JP2002053321A - Lithium manganese multiple oxide, its manufacturing method and use thereof - Google Patents

Lithium manganese multiple oxide, its manufacturing method and use thereof

Info

Publication number
JP2002053321A
JP2002053321A JP2000238020A JP2000238020A JP2002053321A JP 2002053321 A JP2002053321 A JP 2002053321A JP 2000238020 A JP2000238020 A JP 2000238020A JP 2000238020 A JP2000238020 A JP 2000238020A JP 2002053321 A JP2002053321 A JP 2002053321A
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
manganese composite
lithium manganese
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000238020A
Other languages
Japanese (ja)
Other versions
JP4362004B2 (en
Inventor
Hiroshi Mashima
宏 真嶋
Sumiko Sanuki
須美子 佐貫
Mamoru Kubota
守 久保田
Kiyoshi Nakahara
清 中原
Ryosuke Nakajima
良介 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2000238020A priority Critical patent/JP4362004B2/en
Publication of JP2002053321A publication Critical patent/JP2002053321A/en
Application granted granted Critical
Publication of JP4362004B2 publication Critical patent/JP4362004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain lithium manganese multiple oxide having a cluster particle form and a dense and uniform composition excellent in packing property as an electrode active material, to provide a method for manifesturing the oxide at a low cost without processes of pulverization or repeated heat treatment, to obtain a positive electrode material by using the lithium manganese multiple oxide, and to provide a high-performance lithium secondary cell by using the positive electrode active material. SOLUTION: The lithium manganese multiple oxide has a secondary particle form prepared by aggregating almost spheric primary particles essentially comprising LiMn2O4 into clusters. The median diameter of the secondary particle form ranges from 1 to 100 μm and the specific surface area is 0.1 to 10 m2/g. The obtained particles are used as the positive electrode active material to manufacture a lithium secondary cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の活物質として有用なリチウムマンガン複合酸化物及び
その製造方法並びにそれを用いたリチウム二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium manganese composite oxide useful as an active material for a lithium secondary battery, a method for producing the same, and a lithium secondary battery using the same.

【0002】[0002]

【従来の技術】リチウムマンガン複合酸化物であるマン
ガン酸リチウムは、一般式LiXMnY4で表され、代
表的なものとしてスピネル構造のLiMn24がある。
このLiMn24は原料Mnの資源としての埋蔵量がC
oより多いことから安価なリチウム二次電池用正極材料
として注目されている。
2. Description of the Related Art Lithium manganate, which is a lithium-manganese composite oxide, is represented by a general formula Li x Mn Y O 4 , and a typical example is LiMn 2 O 4 having a spinel structure.
This LiMn 2 O 4 has a reserve of C as a resource of the raw material Mn.
Therefore, it is attracting attention as an inexpensive positive electrode material for lithium secondary batteries because it is more than o.

【0003】スピネル構造のLiMn24は、層状構造
のリチウムコバルト酸化物やリチウムニッケル酸化物に
比べて理論密度が小さく、理論電気容量が小さい。この
点で高容量電池の活物質としてはリチウムコバルト酸化
物やリチウムニッケル酸化物と比べ不利である。そこ
で、LiMn24の充填性を上げるため、合成原料には
緻密な酸化マンガンが使用されてきた。しかしながら、
一般的に固相反応での合成では、均一組成の合成物を得
るには緻密でない微細な原料を使用する方が有利とされ
ている。
[0003] LiMn 2 O 4 having a spinel structure has a lower theoretical density and a lower theoretical electric capacity than lithium cobalt oxide or lithium nickel oxide having a layered structure. In this respect, the active material of the high capacity battery is disadvantageous as compared with lithium cobalt oxide and lithium nickel oxide. Therefore, in order to improve the filling property of LiMn 2 O 4 , dense manganese oxide has been used as a synthesis raw material. However,
In general, in synthesis by a solid phase reaction, it is considered advantageous to use a fine raw material that is not dense in order to obtain a synthesized product having a uniform composition.

【0004】この様な観点から、LiMn24の合成に
おいては、緻密で粒子の大きいマンガン化合物を原料と
し、熱処理や機械的粉砕を繰り返すことで、充填性が高
く、組成も均一なLiMn24を得る方法が用いられて
いる(例えば特開平8−2921号公報)。
From such a viewpoint, in the synthesis of LiMn 2 O 4 , a dense and large-particle manganese compound is used as a raw material, and heat treatment and mechanical pulverization are repeated to obtain LiMn 2 having a high filling property and a uniform composition. A method for obtaining O 4 has been used (for example, Japanese Patent Application Laid-Open No. Hei 8-29221).

【0005】しかしながら、従来の製造方法により得ら
れるマンガン酸リチウムは形状が不均一となり、流動性
が悪く緻密なLiMn24電極層を得ることが難しい。
また、電極作製時の導電剤や結着剤との混合時のハンド
リングが悪く、均一な混合が困難である。
[0005] However, lithium manganate obtained by the conventional manufacturing method has a non-uniform shape, and has poor fluidity, making it difficult to obtain a dense LiMn 2 O 4 electrode layer.
In addition, handling at the time of mixing with a conductive agent or a binder at the time of manufacturing an electrode is poor, and uniform mixing is difficult.

【0006】一方、LiMn24は、Mn3+のヤーンテ
ラー効果による相転移が原因と考えられるサイクル特性
の悪さ、高温におけるMnの電解液への溶出等の問題が
ある。これらの改善を目的にMnの異種元素置換が提案
されている(例えば特開平11−71115号公報)。
[0006] On the other hand, LiMn 2 O 4 has problems such as poor cycle characteristics considered to be caused by the phase transition due to the Jahn-Teller effect of Mn 3+ and elution of Mn into an electrolyte at a high temperature. For the purpose of improvement, substitution of Mn with a different element has been proposed (for example, JP-A-11-71115).

【0007】異種元素置換マンガン酸リチウムはヤーン
テラー歪みの抑制及びMnの溶出量を減少し、サイクル
特性を改善するが、このためにはより均一組成であるこ
とが要求される。
[0007] Dissimilar element-substituted lithium manganate suppresses Jahn-Teller distortion and reduces the amount of Mn eluted to improve cycle characteristics. For this purpose, a more uniform composition is required.

【0008】[0008]

【発明が解決しようとする課題】本発明は、電極活物質
として充填性に優れた緻密かつ均一な組成を有する葡萄
房状の粒子形状をもつリチウムマンガン複合酸化物、こ
れを粉砕工程や繰り返し熱処理工程無しに安価に製造す
る方法、及び該リチウムマンガン複合酸化物を用いた正
極活物質、並びに該正極活物質を用いた高性能なリチウ
ム二次電池を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention relates to a lithium manganese composite oxide having a fine and uniform composition having excellent filling properties and having a grape-like particle shape as an electrode active material. It is an object of the present invention to provide a low-cost production method without a process, a positive electrode active material using the lithium-manganese composite oxide, and a high-performance lithium secondary battery using the positive electrode active material.

【0009】[0009]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究を重ねた結果、LiMn24の合成
原料として一般的に使用されているγ−MnO2や二酸
化マンガンを熱処理して得られるMn23に代えて、比
表面積が100〜300m2/gで平均二次粒子径が5
0μm以下の葡萄房状の粒子形状を有するε−MnO2
と、水溶性リチウム化合物とを混合し、特定の方法で生
成したリチウムマンガン複合酸化物が特定の形状、寸法
を有する二次粒子を形成し、このような葡萄房状で特定
の粒度を有するリチウムマンガン複合酸化物が電極作製
時の操作性等に優れ、かつ該リチウムマンガン複合酸化
物を使用した非水溶媒系リチウム二次電池が優れた充・
放電特性を示すことを見い出し、本発明を完成させた。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and have found that γ-MnO 2 and manganese dioxide, which are generally used as a raw material for synthesizing LiMn 2 O 4 , have been obtained. Instead of Mn 2 O 3 obtained by heat treatment, the specific surface area is 100 to 300 m 2 / g and the average secondary particle diameter is 5
Ε-MnO 2 having a grape-like particle shape of 0 μm or less
And, mixed with a water-soluble lithium compound, lithium manganese composite oxide formed by a specific method forms secondary particles having a specific shape and dimensions, such a grape-like lithium having a specific particle size A manganese composite oxide is excellent in operability at the time of electrode preparation, and a non-aqueous solvent-based lithium secondary battery using the lithium manganese composite oxide is excellent in charge and discharge.
The present inventors have found that they exhibit discharge characteristics, and have completed the present invention.

【0010】すなわち、本発明のリチウムマンガン複合
酸化物は、主成分がLiMn24であり、ほぼ球形の一
次粒子形状を葡萄房状に集合させた二次粒子形状を有
し、該二次粒子径が1〜100μm、比表面積が0.1
〜10m2/gであることを特徴とする。本発明のリチ
ウムマンガン複合酸化物において、前記一次粒子径が
0.1〜0.2μm近傍であるとよい。
That is, the lithium manganese composite oxide of the present invention has a main component of LiMn 2 O 4 and has a secondary particle shape obtained by assembling a substantially spherical primary particle shape into a grape cluster. Particle diameter is 1 to 100 μm, specific surface area is 0.1
-10 m 2 / g. In the lithium manganese composite oxide of the present invention, it is preferable that the primary particle diameter is around 0.1 to 0.2 μm.

【0011】また、本発明の製造方法は、X線回折法に
よる結晶形ε−MnO2を主成分とし、比表面積100
〜300m2/g、粒子径50μm以下の葡萄房状の二
次粒子形状を有するε−二酸化マンガンと、水溶性リチ
ウム化合物とをLi/Mnのモル比0.50〜0.60
で湿式混合する工程と、該混合液をリチウムマンガン複
合酸化物の前記粒子形状が保持されるように乾燥した
後、500〜900℃で熱処理する工程とからなること
を特徴とする。
Further, the production method of the present invention comprises a crystal form ε-MnO 2 by X-ray diffraction as a main component and a specific surface area of 100%.
~300m 2 / g, the molar ratio of the ε- manganese dioxide having the following grape bunch shaped secondary particle shape particle diameter 50 [mu] m, and a water-soluble lithium compound Li / Mn from .50 to .60
And a step of drying the mixed solution so as to maintain the particle shape of the lithium-manganese composite oxide, and then performing a heat treatment at 500 to 900 ° C.

【0012】また、本発明に係るリチウムマンガン複合
酸化物を正極活物質として用いて充・放電特性の優れた
電池用正極を作製することができる。
Also, a battery positive electrode having excellent charge / discharge characteristics can be manufactured by using the lithium manganese composite oxide according to the present invention as a positive electrode active material.

【0013】さらに、前記正極活物質を用いてリチウム
二次電池を作製することができ、コイン電池にあって
は、少なくとも初期放電容量が120mAh/g以上、
又は20サイクル目の放電容量維持率が80%以上であ
る非水溶媒系リチウムイオン二次電池を作製することが
できる。
Further, a lithium secondary battery can be manufactured using the positive electrode active material. In the case of a coin battery, the initial discharge capacity is at least 120 mAh / g or more.
Alternatively, a non-aqueous solvent-based lithium ion secondary battery having a discharge capacity maintenance ratio at the 20th cycle of 80% or more can be manufactured.

【0014】[0014]

【発明の実施の形態】本発明のリチウムマンガン複合酸
化物の化学組成は、主成分がLiMn24からなること
を特徴とするが、これは、粉末を使用したX線回折図の
ピークがJCPDS(Joint committee on powder diff
raction standards):No.35−782に示される
LiMn24と一致し又は同等であればよい。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical composition of the lithium manganese composite oxide of the present invention is characterized in that the main component is composed of LiMn 2 O 4 . JCPDS (Joint committee on powder diff)
raction standards): No. It suffices if it matches or is equal to LiMn 2 O 4 shown in 35-782.

【0015】また、本発明のリチウムマンガン複合酸化
物は、主成分を前記LiMn24とし、その形態は1μ
mに満たない微細な一次粒子が二次粒子径(メジアン
径)で1〜100μmmの集合単位を形成している。こ
れを電子顕微鏡等で観察すれば、各一次粒子は均質なほ
ぼ球形を維持しつつ集合体である二次粒子形状において
も粒の揃った葡萄房状の適宜な結合状態を有することが
判る。すなわち、粒径の均一な一次粒子が適宜な数で集
合することにより、二次粒子は粒度分布の良い均一な粒
子径で、均質且つ自然な房形状となっている。この房形
状の基となる一次粒子は粒径(メジアン径)が0.1〜
0.2μm程度の微粒子であることが好ましい。このよ
うな房形態の性状により、電池の正極活物質として用い
る場合において、充填性に優れ、従来における粒子形状
や粒子径(一次粒子又は二次粒子)が不揃いのものに比
べて緻密な活物質層を形成できる。また、ハンドリング
が良好で、導電剤や結着剤との混合が均一となる。充填
性やハンドリングの向上には主に、粒度分布の良い二次
粒子径を有すること及びその形状が葡萄房状であること
が寄与する。
In the lithium manganese composite oxide of the present invention, the main component is the above-mentioned LiMn 2 O 4 , and the form is 1 μm.
Fine primary particles less than m form aggregate units having a secondary particle diameter (median diameter) of 1 to 100 μm. By observing this with an electron microscope or the like, it can be seen that each of the primary particles has an appropriate grape cluster-like bonding state in which the particles are uniform even in the secondary particle shape, which is an aggregate, while maintaining a uniform substantially spherical shape. In other words, the primary particles having a uniform particle size are gathered in an appropriate number, so that the secondary particles have a uniform particle size with a good particle size distribution and a uniform and natural tuft shape. The primary particles serving as the basis of this tuft shape have a particle size (median diameter) of 0.1 to
Fine particles having a particle size of about 0.2 μm are preferable. Due to such a bunched form, when used as a positive electrode active material for a battery, the active material has excellent filling properties and is denser than conventional particles having irregular particle shapes and particle diameters (primary particles or secondary particles). Layers can be formed. Also, the handling is good, and the mixing with the conductive agent and the binder becomes uniform. The improvement of the filling property and the handling mainly contributes to having a secondary particle diameter having a good particle size distribution and a grape-like shape.

【0016】さらに、緻密な活物質層を形成する目的及
び高温におけるMnの溶出を最小にする目的で、比表面
積は0.1〜10m2/gがよく、0.1〜5.0m2
gがより好ましい。本発明による二次粒子径が葡萄状で
比表面積が小さいリチウムマンガン複合酸化物は電池活
物質としての使用時に充放電容量が大きく、サイクル特
性に優れた二次電池を得ることができる。二次粒径は1
〜100μmに分布してよいが、その分布範囲が狭く1
〜70μmに分布することがより好ましい。
Furthermore, in order to minimize the elution of Mn in the object and high temperature to form a dense active material layer, and a specific surface area of 0.1 to 10 m 2 / g selfishness, 0.1~5.0m 2 /
g is more preferred. The lithium manganese composite oxide having a grape-like secondary particle diameter and a small specific surface area according to the present invention has a large charge / discharge capacity when used as a battery active material, and can provide a secondary battery having excellent cycle characteristics. Secondary particle size is 1
100100 μm, but the distribution range is narrow and 1
More preferably, it is distributed in a range of 70 μm.

【0017】本発明のリチウムマンガン複合酸化物の製
造方法は、特定の粒形状を有するε−二酸化マンガンと
水溶性リチウム化合物を所定の割合で湿式混合し、該混
合物を、原料の前記二酸化マンガンの粒形状を維持して
乾燥した後、熱処理することを特徴とする。
In the method for producing a lithium manganese composite oxide according to the present invention, ε-manganese dioxide having a specific particle shape and a water-soluble lithium compound are wet-mixed at a predetermined ratio, and the mixture is mixed with the manganese dioxide as a raw material. After drying while maintaining the grain shape, heat treatment is performed.

【0018】前記ε−二酸化マンガンは、X線回折法に
よる結晶形がε−MnO2であり、具体的にはX線回折
図のピークがJCPDS:No.30−820に示され
るε−MnO2に一致し又は同等であればよい。つま
り、本発明の製法は、従来のLiMn24の合成原料と
して使用されている電解合成法及び化学合成法によるγ
−MnO2や二酸化マンガンを550℃以上の温度で熱
処理して得られるMn2 3を原料としたものではない。
The ε-manganese dioxide is obtained by X-ray diffraction.
Is ε-MnOTwoAnd specifically, X-ray diffraction
The peak in the figure is JCPDS: No. Shown at 30-820
Ε-MnOTwoShould be equal to or equal to Toes
Thus, the production method of the present invention uses the conventional LiMnTwoOFourSynthetic raw materials and
Γ by electrolytic synthesis method and chemical synthesis method used as
-MnOTwoHeat manganese dioxide at temperatures above 550 ° C
Mn obtained by treatmentTwoO ThreeIs not a raw material.

【0019】また、前記ε−二酸化マンガンは、比表面
積が100〜300m2/g、好ましくは150〜20
0m2/gであり、平均二次粒径が50μm以下、好ま
しくは30μm以下である。比表面積が100m2/g
未満では水溶性リチウム化合物との湿式混合時に不均一
な部分が生じること、及び生成LiMn24の形状が葡
萄房状を維持できなくなり、本発明の目的とする均一組
成を持つリチウムマンガン複合酸化物を得ることができ
ない。一方、比表面積が300m2/gを超えると飛散
等で取り扱い難くなり、製造上好ましくない。また、平
均二次粒径が50μmを超える物を使用すると水スラリ
ー中でマンガン化合物の沈降分離を起こさないために、
より強力な撹拌あるいは粉砕工程が必要となり好ましく
ない。
The ε-manganese dioxide has a specific surface area of 100 to 300 m 2 / g, preferably 150 to 20 m 2 / g.
0 m 2 / g, and the average secondary particle size is 50 μm or less, preferably 30 μm or less. Specific surface area is 100m 2 / g
If it is less than 1, a non-uniform portion may be generated during wet mixing with a water-soluble lithium compound, and the shape of the produced LiMn 2 O 4 may not be maintained in a grape-like state, and the lithium-manganese composite oxide having a uniform composition as the object of the present invention may have. I can't get things. On the other hand, if the specific surface area exceeds 300 m 2 / g, it becomes difficult to handle due to scattering or the like, which is not preferable in production. In addition, when an average secondary particle size exceeding 50 μm is used, sedimentation and separation of the manganese compound do not occur in the water slurry.
This requires an intense stirring or grinding step, which is not preferable.

【0020】前記ε−二酸化マンガンは、代表的には硫
酸マンガン水溶液に酸素を含むオゾンガスを通気してM
nイオンを酸化することにより沈殿を生成させ、該沈殿
をろ別、水洗、乾燥することにより作製できる。
The above-mentioned ε-manganese dioxide is typically produced by passing ozone gas containing oxygen through an aqueous manganese sulfate solution.
A precipitate can be produced by oxidizing n ions, and the precipitate is filtered, washed with water, and dried.

【0021】本発明に用いる水溶性リチウム化合物とし
ては、炭酸リチウム、水酸化リチウム、水酸化リチウム
1水塩等を挙げることができるが、水への溶解度の大き
い水酸化リチウム又は水酸化リチウム1水塩がより好ま
しい。
Examples of the water-soluble lithium compound used in the present invention include lithium carbonate, lithium hydroxide, lithium hydroxide monohydrate and the like, and lithium hydroxide or lithium hydroxide monohydrate having high solubility in water. Salts are more preferred.

【0022】前記ε−二酸化マンガンと水溶性リチウム
化合物の混合比は、Li/Mnのモル比で0.50〜
0.60であり、好ましくは0.51〜0.55であ
る。0.50未満の場合、リチウム二次電池としたとき
の充放電容量のサイクル劣化が大きく、良好な電池特性
を示さない。この理由は第3成分添加によるサイクル特
性の改善に報告されている様に第3成分としてLiが作
用しているためと考えられる。また、Li/Mnのモル
比が0.60より大きい場合はLiMn24以外の生成
物、例えばLi2Mn03が生成し、LiMn24の純分
が低下し、電池容量の低下原因となり、好ましくない。
The mixing ratio of the ε-manganese dioxide and the water-soluble lithium compound is 0.50 to 0.5% in molar ratio of Li / Mn.
0.60, preferably 0.51 to 0.55. If it is less than 0.50, the charge / discharge capacity of a lithium secondary battery is greatly deteriorated by cycle, and good battery characteristics are not exhibited. The reason for this is considered to be that Li acts as the third component as reported in the improvement of the cycle characteristics by the addition of the third component. When the molar ratio of Li / Mn is greater than 0.60, products other than LiMn 2 O 4 , for example, Li 2 MnO 3 are formed, and the pure content of LiMn 2 O 4 is reduced, which causes a reduction in battery capacity. Is not preferred.

【0023】湿式混合液のスラリー濃度はLi原料が
0.48〜4.8mol/L、Mn原料が0.50〜1
0.0mol/Lでよい。前記範囲より濃度が高いと均
一混合に強い撹拌力が必要となる。又、乾燥時の配管閉
塞のトラブル原因となり好ましくない。前記範囲より濃
度が低いと蒸発水分量が増加し、乾燥コストが上がり好
ましくない。
The slurry concentration of the wet mixture is 0.48 to 4.8 mol / L for the Li raw material and 0.50 to 1 for the Mn raw material.
It may be 0.0 mol / L. If the concentration is higher than the above range, a strong stirring force is required for uniform mixing. Further, it is not preferable because it causes a trouble of a pipe clogging during drying. If the concentration is lower than the above range, the amount of evaporated water increases, and the drying cost undesirably increases.

【0024】前記乾燥方法は噴霧乾燥、流動層乾燥、転
動造粒乾燥、あるいは凍結乾燥を単独又は組み合わせて
使用できる。乾燥物を大気中で熱処理する。熱処理は5
00〜1000℃の温度で一度の熱処理で良いが、より
好ましくは700〜850℃がよい。500℃未満では
マンガン化合物とリチウム化合物の反応が十分でない。
1000℃を越えた場合、焼結が起こり本発明の二次粒
子形状が保てなくなり、電池特性の悪いものになってし
まう。
As the drying method, spray drying, fluidized bed drying, tumbling granulation drying, or freeze drying can be used alone or in combination. The dried product is heat-treated in the atmosphere. Heat treatment is 5
One heat treatment may be performed at a temperature of 00 to 1000 ° C, but more preferably 700 to 850 ° C. If the temperature is lower than 500 ° C., the reaction between the manganese compound and the lithium compound is not sufficient.
If the temperature exceeds 1000 ° C., sintering occurs and the secondary particle shape of the present invention cannot be maintained, resulting in poor battery characteristics.

【0025】上記により合成したリチウムマンガン複合
酸化物を正極活物質として使用して電池用正極とし、負
極としてLi金属を使用してリチウム電池を作製した場
合は後述するように、充・放電での電圧が3.9〜4.
1Vを有し、120mAh/g以上の初期放電容量を有
し、20サイクル目の容量劣化が20%以下のリチウム
二次電池を得ることができる。
When the lithium manganese composite oxide synthesized as described above is used as a positive electrode active material to form a positive electrode for a battery, and a lithium battery is manufactured using Li metal as a negative electrode, as described later, charge and discharge are performed as described below. Voltage is 3.9-4.
A lithium secondary battery having 1 V, an initial discharge capacity of 120 mAh / g or more, and a capacity deterioration at the 20th cycle of 20% or less can be obtained.

【0026】[0026]

【実施例】本発明の実施例及び比較例を図面を参照しな
がら説明するが、本発明はこの実施例に限定されるもの
ではない。なお、反応生成物の同定及び結晶構造はX線
回折(RIGAKU Cu−Kα 50kV 200m
A)により調べた。粒子の形状は走査型電子顕微鏡(日
本電子製)により観察し、粒度分布はレーザー回折・散
乱法(HONEYWELL社 マイクロトラック粒度分
布計)により測定した。又、比表面積はBET一点法に
より測定した。
EXAMPLES Examples of the present invention and comparative examples will be described with reference to the drawings, but the present invention is not limited to these examples. The identification and crystal structure of the reaction product were determined by X-ray diffraction (RIGAKU Cu-Kα 50 kV 200 m
A). The shape of the particles was observed with a scanning electron microscope (manufactured by JEOL Ltd.), and the particle size distribution was measured by a laser diffraction / scattering method (Microtrack particle size distribution meter manufactured by HONEYWELL). The specific surface area was measured by the BET one point method.

【0027】[0027]

【実施例1】0.1mol/L硫酸マンガンおよび、
0.5mol/L硫酸を含む水溶液を30℃の恒温槽内
にいれ、オゾン濃度が20g/Nm3のオゾンを含む酸
素ガスを5.5時間通じ、酸化反応を行った。得られた
固形物をろ過後、水洗し110℃で乾燥した。図1はX
線回折図を示す。生成物はJCPDS:No.30−8
20のε−MnO2と同様の回折パターンを示した。比
表面積は174m2/gで、粒度分布測定より求めたメ
ジアン径は21μmであった。EDTA法により、Mn
含有量を分析した結果、Mn含有量は54.6%であっ
た。
Example 1 0.1 mol / L manganese sulfate and
An aqueous solution containing 0.5 mol / L sulfuric acid was placed in a thermostat at 30 ° C., and an oxygen gas containing ozone having an ozone concentration of 20 g / Nm 3 was passed for 5.5 hours to perform an oxidation reaction. The obtained solid was filtered, washed with water and dried at 110 ° C. FIG. 1 shows X
FIG. The product was JCPDS: No. 30-8
20 showed a diffraction pattern similar to that of ε-MnO 2 . The specific surface area was 174 m 2 / g, and the median diameter determined by particle size distribution measurement was 21 μm. According to the EDTA method, Mn
As a result of analyzing the content, the Mn content was 54.6%.

【0028】上記ε−MnO2と2.86mol/Lの
LiOH・H2O水溶液をLi/Mnモル比0.515
で湿式混合した。混合物を110℃で噴霧乾燥した後、
該乾燥物を大気中850℃で6時間熱処理し、リチウム
マンガン複合酸化物を作成した。
The ε-MnO 2 and a 2.86 mol / L aqueous solution of LiOH · H 2 O were mixed with a Li / Mn molar ratio of 0.515.
And wet mixed. After spray drying the mixture at 110 ° C.,
The dried product was heat-treated at 850 ° C. for 6 hours in the atmosphere to prepare a lithium manganese composite oxide.

【0029】この試料に対し、Cuをターゲットとした
X線回折、比表面積の測定および走査型電子顕微鏡写真
の撮影を行った。図2はX線回折図を示す。生成物はJ
CPDS:No.35−782のLiMn24と同様の
回折パターンを示した。比表面積は1.9m2/gであ
り、メジアン径は19μmであった。図3は生成物のS
EM写真を示す。SEM写真より生成物の二次粒子形状
は葡萄状であることが判る。
The sample was subjected to X-ray diffraction using Cu as a target, measurement of specific surface area, and photography of a scanning electron microscope. FIG. 2 shows an X-ray diffraction diagram. The product is J
CPDS: No. It showed a diffraction pattern similar to that of LiMn 2 O 4 of No. 35-782. The specific surface area was 1.9 m 2 / g, and the median diameter was 19 μm. Figure 3 shows the product S
An EM photograph is shown. The SEM photograph shows that the secondary particle shape of the product is grape-like.

【0030】次に上記乾燥焼成未粉砕物を活物質として
正極電極合剤を作製した。活物質として得られたリチウ
ムマンガン複合酸化物82重量部と、導電助剤としてア
セチレンブラック9重量部と、結着剤としてフッソ樹脂
9重量部を、溶剤としてn−メチル−2−ピロリドンを
用い混合した。上記電極合剤をドクターブレード法でア
ルミ箔へ乾燥後の重量が0.01g/cm2となるよう
に塗布した。150℃で真空乾燥後、初期電極合剤の厚
みに対し80%にロールプレスした。1cm2の面積で
打ち抜き後、図4に示すコイン電池の正極4とした。
Next, a positive electrode mixture was prepared using the dried and calcined unground material as an active material. 82 parts by weight of the lithium manganese composite oxide obtained as an active material, 9 parts by weight of acetylene black as a conductive additive, and 9 parts by weight of a fluororesin as a binder were mixed using n-methyl-2-pyrrolidone as a solvent. did. The electrode mixture was applied to an aluminum foil by a doctor blade method so that the weight after drying was 0.01 g / cm 2 . After vacuum drying at 150 ° C., roll pressing was performed to 80% of the thickness of the initial electrode mixture. After punching with an area of 1 cm 2 , the positive electrode 4 of the coin battery shown in FIG. 4 was obtained.

【0031】図4において、負極5は金属Li板を、電
解液はエチレンカーボネートとジメチルカーボネートの
等容量混合物にLiPF6を1mol/L溶解させたも
のを、セパレーター6はポリプロピレン多孔膜を使用し
た。正極、負極をそれぞれ収容した正極ケース2.負極
ケース1を含めた電池全体の大きさは外形約20mm、
高さ約3mmであった。
In FIG. 4, a negative electrode 5 is a metal Li plate, an electrolytic solution is a mixture of ethylene carbonate and dimethyl carbonate in the same volume of LiPF 6 dissolved at 1 mol / L, and a separator 6 is a porous polypropylene film. 1. Positive electrode case containing positive electrode and negative electrode respectively The overall size of the battery including the negative electrode case 1 is approximately 20 mm in outer shape,
The height was about 3 mm.

【0032】上記により作製したコイン電池を用いて電
流密度0.2mA/cm2の定電流で4.3Vまで充電
し、さらに定電圧で電流値が1μA以下になるまで充電
し、その後、3.0Vまで放電した。このサイクルを2
0回繰り返した。図5(実線)は、本実施例のリチウム
マンガン複合酸化物を正極活物質とし、Li金属を負極
としたコイン電池の充・放電曲線を示す。これより、本
実施例のコイン電池は、1サイクル目の放電容量は12
7mAh/gであり、20サイクル目の放電容量は12
0mAh/gで、放電容量維持率は94%であった。
Using the coin battery prepared as described above, the battery was charged at a constant current of 0.2 mA / cm 2 to 4.3 V, and further charged at a constant voltage until the current value became 1 μA or less. Discharged to 0V. This cycle is 2
Repeated 0 times. FIG. 5 (solid line) shows a charge / discharge curve of a coin battery in which the lithium-manganese composite oxide of this example was used as a positive electrode active material and Li metal was used as a negative electrode. Thus, the coin battery of the present example has a discharge capacity of 12
7 mAh / g, and the discharge capacity at the 20th cycle was 12
At 0 mAh / g, the discharge capacity retention ratio was 94%.

【0033】[0033]

【比較例】電解法二酸化マンガンをMn源とする以外は
実施例1と同様の手法で合成を行った。使用した電解法
二酸化マンガンは、JCPDS:No.14−644の
γ−MnO2と同様の回折パターンを示した。比表面積
は47m2/gで、粒度分布測定より求めたメジアン径
は3.5μmであった。EDTA法により、Mn含有量
を分析した結果、Mn含有量は58.6%であった。
Comparative Example Synthesis was carried out in the same manner as in Example 1, except that manganese dioxide was used as a Mn source. The electrolytic manganese dioxide used was JCPDS: No. 14-644 showed the same diffraction pattern as that of γ-MnO 2 . The specific surface area was 47 m 2 / g, and the median diameter determined by particle size distribution measurement was 3.5 μm. As a result of analyzing the Mn content by the EDTA method, the Mn content was 58.6%.

【0034】上記γ−MnO2と2.86mol/Lの
LiOH・H2O水溶液をLi/Mnモル比0.515
で湿式混合した。以下実施例と同様に乾燥・熱処理を行
った。
The γ-MnO 2 and a 2.86 mol / L aqueous solution of LiOH · H 2 O were mixed with a Li / Mn molar ratio of 0.515.
And wet mixed. Thereafter, drying and heat treatment were performed in the same manner as in the examples.

【0035】この試料に対し、Cuをターゲットとした
X線回折、比表面積の測定および走査型電子顕微鏡写真
の撮影を行った。生成物のX線回折図はJCPDS:N
o.35−782のLiMn24と同様の回折パターン
を示した。比表面積は2.4m2/gであり、メジアン
径は22μmであった。
The sample was subjected to X-ray diffraction using Cu as a target, measurement of specific surface area, and photography of a scanning electron microscope. The X-ray diffraction pattern of the product is JCPDS: N
o. It showed a diffraction pattern similar to that of LiMn 2 O 4 of No. 35-782. The specific surface area was 2.4 m 2 / g, and the median diameter was 22 μm.

【0036】実施例と同様の手法でコイン電池を作製
し、充・放電試験を実施した。図5(破線)は、本比較
例のリチウムマンガン複合酸化物を正極活物質とし、L
i金属を負極としたコイン電池の放電曲線を示す。これ
より、本比較例のコイン電池は、1サイクル目の放電容
量は117mAh/gであり、20サイクル目の放電容
量は81mAh/gで、放電容量維持率は69%であっ
た。
A coin battery was manufactured in the same manner as in the example, and a charge / discharge test was performed. FIG. 5 (broken line) shows the lithium manganese composite oxide of this comparative example as a positive electrode active material, and L
4 shows a discharge curve of a coin battery using i-metal as a negative electrode. As a result, in the coin battery of this comparative example, the discharge capacity at the first cycle was 117 mAh / g, the discharge capacity at the 20th cycle was 81 mAh / g, and the discharge capacity maintenance ratio was 69%.

【0037】実施例と比較例の比較から、明らかな様に
比表面積が100〜300m2/gのε−MnO2を原料
に葡萄状形状をもつリチウムマンガン複合酸化物を合成
することが可能であり、このリチウムマンガン複合酸化
物を正極活物質として使用したコイン電池は、γ−Mn
2を原料として同様の手法で合成したリチウムマンガ
ン複合酸化物を正極活物質として使用したコイン電池と
比べ、より高い初期放電容量を有し、サイクル劣化も少
ない。
As is clear from the comparison between the examples and comparative examples, it is possible to synthesize a grape-like lithium manganese composite oxide from ε-MnO 2 having a specific surface area of 100 to 300 m 2 / g as a raw material. There is a coin battery using this lithium manganese composite oxide as a positive electrode active material, γ-Mn
Compared with a coin battery using a lithium manganese composite oxide synthesized by a similar method using O 2 as a raw material, the coin battery has a higher initial discharge capacity and less cycle deterioration.

【0038】[0038]

【発明の効果】本発明により、リチウムマンガン複合酸
化物の原料として平均二次粒径が50μm以下でBET
比表面積が100〜300m2/gのε−MnO2を原料
とし、葡萄状の形状を有するリチウムマンガン複合酸化
物が提供でき、粉砕や繰り返し熱処理の工程無しに、
又、Mnを他の異種元素で置換することなしに、高い充
放電容量を有し、サイクル特性に優れた非水電解液二次
電池が供給できる。
According to the present invention, as a raw material for a lithium manganese composite oxide, a BET having an average secondary particle size of 50 μm or less is used.
Using ε-MnO 2 having a specific surface area of 100 to 300 m 2 / g as a raw material, it is possible to provide a lithium manganese composite oxide having a grape-like shape, and without the steps of pulverization and repeated heat treatment,
Further, a non-aqueous electrolyte secondary battery having a high charge / discharge capacity and excellent cycle characteristics can be supplied without replacing Mn with another different element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で作製したマンガン酸化物のX線回折
図。
FIG. 1 is an X-ray diffraction diagram of a manganese oxide manufactured in an example.

【図2】実施例で作製したリチウムマンガン複合酸化物
のX線回折図。
FIG. 2 is an X-ray diffraction diagram of a lithium manganese composite oxide manufactured in an example.

【図3】実施例で作製したリチウムマンガン複合酸化物
のSEM写真。
FIG. 3 is an SEM photograph of a lithium manganese composite oxide produced in an example.

【図4】実施例及び比較例で作製したリチウムマンガン
複合酸化物を正極活物質として使用したコイン電池の模
式図。
FIG. 4 is a schematic view of a coin battery using the lithium manganese composite oxide prepared in Examples and Comparative Examples as a positive electrode active material.

【図5】実施例及び比較例のリチウムマンガン複合酸化
物を正極活物質として使用したコイン電池の第1サイク
ル目及び第20サイクル目の充・放電曲線を示す図で、
実線のカーブは実施例の充・放電曲線を、破線のカーブ
は比較例の充・放電曲線を示す。
FIG. 5 is a diagram showing charge / discharge curves of the first cycle and the twentieth cycle of a coin battery using the lithium manganese composite oxide of the example and the comparative example as a positive electrode active material;
The solid curve shows the charge / discharge curve of the example, and the broken curve shows the charge / discharge curve of the comparative example.

【符号の説明】[Explanation of symbols]

1及び2 ケース 3 ガスケット 4 正極 5 負極 6 セパレータ 1 and 2 Case 3 Gasket 4 Positive electrode 5 Negative electrode 6 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中原 清 山口県宇部市大字小串1978番地の25 チタ ン工業株式会社内 (72)発明者 中島 良介 山口県宇部市大字小串1978番地の25 チタ ン工業株式会社内 Fターム(参考) 4G048 AA04 AB01 AB05 AC06 AD04 AD06 AE05 5H029 AJ03 AJ05 AJ14 AK03 AL12 AM03 AM05 AM07 BJ03 DJ16 HJ02 HJ05 HJ07 HJ14 HJ19 5H050 AA07 AA08 BA17 CA09 FA17 GA02 HA02 HA05 HA07 HA14 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Nakahara Inside 1925 Kogushi, Ogushi, Ube City, Yamaguchi Prefecture Inside (25) Inventor Ryosuke Nakajima 25 Chitan Kogyo, 1978 Kogushi, Ube City, Yamaguchi Prefecture In-house F term (reference) 4G048 AA04 AB01 AB05 AC06 AD04 AD06 AE05 5H029 AJ03 AJ05 AJ14 AK03 AL12 AM03 AM05 AM07 BJ03 DJ16 HJ02 HJ05 HJ07 HJ14 HJ19 5H050 AA07 AA08 BA17 CA09 FA17 GA02 HA02 HA05 HA07 HA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 主成分がLiMn24であり、ほぼ球形
の一次粒子形状を葡萄房状に集合させた二次粒子形状を
有し、該二次粒子径が1〜100μm、比表面積が0.
1〜10m2/gであることを特徴とするリチウムマン
ガン複合酸化物。
The main component is LiMn 2 O 4 , having a secondary particle shape obtained by assembling a substantially spherical primary particle shape into a grape cluster, having a secondary particle diameter of 1 to 100 μm and a specific surface area of 0.
A lithium manganese composite oxide having a mass of 1 to 10 m 2 / g.
【請求項2】 前記一次粒子径が0.1〜0.2μmで
あることを特徴とする請求項1に記載のリチウムマンガ
ン複合酸化物。
2. The lithium manganese composite oxide according to claim 1, wherein the primary particle diameter is 0.1 to 0.2 μm.
【請求項3】 X線回折法による結晶形ε−MnO2
主成分とし、比表面積100〜300m2/g、粒子径
50μm以下の葡萄房状の二次粒子形状を有するε−二
酸化マンガンと、水溶性リチウム化合物とをLi/Mn
のモル比0.50〜0.60で湿式混合する工程と、該
混合液をリチウムマンガン複合酸化物の前記粒子形状が
保持されるように乾燥した後、500〜900℃で熱処
理する工程とからなることを特徴とするリチウムマンガ
ン複合酸化物の製造方法。
3. An ε-manganese dioxide having a crystal form ε-MnO 2 by X-ray diffraction as a main component, a specific surface area of 100 to 300 m 2 / g, and a grape-like secondary particle shape having a particle diameter of 50 μm or less; , A water-soluble lithium compound and Li / Mn
Wet mixing at a molar ratio of 0.50 to 0.60, and drying the mixed solution so that the particle shape of the lithium manganese composite oxide is maintained, and then performing a heat treatment at 500 to 900 ° C. A method for producing a lithium-manganese composite oxide.
【請求項4】 請求項1又は2に記載のリチウムマンガ
ン複合酸化物、または、請求項3に記載の製法により得
られたリチウムマンガン複合酸化物を正極活物質として
用いた電池用正極。
4. A positive electrode for a battery using the lithium manganese composite oxide according to claim 1 or 2 or the lithium manganese composite oxide obtained by the production method according to claim 3 as a positive electrode active material.
【請求項5】 請求項1又は2に記載のリチウムマンガ
ン複合酸化物、または、請求項3に記載の製法により得
られたリチウムマンガン複合酸化物を正極活物質として
用いたリチウム二次電池。
5. A lithium secondary battery using the lithium manganese composite oxide according to claim 1 or 2, or a lithium manganese composite oxide obtained by the production method according to claim 3, as a positive electrode active material.
【請求項6】 少なくとも初期放電容量が120mAh
/g以上、又は20サイクル目の放電容量維持率が80
%を越えたコイン電池であることを特徴とする請求項5
に記載のリチウム二次電池。
6. At least an initial discharge capacity of 120 mAh
/ G or more, or the discharge capacity retention rate at the 20th cycle is 80
% Of the coin battery.
4. The lithium secondary battery according to 1.
JP2000238020A 2000-08-07 2000-08-07 Lithium manganese composite oxide, method for producing the same, and use thereof Expired - Lifetime JP4362004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000238020A JP4362004B2 (en) 2000-08-07 2000-08-07 Lithium manganese composite oxide, method for producing the same, and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000238020A JP4362004B2 (en) 2000-08-07 2000-08-07 Lithium manganese composite oxide, method for producing the same, and use thereof

Publications (2)

Publication Number Publication Date
JP2002053321A true JP2002053321A (en) 2002-02-19
JP4362004B2 JP4362004B2 (en) 2009-11-11

Family

ID=18729789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000238020A Expired - Lifetime JP4362004B2 (en) 2000-08-07 2000-08-07 Lithium manganese composite oxide, method for producing the same, and use thereof

Country Status (1)

Country Link
JP (1) JP4362004B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070642A1 (en) * 2002-02-21 2003-08-28 Tosoh Corporation Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
CN102856543A (en) * 2012-09-14 2013-01-02 深圳先进技术研究院 Lithium manganate material and preparation method thereof
CN102931393A (en) * 2012-11-15 2013-02-13 北京工业大学 Lithium manganate anode material with porous spherical structure and preparation method of lithium manganate anode material
JP2014515541A (en) * 2011-05-23 2014-06-30 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Positive electrode material for lithium ion battery, method for producing the same, and lithium ion battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003070642A1 (en) * 2002-02-21 2003-08-28 Tosoh Corporation Lithium manganese composite oxide granular secondary particle, method for production thereof and use thereof
US7217406B2 (en) 2002-02-21 2007-05-15 Tosoh Corporation Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
CN100344543C (en) * 2002-02-21 2007-10-24 东曹株式会社 Lithium-manganese composite oxide granular secondary particle, method for production thereof and use thereof
JP2014515541A (en) * 2011-05-23 2014-06-30 中国科学院▲寧▼波材料技▲術▼▲与▼工程研究所 Positive electrode material for lithium ion battery, method for producing the same, and lithium ion battery
US9954225B2 (en) 2011-05-23 2018-04-24 Ningbo Institute Of Materials Technology And Engineering, Chinese Academy Of Sciences Positive electrode material for lithium battery, preparing method thereof and lithium battery
CN102856543A (en) * 2012-09-14 2013-01-02 深圳先进技术研究院 Lithium manganate material and preparation method thereof
CN102856543B (en) * 2012-09-14 2014-07-02 深圳先进技术研究院 Lithium manganate material and preparation method thereof
CN102931393A (en) * 2012-11-15 2013-02-13 北京工业大学 Lithium manganate anode material with porous spherical structure and preparation method of lithium manganate anode material

Also Published As

Publication number Publication date
JP4362004B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP5377981B2 (en) Lithium-metal composite oxide and electrochemical device using the same
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
JP5405126B2 (en) Method for producing lithium-metal composite oxide
KR100653170B1 (en) Positive plate active material, method for producing the same, and secondary cell
JP4299065B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5199522B2 (en) Spinel-type lithium / manganese composite oxide, its production method and use
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
KR20110094023A (en) Powder of lithium complex compound particles, method for producing the same, and nonaqueous electrolyte secondary cell
JPH1069910A (en) Lithium nickel composite oxide, manufacture thereof, and positive electrode active substance for secondary battery
KR20130081228A (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
US20060188780A1 (en) Lithium-nickel-manganese composite oxide, processes for producing the same, and use of the same
KR20110044936A (en) Process for the production of lithium-manganese double oxide for lithium ion batteries and lithium-manganese double oxide for lithium ion batteries made by the same, and lithium ion batteries cotaining the same
CN114556633A (en) Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
JP2018200863A (en) Positive-electrode active material complex for lithium ion secondary battery or positive-electrode active material complex for sodium ion secondary battery, secondary battery using the same, and manufacturing method for the same
JP2006318929A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2006318928A (en) Cathode active substance for lithium secondary battery, and nonaqueous lithium secondary battery
JP2001240498A (en) High crystalline lithium titanate
JP2002158007A (en) Lithium manganese nickel complex oxide, and manufacturing method of the same
CN113825725B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and positive electrode for nonaqueous electrolyte secondary battery
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
KR101196948B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2001146426A (en) Method for producing lithium manganese compound oxide and lithium ion secondary battery using the same
CN113764638A (en) Cathode material, preparation method thereof, cathode comprising cathode material and lithium ion battery
WO2021037900A1 (en) Mixed lithium transition metal oxide coated with pyrogenically produced zirconium-containing oxides

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090716

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090814

R150 Certificate of patent or registration of utility model

Ref document number: 4362004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term