JP2007130826A - Method for producing injection-foamed molded article - Google Patents

Method for producing injection-foamed molded article Download PDF

Info

Publication number
JP2007130826A
JP2007130826A JP2005324455A JP2005324455A JP2007130826A JP 2007130826 A JP2007130826 A JP 2007130826A JP 2005324455 A JP2005324455 A JP 2005324455A JP 2005324455 A JP2005324455 A JP 2005324455A JP 2007130826 A JP2007130826 A JP 2007130826A
Authority
JP
Japan
Prior art keywords
cavity
mold
injection
molten resin
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005324455A
Other languages
Japanese (ja)
Inventor
Atsushi Wada
敦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005324455A priority Critical patent/JP2007130826A/en
Publication of JP2007130826A publication Critical patent/JP2007130826A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an injection-foamed, weight-reduced article in which a surface condition is good and the thickness of a skin layer is reduced. <P>SOLUTION: The method for producing the injection-foamed article includes a process in which a foamable molten resin containing a thermoplastic resin and a chemical foaming agent is injected/packed in the cavity of a mold and a process in which while a heating gas heated at a temperature of the melting point of the thermoplastic resin ±50°C is packed in the cavity at a pressure of 0.1-5 MPa, the foamable molten resin is injected/packed in the cavity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、射出発泡成形体の製造方法に関する。   The present invention relates to a method for producing an injection foam molded article.

射出発泡成形体の製造方法としては、射出機の射出口に結合される金型を固定型とその固定型に対して進退する可動型とで構成し、それらの間に形成されるキャビティを可動型の進退によって拡大縮小可能となし、射出機から金型のキャビティ内へ発泡剤含有の溶融樹脂(以下、「発泡性溶融樹脂」と記す)が射出される以前に可動型を進出させてキャビティを縮小させ、発泡性溶融樹脂の射出とほぼ同時に可動型を後退させてキャビティを所定の大きさまで拡大する成形方法(たとえば、特許文献1参照)や、互いに嵌りあってキャビティに接触容積を拡大または縮小する方向に相対移動可能な可動型を所定のキャビティ容積縮小位置に位置させてキャビティ内に発泡性溶融樹脂を発泡しない樹脂圧力に維持した状態で注入しながらキャビティ容積を拡大した後に金型をキャビティ容積縮小方向に移動させることにより樹脂を圧縮して樹脂表面を冷却して固化させた後に金型をキャビティ容積拡大方向に移動させることにより発泡を開始する樹脂圧力まで低下させて内部の樹脂を発泡させ冷却した後に成形体を取り出す成形方法(たとえば、特許文献2参照)が既に提案されている。   As a method of manufacturing an injection foam molded body, a mold connected to an injection port of an injection machine is composed of a fixed mold and a movable mold that moves forward and backward with respect to the fixed mold, and a cavity formed between them is movable. The mold can be enlarged and reduced by the advance and retreat of the mold, and the movable mold is advanced before the molten resin containing the foaming agent (hereinafter referred to as “foamable molten resin”) is injected into the mold cavity from the injection machine. And a molding method in which the movable mold is retracted substantially simultaneously with the injection of the foamable molten resin to enlarge the cavity to a predetermined size (see, for example, Patent Document 1), A mold that is movable relative to the shrinking direction is positioned at a predetermined cavity volume reduction position, and a mold is injected while injecting foamable molten resin into the cavity while maintaining a resin pressure that does not foam. Resin that starts foaming by moving the mold in the cavity volume expansion direction after compressing the resin by cooling the resin surface by solidifying the resin surface by moving the mold in the cavity volume reduction direction after expanding the volume There has already been proposed a molding method (see, for example, Patent Document 2) in which a molded body is taken out after the pressure is lowered to foam the internal resin and cooled.

しかし、前者の成形方法の場合、発泡性溶融樹脂の射出充填と同時に可動型を拡大方向に移動させる方法であるため、樹脂圧力の低下で発泡が始まり発泡速度と型移動の速度バランスが取れない問題があるほか、粗大気泡や気泡の破裂などで外観が優れた成形体が得られないという問題がある。   However, in the case of the former molding method, since the movable mold is moved in the expansion direction simultaneously with injection filling of the foamable molten resin, foaming starts with a decrease in the resin pressure, and the speed of foaming and mold movement cannot be balanced. In addition to the problems, there is a problem that a molded article having an excellent appearance cannot be obtained due to coarse bubbles or bursting of bubbles.

一方、後者の成形方法の場合、可動型をキャビティ容積縮小位置に位置させた状態でキャビティ内に発泡性溶融樹脂を発泡しない樹脂圧力に維持した状態で注入しながらキャビティ容積を拡大するようになっているが、キャビティ容積の拡大は樹脂圧力の低下を誘発する要素を持っており、粗大気泡や気泡の破裂が生じやすい。キャビティ容積の拡大または縮小工程中に樹脂の冷却工程があるため例え金型温度が高くとも樹脂の表面に厚いスキン層(固化層)が生じ、外観が優れた成形体が得られない。しかも、これらの成形方法ではゲート周辺の溶融樹脂圧力が非常に高くなり、そのゲート周辺の樹脂は高い樹脂圧力の状態で冷却固化される。そのため、ゲート周辺の発泡倍率は、1.01〜1.2倍程度が限界である。一方、ゲートより遠方部では、大気圧力に等しくなるため溶融樹脂は、十分に発泡し、1.5倍〜2.0倍程度の発泡倍率を得ることは可能であるが、ゲート近傍とゲート遠方とに発泡倍率の不均一性を生じやすい。   On the other hand, in the case of the latter molding method, the cavity volume is increased while injecting the foamable molten resin into the cavity while maintaining the resin pressure so as not to foam with the movable mold positioned at the cavity volume reduction position. However, the expansion of the cavity volume has an element that induces a decrease in the resin pressure, and coarse bubbles and bubble bursts are likely to occur. Since there is a resin cooling step in the process of expanding or reducing the cavity volume, even if the mold temperature is high, a thick skin layer (solidified layer) is formed on the surface of the resin, and a molded article having an excellent appearance cannot be obtained. In addition, in these molding methods, the molten resin pressure around the gate becomes very high, and the resin around the gate is cooled and solidified in a high resin pressure state. Therefore, the expansion ratio around the gate is limited to about 1.01 to 1.2 times. On the other hand, in the part far from the gate, since it becomes equal to the atmospheric pressure, the molten resin foams sufficiently, and it is possible to obtain a foaming ratio of about 1.5 to 2.0 times. In addition, non-uniformity of the expansion ratio is likely to occur.

また、表面に破泡跡を生じさせない成形方法として、いわゆるガスカウンタープレッシャー法と呼ばれる成形方法が提案されている。これは、金型キャビティ内に予め発泡圧以上の圧力のガスを充填し、このガスによって金型キャビティ内を保圧しておき、保圧された状態の金型キャビティ内に射出機から発泡剤を含む溶融樹脂を射出充填し、その後金型キャビティ内からガスを抜くようになっている。
すなわち、ガスカウンタープレッシャー法は、樹脂に発泡剤を加えて金型内に射出する直前に、金型内を発泡圧力以上のガスで加圧し、次に発泡剤入りの樹脂を金型内に射出するため、樹脂流動先端部で発泡ガスの気泡が飛び出さず成形体表面は平滑面が得られるとともに、発泡剤を含む溶融樹脂を充填完了後に金型内の加圧ガスを金型外に抜くようになっているため、成形体内部に体積収縮分に相当する起泡力が発生し、成形体表面のヒケを防ぐことが出来るという利点を備えている。
A molding method called a so-called gas counter pressure method has been proposed as a molding method that does not cause bubble breakage on the surface. This is because the mold cavity is filled with a gas having a pressure equal to or higher than the foaming pressure in advance, and the mold cavity is held with this gas, and the foaming agent is injected from the injection machine into the held mold cavity. The molten resin is injected and filled, and then the gas is extracted from the mold cavity.
That is, in the gas counter pressure method, immediately before adding a foaming agent to a resin and injecting it into the mold, the inside of the mold is pressurized with a gas higher than the foaming pressure, and then the resin containing the foaming agent is injected into the mold. Therefore, bubbles of foaming gas do not pop out at the front end of the resin flow, and the surface of the molded body is smooth, and after filling the molten resin containing the foaming agent, the pressurized gas in the mold is removed from the mold. Therefore, the foaming force corresponding to the volume shrinkage is generated inside the molded body, and there is an advantage that the surface of the molded body can be prevented from sinking.

しかしながら、このガスカウンタープレッシャー法においては、溶融樹脂は、ガスがキャビティから抜かれると、キャビティ壁面に接触し、冷却されて成形体表面に厚いスキン層が形成されるため、発泡層による十分な軽量化が望めないという問題がある。   However, in this gas counter pressure method, when the gas is extracted from the cavity, the molten resin contacts the cavity wall surface and is cooled to form a thick skin layer on the surface of the molded body. There is a problem that can not be expected.

特開昭62-246710号公報JP 62-246710 A 特開平4-214311号公報JP-A-4-14311

本発明は、上記事情に鑑みて、表面状態が良好であるとともに、スキン層の厚さが薄くより軽量な成形体とすることができる射出発泡成形体の製造方法を提供することを目的としている。   In view of the above circumstances, an object of the present invention is to provide a method for producing an injection foam molded article that can be formed into a lighter molded article having a good surface state and a thin skin layer. .

上記目的を達成するために、本発明にかかる射出発泡成形体の製造方法は、熱可塑性樹脂と化学発泡剤とを含む発泡性溶融樹脂を金型のキャビティ内に射出充填する工程を含む射出発泡成形体の製造方法であって、前記熱可塑性樹脂の融点±50℃に加熱された加熱ガスを0.1MPa〜5MPaの圧力でキャビティ内に充填した状態で、前記発泡性溶融樹脂をキャビティ内に射出充填する工程を備えていることを特徴としている。   In order to achieve the above object, a method for producing an injection foam molded body according to the present invention includes an injection foaming step including injection filling a foamable molten resin containing a thermoplastic resin and a chemical foaming agent into a cavity of a mold. A method for producing a molded article, wherein the foamable molten resin is placed in a cavity in a state where a heating gas heated to a melting point of ± 50 ° C. of the thermoplastic resin is filled in the cavity at a pressure of 0.1 MPa to 5 MPa. It is characterized by comprising a step of injection filling.

また、発泡性溶融樹脂をキャビティ内に射出充填直後にキャビティを一旦縮小して発泡性溶融樹脂を加圧したのち、キャビティ内から加熱ガスを排出するとともに、キャビティを拡張する工程を備えていることが好ましい。   Also, immediately after injection filling of the foamable molten resin into the cavity, the cavity is temporarily reduced to pressurize the foamable molten resin, and then the heated gas is discharged from the cavity and the cavity is expanded. Is preferred.

本発明において、熱可塑性樹脂としては、特に限定されないが、たとえば、ポリプロピレン,ポリエチレン,ポリスチレン,プロピレン/エチレンコポリマーなどのポリオレフィン系樹脂が挙げられる。
化学発泡剤としては、特に限定されないが、アゾジカルボンアミド(有機化合物)や重炭酸ナトリウム等の重炭酸塩(無機化合物)などが挙げられる。
加熱ガスとしてキャビティ内に注入されるガスとしては、樹脂に影響を及ぼさないものであれば特に限定されないが、たとえば、炭酸ガス,窒素,アルゴン,ネオン,ヘリウムなどの不活性ガスが挙げられる。
In the present invention, the thermoplastic resin is not particularly limited, and examples thereof include polyolefin resins such as polypropylene, polyethylene, polystyrene, and propylene / ethylene copolymers.
Although it does not specifically limit as a chemical foaming agent, Bicarbonate (inorganic compound), such as azodicarbonamide (organic compound) and sodium bicarbonate, etc. are mentioned.
The gas injected into the cavity as the heating gas is not particularly limited as long as it does not affect the resin, and examples thereof include inert gases such as carbon dioxide, nitrogen, argon, neon, and helium.

また、本発明の発泡性溶融樹脂には、化学発泡剤以外に、必要に応じて、公知の、発泡助剤、発泡核剤、発泡成形安定剤、安定剤、紫外線吸収剤、酸化防止剤、帯電防止剤、滑剤、着色剤、難燃剤、架橋剤および/または充填剤を配合することができる。   In addition to the chemical foaming agent, the foamable molten resin of the present invention includes, as necessary, known foaming aids, foaming nucleating agents, foaming stabilizers, stabilizers, ultraviolet absorbers, antioxidants, Antistatic agents, lubricants, colorants, flame retardants, crosslinking agents and / or fillers can be blended.

因みに、発泡助剤としては、例えば、ステアリン酸ナトリウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸カリウム、ステアリン酸亜鉛などのステアリン酸塩、モンタン酸(オクタコサン酸のことである)カルシウム、モンタン酸亜鉛などのモンタン酸塩等の高級脂肪酸金属塩、尿素もしくは尿素系化合物、パラフィン、その他ステアロアミド等が挙げられる。
発泡核剤としては、タルク、シリカ、炭酸カルシウム、ケイ酸カルシウム等の無機フィラー等が挙げられる。
Incidentally, as the foaming aid, for example, stearates such as sodium stearate, calcium stearate, magnesium stearate, potassium stearate, zinc stearate, montanic acid (which is octacosanoic acid) calcium, zinc montanate, etc. Higher fatty acid metal salts such as montanates, urea or urea compounds, paraffin, and other stearamides.
Examples of the foam nucleating agent include inorganic fillers such as talc, silica, calcium carbonate, and calcium silicate.

本発明において、射出充填直後とは、射出充填完了から5秒以内を意味し、好ましくは2秒以内である。   In the present invention, “immediately after injection filling” means within 5 seconds from completion of injection filling, and preferably within 2 seconds.

本発明において、加熱ガスの温度は、熱可塑性樹脂の融点±50℃に限定されるが、その理由は、加熱ガス温度が熱可塑性樹脂の融点−50℃未満であると、スキン層の厚みの軽減効果がなく、加熱ガス温度が熱可塑性樹脂の融点+50℃を超えると、熱可塑性樹脂が樹脂やけにより黄変するなど成形体の外観不良を招くからである。   In the present invention, the temperature of the heating gas is limited to the melting point of the thermoplastic resin ± 50 ° C., because the heating gas temperature is less than the melting point of the thermoplastic resin −50 ° C. This is because there is no reduction effect, and when the heating gas temperature exceeds the melting point of the thermoplastic resin + 50 ° C., the appearance of the molded product is inferior, for example, the thermoplastic resin is yellowed by resin burn.

また、加熱ガスの充填圧力は、0.1〜5MPに限定されるが、その理由は、加熱ガスの充填圧力が0.1MPa未満では、ガス充填効果がないからである。上限は特にないが、ガス圧が高くなるにつれて、発泡性溶融樹脂の射出圧も高くする必要があるため、あまり高くすると、射出機を大型のものにしなければならないなど実用性に欠ける。したがって、5MP以下程度とすることが好ましい。   Moreover, although the filling pressure of heating gas is limited to 0.1-5MP, it is because there is no gas filling effect if the filling pressure of heating gas is less than 0.1 MPa. Although there is no particular upper limit, it is necessary to increase the injection pressure of the foamable molten resin as the gas pressure increases. Therefore, it is preferable to be about 5 MP or less.

本発明にかかる射出発泡成形体の製造方法は、以上のように、熱可塑性樹脂の融点±50℃に加熱された加熱ガスを0.1MPa〜5MPaの圧力でキャビティ内に充填した状態で、前記発泡性溶融樹脂をキャビティ内に射出充填するようにしたので、表面状態が良好であるとともに、スキン層の厚さが薄くより軽量な成形体とすることができる。
すなわち、加熱ガスが充填されているので、キャビティ内において、発泡性溶融樹脂の圧縮や拡大で、粗大気泡の発生や気泡の破裂が抑制され、スキン層がほとんど無発泡層となり、外観性能にすぐれるとともに、加熱ガスによって発泡性溶融樹脂の表層が発泡完了まで高温に保たれるため、薄いスキン層が形成され、軽量の成形体を得ることができる。
As described above, the method for producing an injection-foamed molded article according to the present invention is the above-described method in which the heating gas heated to the melting point ± 50 ° C. of the thermoplastic resin is filled in the cavity at a pressure of 0.1 MPa to 5 MPa. Since the foamable molten resin is injected and filled into the cavities, it is possible to obtain a molded article having a good surface condition and a thin skin layer and a lighter weight.
In other words, since the heated gas is filled, the compression and expansion of the foamable molten resin in the cavity suppresses the generation of coarse bubbles and the bursting of the bubbles, making the skin layer almost non-foamed and improving the appearance performance. In addition, since the surface layer of the expandable molten resin is kept at a high temperature until the completion of foaming by the heated gas, a thin skin layer is formed, and a lightweight molded body can be obtained.

そして、さらに、発泡性溶融樹脂をキャビティ内に射出充填直後にキャビティを一旦縮小して発泡性溶融樹脂を加圧したのち、キャビティ内から加熱ガスを排出するとともに、キャビティを拡張するようにすれば、微細で高発泡層となり成形体全体の発泡倍率が向上し、また外観も向上する。   Further, immediately after injection filling of the foamable molten resin into the cavity, the cavity is once reduced and the foamable molten resin is pressurized, and then the heated gas is discharged from the cavity and the cavity is expanded. It becomes a fine and highly foamed layer, and the foaming ratio of the whole molded body is improved, and the appearance is also improved.

以下に、本発明を、その実施の形態を表す図面を参照しつつ詳しく説明する。
図1は本発明にかかる射出発泡成形体の製造方法の1つの実施の形態を表している。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows one embodiment of a method for producing an injection foam molded body according to the present invention.

この射出発泡成形体の製造方法は、図1に示す金型1を用いるようになっている。
すなわち、金型1は、固定型11と、可動型12とを備えている。固定型11は、キャビティ13内で対向するように設けられた2つの可動ブロック14を備えている。
また、固定型11には、加熱ガス3の充填口(注入ピン)15が設けられている。充填口15は、加熱ガス供給路2に接続されている。加熱ガス供給路2は、一端が充填口15に接続され、他端が加熱ガス供給源(図示せず)に接続されているとともに、遠隔操作開閉弁21および流量・速度制御弁22を途中に備えている。
The injection foam molded product is manufactured using a mold 1 shown in FIG.
That is, the mold 1 includes a fixed mold 11 and a movable mold 12. The fixed mold 11 includes two movable blocks 14 provided to face each other in the cavity 13.
The fixed mold 11 is provided with a filling port (injection pin) 15 for the heated gas 3. The filling port 15 is connected to the heated gas supply path 2. The heated gas supply path 2 has one end connected to the filling port 15 and the other end connected to a heated gas supply source (not shown), and a remote control on-off valve 21 and a flow rate / speed control valve 22 on the way. I have.

そして、射出発泡成形体は、この金型1を用いて以下のようにして製造される。
(1)図1(a)に示すように、固定型11と可動型12とを閉合するとともに、固定型11の内部に設けられた可動ブロック14をキャビティの内容積が縮小する方向に移動させた状態で充填口15を開放するとともに、遠隔操作開閉弁21を開放して、熱可塑性樹脂の融点±50℃に加熱された加熱ガス3を流量・速度制御弁22で流量および速度を制御しながら、キャビティ13内に0.1〜5MPaのガス圧で充填する。
(2)図1(b)に示すように、充填口15を気密に閉鎖したのち、キャビティ13内に射出機(図ではノズル部分しかあらわれていない)6から発泡性溶融樹脂4を充填する。
(3)図1(c)に示すように、発泡性溶融樹脂4の充填完了直後に可動型12および可動ブロック14を一旦キャビティ13の縮小方向に動かし、発泡ガスの発生抑止圧力まで発泡性溶融樹脂を加圧する。なお、この加圧によって発泡性溶融樹脂中で微細気泡の核形成を行うことができる。
(4)図1(d)に示すように、可動型12および可動ブロック14をキャビティ拡大方向に移動させ、キャビティ13の内容積を得ようとする成形体の体積に一致するように拡大させ、発泡成形体5を得る。なお、キャビティ13の拡大前後で加熱ガスを金型パーティング面からキャビティ13の外部に排出させるようにする。
(5)金型1を冷却後、金型1を開放して成形された発泡成形体5を金型1から取り出す。
つぎに、本発明の具体的な実施例を比較例と対比させて説明する。
And an injection-foaming molded object is manufactured as follows using this metal mold | die 1. FIG.
(1) As shown in FIG. 1A, the fixed mold 11 and the movable mold 12 are closed, and the movable block 14 provided in the fixed mold 11 is moved in a direction in which the internal volume of the cavity is reduced. In this state, the filling port 15 is opened, the remote control on-off valve 21 is opened, and the flow rate and speed of the heated gas 3 heated to the melting point of the thermoplastic resin ± 50 ° C. are controlled by the flow rate / speed control valve 22. However, the cavity 13 is filled with a gas pressure of 0.1 to 5 MPa.
(2) As shown in FIG. 1B, after the filling port 15 is closed in an airtight manner, the foamable molten resin 4 is filled into the cavity 13 from the injection machine 6 (only the nozzle portion is shown in the figure).
(3) As shown in FIG. 1 (c), immediately after the filling of the foamable molten resin 4, the movable mold 12 and the movable block 14 are once moved in the shrinking direction of the cavity 13 to expand the foamable melt to the pressure for suppressing the generation of foaming gas. Pressurize the resin. In addition, nucleation of fine bubbles can be performed in the foamable molten resin by this pressurization.
(4) As shown in FIG. 1 (d), the movable mold 12 and the movable block 14 are moved in the cavity expansion direction, and are expanded so as to coincide with the volume of the molded body to obtain the inner volume of the cavity 13. A foam molded body 5 is obtained. The heated gas is discharged from the mold parting surface to the outside of the cavity 13 before and after the enlargement of the cavity 13.
(5) After cooling the mold 1, the mold 1 is opened and the foamed molded body 5 molded is removed from the mold 1.
Next, specific examples of the present invention will be described in comparison with comparative examples.

(実施例1)
キャビティ13が、縦300mm,横200mm,高さ30mm,厚さ5mmの成形体を得る箱形状で、最大容積は422.5cm3である、図1に示すような金型1を用いて、以下のようにして、箱型をしたポリプロピレン発泡成形体を得た。
図1(a)に示すように固定型11と可動型12とを閉合するとともに、可動ブロック14を縮小方向に移動させて、キャビティ内容積422.5cm3の25%容積にした状態で、温度180℃に加熱された炭酸ガスを加熱ガス3として充填口15から圧力2MPaとなるようにキャビティ13内に充填した。
Example 1
Using the mold 1 as shown in FIG. 1 in which the cavity 13 has a box shape to obtain a molded body having a length of 300 mm, a width of 200 mm, a height of 30 mm, and a thickness of 5 mm, and the maximum volume is 422.5 cm 3 , Thus, a box-shaped polypropylene foam molded article was obtained.
As shown in FIG. 1 (a), the temperature of the fixed mold 11 and the movable mold 12 is closed and the movable block 14 is moved in the shrinking direction to a 25% volume with a cavity inner volume of 422.5 cm 3. The cavity 13 was filled with carbon dioxide gas heated to 180 ° C. as the heated gas 3 so that the pressure became 2 MPa from the filling port 15.

つぎに、図1(b)に示すように、充填口15を閉じたのち、熱可塑性樹脂であるポリプロピレン樹脂(日本ポリプロ社製 MFR30g/10分、融点160℃)と化学発泡剤である重炭酸ナトリウムとをポリプロピレン樹脂100重量部に対して重炭酸ナトリウム6重量部の配合割合で射出機6で溶融混練した発泡性溶融樹脂をキャビティ13内に射出速度150mm/secで105.6gを射出充填した。このときのキャビティ13内の圧力(樹脂圧)は30MPaであった。
そして、充填完了直後に、図1(c)に示すように、可動型12および可動ブロック14をキャビティ13の縮小方向に移動させて、発泡性溶融樹脂4を圧縮し、キャビティ13内の樹脂圧を射出充填時の3.5倍に相当する105MPaにした。また、圧縮完了までは、加熱ガス3の温度を160℃以上、圧力を2MPaに維持させた。
ついで、図1(d)に示すように、拡大が開始される前後に加熱ガス3をキャビティ13内から金型パーティング面を介して徐々に排気させると同時に可動型12および可動ブロック14をキャビティ13の拡大方向に移動させて、キャビティ内容積を422.5cm3に拡大させた。
Next, as shown in FIG. 1 (b), after closing the filling port 15, polypropylene resin (MFR 30 g / 10 min, melting point 160 ° C., manufactured by Nippon Polypro Co., Ltd.) and bicarbonate, which is a chemical foaming agent, are used. A foamable molten resin obtained by melting and kneading sodium with 100 parts by weight of polypropylene resin at a blending ratio of 6 parts by weight of sodium bicarbonate with the injection machine 6 was injected and filled into the cavity 13 at an injection speed of 150 mm / sec. . At this time, the pressure in the cavity 13 (resin pressure) was 30 MPa.
Immediately after the completion of filling, as shown in FIG. 1 (c), the movable mold 12 and the movable block 14 are moved in the shrinking direction of the cavity 13 to compress the foamable molten resin 4, and the resin pressure in the cavity 13 is compressed. Was set to 105 MPa corresponding to 3.5 times the injection filling. Further, until the compression was completed, the temperature of the heated gas 3 was maintained at 160 ° C. or higher and the pressure was maintained at 2 MPa.
Next, as shown in FIG. 1 (d), the heated gas 3 is gradually exhausted from the cavity 13 through the mold parting surface before and after the expansion starts, and at the same time, the movable mold 12 and the movable block 14 are cavityd. The volume in the cavity was expanded to 422.5 cm 3 by moving in 13 expansion directions.

その後、金型1を冷却したのち、金型1を開放して発泡成形体5を得た。
得られた成形体5の断面を観察したところ、スキン層厚みは0.1mmであった。スキン層近傍の気泡径は、4〜10ミクロンで平均径は8ミクロン。発泡層内の気泡径は12〜40ミクロンで平均径は25ミクロンであった。また、得られた成形体の比重と、同じ金型でキャビティの縮小,拡大を行わない方法で得た未発泡の成形体(標準品)の比重とを比較して得られた成形体の発泡倍率を求めたところ4倍であった。
Then, after cooling the metal mold | die 1, the metal mold | die 1 was open | released and the foaming molding 5 was obtained.
When the cross section of the obtained molded body 5 was observed, the skin layer thickness was 0.1 mm. The bubble diameter in the vicinity of the skin layer is 4 to 10 microns and the average diameter is 8 microns. The bubble diameter in the foam layer was 12 to 40 microns and the average diameter was 25 microns. In addition, the foam of the molded body obtained by comparing the specific gravity of the molded body with the specific gravity of the unfoamed molded body (standard product) obtained by the method that does not reduce or enlarge the cavity in the same mold. When the magnification was determined, it was 4 times.

(比較例1)
加熱ガスに代えて、常温の炭酸ガスを使用した以外は、実施例1と同様にして発泡成形体を得た。
得られた成形体の断面を観察したところ、スキン層厚みは0.35mmであった。スキン層近傍の気泡径は、25〜45ミクロンで平均径は35ミクロン。発泡層内の気泡径は50〜90ミクロンで平均径は80ミクロンであった。また、発泡倍率は3.6倍であった。
(Comparative Example 1)
A foamed molded article was obtained in the same manner as in Example 1 except that normal temperature carbon dioxide gas was used in place of the heated gas.
When the cross section of the obtained molded object was observed, the skin layer thickness was 0.35 mm. The bubble diameter in the vicinity of the skin layer is 25 to 45 microns and the average diameter is 35 microns. The bubble diameter in the foam layer was 50 to 90 microns and the average diameter was 80 microns. The expansion ratio was 3.6 times.

本発明の製造方法は、特に限定されないが、たとえば、自動車内装材,家電部品,家庭用品,工業部品などの製造に好適である。   Although the manufacturing method of this invention is not specifically limited, For example, it is suitable for manufacture of a motor vehicle interior material, household appliance parts, household goods, an industrial component, etc.

本発明にかかる射出発泡成形体の製造方法に用いる金型の動きを工程順に説明する断面図である。It is sectional drawing explaining the movement of the metal mold | die used for the manufacturing method of the injection foaming molding concerning this invention to process order.

符号の説明Explanation of symbols

1 金型
13 キャビティ
3 加熱ガス
4 発泡性溶融樹脂
5 発泡成形体
1 Mold 13 Cavity 3 Heated Gas 4 Expandable Molten Resin 5 Foam Molded Body

Claims (2)

熱可塑性樹脂と化学発泡剤とを含む発泡性溶融樹脂を金型のキャビティ内に射出充填する工程を含む射出発泡成形体の製造方法であって、
前記熱可塑性樹脂の融点±50℃に加熱された加熱ガスを0.1〜5MPaの圧力でキャビティ内に充填した状態で、前記発泡性溶融樹脂をキャビティ内に射出充填する工程を備えていることを特徴とする射出発泡成形体の製造方法。
A method for producing an injection foam molded article comprising a step of injection filling a foamable molten resin containing a thermoplastic resin and a chemical foaming agent into a cavity of a mold,
A step of injecting and filling the foamable molten resin into the cavity in a state in which the cavity is filled with a heating gas heated to the melting point ± 50 ° C. of the thermoplastic resin at a pressure of 0.1 to 5 MPa. A method for producing an injection foam molded article.
発泡性溶融樹脂をキャビティ内に射出充填直後にキャビティを一旦縮小して発泡性溶融樹脂を加圧したのち、キャビティ内から加熱ガスを排出するとともに、キャビティを拡張する工程を備えている請求項1に記載の射出発泡成形体の製造方法。   2. The method of claim 1, further comprising the step of temporarily reducing the cavity immediately after injection filling the foamable molten resin into the cavity and pressurizing the foamable molten resin, and then discharging the heated gas from the cavity and expanding the cavity. The manufacturing method of the injection-foaming molding as described in 2.
JP2005324455A 2005-11-09 2005-11-09 Method for producing injection-foamed molded article Pending JP2007130826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005324455A JP2007130826A (en) 2005-11-09 2005-11-09 Method for producing injection-foamed molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005324455A JP2007130826A (en) 2005-11-09 2005-11-09 Method for producing injection-foamed molded article

Publications (1)

Publication Number Publication Date
JP2007130826A true JP2007130826A (en) 2007-05-31

Family

ID=38152882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005324455A Pending JP2007130826A (en) 2005-11-09 2005-11-09 Method for producing injection-foamed molded article

Country Status (1)

Country Link
JP (1) JP2007130826A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040023A (en) * 2007-08-06 2009-02-26 Fukuhara Co Ltd Method and apparatus for feeding nitrogen gas to injection molding machine
WO2011001791A1 (en) * 2009-06-29 2011-01-06 Komatsu Michio Wood powder-containing resin molded article and method for producing the same
JP2011005811A (en) * 2009-06-29 2011-01-13 Michio Komatsu Resin molded article containing wood powder, and manufacturing method of the same
WO2012091003A1 (en) * 2010-12-28 2012-07-05 Komatsu Michio Resin molded body containing fine powder paper, and method for producing same
JP2019199025A (en) * 2018-05-16 2019-11-21 東芝機械株式会社 Injection device, injection molding machine, and control method of injection device
KR102287115B1 (en) * 2020-12-08 2021-08-10 주식회사 에프엠(Fm) Injection Molding Device and Method Thereof for Improving Appearance Quality and Productivity of Plastic Molding Product
CN113787668A (en) * 2021-09-14 2021-12-14 深圳创维-Rgb电子有限公司 Injection molding process, display and molding equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152826A (en) * 1983-02-21 1984-08-31 Mitsuboshi Belting Ltd Method for injection molding foamed and molded item
JPH1177737A (en) * 1997-09-08 1999-03-23 Sekisui Chem Co Ltd Manufacture of three-tier structured molding
JP2004167777A (en) * 2002-11-19 2004-06-17 Hitachi Maxell Ltd Thermoplastic resin foam and method/device for manufacturing the foam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59152826A (en) * 1983-02-21 1984-08-31 Mitsuboshi Belting Ltd Method for injection molding foamed and molded item
JPH1177737A (en) * 1997-09-08 1999-03-23 Sekisui Chem Co Ltd Manufacture of three-tier structured molding
JP2004167777A (en) * 2002-11-19 2004-06-17 Hitachi Maxell Ltd Thermoplastic resin foam and method/device for manufacturing the foam

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009040023A (en) * 2007-08-06 2009-02-26 Fukuhara Co Ltd Method and apparatus for feeding nitrogen gas to injection molding machine
WO2011001791A1 (en) * 2009-06-29 2011-01-06 Komatsu Michio Wood powder-containing resin molded article and method for producing the same
JP2011005811A (en) * 2009-06-29 2011-01-13 Michio Komatsu Resin molded article containing wood powder, and manufacturing method of the same
JP4685990B2 (en) * 2009-06-29 2011-05-18 道男 小松 Wood powder-containing resin molded body and method for producing the same
US8361612B2 (en) 2009-06-29 2013-01-29 Michio Komatsu Wood powder-containing resin molded product and method for producing the same
WO2012091003A1 (en) * 2010-12-28 2012-07-05 Komatsu Michio Resin molded body containing fine powder paper, and method for producing same
US9174370B2 (en) 2010-12-28 2015-11-03 Eco Research Institute Ltd. Fine paper powder-containing resin molded object and manufacturing method thereof
JP2019199025A (en) * 2018-05-16 2019-11-21 東芝機械株式会社 Injection device, injection molding machine, and control method of injection device
JP7102222B2 (en) 2018-05-16 2022-07-19 芝浦機械株式会社 Injection device, injection molding machine and control method of injection device
KR102287115B1 (en) * 2020-12-08 2021-08-10 주식회사 에프엠(Fm) Injection Molding Device and Method Thereof for Improving Appearance Quality and Productivity of Plastic Molding Product
CN113787668A (en) * 2021-09-14 2021-12-14 深圳创维-Rgb电子有限公司 Injection molding process, display and molding equipment

Similar Documents

Publication Publication Date Title
JP5231820B2 (en) Manufacturing method of foam injection molded product
JP2007130826A (en) Method for producing injection-foamed molded article
CN101077603B (en) Method for preparing foamed plastic products
US7740776B2 (en) Method for foam injection molding of thermoplastic resin
JP2017196764A (en) Method for molding foam resin molding, molding die, and foam resin molding
CA2377510C (en) Method of manufacturing a foam-molded product
JPH08300392A (en) Injection molding of foamable plastic composition
JP3189619B2 (en) Injection molding method for foamable plastic composition
JP2007015231A (en) Thermoplastic resin foamed molding and its manufacturing method
JP2008246881A (en) Manufacturing method for thermoplastic resin foamed molding
WO1998010913A1 (en) Method of injection molding expandable plastic composition
KR100517596B1 (en) A plastic promulgating injection method
JPH0313964B2 (en)
JP6856180B1 (en) Resin molded product
JP2008080763A (en) Molding die for injection-molding and method for manufacturing injection molded formed article using the same
JP2002331542A (en) Foam molding method
JP5200846B2 (en) Manufacturing method of resin foam molding
JP2005328297A (en) Diaphragm of speaker and method for manufacturing diaphragm of speaker
JP2009066941A (en) Molding method for foamed resin molded article
JP4770334B2 (en) Multilayer molding method for thermoplastic resin
JP2003127191A (en) High cycle expansion/injection molding method
JP2010253721A (en) Mold for injection molding and molded body
JP2008230189A (en) Method and apparatus for molding resin molded article
JP2010208202A (en) Method and device for manufacturing foam
JP2021030664A (en) Foam molding body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110628