JP2002064029A - Method for manufacturing laminated ceramic electronic part - Google Patents

Method for manufacturing laminated ceramic electronic part

Info

Publication number
JP2002064029A
JP2002064029A JP2000250647A JP2000250647A JP2002064029A JP 2002064029 A JP2002064029 A JP 2002064029A JP 2000250647 A JP2000250647 A JP 2000250647A JP 2000250647 A JP2000250647 A JP 2000250647A JP 2002064029 A JP2002064029 A JP 2002064029A
Authority
JP
Japan
Prior art keywords
partial pressure
oxygen partial
gas
multilayer ceramic
ceramic electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000250647A
Other languages
Japanese (ja)
Inventor
Hiroaki Matsuyama
広明 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000250647A priority Critical patent/JP2002064029A/en
Publication of JP2002064029A publication Critical patent/JP2002064029A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a laminated ceramic electronic part using an electrode made of Ni or made mainly of Ni, by which a highly realiable and stable product can be provided in a high reproducibility. SOLUTION: When a laminated ceramic green chip using an electrode made of Ni or made mainly of Ni is subjected to binder removal and baking, it is heated in an atmosphere gas whose oxygen partial pressure is lower than the oxidization reduction equilibrium oxygen partial pressure of Ni and higher than that having a small value by one digit, in the binder removing process of 500 to 1000 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は例えば積層セラミッ
クコンデンサに代表される積層セラミック電子部品の製
造方法に関するもので、特にNi等の卑金属を電極に用
いた積層セラミックグリーンチップの脱バインダー・焼
成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic electronic component represented by a multilayer ceramic capacitor, and more particularly to a method for removing a binder and firing a multilayer ceramic green chip using a base metal such as Ni as an electrode. Things.

【0002】[0002]

【従来の技術】従来、NiあるいはNiを主成分とする
金属を電極とした積層セラミック電子部品の脱バインダ
ー・焼成方法は、Niの酸化還元平衡酸素分圧より低い
酸素分圧の雰囲気ガス中で熱処理を行う方法が一般的に
用いられている。
2. Description of the Related Art Conventionally, a method of debinding and firing a multilayer ceramic electronic component using Ni or a metal containing Ni as a main component as an electrode is performed in an atmosphere gas having an oxygen partial pressure lower than the redox equilibrium oxygen partial pressure of Ni. A method of performing a heat treatment is generally used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年の
積層セラミック電子部品は、高性能化と低コスト化とい
う相反する市場要望に応えるため、積層セラミック電子
部品のセラミック層の薄層化、多積層及び内部電極材料
の卑金属化とが急激な勢いで進んでいる。このような状
況において、前記積層セラミック電子部品の脱バインダ
ー・焼成方法は、次のような課題があった。
However, in order to meet the conflicting market demands of higher performance and lower cost, recent multilayer ceramic electronic components have been required to reduce the thickness of ceramic layers of multilayer ceramic electronic components, increase the number of layers, and increase the number of layers. Base metalization of the internal electrode material is proceeding at a rapid pace. Under such circumstances, the method for removing the binder and firing the multilayer ceramic electronic component has the following problems.

【0004】内部電極として卑金属のNiあるいはNi
を主成分とする金属を用いた積層セラミック電子部品
は、Niの酸化を防止するため低い酸素分圧下での脱バ
インダー・焼成が余儀なくされる。このため脱バインダ
ーが不十分となり易く焼結体内にバインダー成分が残留
カーボンとして残り、これが製品特性を劣化させる可能
性があり、高い信頼性を確保することが困難である。
A base metal such as Ni or Ni is used as an internal electrode.
In a multilayer ceramic electronic component using a metal whose main component is Ni, it is necessary to remove the binder and fire it under a low oxygen partial pressure in order to prevent oxidation of Ni. For this reason, the binder removal tends to be insufficient, and the binder component remains in the sintered body as residual carbon, which may deteriorate the product characteristics, and it is difficult to ensure high reliability.

【0005】また、酸素分圧が高くNiの一部が酸化さ
れた場合、その量が微量であっても焼結過程で酸化され
たNiがセラミック層中に拡散し焼結後の電気特性を変
化させるという性質を有している。特に、温度に対する
静電容量の変化率(静電容量の温度特性)が悪化し、信
頼性の高い安定した特性の積層セラミック電子部品を供
給することが困難となる。
When the oxygen partial pressure is high and a part of Ni is oxidized, the oxidized Ni diffuses into the ceramic layer in the sintering process even if the amount is small, and the electric characteristics after sintering are reduced. It has the property of changing. In particular, the rate of change of the capacitance with respect to temperature (temperature characteristic of the capacitance) deteriorates, and it becomes difficult to supply a reliable multilayer ceramic electronic component having stable characteristics.

【0006】本発明は前記従来の問題点を解決するもの
で、信頼性の高い安定した特性の積層セラミック電子部
品を再現性良く製造する積層セラミック電子部品の製造
方法を提供することを目的とするものである。
An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component with high reproducibility and with high reproducibility. Things.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決するた
めに以下の構成を有するものである。
Means for Solving the Problems To solve the above problems, the present invention has the following arrangement.

【0008】本発明の請求項1に記載の発明は、特に、
NiあるいはNiを主成分とする金属を電極とした積層
セラミックグリーンチップを脱バインダー・焼成する際
に、脱バインダー過程の500℃〜1000℃の温度範
囲では、Niの酸化還元平衡酸素分圧より低くかつ酸化
還元平衡酸素分圧の1ケタ下より高い酸素分圧の雰囲気
ガス中で熱処理を行う構成とするものであり、これによ
ってNiの酸化を抑えつつ、可能な限り高い酸素分圧中
で積層セラミックグリーンチップの熱処理を行うため、
有機バインダーの燃焼分解除去が十分に行え焼結体内部
にカーボンが残留することを防止することができる脱バ
インダー過程の酸素分圧値と温度範囲を規定したもので
ある。
[0008] The invention described in claim 1 of the present invention is, in particular,
When debinding and firing a laminated ceramic green chip using Ni or a metal containing Ni as a main component as an electrode, in the temperature range of 500 ° C. to 1000 ° C. in the debinding process, the oxidation-reduction equilibrium oxygen partial pressure of Ni is lower than that of Ni. In addition, the heat treatment is performed in an atmosphere gas having an oxygen partial pressure higher than one digit below the oxidation-reduction equilibrium oxygen partial pressure. In order to heat-treat the ceramic green chip,
It defines the oxygen partial pressure value and the temperature range in the debinding process in which the organic binder can be sufficiently removed by combustion decomposition and carbon can be prevented from remaining inside the sintered body.

【0009】本発明の請求項2に記載の発明は、特に、
NiあるいはNiを主成分とする金属を電極とした積層
セラミックグリーンチップを脱バインダー・焼成する際
に、焼結過程の1000℃以上の温度範囲では、Niの
酸化還元平衡酸素分圧の1ケタ下より低い酸素分圧の雰
囲気ガス中で熱処理を行う構成とするものであり、これ
によって積層セラミックグリーンチップのNiの酸化を
極力抑えることが可能となり、Niの酸化物がセラミッ
ク層中に拡散することを防止し、温度に対する静電容量
の変化率(静電容量の温度特性)が小さい、安定した信
頼性の高い積層セラミック電子部品が提供できる焼成過
程の酸素分圧と温度範囲を規定したものである。
[0009] The invention described in claim 2 of the present invention is, in particular,
When debinding and firing a multilayer ceramic green chip using Ni or a metal containing Ni as a main component as an electrode, in the temperature range of 1000 ° C. or more in the sintering process, one digit below the oxidation-reduction equilibrium oxygen partial pressure of Ni. The heat treatment is performed in an atmosphere gas having a lower oxygen partial pressure. This makes it possible to minimize the oxidation of Ni in the multilayer ceramic green chip, and the Ni oxide diffuses into the ceramic layer. It specifies the oxygen partial pressure and the temperature range in the firing process that can provide stable and reliable multilayer ceramic electronic components with a small rate of change in capacitance with respect to temperature (temperature characteristics of capacitance). is there.

【0010】本発明の請求項3に記載の発明は、特に、
NiあるいはNiを主成分とする金属を電極とした積層
セラミックグリーンチップを脱バインダー・焼成する際
に、脱バインダー過程の500℃〜1000℃の温度範
囲では、Niの酸化還元平衡酸素分圧より低く、かつ酸
化還元平衡酸素分圧の1ケタ下より高い酸素分圧の雰囲
気ガス中で、また焼結過程の1000℃以上の温度範囲
では、Niの酸化還元平衡酸素分圧の1ケタ下より低い
酸素分圧の雰囲気ガス中で熱処理を行う構成とするもの
であり、脱バインダー過程の温度範囲ではNiの酸化を
抑えつつ、バインダーの分解燃焼に必要な可能な限り高
い酸素分圧の雰囲気ガスで熱処理を行い有機バインダー
の分解除去を円滑化し、焼結体内部にカーボンが残留す
ることを防ぎ、焼結過程の温度範囲においては酸素分圧
をより低く保ちNiの酸化を極力抑えると共に、Ni酸
化物がセラミック層中に拡散することを防ぎ安定した信
頼性の高い積層セラミック電子部品を提供できる脱バイ
ンダー過程と焼成過程の酸素分圧と温度範囲を規定した
ものである。
[0010] The invention described in claim 3 of the present invention is, in particular,
When debinding and firing a laminated ceramic green chip using Ni or a metal containing Ni as a main component as an electrode, in the temperature range of 500 ° C. to 1000 ° C. in the debinding process, the oxidation-reduction equilibrium oxygen partial pressure of Ni is lower than that of Ni. In an atmosphere gas having an oxygen partial pressure higher than one digit below the oxidation-reduction equilibrium oxygen partial pressure, and in a temperature range of 1000 ° C. or more in the sintering process, lower than one digit below the Ni oxidation-reduction equilibrium oxygen partial pressure. The heat treatment is performed in an oxygen partial pressure atmosphere gas.In the temperature range of the debinding process, the oxidation of Ni is suppressed, and the oxygen partial pressure as high as necessary for the decomposition and combustion of the binder is used. Heat treatment is performed to smooth the decomposition and removal of the organic binder, to prevent carbon from remaining inside the sintered body, and to keep the oxygen partial pressure lower within the temperature range of the sintering process. Stipulates the oxygen partial pressure and the temperature range of the binder removal process and the firing process, which can suppress the oxidation of Ni as much as possible and can prevent the Ni oxide from diffusing into the ceramic layer to provide a stable and reliable multilayer ceramic electronic component. It is.

【0011】本発明の請求項4〜6に記載の発明は、特
に、NiあるいはNiを主成分とする金属を電極とした
積層セラミックグリーンチップを脱バインダー・焼成す
る際の雰囲気ガスを、窒素ガス、水素ガス、炭酸ガス、
水蒸気の中から選ばれた少なくとも2つ以上の混合ガス
を用いて熱処理を行う構成とするものであり、これらの
ガスを所定割合で混合することにより、酸素分圧をより
低い範囲で容易に精度良く制御することができるガスの
種類を規定したものである。
[0011] The invention according to claims 4 to 6 of the present invention is characterized in that the atmosphere gas when debinding and firing a multilayer ceramic green chip using Ni or a metal mainly composed of Ni as an electrode is a nitrogen gas. , Hydrogen gas, carbon dioxide gas,
The heat treatment is performed by using a mixed gas of at least two or more selected from steam. By mixing these gases at a predetermined ratio, the oxygen partial pressure can be easily adjusted in a lower range. It defines the types of gas that can be well controlled.

【0012】[0012]

【発明の実施の形態】(実施の形態1)以下、実施の形
態1を用いて本発明の特に請求項1に記載の発明につい
て、積層セラミック電子部品の代表として積層セラミッ
クコンデンサを例にとり説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to a first embodiment, taking a multilayer ceramic capacitor as a representative example of a multilayer ceramic electronic component. .

【0013】まず、チタン酸バリウムを主成分とする誘
電体材料粉末に、有機バインダーとしてポリビニルブチ
ラール樹脂、可塑材としてジブチルフタレート、有機溶
剤として酢酸nブチルを加え、ボールミルを用いて混合
しスラリーを調整した。
First, a polyvinyl butyral resin as an organic binder, dibutyl phthalate as a plasticizer, and n-butyl acetate as an organic solvent are added to a dielectric material powder containing barium titanate as a main component, and mixed using a ball mill to prepare a slurry. did.

【0014】次に、スラリーをリバースロールコーター
法によりキャリアフィルム上に厚さ13ミクロン塗工
し、乾燥したグリーンシートにスクリーン印刷によりニ
ッケルを主成分とする電極ペーストを塗布した。
Next, the slurry was applied on a carrier film by a reverse roll coater method to a thickness of 13 μm, and an electrode paste containing nickel as a main component was applied to a dried green sheet by screen printing.

【0015】次いで、電極を塗布したグリーンシートを
キャリアフィルムから剥離し、一層おき交互に所定寸法
ずらして80枚積層した後、その上下両面に電極ペース
トを塗布していないグリーンシートを10枚ずつ積層し
て積層体グリーンブロックを作製した。
Next, the green sheets coated with the electrodes are peeled off from the carrier film, and the green sheets are alternately shifted by a predetermined size and stacked on 80 sheets. Then, 10 green sheets on which no electrode paste is applied are stacked on both upper and lower surfaces. Thus, a laminated green block was produced.

【0016】その後、積層体グリーンブロックを2.5
mm×1.6mm×1.6mmの寸法に切断して、積層
セラミックグリーンチップを作製した。尚切断された積
層セラミックグリーンチップの両端面には内部電極の一
方の端部がセラミックグリーンシートを挟んで一層おき
交互に相対向する異なる端面に露出した構造となってい
る。
Thereafter, the laminated green block is
The resultant was cut into a size of mm × 1.6 mm × 1.6 mm to produce a multilayer ceramic green chip. One end of the internal electrode is disposed on both end faces of the cut multilayer ceramic green chip with a ceramic green sheet interposed therebetween, and is exposed to different end faces which are alternately opposed to each other.

【0017】次に、積層セラミックグリーンチップをバ
ッチ式雰囲気炉に投入し、窒素ガスを毎分100リット
ル流しながら500℃まで昇温した後、500℃の温度
で5時間保持し熱処理を行った。
Next, the laminated ceramic green chips were put into a batch type atmosphere furnace, heated to 500 ° C. while flowing nitrogen gas at 100 liters per minute, and then heat-treated at 500 ° C. for 5 hours.

【0018】次いで、熱処理に用いたのと同様なバッチ
式雰囲気炉に熱処理済み積層セラミックグリーンチップ
を投入し、窒素ガスを毎分50リットルと水素ガスを毎
分0.2〜2リットル流しながら、500℃〜1000
℃の温度範囲で(表1)に示した酸素分圧の雰囲気ガス
中で熱処理を行い、かつ、1000℃以上の温度範囲で
はNiの酸化還元平衡酸素分圧の1ケタ下の酸素分圧の
雰囲気ガス中で熱処理を行い、1300℃の温度で2時
間保持し焼成を行った。
Next, the heat-treated multilayer ceramic green chip is charged into a batch type atmosphere furnace similar to that used for the heat treatment, and while flowing nitrogen gas at 50 liters per minute and hydrogen gas at 0.2 to 2 liters per minute, 500 ° C ~ 1000
Heat treatment is performed in an atmosphere gas having an oxygen partial pressure shown in Table 1 in a temperature range of 1 ° C., and an oxygen partial pressure one digit lower than the oxidation-reduction equilibrium oxygen partial pressure of Ni in a temperature range of 1000 ° C. or more. Heat treatment was carried out in an atmosphere gas, and firing was carried out at a temperature of 1300 ° C. for 2 hours.

【0019】その後、焼結体の内部電極が露出した両端
面部にAgペーストを塗布、焼付して端子電極を形成
し、積層セラミックコンデンサを作製した。
Thereafter, Ag paste was applied to both end portions of the sintered body where the internal electrodes were exposed, and baked to form terminal electrodes, thereby producing a multilayer ceramic capacitor.

【0020】得られた各々の積層セラミックコンデンサ
に対し125℃の恒温槽中でDC32Vを250時間連
続印加する絶縁抵抗の寿命試験を行いその結果を併せて
(表1)に示した。
A life test of insulation resistance was performed on each of the obtained multilayer ceramic capacitors by continuously applying DC 32 V for 250 hours in a thermostat at 125 ° C. The results are shown in Table 1 below.

【0021】[0021]

【表1】 [Table 1]

【0022】(表1)には、初期値の絶縁抵抗が1×1
9以上の50個の試料が寿命試験後に1×107以下に
劣化した個数を示している。尚、♯を付した試料は本発
明の範囲外で比較例である。
Table 1 shows that the initial value of the insulation resistance is 1 × 1.
The numbers indicate that 50 or more samples of 09 or more deteriorated to 1 × 10 7 or less after the life test. The samples marked with a triangle are out of the scope of the present invention and are comparative examples.

【0023】(表1)に示したように、本発明の製造方
法による積層セラミックコンデンサは、絶縁抵抗が劣化
したものは僅かであるのに対し、比較例では絶縁抵抗の
劣化が多発し正規の特性が得られていないことがわか
る。この結果から本発明の製造方法は歩留および製品特
性を向上させるのに有効な手段であることが明らかであ
る。尚、絶縁劣化しなかった試料と、絶縁劣化した試料
を分析した絶縁劣化した試料からは残留カーボンが検出
された。
As shown in (Table 1), the multilayer ceramic capacitor manufactured by the method of the present invention has only a small deterioration of the insulation resistance, whereas the comparative example suffers a large deterioration of the insulation resistance and has a regular insulation resistance. It can be seen that no characteristics were obtained. From these results, it is clear that the manufacturing method of the present invention is an effective means for improving yield and product characteristics. It should be noted that residual carbon was detected from a sample in which insulation was not deteriorated and a sample in which insulation was deteriorated, which was obtained by analyzing a sample having deteriorated insulation.

【0024】尚、本実施の形態1では、500℃までは
窒素ガスを、500℃から1000℃までは窒素ガスと
水素ガスとの混合ガスを用いたが、500℃までを窒素
ガス、水素ガス、炭酸ガス、水蒸気の何れかの雰囲気中
で、500℃から1000℃の範囲を窒素ガス、水素ガ
ス、炭酸ガス、水蒸気の中から選ばれた2つ以上のガス
を所定の割合で混合したものを用いた場合においても同
様な結果が得られた。
In the first embodiment, nitrogen gas is used up to 500 ° C., and a mixed gas of nitrogen gas and hydrogen gas is used from 500 ° C. to 1000 ° C., but nitrogen gas and hydrogen gas are used up to 500 ° C. A mixture of two or more gases selected from nitrogen gas, hydrogen gas, carbon dioxide gas and water vapor at a predetermined ratio in the range of 500 ° C. to 1000 ° C. in any atmosphere of carbon dioxide, water vapor A similar result was obtained when using.

【0025】また窒素ガス、水素ガス、炭酸ガス、水蒸
気の混合ガスを用いるのは精度良く酸素分圧を容易に制
御することができるためである。また更に、積層セラミ
ックコンデンサを例に説明したが、これに限定されるも
のではなく、他の電子部品例えば積層アクチュエータ、
積層バリスタなどに適用しても同様の効果が得られる。
The reason why a mixed gas of nitrogen gas, hydrogen gas, carbon dioxide gas and water vapor is used is that the oxygen partial pressure can be easily controlled with high accuracy. Furthermore, the multilayer ceramic capacitor has been described as an example, but the present invention is not limited to this, and other electronic components such as a multilayer actuator,
The same effect can be obtained by applying to a laminated varistor or the like.

【0026】(実施の形態2)以下、実施の形態2を用
いて本発明の特に請求項2及び請求項3に記載の発明に
ついて、実施の形態1と同様の積層セラミック電子部品
の代表として積層セラミックコンデンサを例にとり説明
する。
(Embodiment 2) Hereinafter, the second embodiment of the present invention will be described by using the second embodiment as a representative of the same multilayer ceramic electronic component as that of the first embodiment. A description will be given taking a ceramic capacitor as an example.

【0027】まず、熱処理に用いたのと同様のバッチ式
雰囲気炉を用いて、実施の形態1で作製した熱処理済み
の積層セラミックグリーンチップを投入し、窒素ガスを
毎分50リットルと水素ガスを毎分0.2〜2リットル
流しながら、500℃〜1000℃の温度範囲で100
0℃から1300℃の温度範囲とにおいて(表2)に示
した酸素分圧の雰囲気ガス中で熱処理を行い、1300
℃の温度で2時間保持し焼成を行った。
First, using the same batch type atmosphere furnace as that used for the heat treatment, the heat-treated multilayer ceramic green chip produced in the first embodiment was charged, and 50 liters of nitrogen gas per minute and hydrogen gas were supplied. While flowing at 0.2 to 2 liters per minute, 100
In a temperature range of 0 ° C. to 1300 ° C., heat treatment is performed in an atmosphere gas having an oxygen partial pressure shown in (Table 2).
The temperature was maintained at a temperature of 2 ° C. for 2 hours for firing.

【0028】次に、焼結体の内部電極が露出した両端面
部にAgペーストを塗布、焼付して端子電極を形成して
積層セラミックコンデンサを作製した。
Next, a silver paste was applied to both end surfaces of the sintered body where the internal electrodes were exposed and baked to form terminal electrodes, thereby producing a multilayer ceramic capacitor.

【0029】得られた各々の積層セラミックコンデンサ
を実施の形態1と同条件で寿命試験を行い静電容量の温
度特性と絶縁抵抗の劣化結果を併せて(表2)に示し
た。
A life test was performed on each of the obtained multilayer ceramic capacitors under the same conditions as in the first embodiment, and the temperature characteristics of the capacitance and the results of the deterioration of the insulation resistance are shown together (Table 2).

【0030】[0030]

【表2】 [Table 2]

【0031】(表2)には、初期値の絶縁抵抗が1×1
9以上の50個の試料が寿命試験後に1×107以下に
劣化した個数を、また静電容量の温度特性は20℃を基
準に85℃での静電容量の変化率を示している。尚、♯
を付した試料は本発明の範囲外で比較例である。
Table 2 shows that the initial insulation resistance is 1 × 1
50 or more samples of 09 or more deteriorated to 1 × 10 7 or less after the life test, and the temperature characteristic of capacitance shows the rate of change of capacitance at 85 ° C. based on 20 ° C. . In addition, ♯
Samples marked with are outside the scope of the present invention and are comparative examples.

【0032】(表2)に示すように、本発明の製造方法
による積層セラミックコンデンサは、静電容量の温度に
対する変化率が小さいのに対し、比較例では静電容量の
温度に対する変化率が大きいことがわかる。特に、本発
明の500℃〜1000℃の温度範囲で積層セラミック
グリーンチップをNiの酸化還元平衡酸素分圧より低
く、かつ酸化還元平衡酸素分圧の1ケタ下より高い酸素
分圧の雰囲気ガス中で熱処理を行い、更に1000℃以
上の温度範囲ではNiの酸化還元平衡酸素分圧の1ケタ
下より低い酸素分圧の雰囲気ガス中で熱処理を行った場
合、絶縁抵抗の劣化がほとんどなく静電容量の温度に対
する変化率も小さくなり最も良好であった。この結果か
ら本発明の製造方法は歩留および製品特性を向上させる
のに有効な手段であることが明らかである。
As shown in Table 2, the multilayer ceramic capacitor according to the manufacturing method of the present invention has a small change rate of the capacitance with respect to the temperature, whereas the comparative example has a large change rate of the capacitance with respect to the temperature. You can see that. In particular, in the temperature range of 500 ° C. to 1000 ° C. of the present invention, the laminated ceramic green chip is subjected to an atmosphere gas having an oxygen partial pressure lower than the oxidation-reduction equilibrium oxygen partial pressure of Ni and higher than one digit below the oxidation-reduction equilibrium oxygen partial pressure. When heat treatment is performed in an atmosphere gas having an oxygen partial pressure lower than 1 digit below the oxidation-reduction equilibrium oxygen partial pressure of Ni in a temperature range of 1000 ° C. or more, there is almost no deterioration in insulation resistance, and The rate of change of the capacity with respect to temperature was also small, which was the best. From these results, it is clear that the manufacturing method of the present invention is an effective means for improving yield and product characteristics.

【0033】(実施の形態3)以下、実施の形態3を用
いて本発明の特に請求項4から請求項6に記載の発明に
ついて、実施の形態1と同様に積層セラミック電子部品
の代表として積層セラミックコンデンサを例にとり説明
する。
(Embodiment 3) Hereinafter, the third embodiment of the present invention will be described by using the third embodiment as a representative of the multilayer ceramic electronic component, similarly to the first embodiment. A description will be given taking a ceramic capacitor as an example.

【0034】まず、実施の形態1で作製した熱処理済み
の積層セラミックグリーンチップを、熱処理に用いたの
と同様のバッチ式雰囲気炉を用い(表3)に示した雰囲
気ガスを流しながら、500℃〜1000℃及び100
0℃〜1300℃の温度範囲では酸素分圧をガスの混合
比を調整して制御し熱処理を行い、1300℃の温度で
2時間保持し焼成を行った。
First, the heat-treated multilayer ceramic green chip produced in the first embodiment was heated at 500 ° C. in the same batch-type atmosphere furnace as that used for the heat treatment while flowing the atmosphere gas shown in Table 3 below. ~ 1000 ° C and 100
In the temperature range of 0 ° C. to 1300 ° C., heat treatment was performed by controlling the oxygen partial pressure by adjusting the mixing ratio of the gas, and firing was performed at a temperature of 1300 ° C. for 2 hours.

【0035】次に、焼結体の内部電極が露出した両端面
部にAgペーストを塗布、焼付して端子電極を形成して
積層セラミックコンデンサを作製した。
Next, a silver paste was applied to both end portions of the sintered body where the internal electrodes were exposed and baked to form terminal electrodes, thereby producing a multilayer ceramic capacitor.

【0036】得られた各々の積層セラミックコンデンサ
を実施の形態1と同条件で寿命試験を行い静電容量の温
度特性と絶縁抵抗の劣化結果を併せて(表3)に示し
た。
A life test was performed on each of the obtained multilayer ceramic capacitors under the same conditions as in the first embodiment, and the temperature characteristics of the capacitance and the results of deterioration of the insulation resistance are shown together (Table 3).

【0037】[0037]

【表3】 [Table 3]

【0038】(表3)に示すように、本発明で用いた混
合ガスは精度良く酸素分圧を容易に制御することができ
ることから、得られた積層セラミックコンデンサは静電
容量の温度に対する変化率が小さいのに対し、比較例で
は静電容量の温度に対する変化率が大きいことがわか
る。特に、積層セラミックグリーンチップを500℃〜
1000℃の温度範囲では、Niの酸化還元平衡酸素分
圧より低く、かつ酸化還元平衡酸素分圧の1ケタ下より
高い酸素分圧の雰囲気ガス中で、また1000℃以上の
温度範囲では、Niの酸化還元平衡酸素分圧の1ケタ下
より低い酸素分圧の雰囲気ガス中で熱処理を行った場
合、絶縁抵抗の劣化がほとんどなく静電容量の温度に対
する変化率も小さくなり最も良好であった。この結果か
ら本発明の製造方法は歩留および製品特性を向上させる
のに有効な手段であることが明らかである。
As shown in Table 3, since the mixed gas used in the present invention can easily control the oxygen partial pressure accurately and accurately, the obtained multilayer ceramic capacitor has a capacitance change rate with respect to temperature. Is small, while the rate of change of the capacitance with respect to temperature is large in the comparative example. In particular, the laminated ceramic green chip
In a temperature range of 1000 ° C., in an atmosphere gas having an oxygen partial pressure lower than the oxidation-reduction equilibrium oxygen partial pressure of Ni and higher than one digit below the oxidation-reduction equilibrium oxygen partial pressure, and in a temperature range of 1000 ° C. or higher, Ni When heat treatment was performed in an atmosphere gas having an oxygen partial pressure lower than one digit below the oxidation-reduction equilibrium oxygen partial pressure, the insulation resistance was hardly degraded, and the rate of change of the capacitance with respect to temperature was small. . From these results, it is clear that the manufacturing method of the present invention is an effective means for improving yield and product characteristics.

【0039】[0039]

【発明の効果】前記実施の形態から明らかなように本発
明の積層セラミック電子部品の製造方法によれば、積層
セラミックグリーンチップを500℃〜1000℃の温
度範囲でNiの酸化還元平衡酸素分圧より低く、かつ酸
化還元平衡酸素分圧の1ケタ下より高い酸素分圧の雰囲
気ガス中で熱処理を行うことにより、Niの酸化を抑え
つつ、可能な限り高い酸素分圧中で積層セラミックグリ
ーンチップを熱処理することが可能となり、有機バイン
ダーの分解除去が十分に行われ焼結体内部にカーボンが
残留することを防止することができる。従って、この製
造方法によって得られた積層セラミック電子部品は、N
i等の卑金属を電極材料として用いた場合においても、
信頼性の高い安定した性能で再現性良く生産することが
できるという効果を有し工業的に効果が大きいことが分
かる。
As is apparent from the above embodiment, according to the method for manufacturing a multilayer ceramic electronic component of the present invention, the multilayer ceramic green chip is subjected to a redox equilibrium oxygen partial pressure of Ni in a temperature range of 500 ° C. to 1000 ° C. By performing heat treatment in an atmosphere gas having an oxygen partial pressure that is lower and higher than one digit below the oxidation-reduction equilibrium oxygen partial pressure, a multilayer ceramic green chip can be formed in an oxygen partial pressure as high as possible while suppressing oxidation of Ni. Can be heat-treated, and the organic binder can be sufficiently decomposed and removed to prevent carbon from remaining inside the sintered body. Therefore, the multilayer ceramic electronic component obtained by this manufacturing method has N
Even when a base metal such as i is used as an electrode material,
It can be seen that there is an effect that the production can be performed with high reliability and stable performance with good reproducibility, and the effect is industrially large.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 NiあるいはNiを主成分とする金属を
電極とした積層セラミックグリーンチップを脱バインダ
ー・焼成する際に、脱バインダー過程の500℃〜10
00℃の温度範囲では、Niの酸化還元平衡酸素分圧よ
り低くかつ酸化還元平衡酸素分圧の1ケタ下より高い酸
素分圧の雰囲気ガス中で熱処理を行う積層セラミック電
子部品の製造方法。
1. When debinding and firing a multilayer ceramic green chip having Ni or a metal containing Ni as a main component as an electrode, a temperature of 500 ° C. to 10 ° C.
A method for producing a multilayer ceramic electronic component, wherein heat treatment is performed in an atmosphere gas having an oxygen partial pressure lower than the oxidation-reduction equilibrium oxygen partial pressure of Ni and higher than one digit below the oxidation-reduction equilibrium oxygen partial pressure in the temperature range of 00 ° C.
【請求項2】 NiあるいはNiを主成分とする金属を
電極とした積層セラミックグリーンチップを脱バインダ
ー・焼成する際に、焼成過程の1000℃以上の温度範
囲ではNiの酸化還元平衡酸素分圧の1ケタ下より低い
酸素分圧の雰囲気ガス中で熱処理を行う積層セラミック
電子部品の製造方法。
2. When debinding and firing a laminated ceramic green chip using Ni or a metal containing Ni as a main component as an electrode, the oxidation-reduction equilibrium oxygen partial pressure of Ni in the temperature range of 1000 ° C. or more in the firing process. A method for producing a multilayer ceramic electronic component, wherein heat treatment is performed in an atmosphere gas having an oxygen partial pressure lower than one digit.
【請求項3】 NiあるいはNiを主成分とする金属を
電極とした積層セラミックグリーンチップを脱バインダ
ー・焼成する際に、脱バインダー過程の500℃〜10
00℃の温度範囲では、Niの酸化還元平衡酸素分圧よ
り低く酸化還元平衡酸素分圧の1ケタ下より高い酸素分
圧を有する雰囲気ガス中で、また焼結過程の1000℃
以上の温度範囲ではNiの酸化還元平衡酸素分圧の1ケ
タ下より低い酸素分圧中の雰囲気ガス中で熱処理を行う
積層セラミック電子部品の製造方法。
3. When debinding and firing a laminated ceramic green chip using Ni or a metal containing Ni as a main component as an electrode, a temperature of 500.degree.
In the temperature range of 00 ° C., in an atmosphere gas having an oxygen partial pressure lower than the redox equilibrium oxygen partial pressure of Ni and higher than one digit below the redox equilibrium oxygen partial pressure, and at 1000 ° C. in the sintering process.
A method for manufacturing a multilayer ceramic electronic component, wherein heat treatment is performed in an atmosphere gas at an oxygen partial pressure lower than one digit below the oxidation-reduction equilibrium oxygen partial pressure of Ni in the above temperature range.
【請求項4】 雰囲気ガスが窒素ガス、水素ガス、炭酸
ガス、水蒸気の中から選ばれた少なくとも2つ以上の混
合ガスである請求項1に記載の積層セラミック電子部品
の製造方法。
4. The method for manufacturing a multilayer ceramic electronic component according to claim 1, wherein the atmosphere gas is a mixed gas of at least two or more selected from nitrogen gas, hydrogen gas, carbon dioxide gas, and water vapor.
【請求項5】 雰囲気ガスが窒素ガス、水素ガス、炭酸
ガス、水蒸気の中から選ばれた少なくとも2つ以上の混
合ガスである請求項2に記載の積層セラミック電子部品
の製造方法。
5. The method for manufacturing a multilayer ceramic electronic component according to claim 2, wherein the atmospheric gas is a mixed gas of at least two selected from nitrogen gas, hydrogen gas, carbon dioxide gas, and water vapor.
【請求項6】 雰囲気ガスが窒素ガス、水素ガス、炭酸
ガス、水蒸気の中から選ばれた少なくとも2つ以上の混
合ガスである請求項3に記載の積層セラミック電子部品
の製造方法。
6. The method for producing a multilayer ceramic electronic component according to claim 3, wherein the atmosphere gas is a mixed gas of at least two selected from nitrogen gas, hydrogen gas, carbon dioxide gas, and water vapor.
JP2000250647A 2000-08-22 2000-08-22 Method for manufacturing laminated ceramic electronic part Pending JP2002064029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250647A JP2002064029A (en) 2000-08-22 2000-08-22 Method for manufacturing laminated ceramic electronic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250647A JP2002064029A (en) 2000-08-22 2000-08-22 Method for manufacturing laminated ceramic electronic part

Publications (1)

Publication Number Publication Date
JP2002064029A true JP2002064029A (en) 2002-02-28

Family

ID=18740180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250647A Pending JP2002064029A (en) 2000-08-22 2000-08-22 Method for manufacturing laminated ceramic electronic part

Country Status (1)

Country Link
JP (1) JP2002064029A (en)

Similar Documents

Publication Publication Date Title
US4189760A (en) Monolithic capacitor with non-noble metal electrodes and method of making the same
JP2012004236A (en) Ceramic electronic component and manufacturing method therefor
JP2005159224A (en) Laminated ceramic capacitor
JP2007266289A (en) Laminated ceramic electronic component, and its manufacturing method
US7054137B1 (en) Refractory metal nickel electrodes for capacitors
JP3102139B2 (en) Manufacturing method of multilayer electronic component
JP3142014B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4496639B2 (en) Electronic component and manufacturing method thereof
JP4515334B2 (en) Barrel plating method and electronic component manufacturing method
JP2002064029A (en) Method for manufacturing laminated ceramic electronic part
JP3520075B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH07122456A (en) Manufacture of multilayered ceramic capacitor
JP2844287B2 (en) Manufacturing method of multilayer capacitor
US7277269B2 (en) Refractory metal nickel electrodes for capacitors
KR100296865B1 (en) a method prepaparing a layered ceramic condenser
JP2003124054A (en) Method of manufacturing laminated ceramic electronic part
JP2001118424A (en) Copper alloy powder for conductive paste
JP4396190B2 (en) Manufacturing method of laminated varistor
JP2970110B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3239718B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component
EP4156215A1 (en) Capacitor
JPH04206613A (en) Manufacture of multilayer ceramic capacitor
JPH07111899B2 (en) Heater element manufacturing method
JPH1022166A (en) Manufacture of multilayered ceramic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070820

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608