JP2008163463A - Method for reducing chromium-metal from chromium oxide-containing slag - Google Patents

Method for reducing chromium-metal from chromium oxide-containing slag Download PDF

Info

Publication number
JP2008163463A
JP2008163463A JP2007327035A JP2007327035A JP2008163463A JP 2008163463 A JP2008163463 A JP 2008163463A JP 2007327035 A JP2007327035 A JP 2007327035A JP 2007327035 A JP2007327035 A JP 2007327035A JP 2008163463 A JP2008163463 A JP 2008163463A
Authority
JP
Japan
Prior art keywords
slag
chromium
electric furnace
reducing
aluminum dross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007327035A
Other languages
Japanese (ja)
Other versions
JP4778501B2 (en
Inventor
相烈 ▲鄭▼
Sang-Yuel Jung
Yong Hwan Kim
容煥 金
Sun-Min Byun
善民 卞
Sang Beom Lee
相範 李
Hyun-Chul Chun
賢哲 全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2008163463A publication Critical patent/JP2008163463A/en
Application granted granted Critical
Publication of JP4778501B2 publication Critical patent/JP4778501B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5264Manufacture of alloyed steels including ferro-alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0037Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by injecting powdered material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0038Obtaining aluminium by other processes
    • C22B21/0069Obtaining aluminium by other processes from scrap, skimmings or any secondary source aluminium, e.g. recovery of alloy constituents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for reducing a chromium-metal from a chromium oxide-containing slag with which the chromium contained in a stainless slag in an electric furnace can efficiently be reduced and recovered into a low concentration thereof. <P>SOLUTION: In a process reducing the chromium contained in the electric furnace slag during a stainless steel-making process, while maintaining the slag as the liquid-state, the charging quantity of powdery aluminum dross is in the range of 10-20 kg per 1 ton of molten steel, or the Al dross is injected into the electric furnace slag so as to satisfy the following formula, 0.5≤[Al dross charging quantity (ton)×100]/[electric furnace slag quantity (ton)×Cr<SB>2</SB>O<SB>3</SB>concentration (%)]≤1.0. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、含酸化クロムスラグからのクロム金属還元方法に関し、より具体的には、ステンレス製鋼工程中、電気炉スラグに含有されたクロムなどの有価金属を回収するとき、その回収率を向上できるように、粉体アルミニウムドロスを吹き込む、含酸化クロムスラグからのクロム金属還元方法に関する。   The present invention relates to a method for reducing chromium metal from oxidized chromium slag, and more specifically, when recovering valuable metals such as chromium contained in electric furnace slag during a stainless steel making process, the recovery rate can be improved. As described above, the present invention relates to a method for reducing chromium metal from oxidized chromium slag by blowing powder aluminum dross.

一般的に、ステンレス鋼の精錬過程を含む製鋼工程は、電気炉−精錬炉−成分の微調整−連続鋳造の工程からなる。また、ステンレス鋼の市場需要に柔軟に対処するため、電気炉をはじめとする生産方式が、より一般的に普及している。   Generally, a steelmaking process including a refining process of stainless steel includes an electric furnace, a refining furnace, fine adjustment of components, and a continuous casting process. Moreover, in order to flexibly cope with the market demand for stainless steel, production methods including an electric furnace are more widely used.

電気炉による溶鋼の製造は、大きく分けて、スクラップ及び合金鉄を溶解する方式と、溶銑及びスクラップを混合して溶解する方式とに分けられる。しかし、ステンレス鋼のような高級鋼の場合、品質の面を考慮して、不純物の含有量がより少ない高級スクラップ及び合金鉄のみを使用して電気炉で溶解する方式が、主流となっている。しかし、この場合は、価格の安い溶銑を使用する場合に比べ、コスト負担が高いことから、クロムのような有価金属を含む副生成物の効率的な還元及び回収が必要であり、このため、様々な方法が提案されている。特に、クロムの場合は、6価クロムの形態で溶出されることから、環境汚染を引き起こす問題があるため、必ずスラグから除去されなければならない。   The production of molten steel by an electric furnace is roughly divided into a method of melting scrap and alloy iron and a method of mixing and melting molten iron and scrap. However, in the case of high-grade steel such as stainless steel, in consideration of quality, a method of melting in an electric furnace using only high-grade scrap and alloy iron with a lower impurity content is the mainstream. . However, in this case, since the cost burden is higher than when using a hot metal with a low price, it is necessary to efficiently reduce and recover by-products containing valuable metals such as chromium. Various methods have been proposed. In particular, in the case of chromium, since it is eluted in the form of hexavalent chromium, there is a problem of causing environmental pollution, so it must be removed from the slag.

ステンレス鋼は、成分の特性上、10%以上のクロム成分を含有しており、クロム成分は、鉄(Fe)よりも酸素との親和力が大きいため、1500°C以上の高温で行われる製鋼工程では、クロム成分の酸化が必然的に発生する。   Stainless steel contains 10% or more chromium component due to the characteristics of the component, and since the chromium component has a higher affinity with oxygen than iron (Fe), the steelmaking process is performed at a high temperature of 1500 ° C or higher. Then, oxidation of the chromium component inevitably occurs.

また、電気炉の場合、スクラップの溶解を促進させるため、酸素を必須的に吹き込むため、ステンレス溶鋼の製造の際に多量のクロム成分が酸化してスラグ化される。   In addition, in the case of an electric furnace, oxygen is essentially blown in order to promote melting of scrap, so that a large amount of chromium components are oxidized and slag is formed during the production of molten stainless steel.

電気炉を用いたステンレス鋼の製造過程で、副生成物として発生するスラグ中の酸化クロム含有量は、約5%〜30%の範囲という高い水準である。そこで、製造費用を低減するか、または資源をより効率的に用いるために、合金鉄及びスクラップが溶解された後、この溶鋼の温度を上げる昇熱期内にケイ素鉄(Fe−Si)やアルミニウムなどの還元剤を添加し、スラグ中のクロム酸化物を溶鋼中に還元することが、一般的である。   In the production process of stainless steel using an electric furnace, the chromium oxide content in the slag generated as a by-product is a high level of about 5% to 30%. Therefore, in order to reduce manufacturing costs or use resources more efficiently, silicon iron (Fe—Si) and aluminum are heated within the heating period when the temperature of the molten steel is increased after the alloy iron and scrap are melted. It is common to add a reducing agent such as to reduce chromium oxide in slag into molten steel.

前記昇熱期に存在するスラグ中の酸化クロムは、溶鋼中の成分であるケイ素(Si)または炭素により一部還元される。しかし、一般的に、電気炉の電力使用量を低減しながら溶鋼の温度を上げるため、昇熱期に多量の酸素を溶鋼内に吹き込むため、溶鋼中のケイ素または炭素によるクロム還元量は、酸素による酸化量に比べて微々の水準である。   Chromium oxide in the slag existing during the heat-up period is partially reduced by silicon (Si) or carbon, which is a component in the molten steel. However, in general, in order to raise the temperature of the molten steel while reducing the power consumption of the electric furnace, a large amount of oxygen is blown into the molten steel during the heat-up period, so the amount of chromium reduction by silicon or carbon in the molten steel is oxygen Compared to the amount of oxidation by

また、還元剤として使用されるケイ素鉄やアルミニウムの場合、価格が高いため、使用量が制約的で、逆にコスト上昇の原因になることもある。そのため、酸素の吹き込み中にクロムの酸化を抑制しようとする試みがあった。   Further, in the case of silicon iron or aluminum used as a reducing agent, since the price is high, the amount of use is constrained, and conversely, it may cause an increase in cost. For this reason, there has been an attempt to suppress the oxidation of chromium during the blowing of oxygen.

韓国公開特許第2005−0109763号公報(特許文献1)には、ステンレス製鋼電気炉スラグ中の有価金属を回収するにあたり、バーナーを用いてスラグの温度を上昇させることにより、有価金属の還元反応に有利な高温の液状状態に維持させる方法が開示されている。しかし、この方法により、クロム酸化は抑制可能であるが、還元剤を必須的に使用するため、その効果は大きくない。このような別途の還元過程を経ていないスラグは、溶鋼と共に出湯されて排滓され、製鋼工程以外の別途の工程を通じてのみクロムを回収することができる。   In Korean Published Patent No. 2005-0109763 (Patent Document 1), when recovering valuable metals in a stainless steel electric furnace slag, the temperature of the slag is increased by using a burner. A method of maintaining an advantageous high temperature liquid state is disclosed. However, chromium oxidation can be suppressed by this method, but since a reducing agent is essential, the effect is not great. The slag that has not undergone such a separate reduction process is discharged together with molten steel and discharged, and chromium can be recovered only through a separate process other than the steelmaking process.

また、日本特開2001−316712号公報(特許文献2)には、電気炉の電極の少なくとも1つ以上を中空電極とし、アルミニウム、アルミニウムドロス、炭素などの還元剤を、中空電極を介して不活性ガスと共に吹き込んでスラグ中のクロム酸化物を還元させる方法が開示されている。この方法は、中空電極を用いるため、適用には限界がある。   In Japanese Patent Laid-Open No. 2001-316712 (Patent Document 2), at least one of the electrodes of an electric furnace is a hollow electrode, and a reducing agent such as aluminum, aluminum dross, or carbon is not introduced through the hollow electrode. A method of reducing chromium oxide in slag by blowing with an active gas is disclosed. Since this method uses a hollow electrode, its application is limited.

そして、韓国公開特許第2000−0021329号公報(特許文献3)には、電気炉に粉体炭素を吹き込むことにより、有価金属の回収及びスラグフォーミングを誘導する方法が開示されている。しかし、この場合、クロム酸化物と炭素との反応は、低温では発生しにくく、還元速度が遅いという問題がある。   Korean Patent Publication No. 2000-0021329 (Patent Document 3) discloses a method for inducing recovery of valuable metals and slag forming by blowing powdered carbon into an electric furnace. However, in this case, there is a problem that the reaction between chromium oxide and carbon hardly occurs at a low temperature and the reduction rate is slow.

また、韓国公開特許第1998−047211号公報(特許文献4)には、電気炉出湯後、取鍋でガスの攪伴によりクロムを回収する方法を開示している。しかし、この方法は、出湯中に排滓されるスラグ中のクロムの損失が大きいという短所がある。排滓されたスラグの有価金属の回収のための後処理は、破砕−水選−磁選−浮遊選鉱などといった、費用及び時間を要する工程を経るようになるため、ステンレス製鋼工程の費用を上昇させる要因のひとつになる。したがって、できるだけ多量のクロムを排滓前の溶融スラグから回収することが、経済面で非常に有利である。   Also, Korean Published Patent No. 1998-047211 (Patent Document 4) discloses a method of recovering chromium by gas stirring in a ladle after tapping the electric furnace. However, this method has a disadvantage that the loss of chromium in the slag discharged during the hot water is large. The post-treatment for recovering valuable metals from the waste slag is expensive and time consuming, such as crushing, water selection, magnetic separation, flotation, etc. One of the factors. Therefore, it is very advantageous in terms of economy to recover as much chromium as possible from the molten slag before discharging.

一般に、電気炉で作られた溶鋼を出湯する前、溶鋼1トンあたり2kg〜3kgの範囲のケイ素鉄(Fe−Si)合金を投入し、次の反応により、クロムを含む有価金属の一部を回収している。
(反応式1)
(Cr23)+[Si]=(SiO2)+[Cr]
(反応式2)
(MnO)+[Si]=(SiO2)+[Mn]
(反応式3)
(FeO)+[Si]=(SiO2)+[Fe]
Generally, before tapping molten steel made in an electric furnace, silicon iron (Fe-Si) alloy in the range of 2kg to 3kg per ton of molten steel is introduced, and a part of valuable metals including chromium is obtained by the following reaction. Collected.
(Reaction Formula 1)
(Cr 2 O 3 ) + [Si] = (SiO 2 ) + [Cr]
(Reaction Formula 2)
(MnO) + [Si] = (SiO 2 ) + [Mn]
(Reaction Formula 3)
(FeO) + [Si] = (SiO 2 ) + [Fe]

電気炉の溶鋼に投入されたケイ素鉄合金は、溶鋼に溶解することでシリコン含有量を高めるが、これは、溶鋼及びスラグの界面反応により、スラグ中のクロムを還元する。しかし、ケイ素鉄を還元剤として使用する場合、溶鋼中に吹き込む酸素により、ほとんどのケイ素が酸化する。したがって、クロムの還元に使用されるケイ素は、投入量の50%にも達しない。また、スラグ中のクロムの回収率を高めるため、ケイ素を多量添加する場合、酸化ケイ素(SiO2)が多量発生することから、スラグの塩基度(CaO/SiO2)を低下させ、スラグの流動性を悪化させる。したがって、作業効率が低下し、スラグ中のクロム酸化物の還元時に不利な条件となる。 The silicon iron alloy thrown into the molten steel of the electric furnace increases the silicon content by dissolving in the molten steel. This reduces chromium in the slag by the interfacial reaction between the molten steel and the slag. However, when silicon iron is used as a reducing agent, most silicon is oxidized by oxygen blown into the molten steel. Therefore, silicon used for chromium reduction does not reach 50% of the input. In addition, when adding a large amount of silicon in order to increase the recovery rate of chromium in the slag, a large amount of silicon oxide (SiO 2 ) is generated, so that the basicity of the slag (CaO / SiO 2 ) is lowered and the flow of the slag Worsens sex. Accordingly, the working efficiency is lowered, which is a disadvantageous condition when the chromium oxide in the slag is reduced.

ステンレス鋼の製造コスト節減の面で、高価なクロムを含む有価金属の回収率を高めるためには、従来のケイ素鉄よりも高効率の還元剤の使用が求められるのが、実情である。
韓国公開特許第2005−0109763号公報 日本特開2001−316712号公報 韓国公開特許第2000−0021329号公報 韓国公開特許第1998−047211号公報
In order to reduce the manufacturing cost of stainless steel, in order to increase the recovery rate of valuable metals including expensive chromium, it is a fact that the use of a reducing agent having higher efficiency than conventional silicon iron is required.
Korean Published Patent No. 2005-0109763 Japanese Unexamined Patent Publication No. 2001-316712 Korean Published Patent No. 2000-0021329 Korean Published Patent No. 1998-047211

そこで、本発明は、上記のような従来の問題を解決するためになされた発明であり、その目的は、ステンレス電気炉スラグ中に含有されたクロムを低濃度まで効率的に還元及び回収することができる、含酸化クロムスラグからのクロム金属還元方法を提供することである。   Therefore, the present invention is an invention made to solve the conventional problems as described above, and its purpose is to efficiently reduce and recover chromium contained in a stainless steel electric furnace slag to a low concentration. It is an object of the present invention to provide a method for reducing chromium metal from oxidized chromium-containing slag.

上記目的を達成するために、本発明に係る含酸化クロムスラグからのクロム金属還元方法は、ステンレス製鋼工程中、電気炉スラグに含有されたクロムを還元させる工程において、スラグを液状に維持しつつ、粉体アルミニウムドロスの投入量を、溶鋼1トンあたり10kg〜20kgの範囲、または   In order to achieve the above object, the method for reducing chromium metal from oxidized chromium-containing slag according to the present invention maintains the slag in a liquid state in the step of reducing chromium contained in the electric furnace slag during the stainless steel making process. , The amount of powdered aluminum dross is in the range of 10-20 kg per ton of molten steel, or

Figure 2008163463
Figure 2008163463

式を満すように、電気炉スラグ中に吹き込む。 Inject into the electric furnace slag to satisfy the equation.

好ましくは、前記粉体アルミニウムドロスを吹き込むとき、その粒度は、1mm〜5mmの範囲であり、窒素(N)またはアルゴン(Ar)ガスのうちの少なくとも1つの不活性ガスと共に、軟鋼管を介して吹き込む。また、その吹き込み量は、スラグ中のクロムを還元する化学当量以上の量を吹き込む。また、前記粉体アルミニウムドロスの吹き込みは、電気炉操業中、酸素の吹き込みが終わった時点、または電気炉の積算電力300kW/〜400kW/tonの範囲の時点で行われ、さらに、前記電気炉スラグの塩基度を、1.1〜1.7の範囲に調整し、スラグ中のアルミナ含有量を、10%以上に維持する。   Preferably, when the powdered aluminum dross is blown, the particle size thereof is in the range of 1 mm to 5 mm, together with at least one inert gas of nitrogen (N) or argon (Ar) gas, through a mild steel pipe. Infuse. The blowing amount is blown in an amount equal to or more than the chemical equivalent for reducing chromium in the slag. Further, the blowing of the powdered aluminum dross is performed at the time when the blowing of oxygen is finished during the operation of the electric furnace or when the electric power of the electric furnace is in the range of 300 kW / ˜400 kW / ton. Is adjusted to a range of 1.1 to 1.7, and the alumina content in the slag is maintained at 10% or more.

また、本発明に係る含酸化クロムスラグからのクロム金属還元方法は、前記電気炉のスラグ中のクロムを、粉体アルミニウムドロスを吹き込んでアルミニウム成分に還元させるステップと、前記粉体アルミニウムドロス中のアルミナ(Al23)成分及びスラグ塩基度を調整し、前記電気炉のスラグ流動性を増加させるステップとを含む。 Further, the method for reducing chromium metal from oxidized chrome slag according to the present invention comprises reducing the chromium in the slag of the electric furnace to an aluminum component by blowing powder aluminum dross, and in the powder aluminum dross Adjusting the alumina (Al 2 O 3 ) component and slag basicity to increase the slag fluidity of the electric furnace.

ここで、前記電気炉のスラグ中の有価金属を粉体アルミニウムドロス中のアルミニウム成分に還元させるステップは、前記粉体アルミニウムドロスの粒度を、1mm〜5mmの範囲とし、吹き込み量を、スラグ中のクロムを還元する化学当量以上とし、前記粉体アルミニウムドロスの吹き込み時期を、酸素の吹き込みが終わった時点、または電気炉の積算電力300kW/ton〜400kW/tonの範囲とする。前記粉体アルミニウムドロスの吹き込みは、軟鋼管をスラグ中に挿入し、キャリアとして、窒素(N)またはアルゴン(Ar)のうちの少なくとも1つの不活性ガスを用いる。また、前記スラグ流動性を増加させるステップは、前記電気炉スラグの塩基度を、1.1〜1.7の範囲に調整し、前記スラグ中のアルミナ濃度を、10%以上とすることを特徴とする。   Here, the step of reducing the valuable metal in the slag of the electric furnace to the aluminum component in the powder aluminum dross has a particle size of the powder aluminum dross in the range of 1 mm to 5 mm, and the blowing amount is set in the slag. The chemical equivalent of reducing chromium is set to be equal to or more than that, and the timing of blowing the powder aluminum dross is set to the time when the blowing of oxygen is completed, or the range of the integrated electric power of the electric furnace from 300 kW / ton to 400 kW / ton. The powder aluminum dross is blown by inserting a mild steel pipe into the slag and using at least one inert gas of nitrogen (N) or argon (Ar) as a carrier. Moreover, the step of increasing the slag fluidity adjusts the basicity of the electric furnace slag to a range of 1.1 to 1.7, and the alumina concentration in the slag is 10% or more. And

一方、非鉄分野において、アルミニウムの精錬中、精錬スラグとして相当量発生しているアルミニウムドロスを工業的に使用することは、廃棄物の活用及び環境配慮の面で好ましい。   On the other hand, in the non-ferrous field, during the refining of aluminum, it is preferable to industrially use aluminum dross generated in a considerable amount as a refining slag in terms of utilization of waste and environmental considerations.

以上のように本発明の含酸化クロムスラグからのクロム金属還元方法によると、アルミニウムドロスの吹き込みを行うことにより、ステンレス電気炉スラグ中に含有された酸化クロムの還元及びクロムの回収率を増大させることができる。そして、従来の還元剤よりも割安な粉体アルミニウムドロスを使用することにより、ステンレス製鋼工程のコストを節減することができる。   As described above, according to the chromium metal reduction method from the oxidized chromium slag of the present invention, the reduction of chromium oxide contained in the stainless steel electric furnace slag and the recovery rate of chromium are increased by blowing aluminum dross. be able to. And the cost of a stainless steel manufacturing process can be reduced by using powder aluminum dross which is cheaper than the conventional reducing agent.

以下では、本発明の実施例を示す図面を参照して、本発明に係る含酸化クロムスラグからのクロム金属還元方法を具体的に説明する。   Below, with reference to drawings which show the example of the present invention, the chromium metal reduction method from oxidation chromium slag concerning the present invention is explained concretely.

図1は、一般的なステンレス電気炉(EAF:Electric Arc Furnace)工程を示す模式図であり、図2は、ステンレス電気炉工程中におけるスラグ中のクロムの損失率を示すグラフである。   FIG. 1 is a schematic diagram showing a typical stainless steel electric furnace (EAF) process, and FIG. 2 is a graph showing the loss rate of chromium in the slag during the stainless steel electric furnace process.

図1に示すように、電気炉操業には、一般的に、2回〜3回の原料装入のステップがある。これは、屑鉄状態の鉄が、溶解された状態の鉄に比べて数十倍の体積を有するからである。1次装入時、出湯量の約50%に該当する屑鉄及び合金鉄を電気炉に投入後、通電させ、1次溶解を行う。その後、通電を中止し、電気炉ループを開けて残りの屑鉄及び合金鉄の2次装入を行う。引き続き、再通電させ、屑鉄及び合金鉄が完全に溶解されると、通電量を減少させる。その後、酸素を吹き込み、溶解された鉄の温度を目標値まで上昇させる昇熱期を経て出湯する。   As shown in FIG. 1, the electric furnace operation generally has two to three raw material charging steps. This is because scrap iron is tens of times larger than dissolved iron. At the time of primary charging, scrap iron and alloy iron corresponding to about 50% of the amount of hot water are put into an electric furnace and then energized to perform primary melting. Thereafter, the energization is stopped, the electric furnace loop is opened, and the remaining scrap iron and alloy iron are secondarily charged. Subsequently, when the current is re-energized, and the scrap iron and the alloy iron are completely dissolved, the amount of power is reduced. Then, oxygen is blown in and the hot water is discharged through a heat-up period in which the temperature of the dissolved iron is raised to a target value.

前述の電気炉操業中に、溶湯は常に大気と接触しているため、クロムが酸化して溶鋼成分の損失をもたらす。そのため、これらの還元剤としてケイ素鉄(FeSi)を使用するが、それにもかかわらず、図2のように、スラグ、スカル、ダストなどの形態でクロムの損失が発生する。このうち、酸化したクロムがスラグに流入して損失する部分の占める比率が絶対的に多く、これを還元させることで有価金属を回収することが、切実に求められる。   During the operation of the electric furnace described above, the molten metal is always in contact with the atmosphere, so that chromium is oxidized and the molten steel component is lost. Therefore, silicon iron (FeSi) is used as these reducing agents, but nevertheless, as shown in FIG. 2, loss of chromium occurs in the form of slag, skull, dust, and the like. Of these, the proportion of the portion where the oxidized chromium flows into the slag and is lost is absolutely large, and it is urgently required to recover the valuable metal by reducing it.

スラグ中の有価金属の回収を極大化するためには、還元剤の性能及び形状のみならず、流動性に優れたスラグ組成及び溶鋼の温度を併せて考慮しなければならない。   In order to maximize the recovery of valuable metals in the slag, it is necessary to consider not only the performance and shape of the reducing agent, but also the slag composition with excellent fluidity and the temperature of the molten steel.

まず、スラグ中に含有されているクロム酸化物は、アルミニウムドロス中のアルミニウム成分により、熱力学的に還元可能である。
(反応式4)
(Cr23)+2Al(l)=2Cr(s)+(Al23
(反応式5)
3(MnO)+2Al(l)=3Mn(l)+(Al23
(反応式6)
3(FeO)+2Al(l)=3Fe(l)+(Al23
First, chromium oxide contained in slag can be reduced thermodynamically by the aluminum component in aluminum dross.
(Reaction Formula 4)
(Cr 2 O 3 ) + 2Al (l) = 2Cr (s) + (Al 2 O 3 )
(Reaction Formula 5)
3 (MnO) + 2Al (l) = 3Mn (l) + (Al 2 O 3 )
(Reaction Formula 6)
3 (FeO) + 2Al (l) = 3Fe (l) + (Al 2 O 3 )

これにより、ステンレス電気炉のスラグに含有されている有価金属の酸化物は、溶鋼及びスラグが形成される温度(約1600°C)でアルミニウムと接触したとき、上記のような反応を起こして還元され得る。しかし、ステンレス電気炉操業では、生産性を考慮して、溶解時間を最大限短縮しているため、上記反応の速度が遅い場合、実際の適用は困難となる。   As a result, valuable metal oxides contained in the slag of a stainless steel electric furnace are reduced by causing the above reaction when contacting with aluminum at a temperature (about 1600 ° C) at which molten steel and slag are formed. Can be done. However, in the stainless steel electric furnace operation, the melting time is shortened as much as possible in consideration of productivity, so that the actual application becomes difficult when the reaction rate is slow.

このようなスラグ中の元素の還元反応速度は、スラグ中の有価金属酸化物の物質移動速度と還元物質との接触面積に比例する。したがって、スラグの攪伴による物質移動速度の増加、またはアルミニウムドロスの表面積の増加による反応面積の増加が、有価金属の還元速度の増加に重要な要素として作用する。   Such a reduction reaction rate of the element in the slag is proportional to the mass transfer rate of the valuable metal oxide in the slag and the contact area between the reduction material. Therefore, an increase in mass transfer rate due to slag agitation or an increase in reaction area due to an increase in the surface area of aluminum dross acts as an important factor in increasing the reduction rate of valuable metals.

反応面積の増加のためには、吹き込まれる炭素の表面積を拡大することが、よい手段となり、このためには、粒度の小さな粉体を使用しなければならない。   In order to increase the reaction area, it is a good means to increase the surface area of the blown carbon, and for this purpose, a powder with a small particle size must be used.

したがって、反応速度の面をみると、アルミニウムドロスの粒度が5mm以上になると、それより小さな粒度のアルミニウムドロスより不利である。また、アルミニウムドロス中に存在するアルミニウム以外のその他の成分は、その含有量に応じてスラグと反応し、スラグの物性を変化させることにより、酸化クロムの還元を妨げる可能性がある。したがって、還元剤の役割を果たすアルミニウム成分の含有量が小さくなるほど、それだけ還元反応には不利である。そこで、本発明の実施例では、アルミニウムドロス中のアルミニウム成分の含有量を30%以上に、粒度を1mm〜5mmの範囲に制限した。   Therefore, in view of the reaction rate, when the particle size of aluminum dross is 5 mm or more, it is disadvantageous than aluminum dross having a smaller particle size. Further, other components other than aluminum present in the aluminum dross may react with the slag according to the content thereof and change the physical properties of the slag, thereby preventing the reduction of chromium oxide. Therefore, the smaller the content of the aluminum component that serves as a reducing agent, the more disadvantageous the reduction reaction. Therefore, in the examples of the present invention, the content of the aluminum component in the aluminum dross was limited to 30% or more, and the particle size was limited to a range of 1 mm to 5 mm.

図3は、スラグ組成に応じたスラグの粘度変化を示す図である。   FIG. 3 is a diagram illustrating a change in viscosity of slag according to the slag composition.

上記反応のように、アルミニウムにより有価金属酸化物が還元される場合に発生するアルミナ(Al23)成分は、同図に示すように、スラグの粘度を下げて流動性を増加させる役割を果たす。これにより、酸化物の物質移動速度を増加させ、還元反応速度をより一層増加させることができる。 As shown in the above reaction, the alumina (Al 2 O 3 ) component generated when valuable metal oxides are reduced by aluminum plays a role in decreasing the viscosity of slag and increasing fluidity, as shown in FIG. Fulfill. Thereby, the mass transfer rate of the oxide can be increased, and the reduction reaction rate can be further increased.

一方、粉体アルミニウムドロスをスラグ層に吹き込んで酸化物と接触させるためには、発火性のない不活性気体(窒素またはアルゴン)を使用しなければならず、さらに、スラグの深さに応じた圧力を耐えるためには、一定水準以上の気体圧力を必要とする。本発明では、作業開口から電極の設けられた炉中心を向けて粉体アルミニウムドロス吹き込み用軟鋼管を挿入し、3bar〜4barの範囲の窒素ガスを用いて、粉体を2インチの軟鋼管を介してスラグ内に吹き込んだ。   On the other hand, in order to blow powder aluminum dross into the slag layer and make it come into contact with the oxide, an inert gas (nitrogen or argon) having no ignitability must be used, and further, depending on the depth of the slag. In order to withstand the pressure, a gas pressure above a certain level is required. In the present invention, a powdered aluminum dross blowing mild steel pipe is inserted from the work opening toward the furnace center where the electrode is provided, and a 2 inch mild steel pipe is formed by using nitrogen gas in the range of 3 bar to 4 bar. Was blown into the slag.

図4は、本発明に係る電気炉の粉体アルミニウムドロス吹き込み用軟鋼管を示す平面図である。   FIG. 4 is a plan view showing a mild steel pipe for injecting powder aluminum dross in an electric furnace according to the present invention.

同図に示すように、電気炉1においてアルミニウムドロスを吹き込む位置は、酸素吹き込み管3ではなく、粉体アルミニウムドロス吹き込み用軟鋼管4である。そして、粉体アルミニウムドロスと共に、アルゴンまたは窒素ガスを吹き込んでスラグの攪伴を助長することにより、還元反応速度を増加させる。電気炉1の設備は、電極2を備えるが、3本の上部電極棒で構成され、電気炉1内に屑鉄を装入させた後、電流を通電させ、このとき発生するアーク熱などの高熱で屑鉄の溶解作業を行う。   As shown in the figure, the position where aluminum dross is blown in the electric furnace 1 is not the oxygen blowing pipe 3 but the powdered aluminum dross blowing mild steel pipe 4. Then, along with the powdered aluminum dross, argon or nitrogen gas is blown to promote slag stirring, thereby increasing the reduction reaction rate. The electric furnace 1 has an electrode 2 but is composed of three upper electrode rods. After the scrap iron is charged into the electric furnace 1, a current is passed therethrough and a high heat such as arc heat generated at this time. The scrap iron is melted at

一般的に、電気炉でスクラップを溶解し、一定温度の溶鋼を得るためには、ステンレス鋼の場合、約420kW/tonの投入電力が必要である。例えば、容量が90トンの電気炉でスクラップ及び合金鉄の溶解を行う場合、300kW/tonの投入電力は、スクラップ及び合金鉄の溶解に用いられ、その後、120kW/tonの電力は、溶鋼及びスラグの温度を1600°Cまで上昇させるのに用いられる。   Generally, in order to obtain molten steel at a constant temperature by melting scrap in an electric furnace, an input power of about 420 kW / ton is required in the case of stainless steel. For example, when scrap and alloy iron are melted in an electric furnace having a capacity of 90 tons, an input power of 300 kW / ton is used for melting of scrap and alloy iron, and then 120 kW / ton of power is used for melting steel and slag. Is used to raise the temperature to 1600 ° C.

前者の時期を溶解期、後者の時期を昇熱期という。スラグ中のクロムを還元させるためには、昇熱期に還元剤を投入しなければならないが、昇熱期には、投入電力を低減し、スラグ及び溶鋼の攪拌を助長するために酸素を吹き込むことから、還元剤の投入時期をできるだけ遅らせることが好ましい。他の還元剤の場合、スラグと還元剤とが接触して有価金属の還元反応が起きるまでには、十分な反応時間が必要となる。しかし、アルミニウムによるクロムの還元反応は、速度の面で非常に速く起きることから、投入時期を、酸素の吹き込みが終わった時点に遅らせても、十分な還元反応を期待することができる。   The former period is called the dissolution period, and the latter period is called the heating period. In order to reduce chromium in the slag, a reducing agent must be added during the heat-up period, but during the heat-up period, oxygen is blown to reduce the input power and promote stirring of the slag and molten steel. Therefore, it is preferable to delay the charging time of the reducing agent as much as possible. In the case of other reducing agents, sufficient reaction time is required until the slag and the reducing agent come into contact with each other and a valuable metal reduction reaction occurs. However, since the reduction reaction of chromium by aluminum occurs very fast in terms of speed, a sufficient reduction reaction can be expected even if the input timing is delayed to the point when the oxygen blowing is finished.

アルミニウムドロスの投入量は、スラグ中のクロムを還元する化学当量以上にするため、溶鋼1トンあたり10kg〜20kgの範囲、または(数3)を満すようにすることが好ましい。   In order to make the input amount of aluminum dross more than the chemical equivalent for reducing chromium in the slag, it is preferable to satisfy the range of 10 to 20 kg per ton of molten steel, or (Equation 3).

Figure 2008163463
Figure 2008163463

一方、スラグとアルミニウムドロスとの反応速度をより速くするためには、スラグが液状状態を維持しつつ、スラグの流動性(粘度)が十分に確保されなければならない。図3に示すように、スラグの流動性は、塩基度(CaO/SiO2)が1.1〜1.7の範囲であり、スラグのアルミナ含有量が10%以上のときに最も高い。このようなスラグの流動性は、反応速度を増加させるばかりでなく、還元された有価金属が溶鋼内に吸収されることを助けることにより、スラグに捕集して排滓されることを防止する。 On the other hand, in order to increase the reaction rate between slag and aluminum dross, the slag must maintain a liquid state and the fluidity (viscosity) of the slag must be sufficiently ensured. As shown in FIG. 3, the fluidity of the slag is highest when the basicity (CaO / SiO 2 ) is in the range of 1.1 to 1.7 and the alumina content of the slag is 10% or more. The fluidity of such slag not only increases the reaction rate, but also helps reduce the valuable metal to be absorbed into the molten steel, thereby preventing it from being collected and rejected by the slag. .

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

実施例
ステンレス製鋼電気炉で一般的に使用しているケイ素鉄の使用によるスラグ中の酸化クロムの還元と、本発明で提示している粉体アルミニウムドロスによる還元とを、実際の操業で相互比較した。
Example Comparison of reduction of chromium oxide in slag by use of silicon iron generally used in stainless steel electric furnace and reduction by powdered aluminum dross presented in the present invention in actual operation did.

一般的に、ステンレス製鋼電気炉では、スクラップ及び合金鉄の溶解後、還元前のスラグ中のクロム含有量が20%〜25%の範囲に達する。これは、上述したように、操業中の溶鋼との大気接触または酸素の吹き込みにより、溶鋼中のクロム成分が酸化したものである。本発明の実施例では、このようなクロム成分を、従来の方法であるケイ素鉄に還元する場合と、粉体アルミニウムドロスに還元する場合とを比較することにより、本発明の効果を検証した。   In general, in a stainless steel electric furnace, after melting of scrap and alloy iron, the chromium content in the slag before reduction reaches a range of 20% to 25%. As described above, this is a result of oxidation of the chromium component in the molten steel due to atmospheric contact with the molten steel being operated or oxygen blowing. In the Example of this invention, the effect of this invention was verified by comparing the case where such a chromium component is reduce | restored to the silicon iron which is a conventional method, and the case where it reduces to powder aluminum dross.

下記の(表1)は、本発明及び従来技術のスラグ中のCr23含有量を比較して示したものである。 The following (Table 1) shows a comparison of the Cr 2 O 3 content in the slag of the present invention and the prior art.

Figure 2008163463
Figure 2008163463

(表1)を参照すると、粉体アルミニウムドロスを吹き込んだ結果、電気炉ステンレス溶鋼の出湯後のスラグ中に残留する酸化クロム含有量は2%〜5%の範囲となり、従来のケイ素鉄を使用した還元方法に比べて、2%〜8%の範囲の酸化クロムがさらに還元されることが分かる。   Referring to (Table 1), as a result of blowing powder aluminum dross, the content of chromium oxide remaining in the slag after tapping of the electric furnace stainless steel molten steel is in the range of 2% to 5%, and conventional silicon iron is used. It can be seen that chromium oxide in the range of 2% to 8% is further reduced as compared with the reduction method.

図5は、本発明の方法により、クロムの還元時、スラグ中に残留する酸化クロム含有量を、従来のそれと比較して示すグラフである。   FIG. 5 is a graph showing the chromium oxide content remaining in the slag during the reduction of chromium by the method of the present invention in comparison with the conventional one.

まず、一般的な有価金属の還元方法であるケイ素鉄(溶鋼1トンあたり3kg)を使用する場合、出湯後、スラグ中に残留するクロム酸化物の含有量を分析してみると、同図に示すように、7%〜10%の範囲に達する。この場合、ケイ素鉄の投入時期は、酸素の吹き込み末期であって、ケイ素鉄による還元効果を最大化する投入時期といえるが、残留する酸化クロム含有量は、非常に高い水準である。   First, when using silicon iron (3 kg per ton of molten steel), which is a general method for reducing valuable metals, the content of chromium oxide remaining in the slag after hot water is analyzed. As shown, it reaches the range of 7% to 10%. In this case, the injection time of silicon iron is the end of the blowing of oxygen and can be said to be the injection time to maximize the reduction effect by silicon iron, but the residual chromium oxide content is at a very high level.

しかし、本発明で提示している粉体アルミニウムドロスの吹き込みを行った場合の粉体アルミニウムドロスの吹き込み量は、溶鋼1トンあたり10kgであり、吹き込みにかかる時間は、窒素の圧力に応じて異なるが、窒素圧3bar〜4barの範囲では、約10分かかる。そして、吹き込みの開始時期は、酸素の吹き込み末期である。これは、還元効果を最大化し、酸素によるアルミニウムの酸化を防止するためである。   However, the amount of powder aluminum dross blown when the powder aluminum dross presented in the present invention is blown is 10 kg per ton of molten steel, and the time required for blowing varies depending on the pressure of nitrogen. However, in the range of nitrogen pressure 3 bar to 4 bar, it takes about 10 minutes. The start time of blowing is the end of blowing oxygen. This is to maximize the reduction effect and prevent oxidation of aluminum by oxygen.

したがって、本発明に係る粉体アルミニウムドロスの吹き込みを行う場合、従来のケイ素鉄を使用してクロムを還元することに比べて、酸化クロムの還元及びクロムの回収率を向上させることができる。   Therefore, when the powder aluminum dross according to the present invention is blown, the reduction of chromium oxide and the recovery rate of chromium can be improved compared to the reduction of chromium using conventional silicon iron.

本発明の技術思想は、上記のような好ましい実施例により具体的に記述されたが、上記実施例は、その説明のためのものであって、それを制限するためのものではないことを周知しなければならない。また、本発明の技術分野における当業者は、本発明の技術思想の範囲内で様々な実施例が可能であることを理解することができるであろう。   Although the technical idea of the present invention has been specifically described by the preferred embodiments as described above, it is well known that the above embodiments are for the purpose of illustration and not for limitation. Must. Moreover, those skilled in the art of the present invention will understand that various embodiments are possible within the scope of the technical idea of the present invention.

一般的なステンレス電気炉工程を示す模式図である。It is a schematic diagram which shows a general stainless steel electric furnace process. ステンレス電気炉工程中におけるスラグ中のクロムの損失率を示すグラフである。It is a graph which shows the loss rate of the chromium in slag in a stainless steel electric furnace process. スラグ組成に応じたスラグの粘度変化を示す図である。It is a figure which shows the viscosity change of slag according to a slag composition. 本発明に係る電気炉の粉体アルミニウムドロス吹き込み用軟鋼管を示す平面図である。It is a top view which shows the mild steel pipe for powder aluminum dross blowing of the electric furnace which concerns on this invention. 本発明の方法により、クロムの還元時、スラグ中に残留する酸化クロム含有量を、従来のそれと比較して示すグラフである。It is a graph which shows the chromium oxide content which remains in slag at the time of reduction | restoration of chromium by the method of this invention compared with the conventional one.

符号の説明Explanation of symbols

1;電気炉
2;電極
3;酸素吹き込み管
4;粉体アルミニウムドロス吹き込み用軟鋼管
DESCRIPTION OF SYMBOLS 1; Electric furnace 2; Electrode 3; Oxygen blowing pipe 4; Mild steel pipe for powder aluminum dross blowing

Claims (9)

ステンレス製鋼工程中、電気炉スラグに含有されたクロムを還元させる工程において、
スラグを液状に維持しつつ、粉体アルミニウムドロスの投入量を、下記式を満すように、電気炉スラグ中に吹き込むことを特徴とする、含酸化クロムスラグからのクロム金属還元方法。
Figure 2008163463
In the process of reducing chromium contained in the electric furnace slag during the stainless steel making process,
A method for reducing chromium metal from oxide-containing chromium slag, wherein the amount of powdered aluminum dross is blown into an electric furnace slag so as to satisfy the following formula while maintaining the slag in a liquid state.
Figure 2008163463
ステンレス製鋼工程中、電気炉スラグに含有されたクロムを還元させる工程において、
スラグを液状に維持しつつ、粉体アルミニウムドロスの投入量を、溶鋼1トンあたり10kg〜20kgの範囲として電気炉スラグ中に吹き込むことを特徴とする、含酸化クロムスラグからのクロム金属還元方法。
In the process of reducing chromium contained in the electric furnace slag during the stainless steel making process,
A method for reducing chromium metal from oxidized chromium slag, characterized in that the amount of powdered aluminum dross is blown into the electric furnace slag while maintaining the slag in a liquid state in a range of 10 kg to 20 kg per ton of molten steel.
前記粉体アルミニウムドロスの粒度は、1mm〜5mmの範囲であることを特徴とする請求項1または2に記載の含酸化クロムスラグからのクロム金属還元方法。   3. The method for reducing chromium metal from oxidized chromium slag according to claim 1, wherein a particle size of the powdered aluminum dross is in a range of 1 mm to 5 mm. 前記粉体アルミニウムドロスは、窒素(N)またはアルゴン(Ar)ガスのうちの少なくとも1つの不活性ガスと共に、軟鋼管を介して吹き込むことを特徴とする請求項3に記載の含酸化クロムスラグからのクロム金属還元方法。   The powdered aluminum dross is blown through a mild steel pipe together with at least one inert gas of nitrogen (N) or argon (Ar) gas from the oxidized chrome slag according to claim 3. Of chromium metal reduction. 前記粉体アルミニウムドロスは、スラグ中のクロムを還元する化学当量以上の量を吹き込むことを特徴とする請求項4に記載の含酸化クロムスラグからのクロム金属還元方法。   The said powder aluminum dross blows the quantity more than the chemical equivalent which reduces the chromium in slag, The chromium metal reduction method from the oxygen-containing chromium slag of Claim 4 characterized by the above-mentioned. 前記粉体アルミニウムドロスの吹き込みは、電気炉操業中、酸素の吹き込みが終わった時点で行われることを特徴とする請求項1または2に記載の含酸化クロムスラグからのクロム金属還元方法。   The method for reducing chromium metal from oxidized chrome slag according to claim 1 or 2, wherein the blowing of the powdered aluminum dross is performed at the time when the blowing of oxygen is finished during operation of the electric furnace. 前記粉体アルミニウムドロスの吹き込みは、電気炉操業中、電気炉の積算電力300kW/ton〜400kW/tonの範囲の時点で行われることを特徴とする請求項1または2に記載の含酸化クロムスラグからのクロム金属還元方法。   The powdered aluminum dross is blown in an electric furnace during operation of the electric furnace at a time in the range of 300 kW / ton to 400 kW / ton of accumulated electric power of the electric furnace. From chromium metal reduction. 前記電気炉スラグの塩基度は、1.1〜1.7の範囲であることを特徴とする請求項1または2に記載の含酸化クロムスラグからのクロム金属還元方法。   The basicity of the electric furnace slag is in the range of 1.1 to 1.7, and the method for reducing chromium metal from oxidized chrome slag according to claim 1 or 2. 前記電気炉スラグ中のアルミナ含有量を、10%以上に維持することを特徴とする請求項8に記載の含酸化クロムスラグからのクロム金属還元方法。   The method for reducing chromium metal from oxidized chromium slag according to claim 8, wherein the alumina content in the electric furnace slag is maintained at 10% or more.
JP2007327035A 2006-12-28 2007-12-19 Reduction of chromium metal from oxidized chromium slag Expired - Fee Related JP4778501B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2006-0136918 2006-12-28
KR20060136918A KR100793591B1 (en) 2006-12-28 2006-12-28 Method for reduction of metallic chromium from slag containing chromium oxide

Publications (2)

Publication Number Publication Date
JP2008163463A true JP2008163463A (en) 2008-07-17
JP4778501B2 JP4778501B2 (en) 2011-09-21

Family

ID=39217448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327035A Expired - Fee Related JP4778501B2 (en) 2006-12-28 2007-12-19 Reduction of chromium metal from oxidized chromium slag

Country Status (4)

Country Link
US (1) US20080156144A1 (en)
JP (1) JP4778501B2 (en)
KR (1) KR100793591B1 (en)
CN (1) CN101210288A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504978A (en) * 2012-01-31 2015-02-16 ヒュンダイ スチール カンパニー Slag reduction method
JP2016194126A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Method for recovering chromium from chromium-containing slag
CN109628688A (en) * 2018-12-29 2019-04-16 钢铁研究总院 A kind of online Detoxified treatment method of chromium in stainless steel slag

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045755A1 (en) * 2009-10-13 2011-04-21 Petrus Hendrik Ferreira Bouwer Ferrochrome alloy production
JP5436302B2 (en) * 2010-03-29 2014-03-05 日新製鋼株式会社 Chromium-containing hot metal and slag treatment method
CN103602781B (en) * 2013-11-17 2015-03-25 山西太钢不锈钢股份有限公司 Method for lowering chrome oxide in arc furnace slag in stainless steel smelting process
CN104561602B (en) * 2015-01-28 2017-09-19 牛强 The method that ferrosilicon bath step reduces magnesium-smelting silicothermic process coproduction liquid containing ferrochrome
CN104789736B (en) * 2015-05-18 2017-01-11 安徽富凯特材有限公司 Method for reducing chromium element in electric arc furnace slag
CN106011482B (en) * 2016-06-30 2019-04-09 华南理工大学 A kind of chromium resource recycling of chromium slag and treatment method for detoxication
CN105907991B (en) * 2016-06-30 2018-01-05 华南理工大学 A kind for the treatment of method for detoxication of the extraction of waste residue containing Cr VI recovery chromium
CN108384961B (en) * 2018-04-11 2019-12-24 武汉科技大学 Harmless treatment method for aluminum chromium slag
FI20195153A1 (en) * 2019-03-01 2020-09-02 Outokumpu Oy Combined smelting of molten slags and residuals from stainless steel and ferrochromium works
US20220170124A1 (en) * 2019-04-01 2022-06-02 Sabic Global Technologies B.V. Method for recycling chromium oxide and forming chromium-alloy steel
JP7028365B2 (en) * 2019-04-19 2022-03-02 日本製鉄株式会社 Method for manufacturing chromium-containing molten iron
US20220195546A1 (en) * 2019-04-22 2022-06-23 Nippon Steel Corporation Method for producing chromium-containing molten iron
CN114561540B (en) * 2022-04-14 2024-06-07 江苏大学 Method for efficiently extracting, separating and recycling chromium in stainless steel slag
WO2024127339A1 (en) 2022-12-16 2024-06-20 Danieli & C. Officine Meccaniche S.P.A. Process and plant for slag treatment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167714A (en) * 1982-03-26 1983-10-04 Sumitomo Metal Ind Ltd Method of refining in electric furnace
JP2000144272A (en) * 1998-10-30 2000-05-26 Sumitomo Metal Ind Ltd Method for recovering chromium and iron in melting and smelting steel containing chromium
JP2001234226A (en) * 2000-02-24 2001-08-28 Nippon Steel Corp Method for treating refining slag for molten stainless steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2416179A (en) * 1944-12-16 1947-02-18 Reynolds Metals Co Method of fluidizing slag
US3893846A (en) * 1972-07-05 1975-07-08 Aikoh Co Slag forming agent for steel making
SE446014B (en) * 1981-03-10 1986-08-04 Skf Steel Eng Ab SELECTIVE REDUCTION OF HEAVY-CORNED METALS, MAINLY OXIDICAL, MATERIALS
KR100408133B1 (en) 1996-12-24 2004-03-30 주식회사 포스코 Method for Refining Stainless Melton Steel
KR100382311B1 (en) 1998-09-28 2003-07-22 주식회사 포스코 Recovery of Valuable Metals in Stainless Steel Slag by Powder Carbon Injection
NO308418B1 (en) * 1998-12-09 2000-09-11 Elkem Materials Process for the production of stainless steel
AU6554700A (en) * 1999-06-23 2001-01-09 Sms Demag Aktiengesellschaft Method for recovering metallic chromium from slag containing chromium oxide
CN1222629C (en) * 2000-10-18 2005-10-12 Sms迪马格股份公司 Method for producing stainless steels, in particular high-grade steels containing chromium and chromiumnickel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58167714A (en) * 1982-03-26 1983-10-04 Sumitomo Metal Ind Ltd Method of refining in electric furnace
JP2000144272A (en) * 1998-10-30 2000-05-26 Sumitomo Metal Ind Ltd Method for recovering chromium and iron in melting and smelting steel containing chromium
JP2001234226A (en) * 2000-02-24 2001-08-28 Nippon Steel Corp Method for treating refining slag for molten stainless steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504978A (en) * 2012-01-31 2015-02-16 ヒュンダイ スチール カンパニー Slag reduction method
US9512497B2 (en) 2012-01-31 2016-12-06 Hyundai Steel Company Method for reducing slag
JP2016194126A (en) * 2015-04-01 2016-11-17 新日鐵住金株式会社 Method for recovering chromium from chromium-containing slag
CN109628688A (en) * 2018-12-29 2019-04-16 钢铁研究总院 A kind of online Detoxified treatment method of chromium in stainless steel slag

Also Published As

Publication number Publication date
US20080156144A1 (en) 2008-07-03
CN101210288A (en) 2008-07-02
KR100793591B1 (en) 2008-01-14
JP4778501B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP4778501B2 (en) Reduction of chromium metal from oxidized chromium slag
CN101906498B (en) Method for comprehensively smelting sefstromite
CN105886787B (en) A kind of method that vanadium is reclaimed from corundum slag containing vanadium
JP2006206957A (en) Method for recovering manganese from slag produced when manufacturing manganese-based ferroalloy
KR101835708B1 (en) Method for recovering valuable metals from stainless steelmaking converter slag by Submerged Arc Furnace
JP2007538156A (en) Chromium reduction method for metallurgical slag
CA2525559A1 (en) Method for recovering metallic elements, especially metallic chromium, from slag containing metal oxides in an electric-arc furnace
JP2002256323A (en) Method for reforming roughly decarburized slag in molten stainless steel
KR100382311B1 (en) Recovery of Valuable Metals in Stainless Steel Slag by Powder Carbon Injection
JP2000144272A (en) Method for recovering chromium and iron in melting and smelting steel containing chromium
JP4189112B2 (en) Processing method for slag refining stainless steel
JPS6250545B2 (en)
JPH0437136B2 (en)
RU2398907C2 (en) Procedure for production of high grade ferrotitanium
JP3158912B2 (en) Stainless steel refining method
JP2808045B2 (en) Unfired manganese ore pellets for steel refining
JP6878409B2 (en) Manufacturing method of tungsten-containing metal and ferrotungsten
JP2964861B2 (en) Stainless steel manufacturing method
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP2001294926A (en) Refining method using chromium oxide containing slag
JP2002161306A (en) Refining process with decarburization for chromium- containing molten ferrous alloy
RU2186856C1 (en) Composite blend for smelting alloyed steels
JP2002371313A (en) Method for smelting molten stainless steel
KR100887859B1 (en) The method of manufacturing stainless steel through reduction of chromium ore
CN105838969A (en) Remelting method for producing titanium iron

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees