JP2001240498A - High crystalline lithium titanate - Google Patents

High crystalline lithium titanate

Info

Publication number
JP2001240498A
JP2001240498A JP2000049918A JP2000049918A JP2001240498A JP 2001240498 A JP2001240498 A JP 2001240498A JP 2000049918 A JP2000049918 A JP 2000049918A JP 2000049918 A JP2000049918 A JP 2000049918A JP 2001240498 A JP2001240498 A JP 2001240498A
Authority
JP
Japan
Prior art keywords
lithium titanate
lithium
titanium dioxide
peak intensity
main peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000049918A
Other languages
Japanese (ja)
Other versions
JP4435926B2 (en
Inventor
Hiroshi Mashima
宏 真嶋
Mamoru Kubota
守 久保田
Kiyoshi Nakahara
清 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Titan Kogyo KK
Original Assignee
Titan Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Titan Kogyo KK filed Critical Titan Kogyo KK
Priority to JP2000049918A priority Critical patent/JP4435926B2/en
Publication of JP2001240498A publication Critical patent/JP2001240498A/en
Application granted granted Critical
Publication of JP4435926B2 publication Critical patent/JP4435926B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain lithium titanate with high capacity density in charging and discharging, which is useful as an active material for lithium secondary battery. SOLUTION: When manufacturing high crystalline lithium titanate consisting of Li4/3Ti5/3O4 as a main component and few other components, Li and Ti compounds are wet mixed, uniformly dried in spherical shape, and synthesized through heat treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
の活物質等として有用な高結晶性チタン酸リチウムに関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly crystalline lithium titanate useful as an active material of a lithium secondary battery.

【0002】[0002]

【従来の技術】リチウムチタン複合酸化物であるチタン
酸リチウムは、一般式Li(1+X)Ti(2-X)y(x=−
0.2〜1.0、y=3〜4)で表され、その代表的なも
のとしてLi4/3Ti5/34、LiTi24、Li2Ti
3等が知られている。これらはリチウム基準で1.5V
の電圧を有し、長寿命であることが特徴である。なかで
もLi4/3Ti5/34はその充・放電容量が大きいこと
から注目されている。また、Li4/3Ti5/34は時計
用リチウムイオン電池活物質として実績を持つ材料であ
り、充放電に際しての膨張・収縮が無視できるという特
徴から、電池の大型化に際して注目される電極材料であ
る。この材料は従来から使用されている正極活物質とし
てだけでなく、負極活物質としての利用面も開けてお
り、電池の正極・負極活物質としてその将来が期待され
るものである。
2. Description of the Related Art Lithium titanate, which is a lithium-titanium composite oxide, has a general formula Li (1 + X) Ti (2-X) O y (x = −
0.2 to 1.0, y = 3 to 4), representative of which are Li 4/3 Ti 5/3 O 4 , LiTi 2 O 4 , and Li 2 Ti
O 3 and the like are known. These are 1.5V based on lithium.
And a long service life. Among them, Li 4/3 Ti 5/3 O 4 has attracted attention because of its large charge / discharge capacity. Also, Li 4/3 Ti 5/3 O 4 is a material that has a proven track record as a lithium-ion battery active material for watches, and is characterized by its negligible expansion and contraction during charge / discharge, and is attracting attention in increasing the size of batteries. It is an electrode material. This material has not only been used as a conventionally used positive electrode active material but also as a negative electrode active material, and its future is expected as a positive electrode and negative electrode active material for batteries.

【0003】チタン酸リチウムの製造方法として、特開
平6−275263号公報には、リチウム化合物として
水酸化リチウムあるいは炭酸リチウムを用い、これと酸
化チタンとを700℃〜1600℃の温度で乾式熱処理
する方法が記載されている。
As a method for producing lithium titanate, JP-A-6-275263 discloses that lithium hydroxide or lithium carbonate is used as a lithium compound, and this and titanium oxide are subjected to dry heat treatment at a temperature of 700 ° C. to 1600 ° C. A method is described.

【0004】また、特開平9−309726号公報に
は、チタン化合物とアンモニア化合物とを水中で反応さ
せてチタン酸化合物を得る工程、及び該チタン酸化合物
とリチウム化合物とを水中で反応させる工程によってチ
タン酸リチウム水和物を製造する方法が開示されてい
る。
JP-A-9-309726 discloses a process of reacting a titanium compound and an ammonia compound in water to obtain a titanate compound, and a process of reacting the titanate compound and a lithium compound in water. A method for producing lithium titanate hydrate is disclosed.

【0005】しかしながら、これらの手法によって得ら
れるチタン酸リチウムLi4/3Ti5 /34を正極活物質
に用いてリチウム二次電池を形成した場合、充・放電容
量は約130〜150mAh/gに過ぎない(電気化学
vol.62、No.9(1994)P870〜875
参照)。チタン酸リチウムの理論容量は、175mAh
/gであるが(WO99/03784等参照)、上記の
チタン酸リチウムの充・放電容量は理論容量を大きく下
回っているのが現状である。
However, if the lithium titanate Li 4/3 Ti 5/3 O 4 obtained by these methods were used as the positive electrode active material to form a lithium secondary battery, charging and discharging capacity was about 130~150MAh / g (Electrochemistry vol. 62, No. 9 (1994) P870-875).
reference). The theoretical capacity of lithium titanate is 175 mAh
/ G (see WO99 / 03784, etc.), but at present, the charge / discharge capacity of the lithium titanate is much lower than the theoretical capacity.

【0006】一方、近年、チタン酸リチウムを使用した
リチウム二次電池においては、更に充・放電容量の大き
な材料開発が望まれている。
On the other hand, in recent years, in lithium secondary batteries using lithium titanate, development of a material having a larger charge / discharge capacity has been desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記に鑑みて
なされたものであり、チタン酸リチウムの理論容量であ
る175mAh/gにより近い、高い充・放電容量を有
するチタン酸リチウムを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object of the present invention is to provide lithium titanate having a high charge / discharge capacity, which is closer to 175 mAh / g, which is the theoretical capacity of lithium titanate. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意研究を重ねた結果、特定のチタン酸リチ
ウムを使用して作成したリチウムイオン電池が優れた充
放電特性を示すことを見出し、本発明を完成させた。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that a lithium ion battery made using a specific lithium titanate exhibits excellent charge / discharge characteristics. And completed the present invention.

【0009】すなわち、本発明の高結晶性チタン酸リチ
ウムは、Li4/3Ti5/34を主成分とし、X線回折法
によるLi4/3Ti5/34のメインピーク強度を100
としたとき、アナターゼ型二酸化チタン、ルチル型二酸
化チタン、及びLi2TiO3のメインピーク強度がいず
れも5以下であるチタン酸リチウムであって、かつ、そ
の結晶子径が700Å〜800Åであることを特徴とす
る。
That is, the highly crystalline lithium titanate of the present invention contains Li 4/3 Ti 5/3 O 4 as a main component, and has a main peak intensity of Li 4/3 Ti 5/3 O 4 determined by an X-ray diffraction method. To 100
When the anatase type titanium dioxide, the rutile type titanium dioxide, and the main peak intensity of Li 2 TiO 3 are all lithium titanate of 5 or less, and the crystallite diameter thereof is 700 ° to 800 ° It is characterized by.

【0010】この高結晶性チタン酸リチウムをリチウム
二次電池における正極活物質に用いると、初期充・放電
容量が165mAh/g以上とすることができる。
When this highly crystalline lithium titanate is used as a positive electrode active material in a lithium secondary battery, the initial charge / discharge capacity can be 165 mAh / g or more.

【0011】[0011]

【発明の実施の形態】本発明の高結晶性チタン酸リチウ
ムは、主成分がLi4/3Ti5/34からなることを特徴
とし、粉末等を使用したX線回折図においてLi4/3
5/34のメインピークである4.83Åのピーク強度
を100としたときに、アナターゼ型二酸化チタンのメ
インピークである3.51Å、ルチル型二酸化チタンの
メインピークである3.25Å及びLi2TiO3の生成
を示す2.07Åの夫々のピーク強度が5以下、好まし
くはその合計が10以下であり、最も好ましくは各々の
ピーク強度が3以下である。すなわち、本発明では、L
4/3Ti5/34以外の生成物が微量であることを特徴
とする。また、結晶子径が700Å〜800Å、好まし
くは730Å〜780Åと結晶性が極めて高いものであ
る。結晶子径は、例えば4.83Åのピークの半価巾よ
りScherrerの式より求めることができる。
Highly crystalline lithium titanate of the present invention DETAILED DESCRIPTION OF THE INVENTION, the main component is characterized in that it consists of Li 4/3 Ti 5/3 O 4, Li 4 in the X-ray diffraction diagram using powder or the like / 3 T
When the peak intensity of the main peak of i 5/3 O 4 at 4.83 ° is defined as 100, 3.51 ° which is the main peak of anatase type titanium dioxide, 3.25 ° which is the main peak of rutile type titanium dioxide, and Each peak intensity at 2.07 °, which indicates the production of Li 2 TiO 3 , is 5 or less, preferably the total is 10 or less, and most preferably each peak intensity is 3 or less. That is, in the present invention, L
It is characterized in that products other than i 4/3 Ti 5/3 O 4 are trace amounts. Further, the crystallite diameter is 700 to 800, preferably 730 to 780, and the crystallinity is extremely high. The crystallite diameter can be determined, for example, by the Scherrer's formula from the half width of the peak at 4.83 °.

【0012】更に、前記チタン酸リチウムを正極活物質
とし、例えば金属Liを負極として非水溶媒系のリチウ
ム二次電池を作製すると、充・放電試験を行った結果が
1.5Vの充・放電電圧を満足し、かつ165mAh/
g以上の高い初期充・放電容量を有するものとなる。こ
の優れた充・放電特性は前述した如く、本発明のチタン
酸リチウムのLi4/3Ti5/34以外の生成物のピーク
強度が5以下と微量であること、及び、結晶子径が70
0Å〜800Åの範囲であって結晶性が極めて高いこと
に起因するものと考えられる。
Further, when a lithium secondary battery of a non-aqueous solvent system is manufactured using the above-mentioned lithium titanate as a positive electrode active material and, for example, metal Li as a negative electrode, a charge / discharge test shows that a charge / discharge of 1.5 V results. Voltage, and 165 mAh /
g and a high initial charge / discharge capacity of at least g. As described above, the excellent charge / discharge characteristics are such that the peak intensity of the product other than Li 4/3 Ti 5/3 O 4 of the lithium titanate of the present invention is as small as 5 or less, and the crystallite diameter is small. Is 70
It is considered to be due to the extremely high crystallinity in the range of 0 ° to 800 °.

【0013】本発明の高結晶性チタン酸リチウムを製造
するためには、例えば、まず、リチウム塩として水酸化
リチウム、水酸化リチウム・1水和物、酸化リチウム、
炭酸水素リチウムまたは炭酸リチウムを水と混合または
溶解する。この溶解液にLiとTiの原子比が4:5と
なるように、アナターゼ型二酸化チタンまたは含水酸化
チタンを混合する。混合液のスラリー濃度はLi原料が
0.48〜4.8モル/L、Ti原料が0.60〜6.00
モル/Lが好ましい。前記範囲より濃度が高いと均一混
合に強い撹拌力が必要となる。また乾燥時の配管閉塞等
のトラブルの原因となり好ましくない。一方、上記範囲
より濃度が低いと蒸発水分量が増加し、乾燥コストが上
がり好ましくない。次に、混合液を撹拌しながら乾燥さ
せて球状粒子とする。前記乾燥させて球状粒子とする方
法は噴霧乾燥、流動層乾燥、転動造粒乾燥、あるいは凍
結乾燥を単独または組み合わせて使用できる。更に、乾
燥物をガス気流中において、熱処理する。この製造方法
の特徴はLi化合物とTi化合物が均一に混合してお
り、目的物の組成のズレが少なく、また、目的物の内部
と表面とで組成や構造が異なることが少ない。このこと
も高い充・放電容量を有する一因と推定される。
In order to produce the highly crystalline lithium titanate of the present invention, for example, lithium hydroxide, lithium hydroxide monohydrate, lithium oxide,
Mix or dissolve lithium bicarbonate or lithium carbonate with water. Anatase-type titanium dioxide or hydrous titanium oxide is mixed with this solution so that the atomic ratio of Li and Ti is 4: 5. The slurry concentration of the mixture was 0.48 to 4.8 mol / L for the Li raw material and 0.60 to 6.00 for the Ti raw material.
Mol / L is preferred. If the concentration is higher than the above range, a strong stirring force is required for uniform mixing. Also, it is not preferable because it causes troubles such as blockage of the piping during drying. On the other hand, if the concentration is lower than the above range, the amount of evaporated water increases, and the drying cost is undesirably increased. Next, the mixture is dried with stirring to obtain spherical particles. As the method of drying into spherical particles, spray drying, fluidized bed drying, tumbling granulation drying, or freeze drying can be used alone or in combination. Further, the dried product is heat-treated in a gas stream. The feature of this production method is that the Li compound and the Ti compound are uniformly mixed, the composition of the target is not misaligned, and the composition and structure of the inside and the surface of the target are less different. This is also presumed to be a cause of having a high charge / discharge capacity.

【0014】熱処理時のガスは窒素、酸素、及び空気の
いずれでも良いが、酸素ガス気流中での焼成が好まし
い。この理由は酸素気流中での焼成によりチタン酸リチ
ウムがより高い結晶性を有し、その結果より高い放電容
量が得られるためである。また、これら熱処理物を粉砕
することによっても目的物を得ることができる。
The gas for the heat treatment may be any of nitrogen, oxygen and air, but firing in an oxygen gas stream is preferred. The reason is that the lithium titanate has higher crystallinity by firing in an oxygen stream, and as a result, a higher discharge capacity can be obtained. The target product can also be obtained by pulverizing these heat-treated products.

【0015】熱処理温度は700〜1000℃が好まし
く、750〜950℃がより好ましい。700℃未満で
はチタン酸化物とリチウム化合物の反応が十分でなく好
ましくない。また、1000℃を越えた場合、本発明の
チタン酸リチウムLi4/3Ti5/34以外のLi2Ti3
7が生成し好ましくない。
The heat treatment temperature is preferably from 700 to 1000 ° C, more preferably from 750 to 950 ° C. If the temperature is lower than 700 ° C., the reaction between the titanium oxide and the lithium compound is not sufficient, which is not preferable. When the temperature exceeds 1000 ° C., Li 2 Ti 3 other than the lithium titanate Li 4/3 Ti 5/3 O 4 of the present invention is used.
O 7 is generated, which is not preferable.

【0016】製造原料として使用するチタン酸化物の出
発原料は、塩化物、硫酸塩或いは有機塩等のいずれであ
ってもよい。また、結晶構造は、アナタ−ゼ型、或いは
無定形等のいずれであってもよいが、本発明の如く、放
電容量や電池特性の優れたチタン酸リチウムとするため
には、アナタ−ゼ型二酸化チタンまたは含水酸化チタン
を使用することが好ましい。アナタ−ゼ型二酸化チタン
については純度が少なくとも95%以上が必要であり、
好ましくは98%以上のものである。純度が95%未満
の場合、活物質重量当たりの容量が下がってしまうため
好ましくない。一方、高純度例えば純度99.99%の
ものを用いることも可能であるが、この場合コストが高
くなる。また、電極活物質として考えた場合、98%以
上であれば、組成及び結晶性の影響の方が大きく、高純
度化の意味が薄れる。含水酸化チタンについては焼成し
てアナタ−ゼ型二酸化チタンとした時に、上記の範囲と
なるものであり、その焼成前の純度の目安は90%以上
である。その理由は上述したアナタ−ゼ型酸化チタンと
同様である。
The starting material of the titanium oxide used as the production material may be any of chloride, sulfate, organic salt and the like. The crystal structure may be any of an anatase type and an amorphous type. However, as in the present invention, in order to obtain lithium titanate having excellent discharge capacity and battery characteristics, an anatase type is required. It is preferred to use titanium dioxide or hydrous titanium oxide. Anatase type titanium dioxide must have a purity of at least 95% or more,
Preferably it is 98% or more. When the purity is less than 95%, the capacity per active material weight is reduced, which is not preferable. On the other hand, high purity, for example, 99.99% purity can be used, but in this case, the cost is increased. Further, when considered as an electrode active material, if the content is 98% or more, the influence of the composition and the crystallinity is larger, and the meaning of high purification is reduced. When hydrous titanium oxide is calcined to form an anatase type titanium dioxide, the content falls within the above range, and the purity standard before calcining is 90% or more. The reason is the same as the above-mentioned anatase type titanium oxide.

【0017】[0017]

【実施例】本発明の実施例及び比較例を図面を参照にし
ながら説明するが、本発明はこの実施例に限定されるも
のではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments and comparative examples of the present invention will be described with reference to the drawings, but the present invention is not limited to these embodiments.

【0018】[0018]

【実施例1】まず、水酸化リチウム(LiOH・H
2O)1.962モルを451gの水に投入し、撹拌溶
解した。溶解液に純度98%のアナターゼ型酸化チタン
をTiO 2として2.453モル投入し撹拌した。この
際のLiとTiの原子比が4:5である。混合スラリー
の容積は0.502Lであり、乾燥前のLi原及びTi
原のスラリー濃度はそれぞれ3.91モル/L及び4.
89モル/Lである。混合物を110℃で噴霧乾燥した
後、乾燥物を酸素ガス気流中、800℃で6時間熱処理
し、チタン酸リチウムを作製した。
Embodiment 1 First, lithium hydroxide (LiOH.H
TwoO) Add 1.962 mol to 451 g of water,
I understand. 98% pure anatase titanium oxide in solution
To TiO Two2.453 mol was added and stirred. this
In this case, the atomic ratio of Li to Ti is 4: 5. Mixed slurry
Has a volume of 0.502 L, and a Li raw material and Ti before drying.
The original slurry concentrations were 3.91 mol / L and 4.
89 mol / L. The mixture was spray dried at 110 ° C
Thereafter, the dried product is heat-treated at 800 ° C. for 6 hours in an oxygen gas stream.
Thus, lithium titanate was produced.

【0019】このチタン酸リチウムはCuをターゲット
としたX線回折の結果、Li4/3Ti5/34のメインピ
ークである4.83Åのピーク強度を100とした時
に、アナターゼ型二酸化チタンのメインピークである
3.51Å、及びルチル型二酸化チタンのメインピーク
である3.25Åのピーク強度は夫々1以下であり、L
2TiO3の生成を示す2.07Åのピーク強度は3で
あった。また、結晶子径は736Åであった。
This lithium titanate targets Cu.
X-ray diffraction results showed that Li4/3Ti5/3OFourMain Pi
When the peak intensity of 4.83% which is
The main peak of anatase type titanium dioxide
3.51%, and the main peak of rutile titanium dioxide
3.25 ° is less than or equal to 1, respectively.
i TwoTiOThreeThe peak intensity at 2.07 ° indicating the formation of
there were. The crystallite diameter was 736 °.

【0020】次に上記チタン酸リチウムを活物質として
正極電極合剤を作成した。活物質として得られたチタン
酸リチウム82重量部と、導電助剤としてアセチレンブ
ラック10重量部と、結着剤としてフッ素樹脂8重量部
を、溶剤としてn−メチル−2−ピロリドンを用い混合
した。上記電極合剤をドクターブレード法で銅箔へ乾燥
後の厚さが0.03g/cm2となるように塗布した。1
50℃で真空乾燥後、初期電極合材の厚みに対し80%
にロールプレスした。1cm2の面積で打ち抜き後、図
1に示すようなコイン電池の正極4とした。
Next, a positive electrode mixture was prepared using the above lithium titanate as an active material. 82 parts by weight of lithium titanate obtained as an active material, 10 parts by weight of acetylene black as a conductive additive, and 8 parts by weight of a fluororesin as a binder were mixed using n-methyl-2-pyrrolidone as a solvent. The electrode mixture was applied to a copper foil by a doctor blade method so that the thickness after drying was 0.03 g / cm 2 . 1
After vacuum drying at 50 ° C, 80% of initial electrode mixture thickness
Roll pressed. After punching in an area of 1 cm 2 , a positive electrode 4 of a coin battery as shown in FIG. 1 was obtained.

【0021】図1において、負極5は金属Li板を、電
解液はエチレンカーボネートとジメチルカーボネートの
等容量混合物にLiPF6を1mol/L溶解させたも
のを、セパレーター6はポリプロピレン多孔膜を使用し
た。正極、負極をそれぞれ収容した正極ケース2.負極
ケース1を含めた電池全体の大きさは外形約20mm、
高さ約3mmであった。
In FIG. 1, a negative electrode 5 is a metal Li plate, an electrolytic solution is a mixture obtained by dissolving 1 mol / L of LiPF 6 in an equal volume mixture of ethylene carbonate and dimethyl carbonate, and a separator 6 is a porous polypropylene film. 1. Positive electrode case containing positive electrode and negative electrode respectively The overall size of the battery including the negative electrode case 1 is approximately 20 mm in outer shape,
The height was about 3 mm.

【0022】上記により作成したコイン電池を用いて電
流密度0.4mA/cm2の定電流で1.0Vまで放電
し、その後、3.0Vまで充電し、このサイクルを10
回繰り返した。
Using the coin battery prepared as described above, the battery was discharged to 1.0 V at a constant current of 0.4 mA / cm 2 and then charged to 3.0 V.
Repeated times.

【0023】[0023]

【実施例2】熱処理条件を酸素ガス気流中875℃とし
た以外は実施例1と同様にチタン酸リチウムを合成し
た。以下の評価は実施例1と同様に行った。
Example 2 Lithium titanate was synthesized in the same manner as in Example 1 except that the heat treatment was performed at 875 ° C. in an oxygen gas stream. The following evaluation was performed in the same manner as in Example 1.

【0024】このチタン酸リチウムはCuをターゲット
としたX線回折の結果、Li4/3Ti5/34のメインピ
ークである4.83Åのピーク強度を100とした時
に、アナターゼ型二酸化チタンのメインピークである
3.51Åのピーク強度は1以下であり、ルチル型二酸
化チタンのメインピークである3.25Åのピーク強度
及びLi2TiO3の生成を示す2.07Åのピーク強度
はいずれも2であった。また、結晶子径は757Åであ
った。
As a result of X-ray diffraction of this lithium titanate using Cu as a target, when the peak intensity of 4.83 °, which is the main peak of Li 4/3 Ti 5/3 O 4 , is set to 100, anatase type titanium dioxide is used. which is the main peak peak intensity of 3.51Å is 1 or less, both the peak intensity of the 2.07Å showing the generation of 3.25Å peak intensity and Li 2 TiO 3 as a main peak of the rutile titanium dioxide It was 2. The crystallite diameter was 757 °.

【0025】[0025]

【実施例3】実施例1と同じ条件で得た乾燥物をN2
ス気流中、850℃で6時間熱処理し、チタン酸リチウ
ムを得た。以下の評価は実施例1と同様に行った。
Example 3 A dried product obtained under the same conditions as in Example 1 was heat-treated at 850 ° C. for 6 hours in a stream of N 2 gas to obtain lithium titanate. The following evaluation was performed in the same manner as in Example 1.

【0026】このチタン酸リチウムはCuをターゲット
としたX線回折の結果、Li4/3Ti5/34のメインピ
ークである4.83Åのピーク強度を100とした時
に、アナターゼ型二酸化チタンのメインピークである
3.51Å、ルチル型二酸化チタンのメインピークであ
る3.25Å、及びLi2TiO3の生成を示す2.07
Åのピーク強度はいずれも1以下であった。また、結晶
子径は732Åであった。
As a result of X-ray diffraction using Cu as a target, when the peak intensity of 4.83 ° which is the main peak of Li 4/3 Ti 5/3 O 4 is set to 100, anatase type titanium dioxide is used. 3.51 °, which is the main peak of the above, 3.25 ° which is the main peak of the rutile-type titanium dioxide, and 2.07 which indicates the production of Li 2 TiO 3.
The peak intensity of Å was 1 or less. The crystallite diameter was 732 °.

【0027】[0027]

【実施例4】実施例1と同じ条件で得た乾燥物を空気気
流中、900℃で10時間熱処理し、チタン酸リチウム
を得た。以下の評価は実施例1と同様に行った。
Example 4 A dried product obtained under the same conditions as in Example 1 was heat-treated in an air stream at 900 ° C. for 10 hours to obtain lithium titanate. The following evaluation was performed in the same manner as in Example 1.

【0028】このチタン酸リチウムはCuをターゲット
としたX線回折の結果、Li4/3Ti5/34のメインピ
ークである4.83Åのピーク強度を100とした時
に、アナターゼ型二酸化チタンのメインピークである
3.51Å、及びルチル型二酸化チタンのメインピーク
である3.25Åのピーク強度は夫々1以下であり、L
2TiO3の生成を示す2.07Åのピーク強度は2で
あった。また、結晶子径は773Åであった。
This lithium titanate targets Cu
X-ray diffraction results showed that Li4/3Ti5/3OFourMain Pi
When the peak intensity of 4.83% which is
The main peak of anatase type titanium dioxide
3.51%, and the main peak of rutile titanium dioxide
3.25 ° is less than or equal to 1, respectively.
i TwoTiOThreeThe peak intensity at 2.07 ° indicating the formation of
there were. The crystallite diameter was 773 °.

【0029】[0029]

【比較例1】水酸化リチウム(LiOH・H2O)飽和
水溶液とアナターゼ型酸化チタンをモル比が4:5とな
るよう混合し、110℃で12時間乾燥した。乾燥物を
混合粉砕後、窒素ガス気流中、800℃で6時間熱処理
した。以下の評価は実施例1と同様に行った。
Comparative Example 1 A saturated aqueous solution of lithium hydroxide (LiOH.H 2 O) and anatase-type titanium oxide were mixed at a molar ratio of 4: 5, and dried at 110 ° C. for 12 hours. After the dried product was mixed and pulverized, it was heat-treated at 800 ° C. for 6 hours in a nitrogen gas stream. The following evaluation was performed in the same manner as in Example 1.

【0030】このチタン酸リチウムはCuをターゲット
としたX線回折の結果、Li4/3Ti5/34のメインピ
ークである4.83Åのピーク強度を100とした時
に、アナターゼ型二酸化チタンのメインピークである
3.51Åのピーク強度は1以下、ルチル型二酸化チタ
ンのメインピークである3.25Åのピーク強度は2
2、Li2TiO3の生成を示す2.07Åのピーク強度
は9であった。また、結晶子径は692Åであった。
As a result of X-ray diffraction using Cu as a target, when the peak intensity of 4.83 ° which is the main peak of Li 4/3 Ti 5/3 O 4 is set to 100, the anatase type titanium dioxide is used. The peak intensity at 3.51 °, which is the main peak of, is 1 or less, and the peak intensity at 3.25 °, which is the main peak of rutile titanium dioxide, is 2.
2. The peak intensity at 2.07 ° indicating the production of Li 2 TiO 3 was 9. The crystallite diameter was 692 °.

【0031】[0031]

【比較例2】比較例1同様の処理で得た乾燥・粉砕物を
酸素ガス気流中、800℃で6時間熱処理した。以下の
評価は実施例1と同様に行った。
Comparative Example 2 A dried and ground product obtained in the same manner as in Comparative Example 1 was heat-treated at 800 ° C. for 6 hours in an oxygen gas stream. The following evaluation was performed in the same manner as in Example 1.

【0032】このチタン酸リチウムはCuをターゲット
としたX線回折の結果、Li4/3Ti5/34のメインピ
ークである4.83Åのピーク強度を100とした時
に、アナターゼ型二酸化チタンのメインピークである
3.51Åのピーク強度は1以下、ルチル型二酸化チタ
ンのメインピークである3.25Åのピーク強度は2
0、Li2TiO3の生成を示す2.07Åのピーク強度
は9であった。また、結晶子径は704Åであった。
As a result of X-ray diffraction using Cu as a target, when the peak intensity of 4.83 ° which is the main peak of Li 4/3 Ti 5/3 O 4 was set to 100, anatase type titanium dioxide was used. The peak intensity at 3.51 °, which is the main peak of, is 1 or less, and the peak intensity at 3.25 °, which is the main peak of rutile titanium dioxide, is 2.
0, the peak intensity at 2.07 ° indicating the production of Li 2 TiO 3 was 9. The crystallite diameter was 704 °.

【0033】上記実施例1〜4及び比較例1〜2のX線
回折ピーク強度、結晶子径及びコイン電池の初期放電容
量値を表1に示す。
Table 1 shows the X-ray diffraction peak intensities, crystallite diameters, and initial discharge capacity values of the coin batteries of Examples 1 to 4 and Comparative Examples 1 and 2.

【0034】[0034]

【表1】 [Table 1]

【0035】上記実施例1〜4及び比較例1〜2のチタ
ン酸リチウムを用いたコイン電池の放電特性図を図2に
示す。
FIG. 2 shows the discharge characteristics of the coin batteries using the lithium titanates of Examples 1-4 and Comparative Examples 1-2.

【0036】表1及び図2に示す結果から明らかな様
に、実施例1〜4及び比較例1〜2とも電池電圧は理論
電圧の1.5Vを満足するが、実施例1〜4の初期放電
容量が165mAh/g以上と高いのに対し、比較例1
及び比較例2は120mAh/g及び137mAh/g
と初期放電容量が低かった。これより、本発明のチタン
酸リチウムがその理論容量密度である175mAh/g
に近い、高い放電容量を示していることが判る。
As is clear from the results shown in Table 1 and FIG. 2, the battery voltages of Examples 1 to 4 and Comparative Examples 1 and 2 satisfy the theoretical voltage of 1.5 V. While the discharge capacity was as high as 165 mAh / g or more, Comparative Example 1
And Comparative Example 2 were 120 mAh / g and 137 mAh / g
And the initial discharge capacity was low. Thus, the lithium titanate of the present invention has a theoretical capacity density of 175 mAh / g.
It can be seen that a high discharge capacity close to

【0037】[0037]

【発明の効果】以上説明したように本発明の高結晶性チ
タン酸リチウムは、Li4/3Ti5/3 4を主成分とし、
X線回折法によるLi4/3Ti5/34のメインピーク強
度を100としたとき、アナターゼ型二酸化チタン、ル
チル型二酸化チタン、及びLi2TiO3のメインピーク
強度がいずれも5以下であるチタン酸リチウムであっ
て、かつ、その結晶子径が700Å〜800Åであるこ
とを特徴とするので、理論容量に近い165mAh/g
以上の高い放電容量を示し、リチウム二次電池の電極活
物質として極めて有用なものである。
As described above, according to the present invention, the high crystallinity
Lithium titanate is Li4/3Ti5/3O FourIs the main component,
Li by X-ray diffraction method4/3Ti5/3OFourMain peak strength
When the degree is 100, anatase type titanium dioxide,
Chill type titanium dioxide and LiTwoTiOThreeMain peak of
Lithium titanate whose strength is 5 or less
And the crystallite diameter is 700-800 °
165 mAh / g close to the theoretical capacity
The high discharge capacity described above indicates that the electrode
It is extremely useful as a substance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例のチタン酸リチウムを正極活
物質として使用したコイン電池の断面図である。
FIG. 1 is a sectional view of a coin battery using lithium titanate as a positive electrode active material according to one embodiment of the present invention.

【図2】実施例1〜4及び比較例1,2のチタン酸リチ
ウムを用いたコイン電池の放電特性図である。
FIG. 2 is a discharge characteristic diagram of a coin battery using lithium titanate of Examples 1 to 4 and Comparative Examples 1 and 2.

【符号の説明】[Explanation of symbols]

4 正極 5 負極 4 Positive electrode 5 Negative electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中原 清 山口県宇部市大字小串1978番地の25 チタ ン工業株式会社内 Fターム(参考) 4G077 AA01 BC42 CA03 EC02 HA20 5H050 AA08 BA16 BA17 CA07 CB12 EA10 EA24 FA19 HA13 HA19 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kiyoshi Nakahara 1978 Kogushi, Ube City, Yamaguchi Prefecture 25-Titan Industry Co., Ltd. F-term (reference) 4G077 AA01 BC42 CA03 EC02 HA20 5H050 AA08 BA16 BA17 CA07 CB12 EA10 EA24 FA19 HA13 HA19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Li4/3Ti5/34を主成分とし、X線
回折法によるLi4/3Ti5/34のメインピーク強度を
100としたとき、アナターゼ型二酸化チタン、ルチル
型二酸化チタン、及びLi2TiO3のメインピーク強度
がいずれも5以下であるチタン酸リチウムであって、か
つ、その結晶子径が700Å〜800Åである高結晶性
チタン酸リチウム。
1. Anatase-type titanium dioxide containing Li 4/3 Ti 5/3 O 4 as a main component and the main peak intensity of Li 4/3 Ti 5/3 O 4 determined by X-ray diffraction as 100. Highly crystalline lithium titanate in which rutile-type titanium dioxide and Li 2 TiO 3 are each lithium titanate whose main peak intensity is 5 or less, and whose crystallite diameter is 700 ° to 800 °.
【請求項2】 リチウム二次電池における正極活物質に
用いた場合に、初期充・放電容量が165mAh/g以
上となる請求項1に記載の高結晶性チタン酸リチウム。
2. The highly crystalline lithium titanate according to claim 1, wherein the initial charge / discharge capacity is 165 mAh / g or more when used as a positive electrode active material in a lithium secondary battery.
JP2000049918A 2000-02-25 2000-02-25 High crystalline lithium titanate Expired - Lifetime JP4435926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049918A JP4435926B2 (en) 2000-02-25 2000-02-25 High crystalline lithium titanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049918A JP4435926B2 (en) 2000-02-25 2000-02-25 High crystalline lithium titanate

Publications (2)

Publication Number Publication Date
JP2001240498A true JP2001240498A (en) 2001-09-04
JP4435926B2 JP4435926B2 (en) 2010-03-24

Family

ID=18571778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049918A Expired - Lifetime JP4435926B2 (en) 2000-02-25 2000-02-25 High crystalline lithium titanate

Country Status (1)

Country Link
JP (1) JP4435926B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005239461A (en) * 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium titanate and lithium cell produced by using the lithium titanate
EP1722439A1 (en) 2005-05-13 2006-11-15 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, lithium-titanium composite oxide, battery pack and vehicle
KR100726027B1 (en) 2006-09-21 2007-06-08 건국대학교 산학협력단 Method for manufacturing of single phase li4ti5o12 powder
JP2009032704A (en) * 2005-05-18 2009-02-12 Toshiba Corp Nonaqueous electrolyte battery, and lithium-titanium composite oxide
JP2009176752A (en) * 2005-07-07 2009-08-06 Toshiba Corp Negative electrode active substance and its manufacturing method, nonaqueous electrolyte battery, and battery pack
KR100986328B1 (en) * 2006-11-10 2010-10-08 가부시끼가이샤 도시바 Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack
JP2011051891A (en) * 2010-10-19 2011-03-17 Ishihara Sangyo Kaisha Ltd Method for producing lithium titanate and lithium battery using the lithium titanate
JP2011060764A (en) * 2009-09-09 2011-03-24 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, this manufacturing method, and lithium secondary battery containing this
JP2012006816A (en) * 2010-06-28 2012-01-12 Hitachi Ltd Lithium titanate particle and method for producing the same, negative electrode for lithium ion battery, and lithium battery
WO2012029697A1 (en) 2010-08-31 2012-03-08 戸田工業株式会社 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012153561A1 (en) * 2011-05-12 2012-11-15 宇部興産株式会社 Lithium titanate particles, active material, and method for producing lithium titanate particles
JP2013051104A (en) * 2011-08-31 2013-03-14 Toda Kogyo Corp Lithium titanate particle powder, negative electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US8741172B2 (en) 2012-06-20 2014-06-03 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide and manufacturing method thereof, and battery electrode using same
JP2017016873A (en) * 2015-06-30 2017-01-19 宇部興産株式会社 Lithium titanate powder for electrode of power storage device, active material, electrode sheet using the same and power storage device
KR20170023125A (en) 2014-09-10 2017-03-02 가부시끼가이샤 도시바 Non-aqueous electrolyte battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160048184A (en) 2013-08-30 2016-05-03 우베 고산 가부시키가이샤 Lithium titanate powder, active material, and electricity storage device using same
JP5790894B1 (en) 2014-05-21 2015-10-07 宇部興産株式会社 Lithium titanate powder for electrode of power storage device, active material, and power storage device using the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4668539B2 (en) * 2004-02-25 2011-04-13 石原産業株式会社 Method for producing lithium titanate and method for producing lithium battery
JP2005239461A (en) * 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd Method for manufacturing lithium titanate and lithium cell produced by using the lithium titanate
CN101453038B (en) * 2005-05-13 2012-07-04 株式会社东芝 Nonaqueous electrolyte battery, battery pack and vehicle
EP1722439A1 (en) 2005-05-13 2006-11-15 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, lithium-titanium composite oxide, battery pack and vehicle
CN100448097C (en) * 2005-05-13 2008-12-31 株式会社东芝 Nonaqueous electrolyte battery, lithium-titanium composite oxide, battery pack and vehicle
CN101453039B (en) * 2005-05-13 2012-05-02 株式会社东芝 Nonaqueous electrolyte battery, battery pack and vehicle
KR100804912B1 (en) * 2005-05-13 2008-02-20 가부시끼가이샤 도시바 Nonaqueous Electrolyte Battery, Lithium-Titanium Composite Oxide, Battery Pack and Vehicle
US7595134B2 (en) 2005-05-13 2009-09-29 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, lithium-titanium composite oxide, battery pack and vehicle
US8318351B2 (en) 2005-05-13 2012-11-27 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery containing a negative electrode of lithium-titanium composite oxide, battery pack and vehicle
US8541137B2 (en) 2005-05-13 2013-09-24 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery containing a negative electrode of lithium-titanium composite oxide, battery pack and vehicle
JP2009032704A (en) * 2005-05-18 2009-02-12 Toshiba Corp Nonaqueous electrolyte battery, and lithium-titanium composite oxide
JP2009176752A (en) * 2005-07-07 2009-08-06 Toshiba Corp Negative electrode active substance and its manufacturing method, nonaqueous electrolyte battery, and battery pack
KR100726027B1 (en) 2006-09-21 2007-06-08 건국대학교 산학협력단 Method for manufacturing of single phase li4ti5o12 powder
KR100986328B1 (en) * 2006-11-10 2010-10-08 가부시끼가이샤 도시바 Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack
US8003255B2 (en) 2006-11-10 2011-08-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack
US20110262800A1 (en) * 2006-11-10 2011-10-27 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery, lithium titanium composite oxide and battery pack
JP2011060764A (en) * 2009-09-09 2011-03-24 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, this manufacturing method, and lithium secondary battery containing this
CN102024949A (en) * 2009-09-09 2011-04-20 三星Sdi株式会社 Negative active material, method of preparing same, and rechargeable lithium battering including same
US8530095B2 (en) 2009-09-09 2013-09-10 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
JP2012006816A (en) * 2010-06-28 2012-01-12 Hitachi Ltd Lithium titanate particle and method for producing the same, negative electrode for lithium ion battery, and lithium battery
WO2012029697A1 (en) 2010-08-31 2012-03-08 戸田工業株式会社 Lithium titanate particulate powder and production method for same, mg-containing lithium titanate particulate powder and production method for same, negative electrode active material particulate powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US9847526B2 (en) 2010-08-31 2017-12-19 Toda Kogyo Corporation Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
US9293235B2 (en) 2010-08-31 2016-03-22 Toda Kogyo Corporation Lithium titanate particles and process for producing the lithium titanate particles, Mg-containing lithium titanate particles and process for producing the Mg-containing lithium titanate particles, negative electrode active substance particles for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2011051891A (en) * 2010-10-19 2011-03-17 Ishihara Sangyo Kaisha Ltd Method for producing lithium titanate and lithium battery using the lithium titanate
WO2012153561A1 (en) * 2011-05-12 2012-11-15 宇部興産株式会社 Lithium titanate particles, active material, and method for producing lithium titanate particles
JP5892161B2 (en) * 2011-05-12 2016-03-23 宇部興産株式会社 Lithium titanate particles, active material, and method for producing lithium titanate particles
JP2013051104A (en) * 2011-08-31 2013-03-14 Toda Kogyo Corp Lithium titanate particle powder, negative electrode active material particle powder for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US8741172B2 (en) 2012-06-20 2014-06-03 Taiyo Yuden Co., Ltd. Lithium-titanium complex oxide and manufacturing method thereof, and battery electrode using same
KR20180132963A (en) 2014-09-10 2018-12-12 가부시끼가이샤 도시바 Non-aqueous electrolyte battery
KR20170023125A (en) 2014-09-10 2017-03-02 가부시끼가이샤 도시바 Non-aqueous electrolyte battery
US10355273B2 (en) 2014-09-10 2019-07-16 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
EP3709402A1 (en) 2014-09-10 2020-09-16 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
US10910643B2 (en) 2014-09-10 2021-02-02 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
JP2017016873A (en) * 2015-06-30 2017-01-19 宇部興産株式会社 Lithium titanate powder for electrode of power storage device, active material, electrode sheet using the same and power storage device

Also Published As

Publication number Publication date
JP4435926B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
JP5377981B2 (en) Lithium-metal composite oxide and electrochemical device using the same
KR101369658B1 (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER FOR RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE, PROCESS FOR PRODUCING THE Li-Ni COMPOSITE OXIDE PARTICLE POWDER, AND RECHARGEABLE BATTERY WITH NONAQUEOUS ELECTROLYTE
JP5405126B2 (en) Method for producing lithium-metal composite oxide
JP4768901B2 (en) Lithium titanium composite oxide, method for producing the same, and use thereof
KR100389052B1 (en) Positive electrode active material, preparation method thereof and nonaqueous solvent secondary battery using the same
JP2001240498A (en) High crystalline lithium titanate
JP2000503622A (en) Method for producing mixed amorphous vanadium oxide and its use as electrode in rechargeable lithium batteries
WO2005112152A1 (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
US20110269025A1 (en) Method for producing crystalline titanium dioxide, method for producing a negative electrode active material, negative electrode active material, and lithium secondary battery
JP4051771B2 (en) Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
JP4620926B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2013234102A (en) Titanium oxide and method of manufacturing the same, lithium titanate and method of manufacturing the same, and lithium battery
JP3695366B2 (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
JP4558229B2 (en) Lithium titanate, method for producing the same, and use thereof
KR100668051B1 (en) Manganese Oxides by co-precipitation method, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP2001114521A (en) Trimanganese tetraoxide and method for its production
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP4553095B2 (en) Cobalt oxide particle powder and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2002313338A (en) Positive electrode active material for use in nonaqueous electrolyte secondary battery, raw material for it and method for manufacturing it
JP2002231246A (en) Positive electrode active maerail for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP4519959B2 (en) Positive electrode material for lithium secondary battery
JP2000169152A (en) Cobalt-coated lithium manganese double oxide and its production
JP2002053321A (en) Lithium manganese multiple oxide, its manufacturing method and use thereof
JP2005122931A (en) Lithium-manganese compound oxide grain, manufacturing method of the same, and nonaqueous lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

R150 Certificate of patent or registration of utility model

Ref document number: 4435926

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term