高い強度を有していることが分かる。特に試料2の断熱材はガラス繊維量を増やし、セラミックファイバー/ガラス繊維の重量比を0.5にしたことにより、試料1に比べて熱伝導率が10%程度上昇しているが常温での3点曲げ強度は40%も高くなっている。また、本発明による試料3の断熱材は、非繊維状粒子を低減させていない無機繊維を使用しているため、試料1の断熱材に比べて熱伝導率が0.073W/(m・K)と高くなっている。   Each of the heat insulating materials of Samples 1 and 2 according to the present invention has a low thermal conductivity (600 ° C.) of 0.065 W / (m · K) or less and excellent heat insulating performance, and at the same time has a three-point bending strength at room temperature. It can be seen that it has a high strength of 0.9 MPa or more. In particular, the heat insulating material of Sample 2 has an increased glass fiber content and a weight ratio of ceramic fiber / glass fiber of 0.5, which increases the thermal conductivity by about 10% compared to Sample 1, but at room temperature. The three-point bending strength is as high as 40%. In addition, since the heat insulating material of Sample 3 according to the present invention uses inorganic fibers that do not reduce non-fibrous particles, the heat conductivity is 0.073 W / (m · K) as compared with the heat insulating material of Sample 1. ) And higher.

一方、比較例である試料4の断熱材は、ガラス繊維を使用していないため、試料1の断熱材と比較して熱伝導率(600℃)は同程度であるが、常温での3点曲げ強度が小さく強度的に劣っている。また、試料5の断熱材は、セラミックファイバー/ガラス繊維の重量比が5.0と高くなっているため、熱伝導率(600℃)及び常温での3点曲げ強度が上記のガラス繊維を使用していない試料4と同程度の値であった。更に試料6の断熱材は、セラミックファイバーを使用していないため、常温での3点曲げ強度は向上したが、熱伝導率(600℃)は試料4及び5に比べて大幅に上昇し、表1には示していないが加熱線収縮率も他の試料に比べて極端に大きくなった。   On the other hand, since the heat insulating material of Sample 4 which is a comparative example does not use glass fiber, the thermal conductivity (600 ° C.) is similar to that of Sample 1, but three points at room temperature. The bending strength is small and the strength is inferior. In addition, since the heat insulating material of Sample 5 has a high ceramic fiber / glass fiber weight ratio of 5.0, the above glass fiber has a thermal conductivity (600 ° C.) and a three-point bending strength at room temperature. The value was about the same as that of Sample 4 that was not used. Furthermore, since the insulation material of Sample 6 does not use ceramic fiber, the three-point bending strength at room temperature has been improved, but the thermal conductivity (600 ° C.) is significantly increased compared to Samples 4 and 5, Although not shown in Fig. 1, the heating linear shrinkage rate was extremely large as compared with other samples.

Claims (8)

無機繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とからなる断熱材であって、無機繊維としてセラミックファイバー及びガラス繊維を含み、セラミックファイバーとガラス繊維の重量比が0.2〜2.0の範囲内にあり、かさ密度が320〜600kg/m、常温での3点曲げ強度が0.9MPa以上、600℃における熱伝導率が0.085W/(m・K)以下であることを特徴とする断熱材。 A heat insulating material comprising inorganic fibers, fumed silica and / or fumed alumina, and inorganic powder particles, including ceramic fibers and glass fibers as inorganic fibers, and a weight ratio of ceramic fibers to glass fibers of 0.2. ˜2.0, bulk density is 320 to 600 kg / m 3 , three-point bending strength at room temperature is 0.9 MPa or more, and thermal conductivity at 600 ° C. is 0.085 W / (m · K) or less. Insulation material characterized by being. 無機繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とからなる断熱材であって、無機繊維に含まれる非繊維状粒子の合計量が該繊維全体の20重量%以下であり、無機繊維としてセラミックファイバー及びガラス繊維を含み、セラミックファイバーとガラス繊維の重量比が0.2〜2.0の範囲内にあり、かさ密度が320〜600kg/m、常温での3点曲げ強度が0.9MPa以上、600℃における熱伝導率が0.065W/(m・K)以下であることを特徴とする断熱材。 A heat insulating material comprising inorganic fibers, fumed silica and / or fumed alumina, and inorganic powder particles, wherein the total amount of non-fibrous particles contained in the inorganic fibers is 20% by weight or less of the total fibers. Including ceramic fiber and glass fiber as inorganic fiber, the weight ratio of ceramic fiber to glass fiber is in the range of 0.2 to 2.0, bulk density is 320 to 600 kg / m 3 , three-point bending at normal temperature A heat insulating material having a strength of 0.9 MPa or more and a thermal conductivity at 600 ° C. of 0.065 W / (m · K) or less. 前記セラミックファイバーの繊維長が1〜30mm及び平均繊維径が5.0μm以下であり、ガラス繊維の繊維長が1〜5mm及び平均繊維径が20μm以下であり、フュームドシリカ及びフュームドアルミナの粒径が50nm以下であることを特徴とする、請求項1又は2に記載の断熱材。   The ceramic fiber has a fiber length of 1 to 30 mm and an average fiber diameter of 5.0 μm or less, a glass fiber has a fiber length of 1 to 5 mm and an average fiber diameter of 20 μm or less, and particles of fumed silica and fumed alumina The heat insulating material according to claim 1 or 2, wherein the diameter is 50 nm or less. 前記セラミックファイバーを4〜27重量%、ガラス繊維を8〜33重量%、フュームドシリカ及び/又はヒュームドアルミナを5〜40重量%、無機粉末粒子を20〜70重量%含有することを特徴とする、請求項1〜3のいずれかに記載の断熱材。   4 to 27% by weight of the ceramic fiber, 8 to 33% by weight of glass fiber, 5 to 40% by weight of fumed silica and / or fumed alumina, and 20 to 70% by weight of inorganic powder particles. The heat insulating material according to any one of claims 1 to 3. 無機繊維と、フュームドシリカ及び/又はフュームドアルミナと、無機粉末粒子とを原料とする断熱材の製造方法であって、無機繊維としてセラミックファイバー及びガラス繊維を用い、上記各原料を混合し且つセラミックファイバーとガラス繊維の重量比が0.2〜2.0の範囲内となるように調整し、かさ密度が320〜600kg/mとなるように型を用いて圧縮成形した後、800〜950℃の温度で焼成することを特徴とする断熱材の製造方法。 A method for producing a heat insulating material using inorganic fibers, fumed silica and / or fumed alumina, and inorganic powder particles as raw materials, wherein ceramic fibers and glass fibers are used as the inorganic fibers, and the above raw materials are mixed and After adjusting the weight ratio of the ceramic fiber and the glass fiber to be in the range of 0.2 to 2.0 and compressing with a mold so that the bulk density is 320 to 600 kg / m 3 , 800 to A method for producing a heat insulating material, characterized by firing at a temperature of 950 ° C. 前記無機繊維として、予め非繊維状粒子の合計を無機繊維全体の20重量%以下に低減させた無機繊維を使用することを特徴とする、請求項5に記載の断熱材の製造方法。   The method for producing a heat insulating material according to claim 5, wherein the inorganic fiber is an inorganic fiber in which a total of non-fibrous particles is reduced to 20% by weight or less of the whole inorganic fiber in advance. 前記各原料を、セラミックファイバー4〜27重量%、ガラス繊維8〜33重量%、フュームドシリカ及び/又はヒュームドアルミナ5〜40重量%、無機粉末粒子20〜70重量%となるように混合することを特徴とする、請求項5又は6に記載の断熱材の製造方法。   The raw materials are mixed so as to be 4 to 27% by weight of ceramic fibers, 8 to 33% by weight of glass fibers, 5 to 40% by weight of fumed silica and / or fumed alumina, and 20 to 70% by weight of inorganic powder particles. The manufacturing method of the heat insulating material of Claim 5 or 6 characterized by the above-mentioned. 前記セラミックファイバーの繊維長が1〜30mm及び平均繊維径が5.0μm以下であり、ガラス繊維の繊維長が1〜5mm及び平均繊維径が20μm以下であり、フュームドシリカ及びフュームドアルミナの粒径が50nm以下であることを特徴とする、請求項5〜7のいずれかに記載の断熱材の製造方法。   The ceramic fiber has a fiber length of 1 to 30 mm and an average fiber diameter of 5.0 μm or less, a glass fiber has a fiber length of 1 to 5 mm and an average fiber diameter of 20 μm or less, and particles of fumed silica and fumed alumina The method for producing a heat insulating material according to any one of claims 5 to 7, wherein the diameter is 50 nm or less.
JP2014192216A 2014-09-22 2014-09-22 Insulating material and manufacturing method thereof Active JP5683739B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014192216A JP5683739B1 (en) 2014-09-22 2014-09-22 Insulating material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014192216A JP5683739B1 (en) 2014-09-22 2014-09-22 Insulating material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP5683739B1 JP5683739B1 (en) 2015-03-11
JP2016061421A true JP2016061421A (en) 2016-04-25

Family

ID=52684927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014192216A Active JP5683739B1 (en) 2014-09-22 2014-09-22 Insulating material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5683739B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292228A (en) * 2021-06-09 2021-08-24 洛阳欧斯特建材有限公司 Heat insulation material for arch top of float glass kiln
KR20220037168A (en) * 2020-09-17 2022-03-24 주식회사 온도기술센테크 Method for manufacturing porous ceramic by direct foaming method and porous ceramic manufactured thereby
CN115572175A (en) * 2022-10-10 2023-01-06 西北工业大学 High-porosity super-hydrophobic surface nano microporous heat insulation plate and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020204209A1 (en) 2019-04-05 2020-10-08
CN115894057A (en) * 2022-07-19 2023-04-04 北京理工大学 High-temperature-resistant bendable deformation ceramic heat insulation material and preparation method thereof
CN115432726A (en) * 2022-07-27 2022-12-06 南通江山新能科技有限公司 Modified nano-alumina and preparation method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220037168A (en) * 2020-09-17 2022-03-24 주식회사 온도기술센테크 Method for manufacturing porous ceramic by direct foaming method and porous ceramic manufactured thereby
KR102422149B1 (en) 2020-09-17 2022-07-19 주식회사 온도기술센테크 Method for manufacturing porous ceramic by direct foaming method and porous ceramic manufactured thereby
CN113292228A (en) * 2021-06-09 2021-08-24 洛阳欧斯特建材有限公司 Heat insulation material for arch top of float glass kiln
CN115572175A (en) * 2022-10-10 2023-01-06 西北工业大学 High-porosity super-hydrophobic surface nano microporous heat insulation plate and preparation method thereof

Also Published As

Publication number Publication date
JP5683739B1 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5683739B1 (en) Insulating material and manufacturing method thereof
KR101929733B1 (en) Refractory object including beta alumina and processes of making and using the same
TWI492915B (en) Refractory object and process of forming a glass sheet using the refractory object
CN106220224A (en) A kind of heat-resistant light adiabator with double-hole structure and preparation method thereof
JP6602827B2 (en) Insulating material and manufacturing method thereof
JP4860005B1 (en) Insulating material and manufacturing method thereof
CN102976710A (en) Nano miroporous heat-insulating material
JP2014511328A (en) Sintered materials based on doped chromium oxide
JP2021134092A (en) Light-weight kiln tool and manufacturing method thereof
JP2014228035A (en) Fireproof heat insulation material and manufacturing method
JP6607839B2 (en) Insulation
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
JP2015231929A (en) Alumina molten cast refractory and manufacturing method therefor
JP2015081225A (en) High-chromia-enriched castable refractory, precast block using the refractory and waste melting furnace lined with the refractory and/or the block
KR101744455B1 (en) Unshaped refractory material composite using inorganic fiber
JP2015038365A (en) Heat insulation material and manufacturing method thereof
JP6768236B2 (en) Insulation material and its manufacturing method
WO2023109174A1 (en) Fiber-reinforced silicious module and preparation method
CN105523718A (en) Ceramic fiber and preparation method thereof and industrial furnace inner liner
JP5885799B2 (en) Insulating material and manufacturing method thereof
JP2007211958A (en) Inorganic fiber block
JP6598932B1 (en) Insulating material and manufacturing method thereof
KR100491123B1 (en) High intensity castable refractories with good adiabatic and high thermal shock resistance
CN106927840B (en) Thermal shock resistant complex phase ceramic material and preparation of ceramic discharge spout based on same
JP6214514B2 (en) Insulation

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150113

R150 Certificate of patent or registration of utility model

Ref document number: 5683739

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250