JP2844287B2 - Manufacturing method of multilayer capacitor - Google Patents

Manufacturing method of multilayer capacitor

Info

Publication number
JP2844287B2
JP2844287B2 JP4342731A JP34273192A JP2844287B2 JP 2844287 B2 JP2844287 B2 JP 2844287B2 JP 4342731 A JP4342731 A JP 4342731A JP 34273192 A JP34273192 A JP 34273192A JP 2844287 B2 JP2844287 B2 JP 2844287B2
Authority
JP
Japan
Prior art keywords
zone
partial pressure
temperature
atm
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4342731A
Other languages
Japanese (ja)
Other versions
JPH06196352A (en
Inventor
政憲 水城
敏光 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18356057&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2844287(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP4342731A priority Critical patent/JP2844287B2/en
Publication of JPH06196352A publication Critical patent/JPH06196352A/en
Application granted granted Critical
Publication of JP2844287B2 publication Critical patent/JP2844287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、積層コンデンサの製造
方法に関し、更に詳細にはニッケルを内部電極に用いた
積層コンデンサの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer capacitor, and more particularly to a method for manufacturing a multilayer capacitor using nickel as an internal electrode.

【0002】[0002]

【従来の技術】従来、ニッケルを内部電極に用いた積層
コンデンサは次のような製造順序により作成される。
2. Description of the Related Art Conventionally, a multilayer capacitor using nickel as an internal electrode is manufactured in the following manufacturing sequence.

【0003】先ず、複数枚の長尺状の未焼成誘電体セラ
ミックシートの片面にニッケル粒子を含む導電ペースト
を印刷してニッケルを内部電極としたシート状の内部電
極用導電層を形成し、これらのシートを1枚置きに長手
方向にずらして重ねた後、圧着し、ずらしたシートの導
電層が切断面に露出する位置と、ずらさないシートの導
電層が切断面に露出する位置とで切断して積層状のチッ
プ片から成る未焼成のコンデンサ素体を作成する。次
に、該コンデンサ素体を例えば大気中で温度300℃で
脱脂した後、続いて、該コンデンサ素体を還元雰囲気中
で温度1150〜1300℃で焼成してコンデンサ素体
(焼成済み)を作成する。
[0003] First, a conductive paste containing nickel particles is printed on one surface of a plurality of long unsintered dielectric ceramic sheets to form a sheet-like conductive layer for internal electrodes using nickel as an internal electrode. After alternately stacking every other sheet in the longitudinal direction, pressing and crimping, cutting at the position where the conductive layer of the shifted sheet is exposed at the cut surface and at the position where the conductive layer of the unshifted sheet is exposed at the cut surface As a result, an unfired capacitor body made of laminated chip pieces is prepared. Next, the capacitor body is degreased at a temperature of 300 ° C. in the atmosphere, for example, and then fired at a temperature of 1150 to 1300 ° C. in a reducing atmosphere to prepare a capacitor body (baked). I do.

【0004】続いて、コンデンサ素体の導電層が露出し
ている端面とこれに連なる周端縁部に銀(Ag)粒子を
含む導電ペーストを塗布して外部電極用導電層を形成し
た後、大気中で温度600〜900℃で焼付けして積層
コンデンサを作成する。このようにして作成された積層
コンデンサの外部電極は該端面で内部電極と電気的に接
続し、該端面とこれに連なるコンデンサ素体の周端縁部
に直接に密着している。
Subsequently, a conductive paste containing silver (Ag) particles is applied to an end surface of the capacitor body where the conductive layer is exposed and a peripheral edge portion connected to the end surface to form a conductive layer for an external electrode. It is baked at a temperature of 600 to 900 ° C. in the atmosphere to produce a multilayer capacitor. The external electrode of the multilayer capacitor thus formed is electrically connected to the internal electrode at the end face, and directly adheres to the end face and the peripheral edge of the capacitor body connected thereto.

【0005】このように内部電極にニッケルを用いた積
層コンデンサではニッケルを酸化させないために弱還元
性の雰囲気中で焼成するようにしている。しかし、前記
雰囲気中では脱脂が不十分となるために、空気中で温度
300℃で焼成して脱脂を行う。
As described above, in a multilayer capacitor using nickel for the internal electrode, firing is performed in a weakly reducing atmosphere in order to prevent oxidation of nickel. However, since the degreasing becomes insufficient in the above atmosphere, degreasing is performed by firing at a temperature of 300 ° C. in the air.

【0006】このように脱脂処理を行ったコンデンサ素
体をジルニアセッター上に平面的に並べ、密閉型バッチ
炉内で焼成を行う。炉内雰囲気は温度850℃で測定し
た際、炉内に導入されるO2分圧が10-16〜10-18atm
となるようにH2ガス、N2ガス、COガス、CO2ガス
の混合ガスの混合比を調整する。このような雰囲気で行
われる焼成プロファイルは常温から温度1150〜13
50℃までの昇温速度は100℃/時間とし、焼結温度
(最高温度)に到達後は1〜3時間保持し、その後常温
までの降温速度は200℃/時間とする。
[0006] The capacitor bodies thus degreased are arranged in a plane on a zirconia setter and fired in a closed batch furnace. When the atmosphere in the furnace was measured at a temperature of 850 ° C., the partial pressure of O 2 introduced into the furnace was 10 −16 to 10 −18 atm.
The mixing ratio of the mixed gas of H 2 gas, N 2 gas, CO gas, and CO 2 gas is adjusted so that The firing profile performed in such an atmosphere is from room temperature to 1150-13.
The rate of temperature rise up to 50 ° C. is 100 ° C./hour, and after reaching the sintering temperature (maximum temperature), the temperature is maintained for 1 to 3 hours, and then the rate of temperature drop to room temperature is 200 ° C./hour.

【0007】[0007]

【発明が解決しようとする課題】前記従来のニッケルを
内部電極とした積層コンデンサの製造で、未焼成のコン
デンサ素体に大気中で温度300℃で脱脂を行った場
合、その後にバッチ炉内に該コンデンサ素体を多量に入
れて還元雰囲気中で焼成を行うと、脱脂が不十分となり
やすく、その結果得られた積層コンデンサの焼結性が低
下し、クラック不良となりやすいという問題がある。ま
た還元雰囲気中で焼成を行うため、コンデンサ素体のセ
ラミック材に耐還元性材料を用いても得られた積層コン
デンサに酸素欠陥が出来やすく、その結果、高温負荷試
験において絶縁抵抗が劣化してしまうという問題があ
る。
In the above-mentioned conventional production of a multilayer capacitor using nickel as an internal electrode, when an unfired capacitor body is degreased at a temperature of 300 ° C. in the air, it is then placed in a batch furnace. When firing in a reducing atmosphere with a large amount of the capacitor body, the degreasing tends to be insufficient, and as a result, the resulting multilayer capacitor has a problem that the sinterability is reduced and crack failure is likely to occur. In addition, since firing is performed in a reducing atmosphere, even when using a reduction-resistant material as the ceramic material of the capacitor body, the obtained multilayer capacitor tends to have oxygen defects, and as a result, insulation resistance deteriorates in a high temperature load test. Problem.

【0008】本発明はかかる問題点を解消し、焼結性が
よく、高温負荷試験を行っても絶縁抵抗の劣化のない高
信頼性の積層コンデンサの製造方法を提供することを目
的とする。
An object of the present invention is to provide a method for manufacturing a multilayer capacitor which solves such a problem and has high sinterability and which does not deteriorate in insulation resistance even when subjected to a high-temperature load test.

【0009】[0009]

【課題を解決するための手段】本発明の積層コンデンサ
の製造方法は、内部電極用ニッケル導電層が形成された
未焼成セラミックシートを複数枚積層し、圧着して成る
積層状の未焼成のコンデンサ素体を焼成した後、コンデ
ンサ素体の両端面およびそれに連なる周端縁部に外部電
極用導電層を形成する積層コンデンサの製造方法におい
て、未焼成のコンデンサ素体を焼成する際の焼成を温度
1000℃までの昇温過程を脱脂ゾーンとし、それ以降
最高温度での焼結過程を焼結ゾーンとし、最高温度以降
の常温までの降温過程を酸素欠陥補充ゾーンに区分し、
脱脂ゾーンはO2分圧が10-13〜10-15atmとした雰囲
気とし、焼結ゾーンはO2分圧が10-16〜10-18atmと
した雰囲気とし、酸素欠陥補充ゾーンはO2分圧が10
-10〜10-13atmとした雰囲気で焼成を行うことを特徴
する。
According to a method of manufacturing a multilayer capacitor of the present invention, a plurality of unsintered ceramic sheets having a nickel conductive layer for an internal electrode formed thereon are laminated and pressed to form a laminated unsintered capacitor. After firing the element body, in a method of manufacturing a multilayer capacitor in which conductive layers for external electrodes are formed on both end surfaces of the capacitor element body and peripheral edges connected thereto, the firing when firing the unfired capacitor element is performed at a temperature. The process of raising the temperature up to 1000 ° C. is defined as a degreasing zone, the sintering process at the highest temperature thereafter is defined as a sintering zone, and the process of decreasing the temperature from the maximum temperature to room temperature is divided into an oxygen deficiency replenishment zone.
The degreasing zone has an atmosphere with an O 2 partial pressure of 10 −13 to 10 −15 atm, the sintering zone has an atmosphere with an O 2 partial pressure of 10 −16 to 10 −18 atm, and the oxygen defect replenishment zone has an O 2 partial pressure of O 2. Partial pressure is 10
The firing is performed in an atmosphere of -10 to 10 -13 atm.

【0010】[0010]

【作用】未焼成のコンデンサ素体を焼成する際の焼成過
程を脱脂ゾーンと、焼結ゾーンと、酸素欠陥補充ゾーン
とに区分し、各ゾーンにおいてO2分圧を特定範囲の雰
囲気として焼成を行うと、クラック不良がなく、高温負
荷試験における絶縁抵抗の劣化の少ない優れた積層コン
デンサを作成することが出来る。その際、脱脂ゾーンに
おいてO2分圧を10-13〜10-15atmとしたのは、この
範囲では酸素が充分供給されるため脱脂が早く進行す
る。脱脂ゾーンでO2分圧が前記範囲よりも低すぎると
酸素の補充が乏しくなって脱脂が遅れ気味となり、ま
た、O2分圧が前記範囲より高すぎると内部電極が酸化
膨張してしまうからである。また、焼結ゾーンにおいて
2分圧を10-16〜10-18atmとしたのは、この範囲で
はNi内部電極を酸化させずにセラミックの焼結が可能
となる。焼結ゾーンでO2分圧が前記範囲よりも低すぎ
ると酸素欠陥が大きくなり、絶縁抵抗が劣化し、また、
2分圧が前記範囲より高すぎるとNi内部電極が酸化
膨張してクラックが発生するからである。また、酸素欠
陥補充ゾーンにおいてO2分圧を10-10〜10-13atmと
したのは、この範囲では酸素が充分に供給されるため焼
成時に生じる酸素欠陥を補える。酸素欠陥補充ゾーンで
2分圧が前記範囲よりも低すぎると酸素の補充が乏し
くなってコンデンサ素体の酸素欠陥を確実に補えず、ま
た、O2分圧が前記範囲より高すぎると内部電極が酸素
膨張してしまうからである。尚、酸素欠陥補充ゾーンで
脱脂ゾーンに比してO2分圧を上げられるのは内部電極
のニッケルの酸化影響が少ないからである。
The firing process for firing an unfired capacitor body is divided into a degreasing zone, a sintering zone, and an oxygen defect replenishment zone. In each zone, firing is performed with an O 2 partial pressure in a specific range of atmosphere. By doing so, it is possible to produce an excellent multilayer capacitor having no crack failure and less deterioration of insulation resistance in a high-temperature load test. At that time, the O 2 partial pressure in the degreasing zone was set to 10 −13 to 10 −15 atm. In this range, oxygen is sufficiently supplied, and degreasing proceeds quickly. If the O 2 partial pressure is too low in the degreasing zone, the replenishment of oxygen becomes insufficient and the degreasing tends to be delayed, and if the O 2 partial pressure is too high, the internal electrodes will oxidize and expand. It is. The reason why the O 2 partial pressure is set to 10 −16 to 10 −18 atm in the sintering zone is that in this range, the ceramic can be sintered without oxidizing the Ni internal electrode. If the O 2 partial pressure in the sintering zone is lower than the above range, oxygen vacancies increase, insulation resistance deteriorates, and
This is because if the O 2 partial pressure is too high, the Ni internal electrode will undergo oxidative expansion and cracks will occur. The reason that the O 2 partial pressure is set to 10 −10 to 10 −13 atm in the oxygen defect replenishment zone is that oxygen is sufficiently supplied in this range, so that oxygen defects generated at the time of firing can be compensated. Not compensate reliably oxygen defects of the capacitor body when the O 2 partial pressure in the oxygen defects replenishment zone is too low than the range replenishment of oxygen becomes poor, and when the O 2 partial pressure is too high than the above range internal This is because the electrode expands with oxygen. Incidentally, the raised an O 2 partial pressure compared to debinding zone with an oxygen deficiency supplementation zone because less oxidation effect of nickel of the internal electrodes.

【0011】[0011]

【実施例】本発明の具体的実施例を比較例と共に説明す
る。
EXAMPLES Specific examples of the present invention will be described together with comparative examples.

【0012】先ず、コンデンサの誘電体材料として、本
出願人が先に特公昭60−20851号で提案せる実施
例に示される組成物にバインダーを適量添加してスラリ
ーを作成し、厚さ18μmの未焼成誘電体セラミック材
から成るグリーンシートを用意すると共に、純度98.
0%のニッケル(Ni)粉末と、セラミック材料と、バ
インダーを混練して作成した内部電極用ペーストを用意
した。
First, as a dielectric material for a capacitor, a slurry was prepared by adding an appropriate amount of a binder to the composition shown in the embodiment proposed by the present applicant in Japanese Patent Publication No. 60-20851, and having a thickness of 18 μm. A green sheet made of an unfired dielectric ceramic material is prepared and has a purity of 98.
An internal electrode paste prepared by kneading 0% nickel (Ni) powder, a ceramic material, and a binder was prepared.

【0013】次に、グリーンシート(未焼成誘電体セラ
ミック材)上に内部電極用ペーストを従来法に従って印
刷して未焼成セラミックシートを作成した後、従来法に
従ってこの未焼成セラミックシート50層を順次積層
し、その積層物の上下の夫々に前記グリーンシート(未
焼成誘電体セラミック材)5層をカバーシートとして積
層した後、大きさ3.2mm×1.6mmに切断してチ
ップ片の積層状の未焼成のコンデンサ素体を作成した。
続いて、未焼成のコンデンサ素体を大気中で、温度30
0℃で、15時間保持して脱脂工程を行った試料コンデ
ンサを作成した。
Next, an internal electrode paste is printed on a green sheet (unfired dielectric ceramic material) according to a conventional method to form an unfired ceramic sheet, and 50 layers of the unfired ceramic sheet are sequentially formed according to the conventional method. After laminating, 5 layers of the green sheet (unfired dielectric ceramic material) are laminated as a cover sheet on each of the upper and lower sides of the laminate, and then cut into a size of 3.2 mm × 1.6 mm to form a laminate of chip pieces. The unfired capacitor element was prepared.
Subsequently, the unfired capacitor body is placed in the air at a temperature of 30 ° C.
A sample capacitor was prepared by holding at 0 ° C. for 15 hours to perform a degreasing process.

【0014】このようにして作成された試料コンデンサ
をジルコニアセッター上に平面に並べ、密閉型のバッチ
炉内で焼成を行ってコンデンサ素体(焼成済み)を作成
した。試料コンデンサに焼成処理を施す際の各ゾーンに
おけるO2分圧は表1に示す分圧となるように調整し
た。
The thus prepared sample capacitors were arranged in a plane on a zirconia setter, and fired in a closed batch furnace to obtain a capacitor body (fired). The partial pressure of O 2 in each zone when the firing process was performed on the sample capacitor was adjusted to be the partial pressure shown in Table 1.

【0015】また、バッチ炉内での焼成プロファイルは
次の通りとした。 常温から1000℃までの脱脂ゾーンにおける昇温
速度は100℃/時間とし、該ゾーンの雰囲気中のO2
分圧は本発明実施例は10-13〜10-15atmとし、比較
例は前記範囲以外または10-16atm、10-17atm、10
-18atmのいずれかとした。 温度1000℃から温度1150〜1350℃まで
の焼結ゾーンにおける昇温速度は100℃/時間とし、
該ゾーンの雰囲気中のO2分圧は本発明実施例は10-16
〜10-18atmとし、比較例は前記範囲以外または10
-16atm、10-17atm、10-18atmのいずれかとした。 焼結温度(1150〜1350℃)より常温までの
酸素欠陥補充ゾーンにおける降温速度は200℃/時間
とし、該ゾーンの雰囲気中のO2分圧は本発明実施例は
10-10〜10-13atmとし、比較例は前記範囲以外また
は10-16atm、10-17atm、10-18atmのいずれかとし
た。
The firing profile in the batch furnace was as follows. The rate of temperature rise in the degreasing zone from normal temperature to 1000 ° C. was 100 ° C./hour, and O 2
The partial pressure was 10 -13 to 10 -15 atm in the examples of the present invention, and the comparative examples were out of the above range or 10 -16 atm, 10 -17 atm, 10
-18 atm. The heating rate in the sintering zone from a temperature of 1000 ° C. to a temperature of 1150 to 1350 ° C. is 100 ° C./hour,
The O 2 partial pressure in the atmosphere of the zone is 10 −16 in the embodiment of the present invention.
-10 atm to 10-18 atm.
-16 atm, 10 -17 atm, or 10 -18 atm. The temperature drop rate in the oxygen deficiency replenishment zone from the sintering temperature (1150-1350 ° C.) to room temperature was 200 ° C./hour, and the O 2 partial pressure in the atmosphere in the zone was 10 −10 to 10 −13 in the examples of the present invention. atm, and Comparative Examples were out of the above range or 10 -16 atm, 10 -17 atm, or 10 -18 atm.

【0016】尚、各ゾーンのO2分圧は温度850℃に
おいて炉内にセットされたジルコニアセンサーを用い、
炉内に導入せる混合ガス中のO2量を測定し、この値を
2分圧とした。また、各ゾーンにおけるO2分圧の調整
は炉内に導入する窒素ガス(N2)と、水素ガス
(H2)、一酸化炭素ガス(CO)、二酸化炭素ガス
(CO2)の混合ガスの混合比を調整することによって
行った。尚、これらガスの混合比はコンデンサ素体を構
成するセラミック材、内部電極用導電材となるニッケル
量、焼結温度により適宜設定すればよく、一般には窒素
ガス95.0〜99.9%:水素ガス0.1〜4.0%
程度とし、これに添加する一酸化炭素ガスは250〜1
0000ppm程度、二酸化炭素ガスは200〜500
0ppm程度とする。
Incidentally, the O 2 partial pressure in each zone is determined by using a zirconia sensor set in a furnace at a temperature of 850 ° C.
The amount of O 2 in the mixed gas introduced into the furnace was measured, and this value was defined as the O 2 partial pressure. Adjustment of the O 2 partial pressure in each zone is performed by mixing a nitrogen gas (N 2 ), a hydrogen gas (H 2 ), a carbon monoxide gas (CO), and a carbon dioxide gas (CO 2 ) introduced into the furnace. Was adjusted by adjusting the mixing ratio. The mixing ratio of these gases may be appropriately set depending on the ceramic material constituting the capacitor body, the amount of nickel serving as the conductive material for the internal electrode, and the sintering temperature. Generally, nitrogen gas is 95.0 to 99.9%: Hydrogen gas 0.1-4.0%
And carbon monoxide gas to be added is 250 to 1
About 0000 ppm, carbon dioxide gas is 200-500
It is about 0 ppm.

【0017】このようにして焼成されたコンデンサ素体
の導電層が露出している端面とこれに連なる周端縁部に
純度98.0%のニッケル(Ni)粉末と、セラミック
材料と、バインダーを混練して作成した外部電極用ペー
ストを塗布して外部電極用導電層を形成した後、窒素雰
囲気中で、温度900℃で焼付けして外部電極を形成
し、各ゾーンにおけるO2分圧が種々異なる積層コンデ
ンサを作成した。
The thus obtained fired capacitor body has an exposed end surface of the conductive layer and a peripheral edge portion connected to the end surface, which is coated with nickel (Ni) powder having a purity of 98.0%, a ceramic material, and a binder. After forming a conductive layer for external electrodes by applying a paste for external electrodes formed by kneading, the external electrodes are formed by baking at a temperature of 900 ° C. in a nitrogen atmosphere, and the partial pressure of O 2 in each zone is various. Different multilayer capacitors were made.

【0018】図1に前記方法で作成された積層コンデン
サを示す。図面において、1は内部にセラミック層2を
介して積層され交互に対向する端面に露出する内部電極
3を有するコンデンサ素体、4は該端面に連なるコンデ
ンサ素体1の周端縁部および上下カバーシート5の端面
上に連続して形成された外部電極である。
FIG. 1 shows a multilayer capacitor produced by the above method. In the drawings, reference numeral 1 denotes a capacitor body having internal electrodes 3 laminated inside via ceramic layers 2 and alternately exposed to opposite end faces, and 4 denotes a peripheral edge of the capacitor body 1 connected to the end face and upper and lower covers. The external electrodes are formed continuously on the end face of the sheet 5.

【0019】前記方法で作成されたO2分圧が種々異な
る積層コンデンサの夫々に半田付けし、各積層コンデン
サについてクラック観察(試料100個)、ヒューレッ
ト・ハッカード社製のインピーダンスアナライザー(型
式4278A)により静電容量(試料20個)について
測定し、TABAI社製恒温槽(型式BV−220)お
よび東京精電株式会社製、定電圧電源装置により高温負
荷試験(試料200個)を行った。尚、クラック観察は
金属顕微鏡観察で行った。また、インピーダンスアナラ
イザーでの測定条件は周波数1kHz、信号電圧1Vと
した。また、高温負荷試験は温度85℃で32Vを負荷
しながら1000時間までの20V1MΩ以下の故障を
調べた。得られた結果を表1に示す。
Solder to each of the multilayer capacitors having different O 2 partial pressures prepared by the above method, crack observation of each multilayer capacitor (100 samples), an impedance analyzer (Model 4278A) manufactured by Hewlett-Hackard Company. (20 samples), and a high-temperature load test (200 samples) was performed using a constant temperature bath (model BV-220) manufactured by TABAI and a constant voltage power supply manufactured by Tokyo Seiden Co., Ltd. In addition, the crack observation was performed by the metallographic observation. The measurement conditions of the impedance analyzer were a frequency of 1 kHz and a signal voltage of 1 V. In the high-temperature load test, a failure of 20 V 1 MΩ or less was examined for up to 1000 hours while applying 32 V at a temperature of 85 ° C. Table 1 shows the obtained results.

【0020】[0020]

【表1】 [Table 1]

【0021】尚、表1の試料番号中で無印が各ゾーンに
おけるO2分圧が本発明の範囲内のコンデンサ素体であ
り、※印が付されたものが各ゾーンにおけるO2分圧が
本発明の範囲外のコンデンサ素体である。
In the sample numbers shown in Table 1, the blanks indicate that the O 2 partial pressure in each zone is within the scope of the present invention, and the asterisks indicate the O 2 partial pressure in each zone. This is a capacitor body outside the scope of the present invention.

【0022】表1から明らかなように、本発明の各ゾー
ンのO2分圧範囲内で焼成されて得られた積層コンデン
サは外観クラックもなく、また、高温負荷試験を行って
も絶縁抵抗の劣化がなく、しかも積層コンデンサとして
満足せる静電容量(容量値が1110〜1220nF)
を有していることが分かる。これに対して本発明の各ゾ
ーンのO2分圧範囲外(表1に※印で示した)で焼成さ
れて得られた積層コンデンサ、例えば前記表1における
試料番号1,10,26,32等は積層コンデンサとし
ての静電容量が多いか、少ないか、更にはクラック発
生、絶縁抵抗の劣化があり、或いは所定の静電容量を有
しているにもかかわらずクラックが発生しているか、ま
た、高温負荷試験に耐えられずに絶縁抵抗の劣化があり
実用に適しない。
As is clear from Table 1, the multilayer capacitor obtained by firing within the range of the partial pressure of O 2 in each zone of the present invention has no appearance cracks, and has a high insulation resistance even when subjected to a high-temperature load test. Capacitance without deterioration and satisfying as a multilayer capacitor (capacitance value is 1101 to 1220 nF)
It can be seen that this has On the other hand, a multilayer capacitor obtained by firing outside the O 2 partial pressure range (indicated by * in Table 1) of each zone of the present invention, for example, sample numbers 1, 10, 26, and 32 in Table 1 above Etc., whether the capacitance as a multilayer capacitor is large or small, furthermore, cracks are generated, insulation resistance is deteriorated, or cracks are generated despite having a predetermined capacitance, In addition, it cannot withstand a high temperature load test and its insulation resistance deteriorates, which is not suitable for practical use.

【0023】[0023]

【発明の効果】このように本発明によるときは、コンデ
ンサ素体の焼成過程を脱脂ゾーン、焼結ゾーン、酸素欠
陥補充ゾーンに区分し、各ゾーンの焼成時におけるO2
分圧を特定範囲でコントロールするようにしたので、脱
脂を速やかに行うことが出来るため、焼成中にCの残留
による焼結不足を補うことが出来て、クラックがなく、
また、酸素欠陥を補うことが出来て、高温負荷試験を行
っても絶縁抵抗の劣化がなく信頼性の高い積層コンデン
サを極めて容易に製造することが出来る等の効果があ
る。
[Effect of the Invention] When according to the present invention as described above, divides the firing process of the capacitor element body degreasing zone, sintering zone, the oxygen defects replenishment zone, O 2 during the firing of each zone
Since the partial pressure is controlled in a specific range, degreasing can be performed promptly, so that insufficient sintering due to residual C during firing can be compensated, and there is no crack.
In addition, it is possible to compensate for oxygen vacancies, and to produce a highly reliable multilayer capacitor without deterioration of insulation resistance even when a high-temperature load test is performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の1実施例で製造された積層コンデン
サの拡大截断面図、
FIG. 1 is an enlarged sectional view of a multilayer capacitor manufactured according to an embodiment of the present invention;

【符号の説明】[Explanation of symbols]

1 コンデンサ素体、 3 内部電極、 4
外部電極。
1 capacitor body, 3 internal electrode, 4
External electrodes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部電極用ニッケル導電層が形成された
未焼成セラミックシートを複数枚積層し、圧着して成る
積層状の未焼成のコンデンサ素体を焼成した後、コンデ
ンサ素体の両端面およびそれに連なる周端縁部に外部電
極用導電層を形成する積層コンデンサの製造方法におい
て、未焼成のコンデンサ素体を焼成する際の焼成を温度
1000℃までの昇温過程を脱脂ゾーンとし、それ以降
最高温度での焼結過程を焼結ゾーンとし、最高温度以降
の常温までの降温過程を酸素欠陥補充ゾーンに区分し、
脱脂ゾーンはO2分圧が10-13〜10-15atmとした雰囲
気とし、焼結ゾーンはO2分圧が10-16〜10-18atmと
した雰囲気とし、酸素欠陥補充ゾーンはO2分圧が10
-10〜10-13atmとした雰囲気で焼成を行うことを特徴
する積層コンデンサの製造方法。
An unfired ceramic sheet on which a nickel conductive layer for an internal electrode is formed is laminated and pressed, and a laminated unfired capacitor element is fired. In a method for manufacturing a multilayer capacitor in which a conductive layer for an external electrode is formed on a peripheral edge portion connected thereto, the firing when firing the unfired capacitor element is performed by raising the temperature up to 1000 ° C. as a degreasing zone, and thereafter. The sintering process at the highest temperature is the sintering zone, and the cooling process from the highest temperature to the normal temperature is divided into the oxygen deficiency replenishment zone,
The degreasing zone has an atmosphere with an O 2 partial pressure of 10 −13 to 10 −15 atm, the sintering zone has an atmosphere with an O 2 partial pressure of 10 −16 to 10 −18 atm, and the oxygen defect replenishment zone has an O 2 partial pressure of O 2. Partial pressure is 10
A method for manufacturing a multilayer capacitor, comprising firing in an atmosphere of -10 to 10 -13 atm.
JP4342731A 1992-12-22 1992-12-22 Manufacturing method of multilayer capacitor Expired - Fee Related JP2844287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4342731A JP2844287B2 (en) 1992-12-22 1992-12-22 Manufacturing method of multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4342731A JP2844287B2 (en) 1992-12-22 1992-12-22 Manufacturing method of multilayer capacitor

Publications (2)

Publication Number Publication Date
JPH06196352A JPH06196352A (en) 1994-07-15
JP2844287B2 true JP2844287B2 (en) 1999-01-06

Family

ID=18356057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4342731A Expired - Fee Related JP2844287B2 (en) 1992-12-22 1992-12-22 Manufacturing method of multilayer capacitor

Country Status (1)

Country Link
JP (1) JP2844287B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH079280B2 (en) * 1987-09-09 1995-02-01 三菱電機株式会社 Safe handling equipment for gas cylinders
WO2002084683A1 (en) 2001-04-12 2002-10-24 Tdk Corporation Production method of laminate ceramic electronic component
JP5297011B2 (en) * 2007-07-26 2013-09-25 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
EP3043135A1 (en) * 2015-01-08 2016-07-13 Linde Aktiengesellschaft Apparatus and method for controlling a sintering process

Also Published As

Publication number Publication date
JPH06196352A (en) 1994-07-15

Similar Documents

Publication Publication Date Title
JP2764513B2 (en) Reduction resistant dielectric porcelain composition
EP1705674B1 (en) Method of production of multilayer ceramic electronic device
JP3734662B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2005159224A (en) Laminated ceramic capacitor
JP2844287B2 (en) Manufacturing method of multilayer capacitor
JP2009182011A (en) Stacked ceramic capacitor and method of manufacturing the same
JP3102139B2 (en) Manufacturing method of multilayer electronic component
KR100581398B1 (en) Dielectric ceramic composition, electronic device and manufacturing method thereof
JP3114462B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2018137286A (en) Capacitor
JP2003209304A (en) Manufacturing method for laminated piezoelectric ceramic element
JP3088509B2 (en) Manufacturing method of ceramic electronic components
JP3924898B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2852809B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2990819B2 (en) Grain boundary insulated semiconductor ceramic multilayer capacitor
JP2970110B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2001284162A (en) Conductive paste and laminated electronic component, and their manufacturing method
JP4396190B2 (en) Manufacturing method of laminated varistor
JP3239666B2 (en) Manufacturing method of grain boundary insulated multilayer ceramic component
JP4314789B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3873928B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3804135B2 (en) Multilayer ceramic capacitor
JP4853048B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH10135070A (en) Manufacture of multilayered ceramic electronic parts
JP2002064029A (en) Method for manufacturing laminated ceramic electronic part

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980901

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091030

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101030

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111030

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees