JP2002059449A - Method for manufacturing foamed resin molding - Google Patents

Method for manufacturing foamed resin molding

Info

Publication number
JP2002059449A
JP2002059449A JP2000250305A JP2000250305A JP2002059449A JP 2002059449 A JP2002059449 A JP 2002059449A JP 2000250305 A JP2000250305 A JP 2000250305A JP 2000250305 A JP2000250305 A JP 2000250305A JP 2002059449 A JP2002059449 A JP 2002059449A
Authority
JP
Japan
Prior art keywords
resin
thermoplastic resin
supercritical fluid
mold
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000250305A
Other languages
Japanese (ja)
Inventor
Teruo Shiraishi
輝男 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Inoac Technical Center Co Ltd
Original Assignee
Inoue MTP KK
Inoac Corp
Inoac Technical Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue MTP KK, Inoac Corp, Inoac Technical Center Co Ltd filed Critical Inoue MTP KK
Priority to JP2000250305A priority Critical patent/JP2002059449A/en
Publication of JP2002059449A publication Critical patent/JP2002059449A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a foamed molding previously molded in a required shape by enabling easy setting of an expansion ratio. SOLUTION: The method for manufacturing the foamed resin molding comprises the steps of sealing a thermoplastic resin 12 in a pressure container 10, then supplying a supercritical fluid of carbon dioxide from a supply source 14 to the container to impregnate the resin with the fluid, heating the resin to an intrinsic crystallization temperature Tc or higher, and then opening the container to expansion foam the resin. The method further comprises the steps of filling the resin in a mold 20 having a cavity 24 and perforating a fluid introducing/escaping hole, clamping the mold, sealing the mold in the container, contacting the fluid supplied from the supply source to the container with the resin via the hold to impregnate the resin with the fluid, heating the resin to the crystallization temperature or higher, then opening the container to expansion foam the resin, specifying a profile of the resin in the cavity, cooling the mold, and then releasing the molding from the mold to manufacture the final molding 22 foamed from the resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は樹脂発泡成形品の
製造方法に関し、更に詳細には、熱可塑性樹脂を成形型
中で所要形状に予め成形させ得ると共に、使用する樹脂
の大きさに応じて発泡倍率を任意に制御し得る発泡成形
品の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a resin foam molded article, and more particularly, to a method of forming a thermoplastic resin in a molding die in a required shape in advance, and in accordance with the size of the resin used. The present invention relates to a method for producing a foamed molded article that can control the expansion ratio arbitrarily.

【0002】[0002]

【従来の技術】例えばポリプロピレン(PP)やポリエチ
レンテレフタレート(PET)等の熱可塑性樹脂を発泡さ
せた発泡体を製造するには、化学発泡剤や物理的発泡剤
を使用して行なう方法が一般に知られている。例えば化
学的な発泡方法は、適宜の熱可塑性樹脂と、所要の成形
温度で分解してガスを発生する有機発泡剤とを混合し、
核となる発泡剤の分解温度以上に加熱することで発泡さ
せるものであり、この発泡反応を成形型中で行なうこと
で所要の立体形状を付与することができる。また物理的
発泡方法は、密閉した成形機中で溶融させた熱可塑性樹
脂にブタン、ペンタン等の低沸点有機化合物を供給し、
物理的に充分混練した後に密閉を解除して低圧域に放出
することで成形発泡体を得るものである。
2. Description of the Related Art In order to produce a foam obtained by foaming a thermoplastic resin such as polypropylene (PP) or polyethylene terephthalate (PET), a method using a chemical foaming agent or a physical foaming agent is generally known. Have been. For example, a chemical foaming method mixes an appropriate thermoplastic resin and an organic foaming agent that decomposes at a required molding temperature to generate a gas,
The foaming is carried out by heating the foaming agent at a temperature higher than the decomposition temperature of the core foaming agent. By performing the foaming reaction in a mold, a required three-dimensional shape can be provided. The physical foaming method is to supply a low-boiling organic compound such as butane and pentane to a thermoplastic resin melted in a closed molding machine,
After sufficiently kneading physically, the molded article is obtained by releasing the hermetic seal and releasing the mixture into a low pressure region.

【0003】しかし化学的または物理的の何れの発泡方
法を採用するとしても、該方法に使用する発泡剤はラン
ニングコストが嵩み、しかも可燃性や毒性等の取扱い上
の危険性を有しているため人体や自然への環境問題に対
する影響が指摘される。このような問題に対処するべ
く、発泡剤の使用に代替するものとして、炭酸ガスや窒
素ガス等の不活性ガスを強制的に吹込むことで発泡させ
る方法が種々提案されている。しかしこの不活性ガス
は、樹脂に対する親和性が一般に低くて溶解性にも乏し
いため、得られる発泡体の気泡は不均一でセル径が大き
くなる傾向がある。しかもセル密度が小さいために、外
観性、機械的強度、断熱性、発泡倍率等の諸点で満足が
得られる発泡体を製造するには未だ問題が残されている
のが実情である。
[0003] However, regardless of whether a chemical or physical foaming method is employed, the foaming agent used in the method has a high running cost and has a risk of handling such as flammability and toxicity. Therefore, the impact on the human body and nature on environmental problems is pointed out. In order to cope with such a problem, various methods for foaming by forcibly blowing an inert gas such as carbon dioxide gas or nitrogen gas have been proposed as alternatives to the use of a foaming agent. However, since the inert gas generally has low affinity for resin and poor solubility, the foam of the foam obtained tends to be nonuniform and have a large cell diameter. In addition, since the cell density is small, there is still a problem in producing a foam that satisfies various aspects such as appearance, mechanical strength, heat insulation, and expansion ratio.

【0004】殊に最近では、車両用燃料計や飲料水タン
クのゲージ、その他流体を使用する精密機器等の流路を
開閉するフロートバルブ等の多様な用途に、極めて微細
な気泡をもって発泡した樹脂発泡成形品が求められてい
る。この種の微細な気泡の樹脂発泡成形品を製造する方
法として、超臨界流体とした二酸化炭素(CO2)を利用
するバッチ式の発泡方法が知られている。この超臨界状
態にある二酸化炭素を利用したバッチ式発泡方法には種
々の類型があるが、その一例を示せば図2に示す通りで
ある。
In recent years, resin foamed with extremely fine bubbles has been used for various purposes such as a fuel gauge for a vehicle, a gauge for a drinking water tank, and a float valve for opening and closing a flow path of a precision instrument using a fluid. There is a need for foam molded articles. As a method for producing this kind of resin foam molded article having fine cells, a batch-type foaming method utilizing carbon dioxide (CO 2 ) as a supercritical fluid is known. There are various types of batch type foaming methods using carbon dioxide in a supercritical state, and an example is shown in FIG.

【0005】図2の(1)において、所要範囲で加熱温度
を制御し得る圧力容器10に、例えばポリプロピレン
(PP)の如き熱可塑性樹脂12を収納した後、該圧力容
器10を密閉する。二酸化炭素は温度および圧力を制御
(後述)することで超臨界流体とされ、ボンベ等の流体供
給源14に貯留されると共に、該供給源14は管路16
および弁体17を介して前記圧力容器10に接続されて
いる。そして図2の(2)に示す如く、前記弁体17を開
放することで二酸化炭素の超臨界流体を前記圧力容器1
0中に導入する。
In FIG. 2A, for example, a polypropylene is placed in a pressure vessel 10 capable of controlling a heating temperature within a required range.
After storing the thermoplastic resin 12 such as (PP), the pressure vessel 10 is sealed. Carbon dioxide controls temperature and pressure
(To be described later), the fluid becomes a supercritical fluid, and is stored in a fluid supply source 14 such as a cylinder.
And the pressure vessel 10 via a valve body 17. Then, as shown in (2) of FIG. 2, the valve element 17 is opened to release the supercritical fluid of carbon dioxide into the pressure vessel 1.
Introduce during 0.

【0006】ここで超臨界について簡単に説明すると、
気相と液相とを生じている物質の温度・圧力を上昇させ
ていくと、或る温度域および圧力域で前記気相と液相と
の区別をなし得なくなる超臨界状態を生ずる。このとき
の温度および圧力を、夫々臨界温度および臨界圧力と云
い、超臨界状態で物質は気体と液体との両方の特性を併
せ持つので、該状態で生ずる流体を超臨界流体と云う。
この超臨界流体は、気体に比べて密度が大きく、また液
体に比べて粘性が小さく物質中を極めて拡散し易いとい
った特性を有する。そして二酸化炭素は、臨界温度が3
1.2℃以上、臨界圧力7.47MPa以上で超臨界状態
となり、流体としての挙動を示すようになる。なお、超
臨界流体が前記圧力容器10中に導入された初期段階で
は、該容器の内部は常圧になっているので、超臨界流体
の臨界圧力は一時的に降下して超臨界状態の直前の「亜
臨界状態」や「臨界状態」更には「通常状態」を呈し、
気体状態の二酸化炭素となるが、該容器中に超臨界流体
が引き続き供給されることで速やかに臨界圧力に到達す
る。
Here, the supercritical will be briefly described.
Increasing the temperature and pressure of a substance producing a gas phase and a liquid phase causes a supercritical state in which the gas phase and the liquid phase cannot be distinguished in a certain temperature range and pressure range. The temperature and pressure at this time are called a critical temperature and a critical pressure, respectively. In a supercritical state, a substance has both characteristics of a gas and a liquid, and a fluid generated in this state is called a supercritical fluid.
This supercritical fluid has such characteristics that it has a higher density than a gas, has a lower viscosity than a liquid, and is extremely easy to diffuse in a substance. And carbon dioxide has a critical temperature of 3
At a temperature of 1.2 ° C. or more and a critical pressure of 7.47 MPa or more, a supercritical state is obtained, and the fluid exhibits a behavior. In the initial stage when the supercritical fluid is introduced into the pressure vessel 10, the pressure inside the vessel is at normal pressure, so that the critical pressure of the supercritical fluid temporarily drops and immediately before the supercritical state. Presents a "subcritical state" or "critical state" or even a "normal state"
Although it becomes gaseous carbon dioxide, the critical pressure is quickly reached by continuously supplying the supercritical fluid into the container.

【0007】図2の(2)において前記圧力容器10に供
給された超臨界流体は、該容器中に収容した前記熱可塑
性樹脂12に接触することで、該超臨界流体が該樹脂1
0中に浸透して行く。これは超臨界流体が、前述の如く
気体に比べて密度が大きく、また液体に比べて粘性が小
さく物質中を極めて拡散し易い特性を有しているからで
ある。この超臨界流体の浸透に要する時間は、臨界値以
上の温度および圧力を如何に設定するかにより相違し、
その時間の長短によって図2の(3)で得られる発泡体の
発泡倍率が変化する。なお前記熱可塑性樹脂12を圧力
容器10中で加熱すれば、超臨界流体を該樹脂に高効率
で浸透させることができる。但し、生産性の見地を除外
するならば、超臨界流体を熱可塑性樹脂12に浸透させ
るに際して該樹脂を加熱することは要件でない。
In FIG. 2B, the supercritical fluid supplied to the pressure vessel 10 comes into contact with the thermoplastic resin 12 accommodated in the vessel, whereby the supercritical fluid is
It penetrates into zero. This is because the supercritical fluid has a property that the density is higher than the gas and the viscosity is lower than the liquid as described above, and it is extremely easy to diffuse in the substance. The time required for permeation of this supercritical fluid differs depending on how to set the temperature and pressure above the critical value,
The expansion ratio of the foam obtained in (3) of FIG. 2 changes depending on the length of the time. When the thermoplastic resin 12 is heated in the pressure vessel 10, a supercritical fluid can be made to permeate into the resin with high efficiency. However, if the viewpoint of productivity is excluded, it is not a requirement to heat the supercritical fluid when the resin is infiltrated into the thermoplastic resin 12.

【0008】所要時間だけ前述した超臨界流体の浸透時
間を保持すると共に、前記圧力容器10を加熱すること
で、前記熱可塑性樹脂12を該樹脂に固有の結晶化温度
以上に加熱する。この加熱は、超臨界流体を浸透させた
後の熱可塑性樹脂12を膨張発泡(後述)させるために必
要なものであって、前記の如く超臨界流体を該樹脂に浸
透させるのに必要とされるものではない。このように熱
可塑性樹脂12が結晶化温度以上に加熱された後、図2
の(3)に示すように、前記圧力容器10を開放して内部
圧力を解除すると、該容器中の熱可塑性樹脂12に浸透
されている超臨界流体の気化に伴ない急激に膨張する。
すなわち熱可塑性樹脂12は二酸化炭素の気化により内
部発泡し、極めて微細な気泡を有する発泡体18が圧力
容器10から取出される。
While maintaining the above-described supercritical fluid permeation time for the required time and heating the pressure vessel 10, the thermoplastic resin 12 is heated to a temperature higher than the crystallization temperature inherent to the resin. This heating is necessary for expanding and foaming (described later) the thermoplastic resin 12 after infiltrating the supercritical fluid, and is necessary for infiltrating the supercritical fluid into the resin as described above. Not something. After the thermoplastic resin 12 is heated to a temperature higher than the crystallization temperature as shown in FIG.
As shown in (3), when the pressure vessel 10 is opened to release the internal pressure, the supercritical fluid permeated into the thermoplastic resin 12 in the vessel expands rapidly with the vaporization.
That is, the thermoplastic resin 12 foams internally due to the vaporization of carbon dioxide, and the foam 18 having extremely fine bubbles is taken out of the pressure vessel 10.

【0009】[0009]

【発明が解決すべき課題】前述した如く圧力容器10中
に二酸化炭素の超臨界流体を供給し、該超臨界流体を熱
可塑性樹脂12に浸透させると共に、該熱可塑性樹脂1
2を結晶化温度以上に加熱してから圧力解除して発泡さ
せるバッチ式発泡方法によれば、極めて微細な気泡(す
なわち均一でセル径およびセル密度の小さい気泡)を有
する発泡体が得られ、しかも機械的強度や断熱性等の点
でも満足が得られる利点がある。しかし反面で該方法
は、温度条件、浸透時間、圧力等の要素によって発泡倍
率が容易に変わり、また発泡時に熱可塑性樹脂は自由な
方向に広がる形で膨張するため、予め所定の形状として
制御することは全く不可能であった。
As described above, a supercritical fluid of carbon dioxide is supplied into the pressure vessel 10 so that the supercritical fluid permeates the thermoplastic resin 12 and the thermoplastic resin 1
According to the batch-type foaming method in which 2 is heated to a crystallization temperature or higher and then the pressure is released and then foamed, a foam having extremely fine cells (i.e., cells having a uniform cell diameter and a small cell density) is obtained, In addition, there is an advantage that satisfaction can be obtained in terms of mechanical strength and heat insulation. However, on the other hand, in this method, the expansion ratio easily changes depending on factors such as temperature conditions, permeation time, and pressure, and the thermoplastic resin expands in a free direction at the time of foaming. It was impossible at all.

【0010】[0010]

【発明の目的】本発明は、前述した課題を好適に解決す
るために提案されたものであって、超臨界流体としての
二酸化炭素を熱可塑性樹脂に浸透させて発泡させるバッ
チ式発泡方法を採用するに際して、所望の発泡倍率が容
易に設定でき、成形型中で所要形状に予め成形した形で
発泡成形品を製造し得る方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been proposed in order to suitably solve the above-mentioned problems, and employs a batch type foaming method in which carbon dioxide as a supercritical fluid is permeated into a thermoplastic resin and foamed. It is an object of the present invention to provide a method capable of easily setting a desired expansion ratio and manufacturing a foam molded article in a form preliminarily formed into a required shape in a mold.

【0011】[0011]

【発明を解決するための手段】前記課題を克服し、所期
の目的を達成するため本発明に係る樹脂発泡成形品の製
造方法は、発泡成形すべき所要の熱可塑性樹脂を圧力容
器中に収容して密閉した後、二酸化炭素の温度および圧
力を制御して得た超臨界流体を該流体の供給源から前記
圧力容器中に供給し、この超臨界流体を前記熱可塑性樹
脂に接触させることで該超臨界流体を該樹脂中に浸透さ
せ、更に前記熱可塑性樹脂を該樹脂に固有の結晶化温度
以上に加熱してから、前記圧力容器を大気中に開放する
ことで、前記熱可塑性樹脂に浸透している超臨界流体の
気化に伴ない該樹脂を膨張発泡させて樹脂発泡品を製造
する方法において、最終発泡成形品の外形を規制するキ
ャビティを内部に備え、適宜の流体導入/逃出孔を穿設
した成形型中に前記熱可塑性樹脂を収容して型締めし、
前記成形型を前記圧力容器中に収容させた後に、該圧力
容器を密閉し、前記流体供給源から前記圧力容器中に供
給した超臨界流体を、前記流体導入/逃出孔を介して前
記成形型中の前記熱可塑性樹脂に接触させることで該超
臨界流体を該樹脂中に浸透させ、前記成形型中の熱可塑
性樹脂を結晶化温度以上に加熱した後に前記圧力容器を
開放することで、該熱可塑性樹脂に浸透している超臨界
流体の気化に伴ない該樹脂を膨張発泡させると共に、成
形型のキャビティにより樹脂の外形を規制し、次いで前
記成形型を冷却してから脱型することで、前記熱可塑性
樹脂を発泡させた最終成形品を製造するようにしたこと
を特徴とする。
SUMMARY OF THE INVENTION In order to overcome the above-mentioned problems and achieve the intended object, a method for producing a resin foam molded article according to the present invention comprises the steps of placing a required thermoplastic resin to be foam molded in a pressure vessel. After containing and sealing, a supercritical fluid obtained by controlling the temperature and pressure of carbon dioxide is supplied from the supply source of the fluid into the pressure vessel, and the supercritical fluid is brought into contact with the thermoplastic resin. The supercritical fluid is allowed to penetrate into the resin, and the thermoplastic resin is further heated to a crystallization temperature or more specific to the resin, and then the pressure vessel is opened to the atmosphere, whereby the thermoplastic resin is released. A method for producing a foamed resin article by expanding and foaming the resin accompanying the vaporization of a supercritical fluid permeating into a foam, comprises a cavity for regulating the outer shape of the final foamed molded article, and a suitable fluid introduction / escape In front of the mold with a hole Mold and clamping houses a thermoplastic resin,
After accommodating the mold in the pressure vessel, the pressure vessel is sealed, and the supercritical fluid supplied from the fluid supply source into the pressure vessel is subjected to the molding through the fluid introduction / release hole. By contacting the supercritical fluid in the resin by contacting the thermoplastic resin in the mold, by opening the pressure vessel after heating the thermoplastic resin in the mold to a crystallization temperature or more, The resin is expanded and foamed with the vaporization of the supercritical fluid permeating the thermoplastic resin, the outer shape of the resin is regulated by the cavity of the mold, and then the mold is cooled and then released. Thus, a final molded product obtained by foaming the thermoplastic resin is manufactured.

【0012】[0012]

【発明の実施の形態】次に本発明に係る樹脂発泡成形品
の製造方法にき、好適な実施例を挙げて、添付図面を参
照しながら以下説明する。なお本発明の方法を実施する
のに使用される部材で、図2に関して既出の部材と同一
または同等のものについては同じ参照符号で指示する。
また、超臨界流体としての二酸化炭素を熱可塑性樹脂に
浸透させるバッチ式発泡方法を前提技術とするので、超
臨界状態、臨界状態、亜臨界状態等の用語の概念は前述
したところと同じである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a method for producing a resin foam molded article according to the present invention will be described with reference to the accompanying drawings, with reference to preferred embodiments. It should be noted that components used to carry out the method of the present invention, which are the same as or equivalent to those already described with respect to FIG. 2, are designated by the same reference numerals.
In addition, since the premise technology is a batch type foaming method in which carbon dioxide as a supercritical fluid is permeated into a thermoplastic resin, the concepts of terms such as a supercritical state, a critical state, and a subcritical state are the same as those described above. .

【0013】図1は、本発明の実施例に係る樹脂発泡成
形品を製造する方法を段階的に示す説明図である。図1
の(1)において符号20は成形型を示し、この成形型2
0は図1の(4)に示す最終発泡成形品22の外形を規制
するキャビティ24を内部に画成し、かつ所要の内圧に
も耐え得る箱状構造体として構成されている。また成形
型20は蓋部材26を有し、その上方開口部を該蓋部材
26によって開閉自在に閉成し得ると共に、適宜数の流
体導入孔28および流体逃出孔30が穿設されている。
なお流体導入孔28および流体逃出孔30といっても、
これは前記成形型20の内外を連通する単なる通孔であ
って、該流体導入孔28が流体逃出用に供されたり、流
体逃出孔30が流体導入用に供されたりし得る、という
意味で相対的なものである。
FIG. 1 is an explanatory view showing step by step a method of manufacturing a resin foam molded article according to an embodiment of the present invention. FIG.
In (1), reference numeral 20 indicates a molding die, and the molding die 2
Numeral 0 defines a cavity 24 for regulating the outer shape of the final foam molded article 22 shown in FIG. 1 (4), and is configured as a box-shaped structure capable of withstanding a required internal pressure. The molding die 20 has a lid member 26, the upper opening of which can be closed and opened by the lid member 26, and an appropriate number of fluid introduction holes 28 and fluid escape holes 30. .
In addition, even if it says the fluid introduction hole 28 and the fluid escape hole 30,
This is a mere through hole communicating between the inside and outside of the molding die 20, and the fluid introduction hole 28 can be used for fluid escape, and the fluid escape hole 30 can be used for fluid introduction. It is relative in meaning.

【0014】この成形型20には、例えばポリプロピレ
ン(PP)の如き熱可塑性樹脂12を上方開口部から投入
した後、蓋部材26によって閉成される。この熱可塑性
樹脂12としては前記ポリプロピレン以外にポリエチレ
ンテレフタレート(PET)、低密度ポリエチレン(LD
PE)、高密度ポリエチレン(HDPE)、直鎖状低密度
ポリエチレン(L-LDPE)等が好適に使用される。ま
た熱可塑性樹脂12の形態としては、ペレットや粉末状
のものであってもよいが、これらは溶融時に空気を巻き
込み易いので、前記成形型20のキャビティ24よりも
小さい体積のブロック状とするのが好ましい。この場合
に、前記キャビティ24へ収容されるブロック状をなす
熱可塑性樹脂12の形状は、該キャビティ24の内部形
状より小さい相似形としておけば一層好適である。例え
ばキャビティ24の内部形状が矩形箱体状であれば樹脂
ブロックも対応的に箱体状となし、また該キャビティが
円錐状であれば樹脂ブロックも円錐状となし、更に該キ
ャビティがダンベル状をなせば樹脂ブロックもダンベル
状となす、というものである。なお後述の実験例3に示
すように、成形型20に投入される熱可塑性樹脂12の
大きさを選択することで、最終成形品22の発泡倍率を
制御することができる。
After a thermoplastic resin 12 such as polypropylene (PP) is charged into the molding die 20 through an upper opening, it is closed by a lid member 26. As the thermoplastic resin 12, in addition to the polypropylene, polyethylene terephthalate (PET), low density polyethylene (LD)
PE), high density polyethylene (HDPE), linear low density polyethylene (L-LDPE) and the like are preferably used. The thermoplastic resin 12 may be in the form of a pellet or a powder, but since it is easy for air to be entrained during melting, the thermoplastic resin 12 is formed into a block having a smaller volume than the cavity 24 of the molding die 20. Is preferred. In this case, it is more preferable that the shape of the block-shaped thermoplastic resin 12 accommodated in the cavity 24 be a similar shape smaller than the internal shape of the cavity 24. For example, if the internal shape of the cavity 24 is a rectangular box shape, the resin block also has a corresponding box shape, and if the cavity has a conical shape, the resin block also has a conical shape, and further, the cavity has a dumbbell shape. In other words, the resin block also has a dumbbell shape. In addition, as shown in Experimental Example 3 to be described later, the expansion ratio of the final molded product 22 can be controlled by selecting the size of the thermoplastic resin 12 charged into the molding die 20.

【0015】熱可塑性樹脂12を内部に収納した成形型
20は、図1の(2)に示すように圧力容器10中に収容
された後、開閉蓋32を閉成することで該容器10の密
閉がなされる。この圧力容器10は、前述した二酸化炭
素の超臨界流体供給源14に管路16および弁体17を
介して接続すると共に、電気ヒータの如き図示しない加
熱手段を備えて、該容器10中の温度を所定の範囲内で
制御し得るようになっている。そして前記弁体17を開
放することで、流体供給源14から二酸化炭素の超臨界
流体が圧力容器10に導入される。先に述べたように、
超臨界流体が圧力容器10中に導入された初期段階で
は、超臨界流体の臨界圧力は一時的に降下して気体状態
の二酸化炭素となっているが、該容器中に超臨界流体が
引き続き供給されることで臨界圧力に達して超臨界流体
により満たされる。
The molding die 20 containing the thermoplastic resin 12 therein is accommodated in the pressure vessel 10 as shown in FIG. 1 (2), and then the opening and closing lid 32 is closed. A seal is made. The pressure vessel 10 is connected to the above-described carbon dioxide supercritical fluid supply source 14 via a pipe 16 and a valve element 17 and is provided with a heating means (not shown) such as an electric heater. Can be controlled within a predetermined range. When the valve 17 is opened, a supercritical fluid of carbon dioxide is introduced from the fluid supply source 14 into the pressure vessel 10. As mentioned earlier,
In the initial stage when the supercritical fluid is introduced into the pressure vessel 10, the critical pressure of the supercritical fluid temporarily drops to carbon dioxide in a gaseous state, but the supercritical fluid is continuously supplied into the vessel. As a result, the pressure reaches the critical pressure and is filled with the supercritical fluid.

【0016】このように圧力容器10中に導入された超
臨界流体としての二酸化炭素は、該容器10に収納した
前記成形型20の流体導入/逃出孔28,30を介して
該成形型20に侵入し、内部に収容した前記熱可塑性樹
脂12に接触する。超臨界流体は、前述の如く気体に比
べて密度が大きく、液体に比べて粘性が小さくて物質中
を極めて拡散し易いから、前記熱可塑性樹脂12に接触
した該流体は容易に該樹脂中に浸透する。このとき圧力
容器10を前述した加熱手段により加熱して、前記成形
型20も加熱することで内部の熱可塑性樹脂12を加熱
することが、超臨界流体を高効率で該樹脂中に浸透させ
る上で好ましい。但し、超臨界流体を樹脂中に浸透させ
るためだけであれば、この加熱は要件でない。
The carbon dioxide as a supercritical fluid introduced into the pressure vessel 10 as described above passes through the fluid introduction / exit holes 28 and 30 of the mold 20 housed in the vessel 10 to form the mold 20. And comes into contact with the thermoplastic resin 12 housed therein. As described above, the supercritical fluid has a higher density than a gas, has a lower viscosity than a liquid, and is very easily diffused in a substance. Therefore, the fluid in contact with the thermoplastic resin 12 is easily dispersed in the resin. Penetrate. At this time, heating the pressure vessel 10 by the above-described heating means and also heating the molding die 20 to heat the thermoplastic resin 12 therein can increase the efficiency of penetrating the supercritical fluid into the resin. Is preferred. However, this heating is not a requirement so long as the supercritical fluid is only allowed to penetrate into the resin.

【0017】段階的には、超臨界流体が熱可塑性樹脂1
2に充分浸透した後に、前記の加熱を行なうようにして
もよく、この場合の加熱温度は該熱可塑性樹脂12に固
有の結晶化温度以上とされる。具体的な結晶化温度は熱
可塑性樹脂12の種類に依存し、例えば直鎖状低密度ポ
リエチレン(L-LDPE)を使用する場合は、その温度
は109℃程度が選定される。この超臨界流体を熱可塑
性樹脂12にどの程度の割合で浸透させるかは、圧力、
温度および時間の関数に大きく依存する。また最終発泡
成形品22における発泡倍率も、同じく圧力、温度およ
び時間の関数に依存する。圧力および温度の違いによる
発泡倍率の変化を後述の表1および表2に示し、また時
間の違いによる発泡倍率の変化を後述の表3に示す。
In a stepwise manner, the supercritical fluid is
After sufficient penetration, the above-mentioned heating may be performed. In this case, the heating temperature is equal to or higher than the crystallization temperature specific to the thermoplastic resin 12. The specific crystallization temperature depends on the type of the thermoplastic resin 12, and for example, when linear low-density polyethylene (L-LDPE) is used, the temperature is selected to be about 109 ° C. The rate at which this supercritical fluid permeates the thermoplastic resin 12 depends on the pressure,
Depends heavily on temperature and time functions. The expansion ratio of the final foam molded product 22 also depends on the function of pressure, temperature and time. Tables 1 and 2 below show changes in the expansion ratio due to differences in pressure and temperature, and Table 3 shows changes in the expansion ratio due to differences in time.

【0018】このように熱可塑性樹脂12に超臨界流体
を浸透させ、これと同時または該浸透がなされた後に、
前記の如く圧力容器10を加熱することで、前記成形型
20中の該樹脂12をそれに固有の結晶化温度以上に加
熱する。次いで図1の(3)に示すように、前記圧力容器
10の開閉蓋32を所要圧力下、例えば1MPa/秒で
徐々に大気中に開放すると、前記成形型20中の超臨界
流体は前記流体導入/逃出孔28,30から逃出して行
く。このように圧力が解放されると、前記熱可塑性樹脂
12に浸透している二酸化炭素の超臨界流体は、常態で
ある気体に相変化(気化)することになる。この超臨界流
体の気化に伴って熱可塑性樹脂12は膨張発泡して内部
に極めて微細な気泡を生ずると共に、その膨張に伴って
該熱可塑性樹脂12の外形は前記成形型20のキャビテ
ィ24により規制される。
As described above, the supercritical fluid is infiltrated into the thermoplastic resin 12, and simultaneously with or after the infiltration,
By heating the pressure vessel 10 as described above, the resin 12 in the mold 20 is heated to a crystallization temperature specific to the resin or more. Next, as shown in (3) of FIG. 1, when the opening / closing lid 32 of the pressure vessel 10 is gradually opened to the atmosphere at a required pressure, for example, at 1 MPa / sec, the supercritical fluid in the mold 20 becomes the fluid. Escape from the introduction / escape holes 28, 30. When the pressure is released, the supercritical fluid of carbon dioxide permeating the thermoplastic resin 12 undergoes a phase change (vaporization) to a normal gas. With the vaporization of the supercritical fluid, the thermoplastic resin 12 expands and foams to generate extremely fine bubbles inside, and the outer shape of the thermoplastic resin 12 is regulated by the cavity 24 of the mold 20 with the expansion. Is done.

【0019】前記成形型20中での熱可塑性樹脂12の
発泡が終了した後に、図1の(4)に示すように、該成形
型20を圧力容器10から取出して水冷または空冷によ
り冷却する。そして成形型20の蓋部材26を開放して
脱型することで、前記熱可塑性樹脂12が発泡膨張した
最終成形品22が得られる。
After the foaming of the thermoplastic resin 12 in the molding die 20 is completed, the molding die 20 is taken out of the pressure vessel 10 and cooled by water cooling or air cooling as shown in FIG. Then, by opening the lid member 26 of the mold 20 and removing the mold, a final molded product 22 in which the thermoplastic resin 12 is expanded and expanded is obtained.

【0020】[0020]

【実験例1】直鎖状低密度ポリエチレン(L-LDPE)
を試料として、発泡条件の違いによる形状を確認するべ
く実験を行なった。 (1) 試料として、日本ユニカー(株)製の直鎖状低密度ポ
リエチレン(NUCG−7641)を使用した。その特性
は次の通りであった。 溶融温度(Tm):119℃ 結晶化温度(Tc):109℃ メルトインデックス(MI):0.7g/min 比重:0.92 (2) 圧力容器の稼働条件として、次の値を選定した。 浸透圧力:8MPa、15MPa、20MPa 浸透温度:100℃、105℃、110℃、115℃、
120℃、125℃ 浸透時間:2時間、45分 (3) 結果1
[Experimental example 1] Linear low density polyethylene (L-LDPE)
As a sample, an experiment was conducted to confirm the shape due to the difference in foaming conditions. (1) Linear low-density polyethylene (NUCG-7641) manufactured by Nippon Unicar Co., Ltd. was used as a sample. Its properties were as follows: Melting temperature (Tm): 119 ° C. Crystallization temperature (Tc): 109 ° C. Melt index (MI): 0.7 g / min Specific gravity: 0.92 (2) The following values were selected as operating conditions of the pressure vessel. Osmotic pressure: 8 MPa, 15 MPa, 20 MPa Osmotic temperature: 100 ° C, 105 ° C, 110 ° C, 115 ° C,
120 ° C, 125 ° C Penetration time: 2 hours, 45 minutes (3) Result 1

【表1】 表1は、浸透時間を2時間に設定した場合の浸透圧力お
よび浸透温度の違いによる発泡倍率の変化を示してい
る。なお表中の「F」は、圧力解放を1MPa/秒で迅
速に行なった例を示し、「S」は、圧力解放を1MPa
/5秒で緩徐に行なった例を示している。ちなみに浸透
温度125℃では、試料である直鎖状低密度ポリエチレ
ンが発泡後に再容融してしまうため、観測不能と判断し
た。表1によれば、浸透温度110℃で浸透圧力15M
Pa/秒の場合に発泡倍率92が得られ、最も良好に発
泡することが判った。また超臨界流体を試料に浸透させ
るには該試料を加熱することは要件でないが、発泡させ
るには該試料を結晶化温度にまで加熱することが必要で
あり、更に該試料が溶融するに至る温度まで加熱しては
ならないことが判った。すなわち加熱の上限は、試料た
る熱可塑性樹脂の溶融温度であり、また加熱の下限は該
試料に固有の結晶化温度であると云うことができる。 (4) 結果2
[Table 1] Table 1 shows the change in the expansion ratio due to the difference in the penetration pressure and the penetration temperature when the penetration time was set to 2 hours. In the table, "F" indicates an example in which the pressure was released rapidly at 1 MPa / sec, and "S" indicates that the pressure was released at 1 MPa.
This shows an example where the measurement was performed slowly for / 5 seconds. By the way, at a permeation temperature of 125 ° C., the sample was judged to be unobservable because the linear low-density polyethylene sample was reconstituted after foaming. According to Table 1, the permeation pressure is 15M at the permeation temperature of 110 ° C.
In the case of Pa / sec, a foaming ratio of 92 was obtained, and it was found that foaming was most excellent. It is not necessary to heat the sample in order for the supercritical fluid to penetrate into the sample, but it is necessary to heat the sample to the crystallization temperature in order to cause foaming, which further leads to melting of the sample. It was found that heating to temperature was not allowed. That is, the upper limit of the heating is the melting temperature of the thermoplastic resin as the sample, and the lower limit of the heating is the crystallization temperature specific to the sample. (4) Result 2

【表2】 表2は、浸透時間を45分に設定した場合の浸透圧力お
よび浸透温度の違いによる成形品の外観・形状の良否を
示している。浸透温度110℃で浸透圧力20MPa/
5秒の場合、および浸透温度115℃で浸透圧力20M
Pa/5秒の場合に外観・形状が完璧のものが得られ
た。なるべく短い時間で綺麗に発泡させるには、浸透圧
力が高い方が二酸化炭素が試料に沢山浸透し、発泡後の
セル径も小さくなる。
[Table 2] Table 2 shows the quality of the appearance and shape of the molded product depending on the difference in the penetration pressure and the penetration temperature when the penetration time was set to 45 minutes. At an infiltration temperature of 110 ° C, an infiltration pressure of 20 MPa /
In the case of 5 seconds, and at an infiltration temperature of 115 ° C. and an infiltration pressure of 20 M
In the case of Pa / 5 seconds, a product having perfect appearance and shape was obtained. In order to make foaming as clean as possible in as short a time as possible, the higher the permeation pressure, the more carbon dioxide permeates the sample and the smaller the cell diameter after foaming.

【0021】[0021]

【実験例2】直鎖状低密度ポリエチレン(L-LDPE)
を試料として、発泡条件の違いによる発泡倍率の変化を
確認するべく実験を行なった。 (1) 試料として、日本ユニカー(株)製の直鎖状低密度ポ
リエチレン(NUCG−7641)を使用した。その特性
は次の通りであった。 溶融温度(Tm):119℃ 結晶化温度(Tc):109℃ メルトインデックス(MI):0.7g/min 比重:0.92 (2) 圧力容器の稼働条件として、次の値を選定した。 浸透圧力:15MPa 浸透温度:110℃ 浸透時間:2時間、1時間、30分、15分、5分 成形型寸法: 箱状(20×20×20) 投入試料重量:0.74g 寸法≒9×9×9 円筒状(φ20×20) 投入試料重量:0.57g 寸法≒8.5×8.5×8.5 円筒状(φ10×50) 投入試料重量:0.36g 寸法≒4.5×4.5×20 (3) 結果
[Experimental example 2] Linear low density polyethylene (L-LDPE)
Was used as a sample, an experiment was conducted to confirm a change in expansion ratio due to a difference in foaming conditions. (1) Linear low-density polyethylene (NUCG-7641) manufactured by Nippon Unicar Co., Ltd. was used as a sample. Its properties were as follows: Melting temperature (Tm): 119 ° C. Crystallization temperature (Tc): 109 ° C. Melt index (MI): 0.7 g / min Specific gravity: 0.92 (2) The following values were selected as operating conditions of the pressure vessel. Penetration pressure: 15MPa Penetration temperature: 110 ° C Penetration time: 2 hours, 1 hour, 30 minutes, 15 minutes, 5 minutes Mold size: Box shape (20 × 20 × 20) Input sample weight: 0.74 g Dimension ≒ 9 × 9 × 9 Cylindrical (φ20 × 20) Input sample weight: 0.57 g Size ≒ 8.5 × 8.5 × 8.5 Cylindrical (φ10 × 50) Input sample weight: 0.36 g Size ≒ 4.5 × 4.5 × 20 (3) Result

【表3】 表3は、浸透圧力を15MPaで浸透温度を110℃に
設定した場合の浸透時間の違いによる発泡倍率の変化を
示している。この条件下では、成形型の寸法に拘ること
なく、浸透時間30分で最も良好な発泡倍率15.3が
得られること、また浸透時間を1時間、2時間と長くし
ても効果はないことが判った。なお発泡倍率が20倍以
上になると、成形品は収縮してしまう。
[Table 3] Table 3 shows the change in the expansion ratio due to the difference in the permeation time when the permeation pressure is set to 15 MPa and the permeation temperature is set to 110 ° C. Under these conditions, regardless of the size of the mold, the best expansion ratio of 15.3 can be obtained with a permeation time of 30 minutes, and there is no effect even if the permeation time is increased to 1 hour or 2 hours. I understood. When the expansion ratio becomes 20 times or more, the molded product shrinks.

【0022】[0022]

【実験例3】直鎖状低密度ポリエチレン(L-LDPE)
を試料として、該試料の大きさの違いによる発泡倍率の
変化を確認するべく実験を行なった。すなわち本実施例
の方法では成形型20を使用するため、そのキャビティ
24の内容積は一定に規制されている。従って前記成形
型20のキャビティ24に投入された試料は、その膨張
発泡によっても該キャビティ24の内容積よりは大きく
なれない。従って、成形型20へ投入される試料の大き
さを変化させることで、その発泡倍率を或る範囲内で調
整し得るものである。 (1) 試料として、日本ユニカー(株)製の直鎖状低密度ポ
リエチレン(NUCG−7641)を使用した。その特性
は次の通りであった。 溶融温度(Tm):119℃ 結晶化温度(Tc):109℃ メルトインデックス(MI):0.7g/min 比重:0.92 (2) 稼働条件として、次の値を選定した。 成形型寸法:20mm×20mm×20mm キャビティ体積:8000mm3 投入試料重量:8g→L-LDPE 7.36g (3) 結果
[Experimental example 3] Linear low density polyethylene (L-LDPE)
Was used as a sample, an experiment was conducted to confirm the change in the expansion ratio due to the difference in the size of the sample. That is, since the molding die 20 is used in the method of the present embodiment, the inner volume of the cavity 24 is regulated to be constant. Therefore, the sample put into the cavity 24 of the mold 20 does not become larger than the internal volume of the cavity 24 even by the expansion and foaming. Therefore, by changing the size of the sample put into the molding die 20, the expansion ratio can be adjusted within a certain range. (1) Linear low-density polyethylene (NUCG-7641) manufactured by Nippon Unicar Co., Ltd. was used as a sample. Its properties were as follows: Melting temperature (Tm): 119 ° C Crystallizing temperature (Tc): 109 ° C Melt index (MI): 0.7 g / min Specific gravity: 0.92 (2) The following values were selected as operating conditions. Mold size: 20mm x 20mm x 20mm Cavity volume: 8000mm 3 Input sample weight: 8g → L-LDPE 7.36g (3) Result

【表4】 表4から、投入する熱可塑性樹脂の試料の重量(容積)に
比例して、その発泡倍率を制御し得ることが判る。従っ
て、仮に成形型におけるキャビティの内部容積が100
であるとして、これに対し体積が10分の1となる10
の試料を投入して発泡させれば、発泡倍率が10倍の製
品が得られることになる。また体積が5分の1となる2
0の試料を発泡させれば、発泡倍率は5倍の製品が得ら
れるものである。なお、表4から投入する試料の大きさ
によって、中心部まで浸透させるに要する時間が異なっ
て来ることが判る。
[Table 4] Table 4 shows that the expansion ratio can be controlled in proportion to the weight (volume) of the thermoplastic resin sample to be charged. Therefore, if the internal volume of the cavity in the mold is 100
, The volume of which is 10 times smaller
When the sample is charged and foamed, a product having a foaming ratio of 10 times can be obtained. Also, the volume becomes 1/5
If the sample of No. 0 is foamed, a product having a foaming ratio of 5 times can be obtained. Table 4 shows that the time required for infiltration to the center varies depending on the size of the sample to be charged.

【0023】[0023]

【発明の効果】以上に説明した如く本発明によれば、超
臨界流体としての二酸化炭素を熱可塑性樹脂に浸透させ
て発泡させるバッチ式発泡方法を採用するに際して、成
形型中で所要形状に予め成形した形で最終発泡成形品を
製造し得る利点がある。また成形型に投入する熱可塑性
樹脂の大きさ、圧力、温度、時間を適宜に選択すること
で、最終発泡成形品の発泡倍率を自由にコントロールで
き、しかも二酸化炭素の超臨界流体を浸透させた後に発
泡させるので、均一で微細なセル形状の発泡体を得るこ
とができる、等の多くの優れた利点を有する。
As described above, according to the present invention, when adopting a batch type foaming method in which carbon dioxide as a supercritical fluid is permeated into a thermoplastic resin and foamed, a required shape is previously formed in a molding die. There is an advantage that a final foam molded article can be manufactured in a molded form. In addition, by appropriately selecting the size, pressure, temperature, and time of the thermoplastic resin to be injected into the molding die, the expansion ratio of the final foamed molded product can be freely controlled, and the supercritical fluid of carbon dioxide is permeated. Since it is foamed later, it has many excellent advantages such as obtaining a uniform and fine cell-shaped foam.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例に係る樹脂発泡成形品を好適
に製造する方法を、段階的に示す概略説明図である。
FIG. 1 is a schematic explanatory view showing step by step a method for suitably manufacturing a resin foam molded article according to an embodiment of the present invention.

【図2】 超臨界状態の二酸化炭素を利用するバッチ式
発泡方法の一例を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing an example of a batch type foaming method using carbon dioxide in a supercritical state.

【符号の説明】[Explanation of symbols]

10 圧力容器 12 熱可塑性樹脂 14 ガス供給源 20 成形型 22 最終発泡成形品 24 キャビティ 28,30 流体導入/逃出孔 DESCRIPTION OF SYMBOLS 10 Pressure vessel 12 Thermoplastic resin 14 Gas supply source 20 Mold 22 Final foaming molded product 24 Cavity 28, 30 Fluid introduction / exit hole

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F212 AA04 AA11 AA25 AC01 AG20 UA01 UF01 UL08 UN11  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F212 AA04 AA11 AA25 AC01 AG20 UA01 UF01 UL08 UN11

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 発泡成形すべき所要の熱可塑性樹脂(12)
を圧力容器(10)中に収容して密閉した後、二酸化炭素の
温度および圧力を制御して得た超臨界流体を該流体の供
給源(14)から前記圧力容器(10)中に供給し、この超臨界
流体を前記熱可塑性樹脂(12)に接触させることで該超臨
界流体を該樹脂中に浸透させ、更に前記熱可塑性樹脂(1
2)を該樹脂に固有の結晶化温度(Tc)以上に加熱してか
ら、前記圧力容器(10)を大気中に開放することで、前記
熱可塑性樹脂(12)に浸透している超臨界流体の気化に伴
ない該樹脂を膨張発泡させて樹脂発泡品を製造する方法
において、 最終発泡成形品(22)の外形を規制するキャビティ(24)を
内部に備え、適宜の流体導入/逃出孔(28,30)を穿設し
た成形型(20)中に前記熱可塑性樹脂(12)を収容して型締
めし、 前記成形型(20)を前記圧力容器(10)中に収容させた後
に、該圧力容器(10)を密閉し、 前記流体供給源(14)から前記圧力容器(10)中に供給した
超臨界流体を、前記流体導入/逃出孔(28,30)を介して
前記成形型(20)中の前記熱可塑性樹脂(12)に接触させる
ことで該超臨界流体を該樹脂中に浸透させ、 前記成形型(20)中の熱可塑性樹脂(12)を結晶化温度(Tc)
以上に加熱した後に前記圧力容器(10)を開放すること
で、該熱可塑性樹脂(12)に浸透している超臨界流体の気
化に伴ない該樹脂(12)を膨張発泡させると共に、該成形
型(20)のキャビティ(24)により該樹脂(12)の外形を規制
し、 次いで前記成形型(20)を冷却してから脱型することで、
前記熱可塑性樹脂(12)を発泡させた最終成形品(22)を製
造するようにしたことを特徴とする樹脂発泡成形品の製
造方法。
1. The required thermoplastic resin to be foamed (12)
Is sealed in a pressure vessel (10), and then a supercritical fluid obtained by controlling the temperature and pressure of carbon dioxide is supplied from the fluid supply source (14) into the pressure vessel (10). By contacting the supercritical fluid with the thermoplastic resin (12), the supercritical fluid penetrates into the resin, and further the thermoplastic resin (1
2) is heated to a crystallization temperature (Tc) or more specific to the resin, and then the pressure vessel (10) is opened to the atmosphere, whereby the supercritical fluid permeating the thermoplastic resin (12) is A method for producing a resin foamed product by expanding and foaming the resin with the vaporization of a fluid, comprising a cavity (24) for regulating the outer shape of the final foamed molded product (22) inside, and a suitable fluid introduction / escape The thermoplastic resin (12) was housed in a mold (20) having holes (28, 30), and the mold was clamped.The mold (20) was housed in the pressure vessel (10). Later, the pressure vessel (10) is sealed, and the supercritical fluid supplied into the pressure vessel (10) from the fluid supply source (14) is passed through the fluid introduction / exit holes (28, 30). The supercritical fluid permeates into the resin by contacting the thermoplastic resin (12) in the molding die (20), and the crystallization temperature of the thermoplastic resin (12) in the molding die (20). (Tc)
By opening the pressure vessel (10) after heating as described above, the resin (12) is expanded and foamed with the vaporization of the supercritical fluid permeating the thermoplastic resin (12), and the molding is performed. The outer shape of the resin (12) is regulated by the cavity (24) of the mold (20), and then the mold (20) is cooled and then demolded,
A method for producing a resin foam molded article, characterized by producing a final molded article (22) obtained by foaming the thermoplastic resin (12).
【請求項2】 前記二酸化炭素を超臨界流体に変化させ
るに必要な臨界点温度は31.2℃以上で、臨界点圧力
は7.47MPa以上である請求項1記載の樹脂発泡成
形品の製造方法。
2. A resin foam molded article according to claim 1, wherein a critical point temperature required to convert the carbon dioxide into a supercritical fluid is 31.2 ° C. or more, and a critical point pressure is 7.47 MPa or more. Method.
【請求項3】 前記成形型(20)中の熱可塑性樹脂(12)に
超臨界流体としての二酸化炭素を浸透させるに要する時
間は、5分〜2時間の範囲にある請求項1記載の樹脂発
泡成形品の製造方法。
3. The resin according to claim 1, wherein the time required for permeating carbon dioxide as a supercritical fluid into the thermoplastic resin (12) in the mold (20) is in the range of 5 minutes to 2 hours. A method for producing a foam molded article.
【請求項4】 前記超臨界流体が供給された前記圧力容
器(10)は徐々に開放するのが好ましく、その際の解放圧
力は例えば1MPa/秒である請求項1記載の樹脂発泡
成形品の製造方法。
4. The resin foam molded article according to claim 1, wherein the pressure vessel (10) supplied with the supercritical fluid is preferably gradually opened, and a release pressure at that time is, for example, 1 MPa / sec. Production method.
【請求項5】 前記圧力容器(10)の開放により前記成形
型(20)中の超臨界流体は、二酸化炭素の気体として前記
流体導入/逃出孔(28,30)から逃出する請求項4記載の
樹脂発泡成形品の製造方法。
5. The supercritical fluid in the mold (20) escapes from the fluid inlet / outlet holes (28, 30) as a carbon dioxide gas by opening the pressure vessel (10). 5. The method for producing a resin foam molded article according to 4.
【請求項6】 前記熱可塑性樹脂(12)は、例えばポリプ
ロピレン(PP)、ポリエチレンテレフタレート(PE
T)、低密度ポリエチレン(LDPE)、高密度ポリエチ
レン(HDPE)、直鎖状低密度ポリエチレン(L-LDP
E)が好適に使用される請求項1記載の樹脂発泡成形品
の製造方法。
6. The thermoplastic resin (12) is, for example, polypropylene (PP), polyethylene terephthalate (PE).
T), low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (L-LDP
The method for producing a resin foam molded article according to claim 1, wherein E) is suitably used.
【請求項7】 前記熱可塑性樹脂(12)は、ペレットや粉
末、その他ブロック等の状態で前記成形型(20)中に収容
される請求項6記載の樹脂発泡成形品の製造方法。
7. The method according to claim 6, wherein the thermoplastic resin (12) is contained in the molding die (20) in the form of pellets, powder, other blocks, or the like.
【請求項8】 前記熱可塑性樹脂(12)が収容される成形
型(20)の温度は、該樹脂に固有の結晶化温度以上に設定
される請求項6記載の樹脂発泡成形品の製造方法。
8. The method for producing a resin foam molded article according to claim 6, wherein the temperature of the mold (20) in which the thermoplastic resin (12) is accommodated is set to a temperature higher than a crystallization temperature specific to the resin. .
【請求項9】 前記熱可塑性樹脂(12)に固有の結晶化温
度は、直鎖状低密度ポリエチレン(L-LDPE)では1
09℃である請求項8記載の樹脂発泡成形品の製造方
法。
9. The crystallization temperature specific to the thermoplastic resin (12) is 1 in linear low-density polyethylene (L-LDPE).
The method for producing a resin foam molded article according to claim 8, wherein the temperature is 09 ° C.
JP2000250305A 2000-08-21 2000-08-21 Method for manufacturing foamed resin molding Pending JP2002059449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250305A JP2002059449A (en) 2000-08-21 2000-08-21 Method for manufacturing foamed resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250305A JP2002059449A (en) 2000-08-21 2000-08-21 Method for manufacturing foamed resin molding

Publications (1)

Publication Number Publication Date
JP2002059449A true JP2002059449A (en) 2002-02-26

Family

ID=18739904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250305A Pending JP2002059449A (en) 2000-08-21 2000-08-21 Method for manufacturing foamed resin molding

Country Status (1)

Country Link
JP (1) JP2002059449A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014015514A (en) * 2012-07-06 2014-01-30 Nitto Denko Corp Porous thermoplastic resin sheet and production method of the same
KR101370567B1 (en) 2012-04-10 2014-03-06 국립대학법인 울산과학기술대학교 산학협력단 Apparatus and Method for exfoliation of graphite
JP2015500904A (en) * 2012-11-08 2015-01-08 江蘇微賽新材料科技有限公司Microcell TechnologyCo.,Ltd Method for producing polypropylene microporous foam plank
JP2020535032A (en) * 2018-09-06 2020-12-03 広東奔迪新材料科技有限公司 A method of manufacturing a three-dimensional foam product using a supercritical fluid without requiring a mold
CN114851463A (en) * 2022-05-09 2022-08-05 东莞兆阳兴业塑胶制品有限公司 Supercritical foaming equipment for aviation foaming material
CN115093601A (en) * 2022-08-04 2022-09-23 台州玉米环保科技有限公司 Preparation method of anti-falling PP milk teacup

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101370567B1 (en) 2012-04-10 2014-03-06 국립대학법인 울산과학기술대학교 산학협력단 Apparatus and Method for exfoliation of graphite
JP2014015514A (en) * 2012-07-06 2014-01-30 Nitto Denko Corp Porous thermoplastic resin sheet and production method of the same
JP2015500904A (en) * 2012-11-08 2015-01-08 江蘇微賽新材料科技有限公司Microcell TechnologyCo.,Ltd Method for producing polypropylene microporous foam plank
JP2020535032A (en) * 2018-09-06 2020-12-03 広東奔迪新材料科技有限公司 A method of manufacturing a three-dimensional foam product using a supercritical fluid without requiring a mold
CN114851463A (en) * 2022-05-09 2022-08-05 东莞兆阳兴业塑胶制品有限公司 Supercritical foaming equipment for aviation foaming material
CN115093601A (en) * 2022-08-04 2022-09-23 台州玉米环保科技有限公司 Preparation method of anti-falling PP milk teacup

Similar Documents

Publication Publication Date Title
KR102277965B1 (en) Method and apparatus for manufacturing foam molded body
US8591799B2 (en) Methods for blow molding solid-state cellular thermoplastic articles
CN110498945B (en) Supercritical fluid foaming method of polypropylene material
JPS6216166B2 (en)
CA2618845C (en) Method for foam injection molding of thermoplastic resin
JP3555986B2 (en) Method for producing thermoplastic resin foam
JP3207219B2 (en) Low-expanded particles of polyolefin resin and method for producing the same
CN107778516A (en) A kind of preparation method of polymer micro expanded material
CN100551665C (en) The method and apparatus of supply resin material in injection molding machine
CN110480913A (en) Multicomponent multi-phase complex system self-balancing supercritical foaming method and device
JP2002059449A (en) Method for manufacturing foamed resin molding
US5834527A (en) Process for the manufacture of polyurethane foam moldings
JP2007130826A (en) Method for producing injection-foamed molded article
JP2007083717A (en) Multilayer foam molded body and its manufacturing method
JP2001105447A (en) Method for producing foamed molded object
JPH0885129A (en) Method and apparatus for producing foamed structure
KR100333406B1 (en) Polyolefin Foam Beads with High Density Crust and Production Method the same
JPH0885128A (en) Method and apparatus for producing thermoplastic resin foamed molded object
JP3893538B2 (en) Molding method of resin foam molding
JP2004066680A (en) Storage method for material soaked with gas
JP2003039512A (en) Thermoplastic resin foamed molded object
JPH0641161B2 (en) Method for producing styrene resin foam sheet and styrene resin foam sheet for thermoforming
TWI708671B (en) Multi-stage foaming method
JP2003191274A (en) Method for foam molding of thermoplastic resin and foamed molded object
JP2003127191A (en) High cycle expansion/injection molding method