JP2002060827A - Method for melting stainless steel - Google Patents

Method for melting stainless steel

Info

Publication number
JP2002060827A
JP2002060827A JP2000250623A JP2000250623A JP2002060827A JP 2002060827 A JP2002060827 A JP 2002060827A JP 2000250623 A JP2000250623 A JP 2000250623A JP 2000250623 A JP2000250623 A JP 2000250623A JP 2002060827 A JP2002060827 A JP 2002060827A
Authority
JP
Japan
Prior art keywords
scale
stainless steel
sus
melting
scrap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000250623A
Other languages
Japanese (ja)
Inventor
Masakazu Hayaishi
正和 速石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000250623A priority Critical patent/JP2002060827A/en
Publication of JP2002060827A publication Critical patent/JP2002060827A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for melting a stainless steel by which stainless steel scale (SUS scale) produced in the step of rolling can be reused as steelmaking raw material and the more SUS scale can be treated without bringing about such danger as the over-flow of the slag frequently developed in the case of using Telstar (aluminum dust), in a method for producing the stainless steel with the melting of scrap in an electric furnace and a subsequent AOD treatment. SOLUTION: The melting of the stainless steel as the preceding step of the AOD treatment is performed according to the following processes: (1) an initial charging (scrap, CaO, ferro-silicon, recarburizer and SUS scale),-power-supply and melting, (2) a supplementary charging (scrap and SUS scale), (3) the addition of reducing agent (ferro-silicon and Telstar) and melt-down, (4) the power-supply and heat-up, (5) the addition of ferro-silicon and the blowing of oxygen and (6) the steel tapping-off.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気炉においてス
クラップを主体とする原料配合物を溶解し、それに続い
てAOD処理を行なってステンレス鋼を製造する方法の
改良に関する。
The present invention relates to an improvement in a method for producing stainless steel by dissolving a scrap-based raw material blend in an electric furnace, followed by AOD treatment.

【0002】[0002]

【従来の技術】電気炉でスクラップを主体とする原料を
溶解し、得られた溶鋼をAOD処理することからなるス
テンレス鋼の製造においては、廃棄物としてAODダス
ト(以下、単に「ダスト」という)が発生する。一方、
ステンレス鋼の主たる中間製品である圧延材を製造する
圧延工程からは、ミルスケール(以下、「SUSスケー
ル」という)が発生する。SUSスケールは、当然に、
ステンレス鋼を構成するFe,Ni,Crなどの酸化物
が主体である。
2. Description of the Related Art In the production of stainless steel, which involves melting a raw material mainly composed of scrap in an electric furnace and subjecting the obtained molten steel to AOD treatment, AOD dust (hereinafter simply referred to as "dust") is used as waste. Occurs. on the other hand,
A mill scale (hereinafter, referred to as “SUS scale”) is generated from a rolling process for manufacturing a rolled material that is a main intermediate product of stainless steel. The SUS scale, of course,
Oxides such as Fe, Ni, and Cr that constitute stainless steel are mainly used.

【0003】上記のように、ダストはFeおよびNi,
Crの酸化物が主成分であるから、これらの酸化物を還
元して金属成分を溶鋼中に取り戻せば、資源の有効な活
用につながる。これを実現する技術として、「テルスタ
ー法」が行なわれるようになった。「テルスター法」と
は、アルミ灰を、すなわち回収アルミニウムを溶解して
インゴット化するときに生じる、金属アルミニウムとア
ルミナの混合物を、ダストやスケールに配合した組成
物、いわゆる「テルスター」を、電気炉の添加物として
使用する技術である。ダストをテルスターにすることに
より、ダストの飛散が防げ、かつ還元効率も高められ
た。
As described above, dust is composed of Fe and Ni,
Since the oxides of Cr are the main components, if these oxides are reduced and the metal components are recovered in the molten steel, effective utilization of resources is achieved. As a technique for realizing this, the "Telstar method" has come to be used. The `` Telstar method '' is a method of mixing aluminum ash, that is, a mixture of metallic aluminum and alumina, which is generated when molten aluminum is melted and formed into an ingot, into dust and scale, a so-called `` Telstar '', using an electric furnace. This technology is used as an additive for By making the dust a star, the scattering of the dust was prevented and the reduction efficiency was improved.

【0004】ところが、テルスター法には、テルスター
がアルミナを含むほか、その中の金属アルミニウムが酸
化されてさらにアルミナが生成し、その結果、スラグの
容積が著しく増すという問題がある。電気炉操業におけ
る「スラグ溢れ」と呼ばれるこの問題のため、SUSス
ケールの電気炉への添加は、あまり高い率では使用でき
ない。発生する量の高々1/4程度に止まっているのが
現状である。
[0004] However, the Telstar method has a problem that, in addition to the Telstar containing alumina, the metallic aluminum therein is oxidized to further generate alumina, and as a result, the volume of the slag is significantly increased. Due to this problem, called "slag overflow" in electric furnace operations, the addition of SUS scale to electric furnaces cannot be used at very high rates. At present, it is at most about 1/4 of the generated amount.

【0005】発明者は、スラグ量の増大を招くことなく
SUSスケールの還元を実現する手段を探し求め、電気
炉で溶解したスクラップ中には多量の炭素が含まれてい
ることに着目し、鋼中の炭素によるSUSスケールの還
元の可能性を考えた。自由エネルギーを計算したとこ
ろ、炭素による還元が理論的には起こり得るとの結論に
至った。そこで実験したところ、この期待は正しく、S
USスケールは効果的に還元されることを確認した。
[0005] The inventor has sought a means for realizing reduction of SUS scale without increasing the amount of slag, and has noticed that a large amount of carbon is contained in scrap melted in an electric furnace. The possibility of reduction of SUS scale by carbon was considered. Calculating the free energy, we concluded that reduction by carbon could theoretically occur. When we experimented, this expectation was correct and S
It was confirmed that the US scale was effectively reduced.

【0006】酸化クロムが溶鋼中の炭素によって還元す
ることができれば、ステンレス鋼の製造において、すこ
ぶる好都合である。そこで、以前に、クロム鉱を粉末に
して、中空電極を通して電気炉に吹き込むことを試みた
が、クロム鉱の還元はできず、還元剤としてシリコンを
添加する必要があった。このような経験から、同じく酸
化物であるSUSスケールもまた、溶鋼中の炭素によっ
て還元することができないと考えられていた。この還元
性の差は、酸化物としての安定性の差に起因すると解さ
れるが、いずれにしても本発明は、この固定観念を打ち
破ったものである。
It would be of great advantage in the production of stainless steel if chromium oxide could be reduced by the carbon in the molten steel. Therefore, before, chromium ore was powdered and tried to be blown into an electric furnace through a hollow electrode. However, chromium ore could not be reduced, and silicon had to be added as a reducing agent. From such experience, it was thought that SUS scale, also an oxide, could not be reduced by the carbon in the molten steel. It is understood that this difference in reducibility is caused by a difference in stability as an oxide, but in any case, the present invention breaks this stereotype.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
した発明者の新知見を活用し、有用な金属を含有するS
USスケールを製鋼原料として利用することができ、そ
れがテルスター法にありがちなスラグ溢れの危険を伴わ
ずに可能である、ステンレス鋼の溶製方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to make use of the above-mentioned new knowledge of the inventor and to provide a useful metal-containing S
It is an object of the present invention to provide a method for smelting stainless steel in which US scale can be used as a raw material for steelmaking, which is possible without the danger of slag overflow that is common in the Telstar method.

【0008】[0008]

【課題を解決するための手段】上述の新事実に立脚して
完成された本発明のステンレス鋼の溶製方法は、スクラ
ップを主原料とする原料配合物を電気炉において溶解
し、得られた溶鋼をAOD処理することとからなるステ
ンレス鋼の製造において、溶解原料の一部としてSUS
スケールを使用し、溶鋼中の炭素によりスケールを還元
することを特徴とする。
SUMMARY OF THE INVENTION A method for melting stainless steel according to the present invention, which has been completed on the basis of the above-mentioned new facts, is obtained by melting a raw material mixture mainly composed of scrap in an electric furnace. In the production of stainless steel by subjecting molten steel to AOD treatment, SUS is used as a part of the raw material for melting.
It is characterized in that a scale is used and the scale is reduced by carbon in molten steel.

【0009】[0009]

【発明の実施形態】SUSスケールの利用を特徴とする
本発明のステンレス鋼の溶製方法は、具体的には、図1
にフローを示すように、おおむね下記の工程に従って実
施する: 1)初装(スクラップ、CaO、フェロシリコン、加炭
剤およびSUSスケール)および通電溶解、 2)追装(スクラップおよびSUSスケール)および通
電溶解、 3)還元剤添加(フェロシリコンおよびテルスター)お
よび溶け落ち、 4)通電昇温、 5)フェロシリコン添加および酸素吹練、ならびに 6)出鋼。
DETAILED DESCRIPTION OF THE INVENTION The method for melting stainless steel of the present invention, which is characterized by the use of a SUS scale, is described in detail in FIG.
In general, the following steps are carried out as shown in the flow chart below: 1) Initial loading (scrap, CaO, ferrosilicon, carburizing agent and SUS scale) and electric melting, 2) Top-up (scrap and SUS scale) and electric current Dissolution, 3) addition of reducing agent (ferrosilicon and telstar) and burn-through, 4) energization and heating, 5) addition of ferrosilicon and oxygen blowing, and 6) tapping.

【0010】上記の工程は、若干の変更を伴って実施す
ることができる。たとえば、比較的大容量の電気炉を使
用する場合、追装ののち、第三装としてスクラップ、ま
たはスクラップおよびSUSスケールを添加することも
あり得る。しかし、いずれにしても、SUSスケール
は、溶解の初期ないし中期に装入し、溶け落ち時の溶鋼
に1.0〜2.0%という高い量で含まれる炭素により
還元することが肝要である。溶解の後期にSUSスケー
ルを添加すべきでない、とする理由は、溶け落ちが近い
時点でSUSスケールを電気炉に直接投入すると、スラ
グ中のCr23の量が多いため、溶け落ち時にその還元
が一時に進行して、ときにボイリングを生じることが経
験されたことにある。
The above steps can be performed with minor modifications. For example, when using a relatively large-capacity electric furnace, it is possible to add scrap or scrap and SUS scale as a third equipment after reloading. However, in any case, it is important that the SUS scale is charged at the early or middle stage of melting and is reduced by carbon contained in the molten steel at the time of meltdown in a high amount of 1.0 to 2.0%. . The reason that the SUS scale should not be added at the latter stage of melting is that when the SUS scale is directly introduced into the electric furnace at the time when the burn-through is near, the amount of Cr 2 O 3 in the slag is large. It has been experienced that the reduction proceeds at one time and sometimes causes boiling.

【0011】とはいえ、初装において多量のSUSスケ
ールを装入すると、炉底のポーラスプラグ周辺に未反応
のまま残ることがあるので、一時にまとめて装入する事
は避けた方が賢明である。その他の原料であるCaOや
フェロシリコンの装入は、通常の電気炉によるスクラッ
プの溶解の場合と変わりがない。
However, if a large amount of SUS scale is charged during initial loading, it may remain unreacted around the porous plug at the hearth, so it is wise to avoid charging all at once. It is. The charging of the other raw materials, CaO and ferrosilicon, is the same as in the case of melting scrap with a normal electric furnace.

【0012】追装後(第三装を装入した場合はその
後)、溶け落ちに至るころには、鋼中の炭素は、SUS
スケールの酸化物を還元するのに消費されてその量が減
少し、還元には不充分になるから、フェロシリコンとテ
ルスターとを装入して、還元を完全にする。昇熱の後期
にフェロシリコンを装入して酸素を吹精するのは、溶鋼
温度の上昇を意図したものである。
[0012] After the reloading (after the third charging, after that), by the time the burnout occurs, the carbon in the steel is SUS
Ferrosilicon and Telstar are charged to complete the reduction as it is consumed to reduce the oxides of the scale and reduces its amount and becomes insufficient for the reduction. The purpose of charging ferrosilicon and blowing oxygen at a later stage of the heating is to increase the temperature of molten steel.

【0013】[0013]

【実施例】容量70トンの電気炉に、つぎの配合の初装
を装入した。 (初装)スクラップ: 40トン フェロシリコン:0.4トン SUSスケール:2トン 加炭剤: 1.5トン CaO: 1.75トン
EXAMPLE An electric furnace having a capacity of 70 tons was initially charged with the following composition. (First time) Scrap: 40 tons Ferrosilicon: 0.4 tons SUS scale: 2 tons Carburizing agent: 1.5 tons CaO: 1.75 tons

【0014】通電して20分後、つぎの配合の追装を装
入した。 (追装)スクラップ: 38トン SUSスケール: 1トン
Twenty minutes after the power was supplied, the following additional charge was charged. (Applied) Scrap: 38 tons SUS scale: 1 ton

【0015】さらに40分間通電したところで溶け落ち
た。直前に、つぎの装入をした。 (溶け落ち前装入)フェロシリコン:0.5トン テルスター:0.5トン
When electricity was further supplied for 40 minutes, it melted off. Immediately before, the following charges were made. (Charging before burn-through) Ferrosilicon: 0.5 ton Telstar: 0.5 ton

【0016】溶け落ちてから10分後、つぎの量の酸素
を吹精し、その間につぎの装入を行なった。 (酸素吹精)500Nm3/チャージ (最終装入)フェロシリコン:0.5トン
Ten minutes after melting down, the next amount of oxygen was blown, during which the next charge was made. (Oxygen blowing) 500 Nm 3 / charge (final charge) Ferrosilicon: 0.5 ton

【0017】30分後、湯温1680℃で75トンの溶
鋼を出鋼した。鋼の組成はつぎのとおりであった。 C:1.5%,Si:0.2%,Mn:1.0%,Cr:18.2
%,Ni:8.0%, Fe:残部。
After 30 minutes, 75 tons of molten steel was discharged at a hot water temperature of 1680 ° C. The composition of the steel was as follows. C: 1.5%, Si: 0.2%, Mn: 1.0%, Cr: 18.2
%, Ni: 8.0%, Fe: balance.

【0018】スラグを分析したところ、その中にNiお
よびCrが実質上含まれていないことがわかり、SUS
スケールの還元が完全に行なわれたことが確認された。
上記の例ではSUSスケールを3トン/チャージ処理で
きたが、その後の実験によって、さらに1トン、合計4
トン処理できることがわかった。従来のテルスター法で
は、前述のスラグ溢れのおそれがあって、1トン/チャ
ージ程度しか処理できなかったが、本発明により、SU
Sスケールの利用は大いに進み、100%を循環再利用
できるようになった。
When the slag was analyzed, it was found that Ni and Cr were not substantially contained therein.
It was confirmed that the scale was completely reduced.
In the above example, the SUS scale could be charged at 3 tons / charge.
It turned out that it could be processed. In the conventional Telstar method, there was a possibility of the slag overflowing, and only about 1 ton / charge could be processed.
The use of S-scale has greatly advanced, and 100% can be recycled for recycling.

【0019】[0019]

【発明の効果】本発明により、電気炉溶解−AOD処理
の連携によるステンレス鋼製造において、圧延工程から
発生するSUSスケールを、電気炉で用意した溶湯に装
入して溶鋼中の炭素で還元して金属に戻し、有効に利用
することが可能になった。テルスター法の実施に当たっ
て、しばしばネックになるスラグ溢れの問題は、本発明
により回避できる。このようにして、ステンレス鋼の製
造と加工において発生するAODダストおよびSUSス
ケールが、資源として再利用される。
According to the present invention, in the production of stainless steel by coordination of electric furnace melting and AOD processing, SUS scale generated from a rolling process is charged into a molten metal prepared in an electric furnace and reduced with carbon in the molten steel. It has been returned to metal and can be used effectively. In the practice of the Telstar method, the problem of slag overflow that often becomes a bottleneck can be avoided by the present invention. In this way, AOD dust and SUS scale generated in the production and processing of stainless steel are reused as resources.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のステンレス鋼の溶製方法について、
その工程を示すフローチャート。
FIG. 1 shows a method for melting stainless steel according to the present invention.
5 is a flowchart showing the process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スクラップを主原料とする原料配合物を
電気炉で溶解し、得られた溶鋼をAOD処理することか
らなるステンレス鋼の製造において、溶解原料の一部と
してステンレス鋼を圧延したときに発生するスケールを
使用し、溶鋼中の炭素によりスケールを構成する酸化物
を還元して原料の循環利用をはかることを特徴とするス
テンレス鋼の溶製方法。
In the production of stainless steel, which comprises melting a raw material mixture containing scrap as a main raw material in an electric furnace and subjecting the obtained molten steel to AOD treatment, when stainless steel is rolled as a part of the molten raw material. A method for smelting stainless steel, characterized in that a scale generated in step (a) is used to reduce the oxides constituting the scale with carbon in the molten steel to recycle the raw material.
【請求項2】 下記の工程に従って実施する請求項1の
ステンレス鋼の溶製方法: 1)初装(スクラップ、CaO、フェロシリコン、加炭
剤およびステンレス鋼スケール)および通電溶解、 2)追装(スクラップおよびステンレス鋼スケール)お
よび通電溶解、 3)還元剤添加(フェロシリコンおよびテルスター)お
よび溶け落ち、 4)通電昇温、 5)フェロシリコンの添加および酸素吹練、ならびに 6)出鋼。
2. The method for producing stainless steel according to claim 1, which is carried out according to the following steps: 1) Initial loading (scrap, CaO, ferrosilicon, carburizing agent and stainless steel scale) and electric melting, 2) additional loading (Scrap and stainless steel scale) and dissolution by electric current; 3) Addition of reducing agent (ferrosilicon and Telstar) and burn-off; 4) Heating of electric current; 5) Addition of ferrosilicon and oxygen blowing; and 6) Tapping.
JP2000250623A 2000-08-22 2000-08-22 Method for melting stainless steel Pending JP2002060827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250623A JP2002060827A (en) 2000-08-22 2000-08-22 Method for melting stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250623A JP2002060827A (en) 2000-08-22 2000-08-22 Method for melting stainless steel

Publications (1)

Publication Number Publication Date
JP2002060827A true JP2002060827A (en) 2002-02-28

Family

ID=18740161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250623A Pending JP2002060827A (en) 2000-08-22 2000-08-22 Method for melting stainless steel

Country Status (1)

Country Link
JP (1) JP2002060827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022119063A1 (en) * 2020-12-03 2022-06-09 주식회사 티이 Recycling method for manufacturing high speed steel master alloy from high speed steel processing process waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022119063A1 (en) * 2020-12-03 2022-06-09 주식회사 티이 Recycling method for manufacturing high speed steel master alloy from high speed steel processing process waste
US11987867B2 (en) 2020-12-03 2024-05-21 T&E Inc. Recycling method for manufacturing high speed steel master alloy from high speed steel processing process waste

Similar Documents

Publication Publication Date Title
JP2008163463A (en) Method for reducing chromium-metal from chromium oxide-containing slag
JP4829225B2 (en) Chromium reduction method for metallurgical slag
RU2352672C2 (en) Extraction method of metallic element, particularly metallic chromium, from charge containing metal oxides in arc furnace
JP2947063B2 (en) Stainless steel manufacturing method
EP1073773B1 (en) An improved process for making steel
JP2002060827A (en) Method for melting stainless steel
JPH07188831A (en) Method and equipment for manufacturing stainless steel
JP2003049216A (en) Method for producing molten steel
JP2000144272A (en) Method for recovering chromium and iron in melting and smelting steel containing chromium
JP3063537B2 (en) Stainless steel manufacturing method
JP2856103B2 (en) Hot metal dephosphorization method
JP2964861B2 (en) Stainless steel manufacturing method
JP3644307B2 (en) Hot phosphorus dephosphorization method
JP7338663B2 (en) Method for producing chromium-containing molten iron
JPS61213309A (en) Manufacture of flux for refining using molten pig iron dephosphorization slag as starting material
JP3187461B2 (en) Slag smelting reduction method
JP2000038612A (en) Production of molten steel
JP2002161306A (en) Refining process with decarburization for chromium- containing molten ferrous alloy
JPS6250543B2 (en)
JP4184855B2 (en) Method for adjusting Cr content in molten steel
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
JPH0120208B2 (en)
JPH1121612A (en) Method for melting steel
Bisaka et al. Optimisation of SiMn Production of Transalloys
JPH11193411A (en) Refining method of molten low carbon iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629